
What did we learn from last week?

1

Learning Goals for last lecture

• Introduction of Software Engineering
• Process and Team
• Recognize the Importance of process
• Understand the difficulty of measuring progress

Administrivia

• Milestone 1: sharing your OneDrive Folder
• Posting questions on Piazza: One topic ONE thread.

Changes in teams

- Be prepared for changes --
members/roles/responsibilities.
Record the changes.

- Ask for accommodation

4

Announcing CARTE student initiatives:
• 1- AI/ML research drop-in clinic: Students can book a free 30-minute slot through here with

our research associate, Alex Olson, who would provide guidance on experimental design,
literature, and technical tools.

• 2- Analytics/AI/ML Student CV Bank: Master of Engineering students looking for M.Eng
projects can send their CVs to CARTE’s assistant director, Somayeh Sadat, to be added to the CV
bank. This CV bank is accessible to CARTE faculty affiliates who might use it to find students for
their research projects. MASc and PhD students looking for additional research projects can also
send us their CVs, provided that they first ask for permission from their supervisors.
Undergraduate students looking for summer projects are welcome to submit their CVs too.

• 3- MITACS Internship opportunities in Analytics/AI/ML: We announce new internship
opportunities on a bi-weekly basis on our website and through our email list.

• 4- Information on access to cloud computing resources: We’ve compiled relevant information
for students here.

• To stay informed about our other services, including industry speaker seminars, conference de-
brief sessions, and other research or employment opportunities, please make sure that
you subscribe to our email list. You can also follow us on social media (Linkedin, Facebook,
or Twitter) for announcements of relevant events across the university.

5

https://calendly.com/carte-toronto/research-clinic
mailto:Somayeh.Sadat@utoronto.ca
https://carte.utoronto.ca/carte/faculty-affiliates/
https://carte.utoronto.ca/ai-ml-opportunities-at-mitacs/
https://carte.utoronto.ca/education/cloud-resources/
https://utoronto.us3.list-manage.com/subscribe?u=27d1f1e433cd27e560c0bd003&id=aae29802f8
https://www.linkedin.com/company/carte-toronto
https://www.facebook.com/CARTEToronto
https://twitter.com/CARTEToronto

6

Logistics -- Office Hours

7

Wed 5:15-6:15pm
Zoom
Others by appointment

• I am interested in pursuing a career as a software engineer.
• To learn more about software development in real-world application
• To learn more about agile workflow and new skills for fulltime employment
• Learn about best practices in software engineering and web development
• To better understand how to work in larger groups to create and maintain

large projects.
• How to build reliable software updated and maintained with convenience.
• Formally learn about design patterns
• Learn about the workflow and architecture of designing a web application
• I love software engineering!
• Interested to learn more about the processes of creating software

applications beyond the technical aspects of them.

Why did you pick this class?

0

2

4

6

8

10

12

14

Dock
er

web
 de

ve
lop

men
t

m
icr

os
er

vic
es

pr
ac

tic
al

so
ftw

ar
e e

ngin
ee

rin
g

Fla
sk

op
en

 so
ur

ce
 so

ftw
ar

e
SE

4A
I

co
lla

bo
ra

tio
n

de
sig

n patt
er

ns
Dev

Ops

fro
nt

-en
d des

ign
wor

kfl
ow

pr
oce

ss

te
st-

driv
en

 de
ve

lopm
en

t AI
co

de r
ev

iew
ar

ch
ite

ctu
re

be
st

pr
ac

tic
es

sc
ala

bil
ity

ku
be

rn
et

es
sy

ste
m de

sig
n

AW
S

te
sti

ng
clo

ud
 se

rv
ice

s
ba

ck
-en

d
ag

ile
Nod

eJ
S

ta
sk

 m
an

ag
em

en
t t

ools

SO
TA

 in
 so

ftw
ar

e e
ng

inee
rin

g

em
pr

ica
l s

of
tw

ar
e e

ng
ine

er
ing

m
on

olith
ic

de
sig

n pro
ce

ss
Ja

ve
sc

rip
t

bu
ild

ing
 so

ftw
ar

e v
s w

rit
ing

 co
de

de
sig

n pro
ce

ss

pr
ojec

t m
an

ag
em

en
t

em
be

dd
ed

 sy
ste

m
s

qu
ali

ty
at

tri
bu

te
s

M
VC

ro
les

 in
 so

ftw
ar

e t
ea

m
s

dja
ng

o
IoT

…

Online lab only for...

•Wednesday 22-Sep
•Wednesday 29-Sep

10

Software is everywhere

11

The software the team has used for five years to
simulate such scenarios had generated the incorrect
figures, consigning Hamilton to a second-place finish
behind Vettel’s Ferrari.

12

https://www.formula1.com/en/latest/article.software-glitch-cost-hamilton-victory-
mercedes.6VzyCYpEpauaIYsOWYCqYS.html#:~:text=A%20software%20glitch.,season%2Dopening%20race%20in%20Au
stralia.&text=The%20world%20champion%20immediately%20asked,time%20Mercedes%20had%20given%20him.

https://www.formula1.com/en/latest/article.software-glitch-cost-hamilton-victory-mercedes.6VzyCYpEpauaIYsOWYCqYS.html

13

A bad code, a bug could cost more than the victory

Perhaps 89 deaths, hundreds of
serious injury lawsuits
• $1.6B class action settlement
• Jury found system defective –

Toyota “acted in reckless
disregard”

• Many of issues were SW, but
also a HW problem

14

A failure of project management --
Swedish Vasa warship

Software Engineering
What is engineering? And how is it different from

hacking/programming?

15

PROCESS IS IMPORTANT

17

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements,
Design, Change Management, Quality Assurance Plan,

Development and Integration Plan

Percent of Effort

TimeProject beginning Project end

100%

0%

18

Productive Coding

Trashing / Rework

Process

Percent of Effort

TimeProject beginning Project end

100%

0%

Survival Mode

• Missed deadlines -> "solo
development mode" to
meet own deadlines
• Ignore integration work
• Stop interacting with

testers, technical writers,
managers, …

19

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor

them
• Planning and conducting quality assurance
• Have daily status meetings
• Use Docker containers to push code between developers and operation

20

22

Brief intro to Scrum

Project 1 – Milestone 1 Team Workflow

• The team workflow is a document that outlines team roles. It also
gives us information about organizational issues, like team meeting
times. This helps us send course staff to aid you and helps us to follow
your progress.
• The main purpose of this document is to give you some rules for team

process, management, tracking, and goal setting. As a general rule,
groups work pretty well in this course.However, any good working
group will have some measurements in place if something goes awry.

24

ECE444: Software Engineering

Case Study

Shurui Zhou

• One pilot said it was “unconscionable that a manufacturer, the FAA (Federal Aviation
Administration), and the airlines would have pilots flying an airplane without adequately training,
or even providing available resources and sufficient documentation to understand the highly
complex systems that differentiate this aircraft from prior models”

26

https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-
missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/

https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa

Learning goal

Some background...

28

Safety Analysis

29

Activities

• The Facts: create a list of as many facts about the Boeing case as you
can come up with.
• Relationship Between Facts: identify as many relationships between

facts as you can
• Takeaways

30

Risk Matrix

34

Requirements 1:

Overview and Concepts

ECE444 Software Engineering (Fall 2021)

Learning Goals

• Explain the importance and challenges of requirements in software
engineering.
• Explain how and why requirements articulate the relationship

between a desired system and its environment.
• Identify assumptions.
• Distinguish between and give examples of: functional and quality

requirements; informal statements and verifiable requirements.
• State quality requirements in measurable ways

53

https://www.softwareone.com/en-ca/blog/articles/2020/03/11/equirements-engineering-
documentation-of-requirements

Overly simplified definition...

Requirements say what the
system will do (and not how it
will do it).

Communication problem

Goal: figure out what should be built.
Express those ideas so that the correct thing is built.

Fred Brooks, on requirements

• The hardest single part of building a software
system is deciding precisely what to build.

• No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

• No other part is as difficult to rectify later.

Why is this hard?

57

What is requirement engineering?

• http://www.cs.toronto.edu/~sme/CSC340F/readings/FoRE-
chapter02-v7.pdf

Problem: ?

Solution: code, design drawings, system
architecture, user manuals, etc

What is requirement engineering?

• Knowledge acquisition – how to capture relevant detail about a system?
• Is the knowledge complete and consistent?

• Knowledge representation – once captured, how do we express it most
effectively?
• Express it for whom?
• Is it received consistently by different people?

Capturing vs Synthesizing

• Engineers acquire requirements from many sources
•Elicit from stakeholders
•Extract from policies or other documentation
•Synthesize from above + estimation and invention

•Because stakeholders do not always “know what they want”*,
engineers must…

•Be faithful to stakeholder needs and expectations
•Anticipate additional needs and risks
•Validate that “additional needs” are necessary or desired

63

https://kodytechnolab.com/functional-requirements-vs-non-functional-requirements

Functional & Non-Functional Requirements
Functional Requirements: covers the main functions.
- user requirement
- system requirement

Non-Functional Requirements
These are the constrains on the functions provided by the
system.
e.g., performance & security &…

User and System Requirements
User Requirements
• Written for customers
• Usually written in a natural language
• No technical details

System Requirements
- Audiences: engineers, system architects,

testers, etc.
- Clearly and more rigorously specified
- What the machine should do: Input , Output,

Interface, Response to events, ...

66
https://www.youtube.com/watch?v=vpNnZDwC_vs

Example of User Req. and System Req.

67

https://tech-talk.org/2015/02/06/requirement-analysis-in-software-design/

Which one is UR? Which one is SR?

68

https://tech-talk.org/2015/02/06/requirement-analysis-in-software-design/

69

http://www.crvs-dgb.org/en/activities/analysis-and-design/8-define-system-requirements/

• https://www.ietf.org
/rfc/rfc2119.txt

Criteria
https://techtalkdotorg.files.wordpress.com/2015/02/requireme
nts_analysis_focus.png

Functional requirements and implementation bias

Requirements say what the system will do (and not how it will do it).

Why not “how”?

Quality/Non-functional requirements

• Specify not the functionality of the
system, but the quality with which it
delivers that functionality.

• Can be more critical than functional
requirements
• Can work around missing functionality
• Low-quality system may be unusable

Quality (non-funct.) requirements

• Specify not the functionality of the system, but the quality with which
it delivers that functionality.
• Can be more critical than functional requirements
• Can work around missing functionality
• Low-quality system may be unusable

• Examples?

Here’s the thing…

• Who is going to ask for a slow, inefficient, unmaintainable system?
• A better way to think about quality requirements is as design criteria

to help choose between alternative implementations.
• Question becomes: to what extent must a product satisfy these

requirements to be acceptable?

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

77

Security
- Confidentiality -- data, objects and resources are protected
from unauthorized viewing and other access.
- Integrity -- data is protected from unauthorized changes to

ensure that it is reliable and correct.
- Availability -- authorized users have access to the systems

and the resources they need.

Security Req (Example)

• Confidentiality requirement: A non-staff patron may never know
which books have been borrowed by others.
• Integrity req: The return of book copies shall be encoded correctly

and by library staff only.
• Availability req: A blacklist of bad patrons shall be made available at

any time to library staff. Information about train positions shall be
available at any time to the vital station computer.

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Reliability req.

The probability that a product will operate
without failure for a specified number of
uses (transactions) or for a specified
period of time.

e.g. The train acceleration control
software shall have a mean time between
failures of the order of 109 hours.

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Accuracy req. (Examples)

• The solution needs to be 100% accurate
• A copy of a book shall be stated as available by the loan software if

and only if it is actually available on the library shelves.
• The information about train positions used by the train controller

shall accurately reflect the actual position of trains up to X meters at
most.
• The constraints used by the meeting scheduler should accurately

reflect the real constraints of invited participants.

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

85

Throughput ResponseTime Secondary
Storage

Main
Storage

Performance Requirement

Time Space

PeakThroughput

OffPeakThroughput

PeakMeanThroughput

PeakUniformThroughput

Reusable catalogue in
(Chung et al 2000)

Performance req.

• Def: how well the software system accomplishes certain functions
under specific conditions.
• e.g.
• Responses to bibliographical queries shall take less than 2 seconds.
• Acceleration commands shall be issued to every train every 3 seconds.
• The meeting scheduler shall be able to accommodate up to x requests in

parallel.
• The new e-subscription facility should ensure a 30% cost saving.

More Examples

• Interface req: The format for bibliographical queries and answers shall be
accessible to students from any department. To ensure smooth and
comfortable train moves, the difference between the accelerations in two
successive commands sent to a train should be at most x. To avoid
disturbing busy people unduly, the amount of interaction with invited
participants for organizing meetings should be kept as low as possible.
• Interoperability req: The meeting scheduling software should be

interoperable with the wss Agenda Manager product.
• Compliance req: The value for the worst-case stopping distance between

successive trains shall be compliant with international railways regulations.
The meeting scheduler shall by default exclude official holidays associated
with the target market.

Examples 4

• Architectural req: The on-board train controllers shall handle the
reception and proper execution of acceleration commands sent by
the station computer. The meeting scheduling software should run on
Windows version X.x and Linux version Y.y.
• Development req.: The overall cost of the new UWON library

software should not exceed x. The train control software should be
operational within two years. The software should provide
customized solutions according to variations in type of meeting
(professional or private, regular or occasional), type of meeting
location (fixed, variable) and type of participant (same or different
degrees of importance).

Expressing quality requirements

Expressing quality requirements
• Requirements serve as contracts: they should be testable/falsifiable.
• Informal goal: a general intention, such as ease of use.
• May still be helpful to developers as they convey the intentions of the system

users.

• Verifiable non-functional requirement: A statement using some
measure that can be objectively tested.

Examples

• Informal goal: “the system should be easy to use by experienced
controllers, and should be organized such that user errors are
minimized.”
• Verifiable non-functional requirement: “Experienced controllers shall

be able to use all the system functions after a total of two hours
training. After this training, the average number of errors made by
experienced users shall not exceed two per day, on average.”

ECE444: Software Engineering
Requirements 2: Requirements Elicitation

Learning Goals

• Basic proficiency in executing effective requirements interviews
• Understand that requirements are just “design data”, the information

you will use to support your design
• Understand what/why/how about personas
• Recognize and resolve conflicts with priorities

Requirements Elicitation

Typical Steps

• Identify stakeholders
• Understand the domain
• Analyze artifacts, interact with stakeholders

• Discover the real needs
• Interview stakeholders

• Explore alternatives to address needs

Questions

• Who is the system for?
• Stakeholders:
• End users
• System administrators
• Engineers maintaining the system
• Business managers
• …who else?

Stakeholder

• Any person or group who will be affected by the system, directly or indirectly.
• Stakeholders may disagree.
• Requirements process should trigger negotiation to resolve conflicts.

Stakeholders, a NASA example

https://web.ssu.ac.ir/Dorsapax/userfiles/Sub55/849.pdf

Role network for National Aeronautics
and Space Administration (NASA’s) Near
Earth Asteroid Rendezvous project.

https://web.ssu.ac.ir/Dorsapax/userfiles/Sub55/849.pdf

Stakeholder analysis: criteria for identifying
relevant stakeholders

• Relevant positions in the organization
• Effective role in making decisions about the system
• Level of domain expertise
• Exposure to perceived problems
• Influence in system acceptance
• Personal objectives and conflicts of interest

Studying Artifacts (Content Analysis)

• Learn about the domain
• Books, articles, wikipedia

• Learn about the system to be replaced
• How does it work? What are the problems? Manuals? Bug reports?

• Learn about the organization
• Knowledge reuse from other systems?

Checklists
(Domain-independent knowledge)
• Consider list of qualities for relevance, e.g. privacy, security, reliability,

…

Throughput ResponseTime Secondary
Storage

Main
Storage

Performance Requirement

Time Space

PeakThroughput

OffPeakThroughput

PeakMeanThroughput

PeakUniformThroughput

Reusable catalogue in
(Chung et al 2000)

Collecting requirements: Elicit from stakeholders

• Survey: measure topics of interest in a
controlled, consistent manner; easy to
administer across large groups
• Identify target population, their attitudes

and preferences
• Validate assumptions or facts

• Interview: More expensive, but could
have follow-up questions to resolve
ambiguity

https://uxknowledgebase.co
m/user-interview-how-to-
ask-good-questions-
eb80f8b99627

UX design

Types of questions: depend on your goals

Closed-ended Questions

• Nominal scales provide interviewees with a list of categories from
which to select their answer (e.g., White, Black or African American,
American Indian, Asian, Native Hawaiian or Pacific Islander)
• Good practices –

Solicit response options in a pilot study
Randomize order, if concerned about order effects
Avoid bias from unequal response options
Check all that apply vs. forced-choice

Example: Unequal response options

How likely are you to share your location to meet friends after work?
• Absolutely never
• Sometimes
• Occasionally
• Once or more a week
• Everyday

Ordinal Scales

• Ordinal or interval scales ask interviewees to choose a “level” of the
variable of interest

Cowley, Youngblood. “Subjective response differences between visual analogue, ordinal
and hybrid response scales,” Human Factors and Ergonomics Society Annual Meeting,
53(25): 1883-1887, 2009.

118

119

Open-ended Questions

• Definition and designation questions
What-is asks to develop definitions of things
Who identifies the responsible agent
What-kinds-of ask for possible types and exemplars

• Process, event and exception questions
How-to ask how an action is performed
When asks about timing constraints, pre-and post-conditions
What-if asks about failures or unexpected events
Follow-on questions result from answers from previous questions

Follow-up questions

Do you mean in general?
Can you recall a specific example?
Did you participate in this example?
Do you remember any events before or after?
What time of day was it?
Who was present?
What happened next?

Survey

• https://www.surveymonkey.com/mp/how-to-use-an-interval-scale-in-
your-survey-questions/

122

Survey Organization & Execution

• Begin with salient questions that respondents can easily answer
• Group questions by topic
• Keep in mind ordering effects and biases

Acquiescence: the tendency to agree
Social desirability: the need to present oneself in a desirable light

• During open-ended responses in interviews:
• Jot down “sign posts” and “way points” in your notes to guide the conversation back

to important points
• Limit tangents and distractions, but be willing to explore unexpected ideas

• Limit interviews and surveys to 30-45 minutes
• Pilot the survey on a friend or colleague!

Interview

Interviews

• (Most) common method of data gathering in qualitative research
• A variety of forms of qualitative research interview
(and assumptions that underlie their use)
• Types of interviews:

• ‘semi-structured’ -- list of questions (open-ended and closed-ended) or topics
• ‘un-structured’ -- list of prompts

Interview Process

• Identify stakeholder of interest and target information to be gathered.
• Conduct interview.
• (structured/unstructured, individual/group)

• Record + transcribe interview
• Report important findings.
• Check validity of report with interviewee.

Example: Identifying Problems

• What problems do you run into in your day-to-day work? Is there a standard way of
solving it, or do you have a workaround?
• Why is this a problem? How do you solve the problem today? How would you ideally like to solve

the problem?
• Keep asking follow-up questions (“What else is a problem for you?”, “Are there other

things that give you trouble?”) for as long as the interviewee has more problems to
describe.

• So, as I understand it, you are experiencing the following problems/needs (describe the
interviewee’s problems and needs in your own words – often you will discover that you
do not share the same image. It is very very common to not understand each other even
if at first you think you do).

• Just to confirm, have I correctly understood the problems you have with the current
solution?

• Are there any other problems you’re experiencing? If so, what are they?

Example Questions:
The User Environment
• Who will be the users of the system?
• What level of education or training do the users have?
• What computer skills do the users have?
• Are users familiar with this type of IT system?
• What technical platforms do they use today?
• Do you know of any plans for future systems or platforms?
• What other IT systems does the organization use today that the new system will

need to link to?
• What are your expectations regarding system usability?
• What training needs do you expect for the future system?
• What kind of documentation do you expect?

128http://reqtest.com/requirements-blog/how-to-use-interviews-to-gather-requirements/

Kinds of questions

Interview Advice
• Get basic facts about the interviewee before (role, responsibilities, …)
• Review interview questions before interview
• Begin concretely with specific questions, proposals; work through

prototype or scenario
• Relate to current system, if applicable.

• Be open-minded; explore additional issues that arise naturally, but
stay focused on the system.
• Contrast with current system/alternatives. Explore conflicts and

priorities
• Plan for follow-up questions

Another two examples (Requirements for
Chef Copilot)

132

Interview 1 Interview 2

133

Exercise: Project 1

Education Pathways

134

http://courseography.cdf.toronto.edu/graph

136

Interview Tradeoffs

• Strengths
• What stakeholders do, feel, prefer
• How they interact with the system
• Challenges with current systems

• Weaknesses
• Subjective, inconsistencies
• Capturing domain knowledge
• Familiarity
• Technical subtlety
• Hinges on interviewer skill

Sampling Strategies
Patton, M. Q. (1990). Qualitative Evaluation and Research
Methods, 2nded. Newbury Park, CA: Sage Publications.

