
ECE444: Software Engineering

Software Architecture

Shurui Zhou

Learning Goals

• Understand what drives design

• Understand information hiding

• Understand the abstraction level of architectural reasoning

• Approach software architecture with quality attributes in mind

• Use notation and views to describe the architecture suitable to the purpose

• Understand a few common architecture patterns

Requirements

Miracle /
genius developers

Implementation

Architecture

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Quality Requirements, now what?

Quality Requirements, now what?

• "should be highly available"

• "should answer quickly, accuracy is less relevant"

• "needs to be extensible"

• "should efficiently use hardware resources"

Introduction to Software Design

A typical Intro of CS design process

1. Discuss software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

A Better Software Design

• Think before coding: broadly consider quality attributes
– Maintainability, extensibility, performance, …

• Propose, consider design alternatives
– Make explicit design decision

Using a Design Process

• A design process organizes your work

• A design process structures your understanding
• A design process facilitates communication

Fundamental Object-Oriented Design Principle

OOP - Abstraction

• "shows" only essential attributes and "hides" unnecessary
information.

• Think about a banking application, you are asked to collect all the
information about your customer.

• Abstraction
• Encapsulation bundling data and methods that work on that data

within one unit, e.g., a class in Java.

• Modularity
• Hierarchy

Fundamental Object-Oriented Design Principle

OOP - Encapsulation

• A class is an example of encapsulation as it encapsulates all the data
that is member functions, variables, etc.

• Consider a real-life example, in a company:

Finance

section

Sales

section

Sale officer
(Obj)

Fundamental Object-Oriented Design Principle

• Abstraction "shows" only essential attributes and "hides"
unnecessary information.

• Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

• Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

• Polymorphism

Fundamental Object-Oriented Design Principle

• Abstraction "shows" only essential attributes and "hides"
unnecessary information.

• Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

• Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

• Polymorphism a property of an object which allows it to take multiple
forms.

Fundamental Object-Oriented Design Principle

OOP - Polymorphism

• a property of an object which allows it to take multiple forms.

• Abstraction "shows" only essential attributes and "hides"
unnecessary information.

• Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

• Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

• Polymorphism a property of an object which allows it to take multiple
forms.

OOP

Software Architecture

Typical, but uninformative, presentation of a software architecture

From Bass et al. Software Architecture in Practice, 2nd ed.

Software Architecture

29

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

30

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

31

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

32

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

33

Note: this definition is ambivalent
to whether the architecture is

known, or whether it’s any good!

Why is software
architecture important?

Why is software architecture important?
1. inhibit or enable a system’s driving quality attributes.
2. to reason about and manage change as the system evolves.
3. enables early prediction of a system’s qualities.
4. enhances communication among stakeholders.

5. a carrier of the earliest and hence most fundamental, hardest-to-change design decisions.
6. defines a set of constraints on subsequent implementation.
7. Influencing the organizational structure

8. provide the basis for evolutionary prototyping.
9. the key artifact that allows the architect and project manager to reason about cost and schedule.
10. can be created as a transferable, reusable model that forms the heart of a product line.
11. Architecture-based development focuses attention on the assembly of components.

12. architecture channels the creativity of developers, reducing design and system complexity.
13. can be foundation for training a new team member.

[Bass et al. 2013]

Beyond functional correctness

• Quality matters, eg.,
• Performance

• Availability

• Modifiability, portability

• Scalability

• Security

• Testability

• Usability

• Cost to build, cost to operate

Why is software architecture important?
1. inhibit or enable a system’s driving quality attributes.
2. to reason about and manage change as the system evolves.
3. enables early prediction of a system’s qualities.
4. enhances communication among stakeholders.

5. a carrier of the earliest and hence most fundamental, hardest-to-change design decisions.
6. defines a set of constraints on subsequent implementation.
7. Influencing the organizational structure

8. provide the basis for evolutionary prototyping.
9. the key artifact that allows the architect and project manager to reason about cost and schedule.
10. can be created as a transferable, reusable model that forms the heart of a product line.
11. Architecture-based development focuses attention on the assembly of components.

12. architecture channels the creativity of developers, reducing design and system complexity.
13. can be foundation for training a new team member.

[Bass et al. 2013]

Why is software architecture important?
1. inhibit or enable a system’s driving quality attributes.
2. to reason about and manage change as the system evolves.
3. enables early prediction of a system’s qualities.
4. enhances communication among stakeholders.

5. a carrier of the earliest and hence most fundamental, hardest-to-change design decisions.
6. defines a set of constraints on subsequent implementation.
7. Influencing the organizational structure

8. provide the basis for evolutionary prototyping.
9. the key artifact that allows the architect and project manager to reason about cost and schedule.
10. can be created as a transferable, reusable model that forms the heart of a product line.
11. Architecture-based development focuses attention on the assembly of components.

12. architecture channels the creativity of developers, reducing design and system complexity.
13. can be foundation for training a new team member.

[Bass et al. 2013]

Case Study:
Architecture and Quality at Twitter

"After that experience, we determined we needed to step back. We

then determined we needed to re-architect the site to support the

continued growth of Twitter and to keep it running smoothly."

Balse!

Celebrities‘ personal revelation
caused a sudden breakdown of
Weibo’s server due to the traffic.
Ding Zhenkai, a Weibo
programmer at the site, said he
got called to work on the
breakdown during his wedding.

Inspecting the State of Engineering

• Running one of the world’s largest Ruby
on Rails installations

• 200 engineers

•Monolithic: managing raw database,
memcache, rendering the site, and
presenting the public APIs in one
codebase

Caching What is Memcached?

Free & open source, high-
performance, distributed memory
object caching system, generic in
nature, but intended for use in
speeding up dynamic web
applications by alleviating database
load.
Memcached is an in-memory key-
value store for small chunks of
arbitrary data (strings, objects) from
results of database calls, API calls, or
page rendering.

Inspecting the State of Engineering (Cont.)
• Increasingly difficult to understand system; organizationally

challenging to manage and parallelize engineering teams
• Reached the limit of throughput on our storage systems (MySQL);

read and write hot spots throughout our databases
• Throwing machines at the problem; low throughput per machine

(CPU + RAM limit, network not saturated)
• Optimization corner: trading off code readability vs performance

Twitter's Quality Requirements/Redesign goals
• Improve median latency; lower outliers

Twitter's Quality Requirements/Redesign goals

•Reduce number of machines 10x

Twitter's Quality Requirements/Redesign goals
• Isolate failures -- the failure does not propagate or cause a

deterioration of other services within the platform. The
“blast radius” of failure is contained.

Twitter's Quality Requirements/Redesign goals

• "We wanted cleaner boundaries with
“related” logic being in one place"

• encapsulation and modularity at the
systems level (rather than at the
class, module, or package level)

• best practices of encapsulation and
modularity

Twitter's Quality Requirements/Redesign goals
• Quicker release of new features

• "run small and empowered engineering teams that could make
local decisions and ship user-facing changes, independent of
other teams"

Twitter's Quality Requirements/Redesign goals
• Improve median latency; lower outliers
• Reduce number of machines 10x
• Isolate failures
• "We wanted cleaner boundaries with “related” logic

being in one place"
• encapsulation and modularity at the systems level (rather

than at the class, module, or package level)

• Quicker release of new features
• "run small and empowered engineering teams that could

make local decisions and ship user-facing changes,

independent of other teams"

perfo
rm

ance

m
odifi

abili
ty

m
ain

ta
in

abili
tyre

lia
bili

ty

JVM vs Ruby VM

• Rails servers capable of 200-300 requests / sec / host
• Experience with Scala on the JVM; level of trust
• Rewrite for JVM allowed 10-20k requests / sec / host

move from monolithic Ruby application to
one that is more services oriented.

Either needed experts
who understood the
entire codebase or clear
owners at the module
or class level.

- develop the system
in parallel
- logic for each system
was self-contained
within itself.
- need coordination

Software architecture Influencing the
organizational structure

“. .. we’d organize “whale hunting expeditions” to
try to understand large scale failures that
occurred. At the end of the day, we’d spend more
time on this than on shipping features, which we
weren’t happy with.”

Storage
• “We stored the tweets in order in the

database, and when the database filled
up we spun up another one ”

• Single-master MySQL à Distributed DB
• every time a tweet comes into the system,

we hashes it, and then chooses an
appropriate database.

A: lose the ability to rely on MySQL for unique ID generation.

Q: potential problem？

Snowflake: Create an almost-guaranteed
globally unique identifier

https://www.scaleyourapp.com/what-database-does-twitter-use-a-deep-dive/

Key Insights: Twitter Case Study

• Architectural decisions affect entire systems,

not only individual modules

• Abstract, different abstractions for different

scenarios

• Reason about quality attributes early

• Make architectural decisions explicit

Question: Did the original
architect make poor decisions?

(UML) Unified Modeling Language

Modeling Notations

• Used for both requirements analysis and for specification and design

• Useful for technical people

• Provide a high-level view

• Descendent of Entity-Relationship Diagrams

• Describes data and operations

• Require training

• Many notations

• each good for something

• none good for everything

Origin of UML

Grady Booch Diagrams +
Jim Rumbaugh (OMT) Object Diagrams +
Ivar Jacobson use case diagrams

Ivar Jacobson Jim Rumbaugh

Three Amigos

Usage of UML

• Help developers communicate

• Provide documentation

• Help find errors (tools check for consistency)

• Generate code (with tools)

• Drawing Tools: ArgoUML, Visio (Microsoft), OmniGraffle

UML works best in a sequential Waterfall process

Behavioral UML Diagram – Use Case Diagram

• Actor + Action

User Stories

• Informal descriptions of user-valued
features scheduled for implementation

• Details left for negotiation with customer
later or pointer to real requirements

• Common agile development practice

76

Use Case Name (Title)

Scope System under design

Level User level, subprocess level

Primary actor (actors can be primary, supporting, or offstage)

Stakeholders,
interests

Important! A use case should include everything necessary to satisfy
the stakeholders’ interests.

Preconditions What must always be true before a scenario begins. Not tested;
assumed. Don’t fill with pointless noise.

Success guarantees. Aka post conditions

Main success
scenario

Basic flow, “happy path”, typical flow. Defer all conditions to the
extensions. Records steps: interaction between actors, a validation, a
state change by the system.

Extensions Aka alternate flows. Usually the majority of the text. Sometimes
branches off into another use case.

Special requirements Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to I/O technologies.

Frequency of
occurrence

Miscellaneous
77

Use cases

Defining actors/agents

• An actor is an entity that interacts with the system for the purpose of
completing an event [Jacobson, 1992].

• Not as broad as stakeholders.

• Actors can be a user, an organization, a device, or an external system.

Sales
Specialist

Marketing GPS
Receiver

Inventory
System

Defining the system boundary

Behavioral UML Diagram - Activity Diagram
• The dynamic nature of a system by forming the flow of

control from activity to activity

•model a business process, workflow, and internal operation

Behavioral UML Diagram - Sequence Diagram
• The time sequence of the objects participating in the

interaction

Behavioral UML Diagram – State Diagram
• possible states that an object of interaction goes through

when an event occurs.

UML works best in a sequential Waterfall process

Structural UML Diagram - Class Diagram

Elements of Class Diagram

• Class
• attributes
• operations

• Associations
• multiplicity
• direction/aggregation/

• Generalization

Class

• class name
• class attributes [attribute name : type]
• class methods [parameter: type]

Relationships

Association

Multiplicity

Attributes vs Associations

Inheritance

Realization/Implementation

Aggregation

• “has a”
• “is part of”

Composition

Multiplicity

Analysis vs Design

• Class diagrams are used in both analysis and design
• Analysis - conceptual

• model problem, not software solution

• can include actors outside system

• Design - specification
• tells how the system should act

• Design – implementation
• actual classes of implementation

Structural UML Diagram - Package Diagram

• Package UML diagrams bring
together the elements of a
system into related groups to
reduce dependencies
between sets.

Readings

• More UML resources
• http://dn.codegear.com/article/31863
• http://www.sparxsystems.com.au/

• UML_Tutorial.htm
http://www.gnome.org/projects/dia/umltut/index.html

http://dn.codegear.com/article/31863

https://simpleprogrammer.com/unified-modeling-language-age-of-agile/

Architecture Patterns, and Tactics

Architecture vs Object-level Design

Levels of Abstraction
• Requirements

• high-level “what” needs to be done

• Architecture (High-level design)

• high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)

• mid-level “how”, low-level “what”

• Code
• low-level “how”

Architecture

Architecture

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture Documentation & Views

Every engineered artifact has an architecture

Blueprint

Architecture Disentangled

Architecture as

structures and relations

(the actual system)

Architecture as

documentation

(representations of the system)

Architecture as (design) process

(activities around the other two)

Why Document Architecture?

•Blueprint for the system
•Documentation speaks for the architect, today and
20 years from today
•Support traceability.

http://jackiecarron.com/real_estate/toronto/buyers_zone_maps.shtml

http://jackiecarron.com/real_estate/toronto/buyers_zone_maps.shtml

https://medium.com/geekculture/introduction-to-software-architecture-part-1-3358ede31af9

Common Views in Documenting Software Architecture

Analyze a car engine

https://medium.com/geekculture/introduction-to-software-architecture-part-1-3358ede31af9

Common Views in Documenting Software Architecture

Common Views in Documenting Software Architecture

• Modules (Static)
Modules are assigned specific computational responsibilities, and are
the basis of work assignments for programming teams

https://medium.com/geekculture/introduction-to-software-architecture-part-1-3358ede31af9

Common Views in Documenting Software Architecture

Architecture Is a Set of Software Structures

• Modules (Static)
Modules are assigned specific computational responsibilities, and are
the basis of work assignments for programming teams

• Dynamic (Component-and-Connector C&C)
Focus on the way the elements interact with each other at runtime to
carry out the system’s functions.

Two views of a client-server system

https://medium.com/geekculture/introduction-to-software-architecture-part-1-3358ede31af9

Common Views in Documenting Software Architecture

Orders Inventory Users

Order AppShipping AppAddInventoryApp

Security

Facade
Data Model

Selecting a Notation

• Suitable for purpose
• Often visual for compact representation
• Usually boxes and arrows

• UML possible (semi-formal), but possibly constraining
• Note the different abstraction level – Subsystems or processes, not classes or

objects

• Formal notations available
• Decompose diagrams hierarchically and in views

Guidelines: Avoiding Ambiguity

• Always include a legend
• Define precisely what the boxes mean
• Define precisely what the lines mean

• Supplement graphics with explanation
• Very important: rationale (architectural intent)

• Do not try to do too much in one diagram
• Each view of architecture should fit on a page

• Use hierarchy

What could the arrow mean?

• Many possibilities
• A passes control to B
• A passes data to B
• A gets a value from B
• A streams data to B
• A sends a message to B
• A creates B
• A occurs before B
• B gets its electricity from A
• …

BA

Future Readings

• Bass, Clements, and Kazman. Software Architecture in Practice. Addison-Wesley,

2003.

• Boehm and Turner. Balancing Agility and Discipline: A Guide for the Perplexed,

2003.

• Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.

Documenting Software Architectures: Views and Beyond, 2010.

• Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

• Jansen and Bosch. Software Architecture as a Set of Architectural Design

Decisions, WICSA 2005.

• Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide, 2009.

• Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

• Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations, Theory,

and Practice. Wiley, 2009.

Architecture in Agile Project

Architecture in Agile Project

• “How much architecture should I do up front versus how much
should I defer until the project’s requirements have solidified
somewhat?”,

• “When and how should I refactor?”
• “How much of the architecture should I formally document, and

when?”

https://www.architexa.com/learn-more/architecture

Architecture Design in Agile

• Understanding code architecture and preventing boundaries
erosion

•Maintaining well-defined architecture and module
boundaries

• Having a consistent architecture shared with the entire team

Overview! Diagram! Mitigate Technical Debt!

Architectural Patterns

• Context + Problem + Solution

• Related to one of common view types

• Static, dynamic, physical

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Allocation (Physical, Deployment)

Layered Pattern
• Separation of concerns
• Constraints on the allowed-to-use relationship among the layers,

the relations must be unidirectional
• Normally only next-lower-layer uses are allowed
• “above” and “below” matter

Layered Pattern

Layers with a “sidebar”

Layered Pattern

Layered design with segmented layers

Usage:
General desktop applications.
E commerce web applications.

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Client-Server Pattern

• MVC (Model-View-Controller) Pattern

• Allocation (Physical, Deployment)

Client-Server Pattern
• Context:

• shared resources and services
• large numbers of distributed clients wish to access,
• control access or quality of service.

• Modifiability, Reuse, Scalability, Availability
• Asymmetric or Synchronous

173

Where to validate user input?

Example: Yelp App

Client-Server Pattern

Disadvantages:
• the server can be a performance

bottleneck and it can be a single point of
failure

• decisions about where to locate
functionality (in the client or in the server)
are often complex and costly to change
after a system has been built.

Real-world Example

Online applications
(email, document
sharing and banking)

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Client-Server Pattern

• MVC (Model-View-Controller) Pattern

MVC (Model-View-Controller) Pattern

• Separate UI functionality from the application functionality
• Multiple views of the user interface can be created, maintained, and

coordinated when the underlying application data changes

MVC and the Web

https://realpython.com/the-model-view-controller-mvc-
paradigm-summarized-with-legos/

MVC (Model-View-Controller) Pattern

• Weaknesses: The complexity may not be worth it for simple user
interfaces.

Monolithic Architecture

"After that experience, we determined we needed to step back. We

then determined we needed to re-architect the site to support the

continued growth of Twitter and to keep it running smoothly."

Example: a shopping cart app

deploy

deploy

Monolithic Architecture Benefits

• Simple to develop
• Simple to deploy
• Simple to scale

Challenges of Monolithic Architecture

• Inflexible — Monolithic applications cannot be built using different
technologies

• Unreliable — Even if one feature of the system does not work, then the entire
system does not work

• Unscalable — Applications cannot be scaled easily since each time the
application needs to be updated, the complete system has to be rebuilt

• Blocks Continuous Development — Many features of the applications cannot
be built and deployed at the same time

• Slow Development — Development in monolithic applications take lot of time
to be built since each and every feature has to be built one after the other

• Not Fit For Complex Applications — Features of complex applications have
tightly coupled dependencies

Microservices

17-313 Software Engineering 192

17-313 Software Engineering 193

https://microservices.io/articles/whoisusingmicroservices.html

Use case: Shopping Cart Application

Principle of Microservices

Benefits of Microservices

• Faster and simpler deployments and rollbacks
• Elimination of long-term commitment to a single technology stack
• Improved fault isolation

• Independently scalable services
• Technology diversity
• Ability to write new features as plugins

Drawbacks of Microservices

• Increased network communication
• Serialization between microservices
• Additional complexity in testing a distributed system

• Increased complexity in deployment

Microservies overhead

How to decompose the application into
services?
• Decompose by business capability
• Decompose by verb or use case
• Decompose by by nouns or resources

How to decompose the application into
services?

• Decompose by business capability
• Decompose by verb or use case
• Decompose by by nouns or resources

How to maintain data consistency?

2PC (Two-phase commit)
Saga Pattern

saga – a sequence of local transaction

Saga Pattern
The master process called “Saga Execution Coordinator” or SEC.
• two ways to achieve sagas

• Choreography : each local transaction publishes domain events that trigger

local transactions in other services.

• Orchestration : an orchestrator (object) tells the participants what local

transactions to execute.

Orchestration

Example
3 personas

https://github.com/victoramsantos/saga-pattern-example

https://github.com/victoramsantos/saga-pattern-example/releases/tag/v1.0.0

Other examples and platforms

How are services packaged and deployed?

• Container
• Serverless deployment
• Platform as a Service (PaaS)

The 2019 Microservices Ecosystem

https://glasnostic.com/blog/the-2019-microservices-ecosystem

Technology Stacks

https://github.com/mfornos/awesome-microservices

https://github.com/mfornos/awesome-microservices

Discussion of Microservices
• Are they really “new”?

• Do microservices solve problems, or push them down the line?

• What are the impacts of the added flexibility?

• Beware “cargo cult”

• “If you can’t build a well-structured monolith, what makes you

think microservices is the answer?” – Simon Brown

• Leads to more API design decisions

https://realpython.com/flask-blueprint/

https://opensource.com/article/18/4/flask

Tactics

• Architectural techniques to achieve qualities

• More tied to specific context and quality

• Smaller scope than architectural patterns

• Problem solved by patterns: “How do I structure my (sub)system?”
• Problem solved by tactics: “How do I get better at quality X?”

• Collection of common strategies and known solutions

• Resemble OO design patterns

235

Achieving Quality Attributes through Tactics

Modifiability

Modifiability

• coupling - probability that a
modification to one module will
propagate to the other

• cohesion - how strongly the
responsibilities of a module are
related

Low coupling, high cohesion,
better modifiability

Performance

• about time and the software system’s ability to meet timing
requirements

• Event arrival patterns: Periodic, Stochastic, Sporadic

• Measurements:
• Latency

• Deadlines in processing

• Throughput

• jitter of the respsonse

• number of events not processed

Performance response time = processing time + blocked time

Security

Testability

Usability

Summary of Tactics and Patterns

Tactics are the “building blocks” of design, from which architectural
patterns are created. Tactics are atoms and patterns are molecules.
Most patterns consist of several different tactics.

Many tactics described in Chapter 4-10

• Brief high-level descriptions (about 1 paragraph
per tactic)

• Checklist available

Future Readings

• Bass, Clements, and Kazman. Software Architecture in Practice. Addison-Wesley,

2013.

• Boehm and Turner. Balancing Agility and Discipline: A Guide for the Perplexed,

2003.

• Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.

Documenting Software Architectures: Views and Beyond, 2010.

• Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

• Jansen and Bosch. Software Architecture as a Set of Architectural Design

Decisions, WICSA 2005.

• Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide, 2009.

• Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

• Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations, Theory,

and Practice. Wiley, 2009.

Flask Web Application Layout

