ECE444: Software Engineering

Software Architecture

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

Learning Goals

Understand what drives design

Understand information hiding

Understand the abstraction level of architectural reasoning

Approach software architecture with quality attributes in mind

Use notation and views to describe the architecture suitable to the purpose

Understand a few common architecture patterns

afl The Edward S. Rog SD}
K2R of Electrical & Cor 1, r Eng

IIU
%:, UNIVERSITY e TORONTO

Requirements

Architecture

Implementation

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

Mé@ UNIVERSITY OF TORONTO

Quality Requirements, now what?

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint
// \ \\ Aoouracy / \ / \
Safety Security Reliability Performance Interface Installation ~ Distribution ~ Cost Maintainability
/ \\ \\ Cos\\ Deadline Variability
Confidentiality Integrity Availability —Time Space User Device Software

interaction interaction interoperability

N

Usability =~ Convenience

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

NIVERSITY OF TORONTO

Quality Requirements, now what?

"should be highly available"

"should answer quickly, accuracy is less relevant”
"needs to be extensible"

"should efficiently use hardware resources”

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Introduction to Software Design

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

A typical Intro of CS designh process

1. Discuss software that needs to be written

2. Write some code
3. Test the code to identify the defects

4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

A Better Software Design

* Think before coding: broadly consider quality attributes
— Maintainability, extensibility, performance,
* Propose, consider design alternatives

— Make explicit design decision

The Edward S. Rog SD}
‘ofElect cal & Cor } t Eng

IlU
% UNTVERSTTY G TORONTO

Using a Design Process

* A design process organizes your work
* A design process structures your understanding

* A design process facilitates communication

’fi}i The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?sg UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

e ——

Encapsulation Abstraction

Polymorphism Inheritance

v

"i‘i{'s? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

OOQOP - Abstraction

"shows" only essential attributes and "hides" unnecessary
information.

* Think about a banking application, you are asked to collect all the
information about your customer. & Full Name

~ Address

~ Contact Number

~ Tax Information Al
~ Favorite Food :o%";
~ Favorite Movie & barking

~ Favorite Actor R
& Favorite Band |

& The Ei ard S. Rogers Sr. L)}

\- of Electrical & Computer Eng
X UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

 Abstraction

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Modularity
* Hierarchy

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

OOP - Encapsulation Methods [Variables

Class

* A class is an example of encapsulation as it encapsulates all the data
that is member functions, variables, etc.

* Consider a real-life example, in a company:

Object

> Interaction
Interface

Finance Sales
section section

Public Methods

vl

Private Data
Private Methods

Sale officer
(Obj)

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

Difference between Abstraction and Encapsulation

Abstraction Encapsulation

Abstraction solves the issues at the design

Encapsulation solves it implementation level.
level.

Abstraction is about hiding unwanted details Encapsulation means binding the code and
while showing most essential information. data into a single unit.

Abstraction allows focussing on what the

Encapsulation means hiding the internal
information object must contain

details or mechanics of how an object does
something for security reasons.

dward S. Rogers Sr. Department
ectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

* Abstraction "shows" only essential attributes and "hides"
unnecessary information.

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

* Polymorphism

’fi}j The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Types Of Inheritance

N

Single Inheritance Multilevel Inheritance

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Hierarchical Inheritance

edureka!

Multiple Inheritance

Fundamental Object-Oriented Design Principle

* Abstraction "shows" only essential attributes and "hides"
unnecessary information.

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

[* Polymorphism a property of an object which allows it to take muItipIeJ

forms.

9"%}3 The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

OOP - Polymorphism

* a property of an object which allows it to take multiple forms.

def add(x, vy, z = 0):
return x + y+z

4
4 # len() being used for a string 5
5 print(len("geeks"))
6 - :
7 # len() being used for a list ; # I?rlver code
8 print(len([10, 20, 30])) g print(acd(2, .3})
. 9 print(add(2, 3, 4))

Output:

5 5
3

’fﬁé The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

OOP

* Abstraction "shows" only essential attributes and "hides"
unnecessary information.

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

* Polymorphism a property of an object which allows it to take multiple
forms.

mmView
web browser

HTM:.. 't‘:;r:)alates (| j Pyﬂ\a::;;cdons
Software Architecture _

e Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

get data mmCIF file

{-——J\ (mmLib)

parse

get information

%"?m@ UNIVERSITY OF TORONTO

Typical, but uninformative, presentation of a software architecture

Prop Loss Model Reverb Model Noise Model
(MODP) (MODR) (MODN)

From Bass et al. Software Architecture in Practice, 2nd ed.

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

3 UNIVERSITY OF TORON"}O

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

9"%}3 The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
&,&g UNIVERSITY OF TORONTO

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise|software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

9"%}3 The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
&,&g UNIVERSITY OF TORONTO

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the

[externally visible properties]of those elements, and
the relationships among them.

[Bass et al. 2003]

’fi}i The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?sg UNIVERSITY OF TORONTO

Software Architecture

The software architecture of a program or
computing system is[the structure or structures]of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

’fi}i The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
&&g UNIVERSITY OF TORONTO

Software Architecture

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them.

[Bass et al. 2003]

Note: this definition is ambivalent
to whether the architecture is
known, or whether it’s any good!

{15’"% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

%g UNIVERSITY OF TORONTO

Why is software
architecture important?

I PROMOTED TED TO
SOFTWARE ARCHITECT
BECAUSE HE DOESN'T
KNOUWJ HOW TO CODE.

Dilbernt.com DS oottAcms Says

AT FIRST I THOUGHT
IT WAS A BAD IDEA.
THEN T REMEMBERED
THAT SOMETIMES
MONKEYS ARE ASTRO—
NAUTS.

\

b*r

£
=
-
=
§
5
©
3
z -
&
L

11817 QN7 Scae idave e

YOU KNOW THE
MONKEYS DON'T FLY
THE ROCKET, RIGHT?

AND TED
WON'T BE
WRITING
>/ CODE.

Why is software architecture important?

4 N
1. inhibit or enable a system’s driving quality attributes.

2. to reason about and manage change as the system evolves.

\.3. enables early prediction of a system’s qualities. y

. enhances communication among stakeholders.

. a carrier of the earliest and hence most fundamental, hardest-to-change design decisions.

4
5
6. defines a set of constraints on subsequent implementation.
7. Influencing the organizational structure

8. provide the basis for evolutionary prototyping.

9. the key artifact that allows the architect and project manager to reason about cost and schedule.
10. can be created as a transferable, reusable model that forms the heart of a product line.

11. Architecture-based development focuses attention on the assembly of components.

12. architecture channels the creativity of developers, reducing design and system complexity.

13. can be foundation for training a new team member.
[Bass et al. 2013]

Beyond functional correctness

* Quality matters, eg.,
* Performance
* Availability
* Modifiability, portability
 Scalability
* Security
» Testability
* Usability
e Cost to build, cost to operate

Why is software architecture important?

1. inhibit or enable a system’s driving quality attributes.
2. to reason about and manage change as the system evolves.

3. enables early prediction of a system’s qualities.

[4. enhances communication among stakeholders.]

5. a carrier of the earliest and hence most fundamental, hardest-to-change design decisions.

6. defines a set of constraints on subsequent implementation.

7. Influencing the organizational structure

8. provide the basis for evolutionary prototyping.

9. the key artifact that allows the architect and project manager to reason about cost and schedule.
10. can be created as a transferable, reusable model that forms the heart of a product line.

11. Architecture-based development focuses attention on the assembly of components.

12. architecture channels the creativity of developers, reducing design and system complexity.

13. can be foundation for training a new team member.
[Bass et al. 2013]

Why is software architecture important?

. inhibit or enable a system’s driving quality attributes.
. to reason about and manage change as the system evolves.
. enables early prediction of a system’s qualities.

. enhances communication among stakeholders.

. defines a set of constraints on subsequent implementation.

. Influencing the organizational structure]

1
2
3
4
5. a carrier of the earliest and hence most fundamental, hardest-to-change design decisions.
6
7
8. provide the basis for evolutionary prototyping.

9. the key artifact that allows the architect and project manager to reason about cost and schedule.
10. can be created as a transferable, reusable model that forms the heart of a product line.

11. Architecture-based development focuses attention on the assembly of components.

12. architecture channels the creativity of developers, reducing design and system complexity.

13. can be foundation for training a new team member.
[Bass et al. 2013]

Case Study:
Architecture and Quality at Twitter

The Edward S. Rogers Sr. Department

t=)
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

@ Cwitten

Twitter is over capacity.

ent and try again

iny tweet

& @Q

£

SOUTH
AFRICA

st FIFA

WORLD CUP

© 2005 FIFATM

"After that experience, we determined we needed to step back. We
then determined we needed to re-architect the site to support the
continued growth of Twitter and to keep it running smoothly."

%’% The Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

%:Q UNIVERSITY OF TORONTO

Toei Company

A scene from Castle in the Sky, the classic 1986 film by Hayao

Miyazaki. time (JST)
WN12923 2 -
worldy HHRDVL1—hk)
15,000
o 10,000
=
o
O
@
w
.
()]
(o3 $.000
$
2

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

/. UNIVERSITY OF TORONTO

Celebrities’ personal revelation
caused a sudden breakdown of

Weibo’s server due to the traffic.

Ding Zhenkai, a Weibo
programmer at the site, said he
got called to work on the
breakdown during his wedding.

& “‘» — ~ s
L TR @SS
: 4 v 1 1 y .
£ / 8 *H iPhone 6s

BIERET, EXHEBEET @& &, #z
BRTFNTE S

i

Inspecting the State of Engineering

* Running one of the world’s largest Ruby
on Rails installations

* 200 engineers

* Monolithic: managing raw database,
memcache, rendering the site, and
presenting the public APIs in one
codebase

{i’{‘, The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering
e g

% UNIVERSITY OF TORONTO

Cachin g What is Memcached?

& \‘
(Api p (Web) Free & open source, high-
T T A performance, distributed memory
object caching system, generic Iin
Page cache

> | g | nature, but intended for use in
§ Fragment cache speeding up dynamic web
3 | applications by alleviating database
= Row cache load
[| oad.
= Vector cache Memcached is an in-memory key-

value store for small chunks of
‘:’ arbitrary data (strings, objects) from
u results of database calls, API calls, or

page rendering.

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

Inspecting the State of Engineering (Cont.)

* Increasingly difficult to understand system; organizationally
challenging to manage and parallelize engineering teams

* Reached the limit of throughput on our storage systems (MySQL);
read and write hot spots throughout our databases

* Throwing machines at the problem; low throughput per machine
(CPU + RAM limit, network not saturated)

* Optimization corner: trading off code readability vs performance

’fﬁé The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?gg« UNIVERSITY OF TORONTO

Twitter's Quality Requirements/Redesign goals g

* Improve median latency; lower outliers

Latency

9> | @

@3

Time it takes for a request to go from the
client to the server and back to the client

e:‘lT}EiiR s St. Depar

-‘ f Electrical & puter Enumeetino
;z,” UNIVERSITY OF TORONTO

Twitter's Quality Requirements/Redesign goals

. Reduce number of machmes 10x

')

.'.‘
E

i

l"ﬂ' l-[,", inng
i f
i

[
;

&% Yl

\

C
o
=
4
e
=
e
C
o
5
! ‘:’_:',

"i‘f' The Edward S. Rogers Sr. Depar
‘ lectrical & Co 1, er Engmeetino
az,” UNIVERSITY OF TORONTO

Twitter's Quality Requirements/Redesign goals g

* Isolate failures -- the failure does not propagate or cause a
deterioration of other services within the platform. The
“blast radius” of failure is contained.

e . Departme
‘ of Electrical & Computer Engineeri

e g Jomputer Engineering
%'“?m$ UNIVERSITY OF TORONTO

Twitter's Quality Requirements/Redesign goals

. Process B

* "We wanted cleaner boundaries with
“related” logic being in one place" Process A

* encapsulation and modularity at the Process C

Inlerna

systems level (rather than at the Comgonents |
class, module, or package level) /

Process D

* best practices of encapsulation and
modula rlty Soltware de<ign \I "'/

Software architeciure

dward S. Rogers Sr. Department
ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Twitter's Quality Requirements/Redesign goals

e Quicker release of new features

* "run small and empowered engineering teams that could make
local decisions and ship user-facing changes, independent of

other teams”
X
N

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Twitter's Quality Requirements/Redesign goals
@

* Improve median latency; lower outIiersQe(\O‘
 Reduce number of machines 10x

AN
* |solate failures (e\'\ab\\ e
\
* "We wanted cleaner boundaries with “related” logic A\ '
being in one place" S

* encapsulation and modularity at the systems level (rather
than at the class, module, or package level)

* Quicker release of new features N

. . N\
* "run small and empowered engineering teams that could 6\" 20"
make local decisions and ship user-facing changes,
independent of other teams”

afl The Edward S. Rog SD}
K2R of Electrical & Cor 1, r Eng

IIU
%:, UNIVERSITY e TORONTO

& JUM

JVM vs Ruby VM

* Rails servers capable of 200-300 requests / sec / host
* Experience with Scala on the JVM; level of trust
* Rewrite for JVM allowed 10-20k requests / sec / host

"iﬁré The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO

move from monolithic Ruby application to
one that is more services oriented.

4)
Either needed experts Q Q - develop the system
who understood the in parallel
entire codebase or clear Q Q - logic for each system
owners at the module was self-contained

or class level. within itself.
m “ - heed coordination

Single Unit Coarse-grained

’flTlEi ard S. Rogers St. Depart

-‘ f Electrical & Computer Engmeerino
%,'9 UNIVERSITY OF TORONTO

Software architecture Influencing the
organizational structure

® Ma-rOféw

‘IC!"\J“ senice

Chaler woodslar, Macaw woods e
*@tweetypie
e geoduck, geoduck locabonsernvioe

bo memcached, passbed

‘hn'ei reserice

adserver

txpanc &l

v® Metastoreciient

, Omp-uﬂ,“og’v:j osN2

UITHOOUCK. USarsenios

@-ngs

"avmrramn

clert, com.twitter_ads. adserver.rewadsernver

e expancodo

w@ vizrrocuck

'.Hocu flock service

be fiock, ficckhighqos
%o haplohighqoan?

ﬁ repication

®e mamcached

#e flock, unknown

“ .. we’dorganize “whale hunting expeditions” to
try to understand large scale failures that
occurred. At the end of the day, we’d spend more

time on this than on shipping features, which we
weren’t happy with.”

* “We stored the tweets in order in the
database, and when the database filled .

up we spun up another one” o :
* Single-master MySQL -2 Distributed DB R T
* every time a tweet comes into the system, Sdl) 4 I\l b\l
we hashes it, and then chooses an e ol B B W B
appropriate database. e L L] | e

Q: potential problem ?

A: lose the ability to rely on MySQL for unique ID generation.

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Snowflake: Create an almost-guaranteed
globally unique identifier

E twitter-archive / snowflake ® Watch v 520 Y7 Star 6.2k % Fork 1k

<> Code (1) Issues 2 i Pull requests 2 (>) Actions [l Projects

¥ master ~ Go to file Add file ~ About

Snowflake is a

% bdd Fix hyperlink to Finagle ... X on May 30,2014 333 network service for
generating unique ID
[README.md Fix hyperlink to Finagle 6 years ago numbers at high scale

with some simple

guarantees.
README.md

& twitter.com/

We have retired the initial release of Snowflake and working on

0 Readme
open sourcing the next version based on Twitter-server, in a
form that can run anywhere without requiring Twitter's own
infrastructure services. O p—

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

WHAT
— DATABASE

! e
&)
= an
L A _
Ve R e mw AR
&2 “a

CE R
LEREREENAY

A S

TWITTER
E-~ USE?

8bitmen.com

https://www.scaleyourapp.com/what-database-does-twitter-use-a-deep-dive/

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Key Insights: Twitter Case Study

* Architectural decisions affect entire systems, = Ewitter
not only individual modules

Twitter is over capacity.
Too many tweets! Please wait a moment and try again

&

e Abstract, different abstractions for different

scenarios S W ¢
: . W
* Reason about quality attributes early @ 3
* Make architectural decisions explicit)
Question: Did the original L ey S U
architect make poor decisions? P SR D L ORI

g% The Edward S. Rogers St. Department

e | of Electrical & Computer Engineering

%?;22 UNIVERSITY OF TORONTO

(UML) Unified Modeling Language

«*“ The Edward S. Rogers Sr. Department
|| of Electrical & Computer Engineering
%) UNIVERSITY OF TORONTO

Modeling Notations

* Used for both requirements analysis and for specification and design
» Useful for technical people
Provide a high-level view
Descendent of Entity-Relationship Diagrams
Describes data and operations
Require training
Many notations
* each good for something
* none good for everything

afl The Edward S. Rog SD}
K2R of Electrical & Cor 1, r Eng

IIU
%:, UNIVERSITY e TORONTO

Origin of UML

Grady Booch Diagrams +
Jim Rumbaugh (OMT) Object Diagrams +
lvar Jacobson use case diagrams

Jim Rumbaugh lvar Jacobson

-'ﬁi'% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

g?mgg UNIVERSITY OF TORONTO

Usage of UML

* Help developers communicate
* Provide documentation

* Help find errors (tools check for consistency)
* Generate code (with tools)
* Drawing Tools: ArgoUML, Visio (Microsoft), OmniGraffle

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

UML works best in a sequential Waterfall process

Requirements
Definition

UML
Behavior Diagrams

System
Design

UML
Structure Diagrams

—5|

System
Development

UML Diagram Types

Structural Diagrams

Composite Struture Deployment
Diagrams Diagrams

Package Profile Class
Diagrams Diagrams Diagrams

Component

Object Diagrams Diagrams

Behavioral Diagrams

State Machine Communication
Diagrams Diagrams

Usecase Activity Sequence
Diagrams Diagrams Diagrams

Interaction

Timing Diagrams :)
overview Diagrams

Behavioral UML Diagram — Use Case Diagram

uc Use Cases)

System Boundary

e Actor + Action eceivh order
Whiter\

<extend¥> Order
Wine

confi er
place/frder

Serve C ook T~
Food Food
| \N C hef

<<extendd> {ifwine was ordered}

Eat <<extend>/#
Food {if wine
C Iien‘.\ was
served}

ﬁ:t\a e paym ent
<<extend>>
ept

acq Pay for <_{ifWiﬂe_ Pay for

paym ent Food was Wine
Cashier consumed}

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

NIVERSITY OF TORONTO

User Stories

* Informal descriptions of user-valued
features scheduled for implementation

* Details left for negotiation with customer
later or pointer to real requirements

* Common agile development practice

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

&

As a <role>
| want <goal>
So that <benefit>

Acceptance criteria:

UNIVE RSITY OF TORONTO

Use cases

% The Edward S. Rogers St. Department
f Electrical & Computer Engineering

Use Case Name

(Title)

Scope

System under design

Level

User level, subprocess level

Primary actor

(actors can be primary, supporting, or offstage)

Stakeholders,
interests

Important! A use case should include everything necessary to satisfy
the stakeholders’ interests.

Preconditions

What must always be true before a scenario begins. Not tested;
assumed. Don’t fill with pointless noise.

Success guarantees.

Aka post conditions

Main success

Basic flow, “happy path”, typical flow. Defer all conditions to the

scenario extensions. Records steps: interaction between actors, a validation, a
state change by the system.
Extensions Aka alternate flows. Usually the majority of the text. Sometimes

branches off into another use case.

Special requirements

Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to 1/O technologies.

Frequency of
occurrence

Miscellaneous

L/ UNIVERSITY OF TORONTO

Defining actors/agents

* An actor is an entity that interacts with the system for the purpose of
completing an event [Jacobson, 1992].

 Not as broad as stakeholders.
* Actors can be a user, an organization, a device, or an external system.

O S G

Sales Marketing Inventory
Specialist Recelver System

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Defining the system boundary

Online Store Front

A
[\

Restock
shelves

Schedule
% delivery
Sales %

Store

Managen Specialist Inventory
\) System
Y
Complete Store
\ J
Y

End-to-end System

Behavioral UML Diagram - Activity Diagram

* The dynamic nature of a system by forming the flow of
control from activity to activity

* model a business process, workflow, and internal operation

not
(. \ . - -
. Receive Verify verified
X order) inventory

Customer

Notify J

verified

no
response

approved

Confirm
order

denied bounced

Alternate Alternate
9"%}3 The Edward S. Rogers Sr. Department payme nt Confirm

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Submit
Charges

Behavioral UML Diagram - Sequence Diagram

* The time sequence of the objects participating in the

Interaction
Traveler Security Scanner Image
Agent Analyst
hold pose
initiate scan |
| scan complete _‘ process.image
release pose reportresult
read’result

& The Edward S, Rogers S = Depar System Boundary

‘ofEl cal & Cor 1, r Eng

IIU
%:, UNIVERSITY e TORONTO

Behavioral UML Diagram — State Diagram

* possible states that an object of interaction goes through
when an event occurs.

ptocessmgAuponPassengerJ

Verify
reservation

Receive baggage
and print receipts

= Give passenger
travel documents

{i"{t The Edward

of Electrical & Co:nputer Engineering
%?gg« UNIVERSITY OF TORONTO

UML works best in a sequential Waterfall process

Requirements
Definition

UML
Behavior Diagrams

System
Design

UML

Structure Diagrams

\

——

System
Development

UML Diagram Types

Structural Diagrams

Composite Struture Deployment
Diagrams Diagrams

Package Profile Class
Diagrams Diagrams Diagrams

Componen*.

Object Diagrams Diagraris

Behavioral Diagrams

State Machine Communication
Diagrams Diagrams

Usecase Activity Sequence
Diagrams Diagrams Diagrams

Interaction

Timing Diagrams :)
overview Diagrams

Structural UML Diagram - Class Diagram

Multiplicity ‘
I Aggregation
Class |
| ' | Role
|
Customer v status : Stang T vy [uantity shippngWeight
Affribute = = »}name:Sking 1 — 'Toh <1>mo.|m -taxStatus : String 0.* _ |gescription : sting
w 4 0O.r° Mm'l'“) X) 1 cSub Totak) ‘ =
| scaicTotak) m) :‘9.(1’.,0,
| +calcTotalWeight() o nStock(
Association eaiion
g
Abstract Class = -} = Peyment
-amount ; float
Ja
Generalization = = =+
Cash Check Crodit
-cashTendered : float -name : Sting -number : Steng

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

“‘ 9% UNIVERSITY OF TORONTO

Elements of Class Diagram

Multiplicity .
| Aggregation
Class : | Role
* Class o |
. ! | m::. | | OrderDetail itom
* attributes Cavomer] 7 stats : Swng i | . et Ayl
. Aftribute = = »jname:Sking ——{scakSubTotak) m":":’ - '\
* operations - | [k oW e
. . | scaic TotaWeight() rcalcTax() +inStock()
* Associations Association T
peration
* multiplicity
I i I Abstract Class — i
 direction/aggregation/ stract Class B
i Generalization Generalization = = -»A
Cash Check Credit
-cashTendered : fioat -name : Sting -number : Stdng
-bankID : String -type : String
sauthorized() -expDate

e Edward S. Rog SD} artm
Electrical & Cor }t r Eng

HU
’9@ UNIVERSITY OF TORONTO

Class

* class name
* class attributes [attribute name : type]

* class methods [parameter: type]

BankAccount

-owner : String
-balance : Double = 0.0

+deposit (amount : Double)
-withdraw (amount : Double)

public + | anywhere in the program and
may be called by any object
within the system

private - | the class that defines it

protected | # | (a) the class that defines it or

(b) a subclass of that class

Relationships

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

$OvYvvY

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

Association

Objects of ClassA MAY
know about a single
object of ClassB

Objects of ClassA MUST
know about a single
object of ClassB

Objects of ClassA MUST
know at least one object
of ClassB

ClassA ClassB
0.1

ClassA ClassB

1

ClassA ClassB
1>

ClassA ClassB
| B

Objects of ClassA MAY
know about many objects
of ClassB

__V LY

Multiplicity

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

%, UNIVERSITY OF TORONTO

Attributes vs Associations

Claim Image Plan
. s Claim S
ID: String =
L date: Date *

Procedure Provider
name: String " name: String
SUPP11353 String address: String
price: Integer phone: String

Inheritance

Animal

+age : Int
+gender: String

+isMammal ()
+mate()

Duck

Fish

+beakColor : String = “yellow”

+swim()
+quack()

-sizelnFt : Int
-cankEat : Boolean

Zebra

+is_wild : Boolean

-swim()

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

+run()

Realization/Implementation

<<interface>> Movable

+moveUp() :void

+moveDown () :void
+moveleft():void
+moveRight():void
T TTTTTTTTTTT T """""""""""n
MovablePoint MovableCircle
~x:int 1 -radius:int
~y:int <> -center:MovablePoint
~xSpeed:int . » :
o .}n +MovableCircle(x:int,y:int
~ySpeed:int d :
xSpeed:int,ySpeed: int,
+MovablePoint(x:int,y:int, radius:int)
xSpeed :int,ySpeed: int) +toString():String
+toString():String +moveUp() :void
+moveUp() :void +moveDown () :void
+moveDown () :void +moveleft():void
+moveleft():void +moveRight():void
+moveRight():void

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Aggregation

° (lhas a”
* “Is part of”

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Composition

Human

tname : String
tage : Int

Heart

+isHealthy : Bool

o o—

+speak()

"i‘i{'é The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

+pumpBlood()

VVV

\%

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

i‘g« UNIVERSITY OF TORONTO

Multiplicity s s

Implementation

| Kitchen }(/, T TTTT % —

B d t h D‘ R oom ‘ Composition

House

¢ ¢4

- Bedroom
0

0.1

Mortgage

1

Mailbox

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

[l of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Analysis vs Design

* Class diagrams are used in both analysis and design

* Analysis - conceptual
* model problem, not software solution
* caninclude actors outside system

* Design - specification
* tells how the system should act

* Design — implementation
e actual classes of implementation

Structural UML Diagram - Package Diagram

* Package UML diagrams bring
together the elements of a
system into related groups to
reduce dependencies
between sets.

g% The Edward S. Rogers St. Department
e | of Electrical & Computer Engineering

g?:gz UNIVERSITY OF TORONTO

Users

Layered Application
_l _]
Presentation Layer Services Layer —I
External
A —U]mlmm _—l!'feunuﬁm :L‘ Intedace —lamm [<<--1 Systems
Logic Logic
P ' v
| \;, -------------------- \:’ ------------ ? _l Cross Cutting
Business Layer "'I
] > Socurty
Applcation
:. R T [e s o : >
\:/ V] v ol
—I —] —l Operational
Susiness Business Busness Managoment
Workflow Components Entitie
7 > _I
v Commanicaion
[—]|
Data Layer
0 1
Data Access Service Agents

Readings

* More UML resources

* http://dn.codegear.com/article/31863

* http://www.sparxsystems.com.au/

e UML_Tutorial.htm
http://www.gnome.org/projects/dia/umltut/index.html

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

http://dn.codegear.com/article/31863

THE UML IN

THE AGE OF AGILE:

WHY IT'S STILL
RELEVANT

‘L) ‘ https://simpleprogrammer.com/unified-modeling-language-age-of-agile/

Architecture Patterns, and Tactics

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

Architecture vs Object-level Design

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Levels of Abstraction

* Requirements
* high-level “what” needs to be done

Architecture (High-level design)
* high-level “how”, mid-level “what”

OO-Design (Low-level design, e.g. design patterns)
. 14 77 7 12
* mid-level "how , low-level "what

Code

e low-level “how”

cal & To;nputer ngineering
OF TORONTO

ectri
g:?:g UNIVERSITY

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

”%“ UNIVERSITY OF TORONTO

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

%@g;w“‘ UNIVERSITY OF TORONTO

Architecture

o e o e o e e mm mm e o e mm Em mm o = =y

: [e 1 1|
| Ejj:f
|

= = e e e e e e mm = = =y

| Factory |—»|

Controller

Model
oy

Command I I

- A
I

C— :

r——-=-- —— e mm e e o mm = e o mm = = -

] I
A
] [T]] [] W[e]

I [—

i_

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Design Patterns

Model
/ subject Controller
I A

Command

______ - d

—-— e o e o - -
»
Ll

[+—

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

Architecture Documentation & Views

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

N/ UNIVERSITY OF TORONTO

Every engineered artifact has an architecture

1
1 | I
2 v |
y
| MASTER . GARAGE
SEDROOM
DECK MASTER
BATH
(s | --‘ —
(SN I- ‘ —
. : I -
3 Y o~ == e = e
\ ! —t i
| L FO\W - QE STORAGE
/ | LN
& " =]
o lem - CATHEDRALAREA @ Z
KITCHEN
LIVING ROOM
BEDROOM
1 p—
e
] 2
A 7 N
- ~ DINING ROOM
COVERED PORCH 1 /
N—&
N
\
A\
\

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

%’?:g@ UNIVERSITY OF TORONTO

Blueprint

=
,\
I

Architecture Disentangled

Architecture as Architecture as
structures and relations documentation
(the actual system) (representations of the system)
=
Ewas

Architecture as (design) process
(activities around the other two)

Why Document Architecture?

*Blueprint for the system

* Documentation speaks for the architect, today and
20 years from today

*Support traceability.

ave FUKES I“HILL
qose ™
\IRBANK

YORK

)

oo

HUMEWOOD-CEDARVALE

'.‘lva;UV 7 5 QLP
% Q@N
Mt Pleasant Cemetery, 2 VB\\@\
Cremation and Funeral o0 \
)
oome ™ B
4 EAST YORK i
N DEER PARK Evergreen Brick Works 2 3
o W e %
quo ™ @ 3 P EAST DANFORTI
2 2 ROSEDALE s
= 5ot
SUMMERHILL &
& @Casa Loma
2, GREEKTOWN UPPER BE/
CORSO ITALIA %
pavenpe Lot m;‘""‘\i oave o2 3) "7 »
% ® s GREENWOOD
U - COXWELL
1 . %
WALLACE RS e @Royai Ontario Museum
EMERSON (S o
- g , Ger® LESLIEVILLE quee”™
Christie < : A
Pits Park QUESHIS taark undes St Woodbine Beach @
BLOORDALE VPLAI,LFF‘T“[EEF‘) ?TTELNY conese > REGENT PARK qoeenS
@) VILLAGE S @
N DUFFERIN Ashbridges Ba
GROVE @An Gallery of Ontario Was1ewaterTreagtmemy
BROCKTON e
VILLAGE CHINATOWN =3 Tommy.
Trinity OLD TORONTO PORT LANDS Thompson
Bellwoods Park
Park Temporarily.
PARKDALE & QCN Tower Sugar Beach e
NNYSIDE 2y
quee™ My
er Ey, s expY @
Ry, wno S NIAGARA Gardinef Cherry Beach
. : @) W
Medieval Times Bl
Dinner & Tournament
Lagg shore Bvd W
Hanlan's Point Beach @ T eranie
Islands
CENTRE ISLAND
Google

ard S. Rogers Sr. Department
of Electric

al & Computer Engineering

%%“ UNIVERSITY OF TORONTO

5 N

A= Y
Toronto
Hillcrest v lage : Real Estate Board
XY S@201
Bayview Wecods-Steeles 2 ‘-\
e Newtonbrook Ezst
N 0520 \
S1EEs 2 = 3
Newtorkreok West
0510
\ \
Wegtmlnlster— \ \
ranson \
0500 Willowdzle west | Willowdale East \
590 0580 \
i 3
Bathurst % \
Manor m \
@ 0450 o \
f VEL
- ?‘,N\D L Lanﬂrg-V\:slgete \
(N\ |t ° 0660 \
\ 06 \:
/" Clarton Park{Z A
et o610 |2
< %
S
E Bedford Park-
e E Nortown /
st E 2 0630 ‘L awrence Park North
e 80% r“_“ 069 bdl k at}i -
’% NE“ 5 Sunny! mo York Mills
<
Lawrence &
z c)L Park South - //
\ & Englemount- c. Flemingdon Park
\ g Law T 0800
\ b 0620 'l', /
\ o - '; '!Z;‘;tﬂ Y B Thorncliffe Park
< 3~ @ Fcrest Hill Ncith Yonge: \gﬁ% Mount| 3 R
2 0710 Eglirton leasart
<ORB 13 0750 1 |} 05‘737“0 Lezside
go Fcrest Hill South 0780
\ % tozyie
-’ H&méewofg- =
X Cedarval ;
P 0730 co9
At Oakwocd-Vaughan
o e 3 0720,
X

Trinity-

Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
434 UNIVERSITY OF TORONTO

a Be“wcods
Little Portugal

C01 5

Rosedale-
S Moore Park

2
&

bbaaetown
rth'Sts =
Ebr‘:es cv;{ South St

‘A A\.
n s \ ,//
09202 ‘ames uwng;/ \ &
Street, S
Universl!y Corrldor
Church- Regent Park
Y‘onge.u

Waterfront

Communities'C8
1002
ommunities CO1
100

http://jackiecarron.com/real estate/toronto/buyers zone maps.shtml

http://jackiecarron.com/real_estate/toronto/buyers_zone_maps.shtml

“TORONTO

- HH A

Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%% UNIVERSITY OF TORONTO

Vaughan

Metropolitan Centre °

O Highway 407

Pioneer Village Q
Q
York University

Finch West O Dov;r;s:l\(new O Finch
O/ North York Centre O
o Sheppard- Bay|ew - Lelle - Don
ﬁ Yonge _Bessarion Mills
Sheppard Midland McCowan
West
Wilson O York Mills O Ellesmere [J Scarborough
Centre
Yorkdale O
Lawrence West O O Lawrence Lawrence East
Glencairn O
Eglinton West O O Eglinton Kennedy @ [H
St. Clair QO Davisville
West
Q O St. Clair (V' Warden
St. ;
'9(, <9 o Dupont O George O Summerhill N S °
%, o 2, 2%, S, Rosedale g &0 &
o 64, g %, %, %, Spadina Bloor iy Caste & &£ & &
& % % % e= % % Yonge Frank < Q° & W (¥ Victoria Park
D e o o o o o D N
- & \g N & «® Bathurst Bay Sherbourne € 29} C Main Street
_— & o X S O N u U %,) (o) .
Kipling ,§\ ¥ \J S ¢ & Museum & © Wellesley s %, %, L
e & S g Q S C3 2% %
<& A} & Queen's Park O O College ®
o
St. Patrick O O Dundas
Toronto Subway (2018)
Osgoode O O Queen
Line 1 Yonge-University
St. Andrew O Q King
s Line 2 Bloor-Danforth
O s Line 3 Scarborough (RT)
Union X
) s Line 4 Sheppard
O station interchange VIA Rail < GO Train

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

I

@%@ UNIVERSITY OF TORONTO

Common Views in Documenting Software Architecture

AN
Code, classes, functions, data structures ... (\ View 1 N
Modifiability, maintainability, scalability, cost of change|.. Static < View 2
. Perspective _ &
Relations: uses, depends ... View 3
Structure N
Objects, processes, threads ... View 1
Concurrency, performance, logd View 2 &
testing, availability 1ew
< 9 Y Dynamic N N
Perspective View 3
Relations: calls, returns ... [N
View 4
AN
Servers, sensors, routers, chips ... _ View 1
Physical
- < B
Perspective

Relations: wire cable, cable adapter, wirelesy... View 2
https://medium.com/geekcuIture/introduction-tow-part—1-3358ede31af9

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

4 UNIVERSITY OF TORONTO

Analyze a car engine

Physical

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Common Views in Documenting Software Architecture

é | =)
Code, classes, functions, data structures ... View 1 N
Modifiability, maintainability, scalability, cost of change ... Static < View 2
. Perspective _ &
Relations: uses, depends ... View 3
J
Structure N
Objects, processes, threads ... View 1
Concurrency, performance, load View 2 &
testing, availability 1ew
< 9 Y Dynamic N N
Perspective View 3
Relations: calls, returns ... [N
View 4
[AN
Servers, sensors, routers, chips ... _ View 1
Physical
- < B
. . _ Perspective
Relations: wire cable, cable adapter, wireless ... View 2

https://medium.com/geekculture/introduction-to-software-architecture-part-1-3358ede31af9

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

4 UNIVERSITY OF TORONTO

Common Views in Documenting Software Architecture

* Modules (Static)

Modules are assigned specific computational responsibilities, and are
the basis of work assignments for programming teams

Class = =— -» Line

-busy : boolean
+dial(n : int) 2 _a»
+offHook() Association
+onHook() |
Role = = =» connection | 0.1 ¥ smms::::m
. +ring()
Association = — » srnaatt)
Mulfiplicity = = =» 0.* | connectedPhones
Teleph
Affribute = = =»[-hook : boolean = true >
-connection : int =0 Caller Id
Operation = — -»[+onHook() -~ -id : int
+offHook() 1 |+display(n : int)
+dial(n : int) +reset()
+setCallerld(status : boolean) <>

Composition
[

Answering Machil
-status : boolean
Mess age

+set() ¥ recordedM sgs
> -content : AudioStream

1 |+reset()

+playback()
+record ()

Common Views in Documenting Software Architecture

Code, classes, functions, data structures ... View 1 N
Modifiability, maintainability, scalability, cost of change ... Static < View 2
. Perspective _ &
Relations: uses, depends ... View 3
Structure
(Objects, processes, threads ... View 1)
Concurrency, performance, load View 2 &
testing, availability 1ew
< 9 Y Dynamic N N
Perspective View 3
Relations: calls, returns ... [N
_ View 4 Y,
[AN
Servers, sensors, routers, chips ... _ View 1
Physical
- < B
. . _ Perspective
Relations: wire cable, cable adapter, wireless ... View 2

https://medium.com/geekculture/introduction-to-software-architecture-part-1-3358ede31af9

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

4 UNIVERSITY OF TORONTO

Architecture Is a Set of Software Structures

* Modules (Static)

Modules are assigned specific computational responsibilities, and are
the basis of work assignments for programming teams

* Dynamic (Component-and-Connector C&C)

Focus on the way the elements interact with each other at runtime to
carry out the system’s functions.

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Two views of a client-server system

\

N\

System
Client
Server
Key: Module

_/

Decomposition View

()

Key: <:> Component

\ ~—— Request-Reply

_/

Client-Server View

Common Views in Documenting Software Architecture

Code, classes, functions, data structures ... View 1 N
Modifiability, maintainability, scalability, cost of change ... Static < View 2
. Perspective _ &
Relations: uses, depends ... View 3
Structure N
Objects, processes, threads ... View 1
Concurrency, performance, load View 2 &
testing, availability 1ew
< 9 Y Dynamic N N
Perspective View 3
Relations: calls, returns ... [N
View 4
\
[AN
Servers, sensors, routers, chips ... _ View 1
Physical
- < B
. . _ Perspective
Relations: wire cable, cable adapter, wireless ... View 2

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

DataModel

y

DataModellnterface

— p» RequestTypes

SecurityFacade

\

-<¢—— Securitylnterface

AddInventoryApp ShippingApp OrderApp
Legend
— Class extends interface
—> Class uses interface

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Orders Inventory

Security
Facade

Data Model

AddInventoryApp Shipping App Order App

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

NIVERSITY OF TORON"I"O

Enter Order

Order Receiver

Enter Order

LAN

—

Enter Order
Order Receiver

Order Receiver

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

System

Ship Order

Change Inventory

Shipping

L i i e i o Gl el i

Selecting a Notation

* Suitable for purpose
* Often visual for compact representation
e Usually boxes and arrows

 UML possible (semi-formal), but possibly constraining

* Note the different abstraction level — Subsystems or processes, not classes or
objects

* Formal notations available
* Decompose diagrams hierarchically and in views

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Guidelines: Avoiding Ambiguity

* Always include a legend
* Define precisely what the boxes mean
* Define precisely what the lines mean

* Supplement graphics with explanation
* Very important: rationale (architectural intent)

* Do not try to do too much in one diagram
» Each view of architecture should fit on a page
* Use hierarchy

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

What could the arrow mean?

* Many possibilities
« A passes control to B
« A passes datato B H
« A gets a value from B
e A streams data to B
A sends a message to B
 Acreates B

* A occurs before B
« B gets its electricity from A

’fﬁé The Edward S. Rogers Sr. Department
) | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Future Readings

388%, Clements, and Kazman. Software Architecture in Practice. Addison-Wesley,

Boehm and Turner. Balancing Agility and Discipline: A Guide for the Perplexed,
2003.

Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.
Documenting Software Architectures: Views and Beyond, 2010.

Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

Jansen and Bosch. Software Architecture as a Set of Architectural Design
Decisions, WICSA 2005.

Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide, 2009.
Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009.

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

AGILE

%SPRINT% SPRINT%%‘ PRIN

v/
7
q 4
—

(_

Architecture in Agile Project

"{1 } ‘1 ard S. Rog Deparrment

-‘ ttical & Lomputer Eng
” UNIVERSITY OF TORONTO

Architecture in Agile Project

* “How much architecture should | do up front versus how much
should | defer until the project’s requirements have solidified
somewhat?”,

“When and how should | refactor?”

* “How much of the architecture should | formally document, and
when?”

Request
Prioritization

el

1]
28 1-.
B

YN

Release and
Deployment

Agile
Development
Cycle

£2010 Architexa Inc.

https://www.architexa.com/learn-more/architecture

he Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

 UNIVERSITY OF TORONTO

Architecture Design in Agile

* Understanding code architecture and preventing boundaries
erosion

* Maintaining well-defined architecture and module
boundaries

* Having a consistent architecture shared with the entire team

Overview! Diagram! Mitigate Technical Debt!

’fﬁ{f The Edward S. Rogers Sr. Department
B8 of Electrical & C

Electri

L

ctrica Jomputer Engineering
N 4 UNIVERSITY OF TORONTO

’ Client | KnowledgeSource

Client ‘ I 1.7 | updateBlackboard()
2 B
1
Bro;k
: TCP/IP Q Blackboard 1
: solutions Control
v
- < Software:; .=
Server — ite() nextSource()
k]
e — AFChitectural Patterns Layer n
| ' J " I Client } g
Change | AbstractExpression }
Layer n-1
notification of o8 * le N y'
| TerminalExprossion | NMW'NMEIO'O‘IM‘ V
Model — o Layer 1

Architectural Patterns

e Context + Problem + Solution

* Related to one of common view types
e Static, dynamic, physical

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Example Architectural Patterns

[* Modules (Static) }

* Layered Pattern

* Dynamic (Component-and-connector C&C)
* Allocation (Physical, Deployment)

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Layered Pattern

e Separation of concerns

* Constraints on the allowed-to-use relationship among the layers,
the relations must be unidirectional

* Normally only next-lower-layer uses are allowed

e “above” and “below” matter

A
Key:
B
Layer
& A layer is allowed to use
the next lower layer. <

@ | f El

i (&) ec
%:Q UNIVERSITY OF TORONTO

Layered Pattern A

B D
C
Applications
Layers with a “sidebar”
Services
Data Bank

Environmental Models

Security

Environment Sensing

Key:
JVM

layer

Software in a layer is allowed to use software

in the same layer, or any layer immediately =~ G—————
OS and Hardware below or to the right.

Layered Pattern Usage:

General desktop applications.
E commerce web applications.

[Web UI] [Rich j [Com.mandj
Cllent Line

Business Logic

Key:
¢ Layer
Data Access

o
Local Data Remote Data segment
Access Access —» Allowed to use

Layered design with segmented layers

ectric ng
ag,"’ UNIVERSITY OF TORONTO

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dvnamic (Component-and-connector C&C)

e Client-Server Pattern

* MVC (Model-View-Controller) Pattern
* Allocation (Physical, Deployment)

’fﬁé The Edward S. Rogers Sr. Department

Client

TCP/IP

L4

Server

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Client-Server Pattern

e Context:
* shared resources and services

* large numbers of distributed clients wish to access,
 control access or quality of service.

* Modifiability, Reuse, Scalability, Availability

* Asymmetric or Synchronous

System

Client

Server

-

Key: | Module

C @@)
@ S1 @
@ @

Key: Omé—z_iZnt
< Request-Reply /

_4

Decomposition View

Client-Server View

Client-Server Pattern

Where to validate user input?

Example: Yelp App

i 94 W 4:02

Disadvantages:
 the server can be a performance
bottleneck and it can be a single point of B

fai | u re is so expertly crafted and planned that it is nothing
short of genius. Last night, | had one of those
meals - the Mahi Mahi.

¢ deCiSionS abOUt Where to Iocate The dish was excellently prepared. Grilled, juicy,

. and frgsh without a hint of ﬂ_shiness. A glaze of
functionality (in the client or in the server) bt e,
rice. The combination of the fish and rice alone

are often complex and costly to change
after a system has been built.

X Write Review POST

| | ‘ y- y y
Real-world Example gk Py AT
transaction monitoring reconfiguration
authorizer server server
server server server server server

Online applications
(email, document
Sha ring and banking) client client client client client

aruman[[} | Reconiure oo
process P
process program
I |
| |
Key: T —ll TCP socket connector with
Client Server client and server ports

FTX server ATM OS/2 Windows
daemon client process application

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

95 UNIVERSITY OF TORON"}O

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dynamic (Component-and-connector C&C)
 Client-Server Pattern

* MVC (Model-View-Controller) Pattern

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Controller

Update

View

Update User Action

© TechTerms.com

MVC (Model-View-Controller) Pattern

e Separate Ul functionality from the application functionality

* Multiple views of the user interface can be created, maintained, and
coordinated when the underlying application data changes

Component Description

Handles application data and data-management

Mo Central component of MVC

e Can be any output representation of information to user

P e Renders data from model into user interface

~ Controller e Accepts input and converts to commands for model/view

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

https://realpython.com/the-model-view-controller-mvc-
paradigm-summarized-with-legos/

MVC and the Web

@'KP:// some-pPage

T

LROUTES\\ A

CONTROLLER

MOoDEL

VIEW

DATABASE

he Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

MVC (Model-View-Controller) Pattern

* Weaknesses: The complexity may not be worth it for simple user
interfaces.

’fi"r:t The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
+®3 UNIVERSITY OF TORONTO

Monolithic MicroServices

Monolithic Architecture

HTTP

< > Relational
DB
N . Key / Value
Store

T S
e

Monolithic Application

i dward S. Rogers Sr. Department
‘ ectrical & Computer Engineering
%ﬁ@ UNIVERSITY OF TORONTO

|
&

@ twikter:

Twitter is over capacity.

ent and try again

iny tweet

& @Q

£

SOUTH
AFRICA

st FIFA

WORLD CUP

© 2005 FIFATM

"After that experience, we determined we needed to step back. We
then determined we needed to re-architect the site to support the
continued growth of Twitter and to keep it running smoothly."

%’% The Edward S. Rogers Sr. Department
& | Electrical & Computer Engineering

%:Q UNIVERSITY OF TORONTO

7
Example: a shopping cart app IiEX

Apache Tomcat

deploy
Client Browser
\\\\HN__—'//‘///
oLy
deploy
% Passenger
Nginx/Apache
App(s)

[Single Instance]

Edward S. Rogers Sr. Department
| lectrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Monolithic Architecture Benefits

* Simple to develop

e Simple to deploy a
e Simple to scale)

NETFLIX

Challenges of Monolithic Architecture

INFLEXIBLE

UNRELIABLE

UNSCALABLE

BLOCKS CONTINOUS DEVELOPMENT

SLOW DEVELOPMENT

NOT FIT FOR COMPLEX APPLICATIONS

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

Inflexible — Monolithic applications cannot be built using different
technologies

Unreliable — Even if one feature of the system does not work, then the entire
system does not work

Unscalable — Applications cannot be scaled easily since each time the
application needs to be updated, the complete system has to be rebuilt
Blocks Continuous Development — Many features of the applications cannot
be built and deployed at the same time

Slow Development — Development in monolithic applications take lot of time
to be built since each and every feature has to be built one after the other
Not Fit For Complex Applications — Features of complex applications have
tightly coupled dependencies

@?mg UNIVERSITY OF TORONTO

Microservices

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

y WHATARE
o | MIGBﬂSEHVIGES?‘gw

é}'(t\ A £

Ry
.' .
e AN
N % 0\
Lo P gl M y /A
[
»

memegenerator.net

% The Edward S. Rogers Sr. Department
2l of Electrical & Computer Engineering

@ UNIVERSITY OF TORONTO

https://microservices.io/articles/whoisusingmicroservices.html
]

shopify
NETFLIX €O/

UBER GROUPON

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Use case: Shopping Cart Application

Clieni)wser)
S & @
2 er

Single Instance

A monolithic application puts all its -’ A microservices architecture puts) '
functionality into a single process... ® each element of functionality into a
o9V separate service...
2
... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.
o? o? ol (e[®
@ @
4 4 4 4

lectrical & Computer Engineering

&

434 UNIVERSITY OF TORONT

g

HTTP AMQP
< >
>-
< g Relational
< >
- < HTTP DB
< > QN
<
n K >
< HTTP_ % HTTP . \
Key / Value
Store
HTTP 5 . /
< > HTTP

f Electrical & Computer Engineering

N/ NIVERSITY OF TORONTO

Principle of Microservices

Culture of
automation

Modeled around
business concepts

Hide internal
implementation
details

Microservices
Small autonomous
services

Highly
observable

Decentralize all
the things

Isolate
failure

Deploy
independently

dward S. Rogers Sr. Department
ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Benefits of Microservices

* Faster and simpler deployments and rollbacks
* Elimination of long-term commitment to a single technology stack

* Improved fault isolation

* Two-pizza teams

* Independently scalable services

* Full ownership

* Technology diversity

* Full accountability
* Ability to write new features as plugins

* Aligned incentives

+ “DevOps”

“dward S. Rogers Sr. Department
ectrical & Computer Engineering

24 UNIVERSITY OF TORONTO

Drawbacks of Microservices

* Increased network communication
e Serialization between microservices
* Additional complexity in testing a distributed system

* Increased complexity in deployment

1N/

$

o

Microservies overhead

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

e 186kl S but remember the skill of the team will

of Electrical &

% UNIVERST outweigh any monolith/microservice choice

How to decompose the application into
services?

* Decompose by business capability
* Decompose by verb or use case
* Decompose by by nouns or resources

___________________________ a
|

Business capabilities Facgamp e pamigms E

Application architecture

| : : |
I | | I
: | | :
I Product : : <<service>> I
| catalog | | Product |
| management | | catalog |
| | | management '
I | | I
I | | I
I | | I
I | | I
I | | I
I | | I
: Inventory | | <<service>> :
I management | | Inventory |
| : : management |
I | | I
I | | I
I | | I
: | | |
| Order ' ' <<service>> :
| management : : Order |
I | | management |
I | | I
I | | I
I | | I
: Delivery | | <<service>> :
I management | | Delivery |
I : : management |
I | | I
: | | '
[

[| |

How to decompose the application into
services?

* Decompose by business capability
* Decompose by verb or use case

° Decompose DY by NOouUNS or resources

How to maintain data consistency?

f Distributed Transaction (2PC)

“ 2PC (Two-phase commlt) -y .
Service Service
Saga
Ord Cust Order
Se:vi?;re Message/event é’:n?i?f r Message/event Service
Local Local Local
Transaction Transaction Transaction

saga — a sequence of local transaction

Saga Pattern

The master process called “Saga Execution Coordinator” or SEC.

 two ways to achieve sagas

* Choreography : each local transaction publishes domain events that trigger
local transactions in other services.

* Orchestration : an orchestrator (object) tells the participants what local
transactions to execute.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Orchestration

— Message Broker

Order
Service
Execute Payment CMD
Payment Channel
N ——

Payment Order Payment Stock Delivery
Service Service Service Service Service

Payment Executed
Reply

CreateOrderTX

S,
Prepare Order CMD
Order Channel
W ——

Stock
Service

createOrder

Out of Stock
Reply

executePayment

N
Refund Client CMD
Payment Channel

prepareOrder
J

SEC

deliveryOrder

concludeOrder

Order Saga
Reply Channel

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

,g,%?;a UNIVERSITY OF TORONTO

3 personas

Example

>

POST J/order
GET Jorder

GET /menu .[:
waiter

mongodb

][)Hf)(iti(j:@'}l
>

, topic: foods [« cooker
‘ COI\SNS produces

= N
client —+»| topic: drinks |[€+ bartender
1 - v
consumes | |
—»| topic: balcony | >
| A

mongodb

https://github.com/victoramsantos/saga-pattern-example

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://github.com/victoramsantos/saga-pattern-example/releases/tag/v1.0.0

Other examples and platforms

}fi tuat Eventuate example microservices
€ventuate applications

Eventuate™ is a platform that solves the distributed data management problems inherent in the

microservice architecture.
Eventuate™ consists of two frameworks:

« Eventuate Tram for microservices that use traditional JDBC/JPA-based persistence.
» Eventuate Local for microservices that use Event Sourcing.

How are services packaged and deployed?

* Container g
* Serverless deployment
* Platform as a Service (PaaS)

kubernetes

CLOUD F{(QUNDRY
AWS Elastic Beanstalk A‘

Easy to begin, Impossible to outgrow AWS Lambda

The 2019 Microservices Ecosystem

Security

Twistlock
Tigera

Aporeto

Aqua

Monitoring

Q)

AppDynamics

New Relic

Instana

Datadog

=

LightStep

Prometheus

SignalFx

SignalFx

%

Dynatrace

https://glasnostic.com/blog/the-2019-microservices-ecosystem

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%?;g UNIVERSITY OF TORONTO

AP| Gateways

i1
L B

AWS API Gateway

apigee

Apigee

Sentinel

»

\

Express Gateway

Infrastructure

aws

Amazon Web Services

A

Kong
Ambassador
MuleSoft

“Tyk

Tyk.io

A

Microsoft Azure

Service Middleware

&

Envoy

NGiNX

Nginx

NETFLIX

Netflix 0SS

HAProxy

2

Google Cloud Platform

iy
—

IBM Cloud

Applications & Services

Orchestration

&

Kubernetes

Q

OpenShift

K

Mesosphere

O,

Cloud Foundry

ORACLE

Oracle Cloud

Service Mesh

A

Istio

[|

Linkerd

AWS App Mesh

®

Pivotal Web Services

Cloud Traffic Control

QW
d

Glasnostic

Serverless

AWS Lambda

<&

Azure Functions

@

Google Cloud Functions

Knative

(On Premise)

Technology Stacks

Awesome Microservices [« EZ=ZD

A curated list of Microservice Architecture related principles and technologies.

https://github.com/mfornos/awesome-microservices

ele}EiiR s St. Depar

-‘ f Electrical & puter Enumeetino
;z,” UNIVE RSITY OF TORONTO

https://github.com/mfornos/awesome-microservices

Discussion of Microservices

Are they really “new”?

* Do microservices solve problems, or push them down the line?
What are the impacts of the added flexibility?

* Beware “cargo cult”

* “If you can’t build a well-structured monolith, what makes you
think microservices is the answer?” — Simon Brown

Leads to more API design decisions

APIS EVERYWHERE

e Edward S. Rogers Sr. Department
£ Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineer

UNIVERSITY OF TORONTO

An introduction to the Flask
Python web app framework

In the first part in a series comparing Python frameworks,

: learn about Flask.
\ O ﬂ

02 Apr 2018 | Nicholas Hunt-Walker ™ | 330> | 3 comments

r————‘r—‘
[1 00 2 03 [N < (s L 6 (M 7 0h e Ll 9

Use a Flask Blueprint to Architect Your
Applications

Y Miguel Garcia ™ 15 Comments W flask intermediate web-dev

https://opensource.com/article/18/4/flask

https://realpython.com/flask-blueprint/

e Edward S. Rogers Sr. DP artment
Electrical & Cor }t r Eng

;94« UNIVERSITY OF TORONTO

Tactics

* Architectural techniques to achieve qualities
* More tied to specific context and quality

* Smaller scope than architectural patterns

* Problem solved by patterns: “How do | structure my (sub)system?”
* Problem solved by tactics: “How do | get better at quality X?”

* Collection of common strategies and known solutions
* Resemble OO design patterns

e Edward S. Rogers Sr. Department

il of Electrical & Computer Engineering

%;g« UNIVERSITY OF TORONTO

Achieving Quality Attributes through Tactics

System Software
Product Quality

Reliability Maintainability Portability

Functional
Performance

suitability officiency Compatibility

Functional
completeness i
- Time behavior Coexistence Appropr_l ater)c_ass Maturity Confidentiality Modularity Adaptability
recognizability

Functional

correctness Resource - . o
utilization Interoperability Learnability Availability

Integrity Reusability Installability

Functional
appropriateness

Capacity Operability Fault tolerance Nonrepudiation Analyzability Replaceability

prs:drigrigonr Recoverability Accountability Modifiability

User interface Authenticity Testability

aesthetics

Accessibility

Modifiability

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology

Artifacts Code, data, interfaces, components, resources, configurations,

Environment Runtime, compile time, build time, initiation time, design time

Response One or more of the following:

= Make modification
* Test modification
* Deploy modification

Response Measure Cost in terms of the following:

= Number, size, complexity of affected artifacts

Effort

Calendar time

Money (direct outlay or opportunity cost)

Extent to which this modification affects other functions or
quality attributes

* New defects introduced

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘?Lfl‘ UNIVERSITY OF TORONTO

Modifiability

Reduce Size
of a Module
Change
.—>
Arrives
Split Module

ctrical &

Modifiability Tactics

Increase Reduce Defer
Cohesion Coupling Binding
Increase Encapsulate
Serr?antlc U
Coherence |niarmediary

Restrict

Dependencies

Refactor

Abstract Common
Services

Change Made>

OIIlplltGl‘ ngineering

within Time
and Budget

e coupling - probability that a
modification to one module will
propagate to the other

e cohesion - how strongly the
responsibilities of a module are
related

Low coupling, high cohesion,

better modifiability

& 2
NIVERSITY

OF TORONTO

Performance

e about time and the software system’s ability to meet timing
requirements

* Event arrival patterns: Periodic, Stochastic, Sporadic

* Measurements:
* Latency
e Deadlines in processing
* Throughput
* jitter of the respsonse
* number of events not processed

al & Computer Engineering

ectrica
\EaEn)
%?ﬁ UNIVERSITY

OF TORONTO

Pe

Event

formance

Arrives

>

Performance Tactics

Control Resource Demand

l

Manage Sampling Rate
Limit Event Response
Prioritize Events
Reduce Overhead
Bound Execution Times

Increase Resource
Efficiency

Manage Resources

l

Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

Response

B
Generated within
Time Constraints

response time = processing time + blocked time

Security

Security Tactics

Detect Attacks Resist Attacks React to Recover
i Attacks from AttaCkS
l Identify ;
Detect Actors Eﬁgggg Maintain Restore
| ion i ' i
Attack nirus! . sudnshileslis udibiiar System Detects,
— » Detect Service Actors Lock Eesets Rasere
Demal Authorize Computer See or Recovers
Verify Message Actors intorm Availability
Integrity
Limit Access Actors

Detect Message

Delay Limit Exposure

Encrypt Data

Separate
Entities

Change Default
Settings

Testability

Tests

Executed

Testability Tactics

Control and Observe Limit Complexity
System State l

Specialized Limit Structural
Interfaces Complexity
Record/ Limit

Playback Nondeterminism

Localize State
Storage

Abstract Data
Sources

Sandbox

Executable
Assertions

Faults

Detected

Usability

User

P
Request

Usability Tactics

Support User Support System

Initiative

Initiative

l

Maintain Task

Cancel
Model
Undo Maintain User
Model
Pause/Resume
Maintain System
Aggregate Model

User Given
Appropriate

Feedback End
Assistance

Summary of Tactics and Patterns

Tactics are the “building blocks” of design, from which architectural
patterns are created. Tactics are atoms and patterns are molecules.
Most patterns consist of several different tactics.

Software

Architecture Many tactics described in Chapter 4-10
in Practice

Third Edition

* Brief high-level descriptions (about 1 paragraph
per tactic)
* Checklist available

Len Bass - Paul Clements - Rick Kazman

Future Readings

ggsisé Clements, and Kazman. Software Architecture in Practice. Addison-Wesley,

Boehm and Turner. Balancing Agility and Discipline: A Guide for the Perplexed,
2003.

Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.
Documenting Software Architectures: Views and Beyond, 2010.

Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

Jansen and Bosch. Software Architecture as a Set of Architectural Design
Decisions, WICSA 2005.

Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide, 2009.
Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009.

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Flask Web Application Layout

/home/user/Projects/flask-tutorial

— flaskr/
— __init__ _.py
— db.py
— schema.sql
— auth.py
— blog.py
— templates/

— base.html

— auth/

| |— login.html
| '~ register.html
L— blog/
— create.html
— index.html
L— update.html
——gtatilc/
L— style.css
— tests/
— conftest.py
— data.sql
— test_factory.py
— test _db.py
— test_auth.py
— test_blog.py
venv/

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

