
TDD

Learning Goals

• Understand process aspects of QA
• Describe the tradeoffs of QA techniques
• Select an appropriate QA technique for a given project and quality

attribute
• Apply testing and test automation for functional correctness
• Understand opportunities and challenges for testing quality

attributes; enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness (both
general and architectural), performance, integration.
• Discuss the limitations of testing

81

Developers + Operators = DevOps

QA is Hard

83

“We had initially scheduled time to
write tests for both front and back
end systems, although this never

happened.”

84

“Due to the lack of time, we could only
conduct individual pages’ unit testing. Limited

testing was done using use cases. Our team
felt that this testing process was rushed and
more time and effort should be allocated.”

85

“We failed completely to adhere to the
initial [testing] plan. From the onset of the
development process, we were more
concerned with implementing the
necessary features than the quality of our
implementation, and as a result, we
delayed, and eventually, failed to write any
tests.”

86

“One portion we planned for but
were not able to complete to our

satisfaction was testing.”

87

Time estimates (in hours):

Activity Estimated Actual
testing plans 3 0
unit testing 3 1
validation testing 4 2
test data 1 1

88

89

QA is Important (Duh!)

90

Cost

91

DEFECT: It can be simply defined as a variance between expected and actual.
Defect is an error found AFTER the application goes into production. It commonly refers to several troubles with the software products, with its external
behavior or with its internal features.

In other words Defect is the difference between expected and actual result in the context of testing. It is the deviation of the customer requirement.

Wrong: When requirements are implemented not in the right way. This defect is a variance from the given specification. It is Wrong!
Missing: A requirement of the customer that was not fulfilled. This is a variance from the specifications, an indication that a specification was not
implemented, or a requirement of the customer was not noted correctly.
Extra: A requirement incorporated into the product that was not given by the end customer. This is always a variance from the specification, but may be
an attribute desired by the user of the product. However, it is considered a defect because it’s a variance from the existing requirements.
ERROR: An error is a mistake, misconception, or misunderstanding on the part of a software developer. In the category of developer we include software
engineers, programmers, analysts, and testers.
For example, a developer may misunderstand a de-sign notation, or a programmer might type a variable name incorrectly – leads to an Error. It is the
one which is generated because of wrong login, loop or due to syntax. Error normally arises in software; it leads to change the functionality of the
program.
BUG: A bug is the result of a coding error. An Error found in the development environment before the product is shipped to the customer. A programming
error that causes a program to work poorly, produce incorrect results or crash. An error in software or hardware that causes a program to malfunction.
Bug is terminology of Tester.
FAILURE: A failure is the inability of a software system or component to perform its required functions within specified performance requirements. When
a defect reaches the end customer it is called a Failure. During development Failures are usually observed by testers.
FAULT: An incorrect step, process or data definition in a computer program which causes the program to perform in an unintended or unanticipated
manner. A fault is introduced into the software as the result of an error. It is an anomaly in the software that may cause it to behave incorrectly, and not
according to its specification. It is the result of the error.
The software industry can still not agree on the definitions for all the above. In essence, if you use the term to mean one specific thing, it may not be
understood to be that thing by your audience.

Cost

93

QA has many facets

95

How do you know that your
Program works?

Questions

• How can we ensure that the specifications are correct?
• How can we ensure a system meets its specification?
• How can we ensure a system meets the needs of its users?
• How can we ensure a system does not behave badly?

97

Test Driven Development (TDD)

• Test-driven development (TDD) is an
evolutionary approach to development
which combines test-first development,
where you write a test before you write
just enough production code to fulfil that
test, and refactoring.

Types of tests (a subset)

• Unit ⭐— Test an individual, isolated component
• Integration ⭐⭐⭐⭐— Test that multiple units work together
• End-to-End ⭐⭐— Tests that act as a user actually using the

application
• Acceptance ⭐⭐⭐⭐⭐— verify a user story works as expected.

• In Extreme Programming,
tests are a mandatory part
of planning and feedback
loops

TDD demo: Palindrome Example

• Functional requirement: detect that a string is a palindrome: that is,
it is the same word or phrase in reverse.
• mom
• Mom
• Was It A Rat I Saw
• Never Odd or Even
• ...

https://khalilstemmler.com/articles/test-driven-
development/introduction-to-tdd/

TDD demo: Palindrome Example

• 1. Write the failing test

TDD demo: Palindrome Example

• 1. Write the failing test

TDD demo: Palindrome Example

• 2. Write the simplest code to make the test pass
•

TDD demo: Palindrome Example

• 2. Write the simplest code to make the test pass
•

TDD demo: Palindrome Example

• 3. Refactor
When refactoring, keep a lookout for duplication (at least three
times) and code smells.

TDD demo: Palindrome Example
• 4. The next failing test -- “test that "bill" isn't a palindrome.”

TDD demo: Palindrome Example

• 5. Write the simplest code to make the test pass
•

TDD demo: Palindrome Example
• 6. Refactor -- refactoring both production code and test code

TDD demo: Palindrome Example
• 4. The next failing test -- “test that “Mom" is a palindrome.”

Lab 6: TDD

