)lc The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

> UNIVERSITY OF TORONTO

AAAAA

Early Testing

Testing shovld start
as early as possible in the
Software Development Life Cycle

Learning Goals

* Understand process aspects of QA
* Describe the tradeoffs of QA techniques

e Select an appropriate QA technique for a given project and quality
attribute

* Apply testing and test automation for functional correctness

* Understand opportunities and challenges for testing quality
attributes; enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness (both
general and architectural), performance, integration.

* Discuss the limitations of testing

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

;Z;@ UNIVERSITY OF TORONTO

Developers + Operators = DevOps

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

*,%@ UNIVERSITY OF TORON"I"O

QA is Hard

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

THESCHEDULE

“We had initially scheduled time to
write tests for both front and back
end systems, although this never
happened.”

makeameme.org

D, Og S Or. Cpartlnent
of Electrical & Computer Engi i

- ngmt‘t‘rmg
4 UNIVERSITY OF TORONTO

“Due to the lack of time, we could only .
conduct individual pages’ unit testing. Limited
testing was done using use cases. Our team
felt that this testing process was rushed and
more time and effort should be allocated.”

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

“We failed completely to adhere to the
initial [testing] plan. From the onset of the
development process, we were more
concerned with implementing the
necessary features than the quality of our
implementation, and as a result, we
delayed, and eventually, failed to write any

tests.”

Software testing life...

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Unistest vs. Integratic

“One portion we planned for but
were not able to complete to our
satisfaction was testing.”

"iﬁré The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
ag,é?mg« UNIVERSITY OF TORONTO

Time estimates (in hours):

Activity ____|Estimated Actual __

testing plans
unit testing
validation testing
test data

~ A~ W W
) N R O

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

QA is Important (Duh!

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO

Relative Cost of Software Fault Propogation

COSt ~ 368

400 | Relative |
350 | Cost to
| Repair
300]
250 |
200 |‘ |
150 l |
100 1& Customer
’ Integration
=0 | Test
0 Code
Design
6“0 o Requirements
%e “1” I1d tifi g‘fs;\o Phase
entifies .
Phase Defect &F Repaired
Introduced

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%g UNIVERSITY OF TORONTO

DEFECT: It can be simply defined as a variance between expected and actual.
Defect is an error found AFTER the application goes into production. It commonly refers to several troubles with the software products, with its external
behavior or with its internal features.

In other words Defect is the difference between expected and actual result in the context of testing. It is the deviation of the customer requirement.

Wrong: When requirements are implemented not in the right way. This defect is a variance from the given specification. It is Wrong!

Missing: A requirement of the customer that was not fulfilled. This is a variance from the specifications, an indication that a specification was not
implemented, or a requirement of the customer was not noted correctly.

Extra: A requirement incorporated into the product that was not given by the end customer. This is always a variance from the specification, but may be
an attribute desired by the user of the product. However, it is considered a defect because it’s a variance from the existing requirements.

ERROR: An error is a mistake, misconception, or misunderstanding on the part of a software developer. In the category of developer we include software
engineers, programmers, analysts, and testers.

For example, a developer may misunderstand a de-sign notation, or a programmer might type a variable name incorrectly — leads to an Error. It is the
one which is generated because of wrong login, loop or due to syntax. Error normally arises in software; it leads to change the functionality of the
program.

BUG: A bug is the result of a coding error. An Error found in the development environment before the product is shipped to the customer. A programming
error that causes a program to work poorly, produce incorrect results or crash. An error in software or hardware that causes a program to malfunction.
Bug is terminology of Tester.

FAILURE: A failure is the inability of a software system or component to perform its required functions within specified performance requirements. When
a defect reaches the end customer it is called a Failure. During development Failures are usually observed by testers.

FAULT: An incorrect step, process or data definition in a computer program which causes the program to perform in an unintended or unanticipated
manner. A fault is introduced into the software as the result of an error. It is an anomaly in the software that may cause it to behave incorrectly, and not
according to its specification. It is the result of the error.

The software industry can still not agree on the definitions for all the above. In essence, if you use the term to mean one specific thing, it may not be
understood to be that thing by your audience.

Cost

theguardian Heartbleed bug 'will cost millions'

News | US | World Sports Comment Culture Business Money Environment Science Revoking all SSL certificates leaked by Heartbleed will cost
millions of dollars, according to Cloudflare, which provides

m Technology) Heartbleed services to website hosts

Heartbleed: developer who introduced = ®swre «o

the error regrets 'oversight' W Tweet 269

Submitted just seconds before new year in 2012, the bug 341 27

'slipped through' — but discovery 'validates' open source m Share | 103
Email

Alex Hern B

W Follow @alexhern ¥ Follow @guardiantech
r g g Technology
th dian. , Friday 11 April 2014 03.05 EDT
b L o Lt Heartbleed - Open source

&) Jump to comments (108) - Programming - Software
- Internet - Hacking - Data
and computer security

More news

More on this story

I A

A Image: Codenomicon

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

*’%‘“ UNIVERSITY OF TORONTO

AN

Ll NN N N NN N NN NN NN NN N N N N W OE NV

N7

W

QA has many facets

How do you know that your
Program works?

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%?ﬁ UNIVERSITY OF TORONTO

Questions

* How can we ensure that the specifications are correct?
* How can we ensure a system meets its specification?
* How can we ensure a system meets the needs of its users?

* How can we ensure a system does not behave badly?

al & To;nputer ngineering
OF TORONTO

ectric
% UNIVERSITY

» Test-driven development (TDD) is an
evolutionary approach to development [passl[
which combines test-first development,
where you write a test before you write
just enough production code to fulfil that
test, and refactoring. ,[Make a itle

Run the tests

[FaII]

change

Test Driven Development (TDD) _[]_
]
|

[Pass,
Development
continues]

[Pass,
Development stops]
Copyright 2003-2006 Scott W. Ambler

[Fail] (
Run the tests

L

0,

TEST FAILS

TDD Cycle

9,

REFACTOR TEST PASSES

Types of tests (a subset)

* Unit »« — Test an individual, isolated component

* Integration — Test that multiple units work together

* End-to-End — Tests that act as a user actually using the
application

* Acceptance — verify a user story works as expected.

’fi}i The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Planning/feedback loops

Release plan
Months

[teration plan
“’“‘k\ * In Extreme Programming,
PAEEEDENER (55 tests are a mandatory part
of planning and feedback
loops

Days
Stand-up meeting

One day

Pair negotiation

Hounsl

—» [nit test

Minutes

—> Pair programming

Code

al & Computer Engineering

ectric
% UNIVERSITY

OF TORONTO

TDD demo: Palindrome Example

* Functional requirement: detect that a string is a palindrome: that is,
it is the same word or phrase in reverse.
. Mmom
* Mom

O)
Was It A Rat | Saw / \

Never Odd or Even
TDD Cuycle

)

REFACTOR TEST PASSES
https://khalilstemmler.com/articles/test-driven-
development/introduction-to-tdd/

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

e 1. Write the failing test

e Write the test name using the requirements

« Pretend that something called palindromechecker exists and that it has an

isAPalindrome Method on it.
« Expect the method to return true for mom

« Save

’f} The Edward S. Rogers Sr. D}
i ‘of Electrical & Cor 1, r Eng

IIU
%:, UNTVERSTTY G TORONTO

TDD demo: Palindrome Example

e 1. Write the failing test

index.spec.ts

describe('palindrome checker', () => {

it('should be able to tell that "mom" is a palindrome', () => {
expect(palindromeChecker.isAPalindrome(‘'mom')).toBeTruthy();

})s

1)

?fi},? The Edward S. Rogers Sr. Department
e | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

We are here

~

REFACTOR ﬁrﬁfﬁz

Improve the enough code
code with 1o pass the

tests intact
N— -

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

e 2. Write the simplest code to make the test pass

e Create a PalindromeChecker class
e Giveitan isAPalindrome method
e Return true (the simplest thing that would work)

« and import it in our test

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

e 2. Write the simplest code to make the test pass

export class PalindromeChecker {

isAPalindrome (str: string): boolean {

return true;

’fi}i The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

REFACTOR

Improve the
code with
tests intact

We are here

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

e 3. Refactor

When refactoring, keep a lookout for duplication (at least three
times) and code smells.

GREEN
Write just
Improve the enough code
tests inta test
N—"

{i"% The Edward S. Rogers Sr. Department we are he'e

‘ of Electrical & Computer Engineering

%g UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

* 4. The next failing test -- “test that "bill" isn't a palindrome.”

import { PalindromeChecker } from './index’
describe('palindrome checker', () => {

it('should be able to tell that "mom" is a palindrome', () => {
const palindromeChecker = new PalindromeChecker();
expect(palindromeChecker.isAPalindrome(‘mom')).toBeTruthy(); v

})s

it('should be able to tell that "bill"™ isnt a palindrome', () => {
const palindromeChecker = new PalindromeChecker();

expect(palindromeChecker.isAPalindrome('bill"')).toBeFalsy();
@ The Edward S. }) .;

2l of Electrical &

5
% UNIVERS] })

We are here

~

REFACTOR ﬁrﬁfﬁz

Improve the enough code
code with 1o pass the

tests intact
N— -

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

* 5. Write the simplest code to make the test pass

export class PalindromeChecker {
isAPalindrome (str: string): boolean {
‘'mom') {
return true;
} else {

return false; export class PalindromeChecker {

isAPalindrome (str: string): boolean {

const reversed = str.split("").reverse().join("");
return reversed === str;

aff' The Eivn‘]\R
"‘ofEl cal & Cor }

1 t=]
:;, UNIVERSITY OF TORONTO

REFACTOR

Improve the
code with
tests intact

We are here

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

TDD demo: Palindrome Example

* 6. Refactor -- refactoring both production code and test code

import { PalindromeChecker } from './index’
describe('palindrome checker', () => {

it('should be able to tell that "mom" is a palindrome', () => {
. const palindromeChecker = new PalindromeChecker(); -
expect(palindromeChecker.isAPalindrome(‘mom')).toBeTruthy(); v

1)

it('should be able to tell that "bill" isnt a palindrome', () => {

const palindromeChecker = new PalindromeChecker(); -
expect(palindromeChecker.isAPalindrome('bill')).toBeFalsy(); v

})s

TDD demo: Palindrome Example

* 4. The next failing test -- “test that “Mom" is a palindrome.”

it('should still detect a palindrome even if the casing is off', () => {
const palindromeChecker = new PalindromeChecker();

expect(palindromeChecker.isAPalindrome(“Mom")).toBeTruthy();

})s;
})

9’% The Ei ard S. Rog SD}
‘ofl I&L 1, r Eng

IlU
% UNIVERSITY e TORONTO

GREEN
Write just
enough code
to pass the

N—~" |) Atest_

Improve the
code with
tests inta

We are here

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

x5 UNIVERSITY OF TORONTO

Lab 6: TDD

Stay
Tuned!

