
Metrics and Measurement

Learning Goals

• Use measurements as a decision tool to reduce uncertainty
• Understand difficulty of measurement; discuss validity of

measurements
• Provide examples of metrics for software qualities and process
• Understand limitations and dangers of decisions and incentives based

on measurements

119

120

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

Case Study:
The Maintainability Index

121

Maintainability Index (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.

• 0-9 = Red
• 10-19 = Yellow
• 20-100 = Green

122

https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
range-and-meaning

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Maintainability Index (Visual Studio since 2007)

• Index between 0 and 100 representing the relative ease of maintaining the code.
• Higher is better. Color coded by number:

• 0-9 = Red
• 10-19 = Yellow
• 20-100 = Green

Design Rational (from MSDN blog)

• "We noticed that as code tended toward 0 it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."
• "The desire was that if the index showed red then we would be saying

with a high degree of confidence that there was an issue with the
code."

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

Maintainability Index (Visual Studio since 2007)

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

= MAX (0, (171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)
)*100 / 171)

Lines of Code

• Easy to measure > wc –l file1 file2…

http://www.linfo.org/wc.html

The wc (i.e., word count) command
-l : count only the number of lines
-w: count only the number of words
-m: count only the number of characters
-c: count only the number of bytes.

Lines of Code
LOC projects
450 Expression Evaluator

2.000 Sudoku, Functional Graph Library
40.000 OpenVPN

80-100.000 Berkeley DB, SQLlight
150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800.000 gimp, glibc, mplayer, php, SVN

1.600.000 gcc
6.000.000 Linux, FreeBSD

45.000.000 Windows XP

Normalizing Lines of Code

• Ignore comments and empty lines
• Ignore lines < 2 characters
• Pretty print source code first
• Count statements (logical lines of code)

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

for (i = 0; i < 100; i += 1) printf("hello");

/* How many lines of code is this? */

1

2

Normalizing per Language

Language Statement factor
(productivity)

C 1
C++ 2.5
Fortran 2
Java 2.5
Perl 6
Python 6
Smalltalk 6

https://blog.codinghorror.com/are-all-
programming-languages-the-same/

Solving a particular ‘string processing problem’

https://www.connellybarnes.com/documents/language_productivity.pdf
Median Hours to Solve Problem

https://blog.codinghorror.com/are-all-programming-languages-the-same/
https://www.connellybarnes.com/documents/language_productivity.pdf

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

Maintainability Index (Visual Studio since 2007)

Halstead Volume

• Introduced by Maurice Howard Halstead in 1977
• Halstead Volume =

number of operators&operands *
log2(number of distinct operators&operands)

• Approximates size of elements and vocabulary

Halstead Volume - example

12

7

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

Maintainability Index (Visual Studio since 2007)

Cyclomatic Complexity

• Proposed by McCabe 1976
• Based on control flow graph, measures number of linearly

independent paths through a program
• linearly independent: each path has at least one edge that is not in

one of the other paths.
• no control flow statement: Complexity = 1
• 1 single-condition IF statement --> 2 path: Complexity = 2
• ...

Cyclomatic Complexity

• Proposed by McCabe 1976
• Based on control flow graph, measures number of linearly

independent paths through a program
• linearly independent: each path has at least one edge that is not in

one of the other paths
• ~= number of decisions
• = Number of test cases needed to achieve branch coverage

Cyclomatic Complexity
M = #edges – #nodes + #end points

9 edges, 7 nodes and 1 end points:
M = 9 − 7 + 1 = 3

Application of Cyclomatic Complexity

• Limiting complexity during development
• Implications for software testing

c1() == True, c2() == True
c1() == False, c2() == False

c1() == True, c2() == False
c1() == False, c2() == True

Branch Coverage

Path Coverage

Maintainability Index (Origin)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

= percentage of comments

• Developers rated a number of HP systems in C and Pascal
• Statistical regression analysis to find key factors among 40 metrics

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

Maintainability Index (Origin)

"good and sufficient predictors of maintainability”
"potentially very useful for operational Department of Defense systems".

Thoughts?

Thoughts

• Metric seems attractive
• Easy to compute
• Often seems to match intuition

• Parameters seem almost arbitrary,
calibrated in single small study code (few
developers, unclear statistical significance)
• All metrics related to size: just measure lines

of code?
• Original 1992 C/Pascal programs potentially

quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Maintainability

• How easy is identifying and fixing a fault in software?
• Is it possible to identify the main cause of failure?
• How much effort will code modification require in case of a fault?
• How stable is the system performance while changes are being

applied?

Key concerns of Maintainability Index

• There is no clear explanation for the specific derived formula.
• The only explanation that can be given is that all underlying metrics

(Halstead, Cyclomatic Complexity, Lines of Code) are directly correlated
with size (lines of code
• The set of programs used to derive the metric and evaluate it was small,

and contained small programs only.
• Programs were written in C and Pascal, which may have rather different

maintainability characteristics than current object-oriented languages such
as C#, Java, or Javascript.
• For the experiments conducted, only few programs were analyzed, and no

statistical significance was reported

Measurement for Decision Making
in Software Development

144

What is Measurement?
• A quantitatively expressed reduction of

uncertainty based on one or more
observations.

• Measurement is the empirical, objective
assignment of numbers, according to a rule
derived from a model or theory, to attributes
of objects or events with the intent of
describing them.

Software Quality Metric

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

What software qualities do we care about? (examples)

What software qualities did you pick for your app?
(examples)
• Scalability
• Security
• Extensibility
• Documentation
• Performance
• Consistency
• Portability

• Installability
• Maintainability
• Functionality (e.g., data integrity)
• Availability
• Ease of use

What process qualities do we care about? (examples)

What process qualities do we care about? (examples)

• On-time release
• Development speed
• Meeting efficiency
• Conformance to processes
• Time spent on rework
• Reliability of predictions
• Fairness in decision making

• Measure time, costs, actions, resources,
and quality of work packages; compare
with predictions
• Use information from issue trackers,

communication networks, team
structures, etc…

Everything is measurable

• If X is something we care about, then X, by definition, must be
detectable.

• How could we care about things like “quality,” “risk,” “security,” or “public
image” if these things were totally undetectable, directly or indirectly?

• If we have reason to care about some unknown quantity, it is because we
think it corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.
• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.

D. Hubbard, How to Measure Anything, 2010

Questions to consider.

• What properties do we care about, and how do we measure it?
• What is being measured? Does it (to what degree) capture the thing

you care about? What are its limitations?
• How should it be incorporated into process? Check in gate? Once a

month? Etc.
• What are potentially negative side effects or incentives?

Measurement is Difficult

153

The streetlight effect

• A known observational bias.
• People tend to look for something only where

it’s easiest to do so.
• If you drop your keys at night, you’ll tend to

look for it under streetlights.

• Bad statistics: A basic misunderstanding of measurement theory and
what is being measured.
• Bad decisions: The incorrect use of measurement data, leading to

unintended side effects.
• Bad incentives: Disregard for the human factors, or how the cultural

change of taking measurements will affect people.

156

What could possibly go wrong?

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

• Construct – Are we measuring what we intended to measure?
• Predictive – The extent to which the measurement can be used to

explain some other characteristic of the entity being measured
• External validity – Concerns the generalization of the findings to

contexts and environments, other than the one studied

157

Measurements validity

Correlation

• For causation
• Provide a theory (from domain knowledge, independent of data)
• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

http://xkcd.com/552/

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations

Confounding variables

• If you look only at the coffee consumption → cancer relationship, you can get
very misleading results

• Smoking is a confounder

Coffee
consumption

Smoking

Cancer

Associations
Causal relationship

Confounding variables

• “Only 4, out of 24 commonly
used object-oriented metrics,
were actually useful in
predicting the quality of a
software module when the
effect of the module size was
accounted for.”

The McNamara fallacy

The McNamara Fallacy

• Measure whatever can be easily measured.
• Disregard that which cannot be measured easily.
• Presume that which cannot be measured easily is not important.
• Presume that which cannot be measured easily does not exist.

— Daniel Yankelovich, "Corporate Priorities: A continuing study of the new demands on business" (1972).

https://en.wikipedia.org/wiki/Daniel_Yankelovich

Discussion: Measuring Usability

180

Discussion: Usability

• Users can see directly how well this attribute of the system is worked
out.
• One of the critical problems of usability is too much interaction or too

many actions necessary to accomplish a task.
• Examples of important indicators for this attribute are:

• List of supported devices, OS versions, screen resolutions, and browsers and
their versions.

• Elements that accelerate user interaction, such as “hotkeys,” “lists of
suggestions,” and so on.

• The average time a user needs to perform individual actions.
• Support of accessibility for people with disabilities.

Measurement strategies

• Automated measures on code repositories
• Use or collect process data
• Instrument program (e.g., in-field crash reports)
• Surveys, interviews, controlled experiments, expert judgment
• Statistical analysis of sample

Metrics and Incentives

183

Goodhart’s law: “When a measure becomes a
target, it ceases to be a good measure.”

“In IBM there's a religion in software that says you have to count K-
LOCs, ... How big a project is it? ... And IBM wanted to sort of make it
the religion about how we got paid. How much money we made off OS
2, how much they did. How many K-LOCs did you do? And we kept
trying to convince them - hey, if we have - a developer's got a good idea
and he can get something done in 4K-LOCs instead of 20K-LOCs, should
we make less money? Because he's made something smaller and faster,
less KLOC.”

https://www.pbs.org/nerds/part2.html

--- Steve Ballmer

Contributing graphs considered harmful (Hanselman)
https://www.hanselman.com/

https://github.com/gelstudios/gitfiti

Productivity Metrics

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• Function/object/application points per month
• Bugs fixed?
• Milestones reached?

Stack Ranking

John Francis Welch Jr.
(November 19, 1935 – March 1,
2020) was an American business
executive, chemical engineer,
and writer. He was chairman
and CEO of General Electric (GE)
between 1981 and 2001.

Incentivizing Productivity

•What happens when developer bonuses are based on
• Lines of code per day
• Amount of documentation written
• Low number of reported bugs in their code
• Low number of open bugs in their code
• High number of fixed bugs
• Accuracy of time estimates

Autonomy
Mastery
PurposeCan extinguish intrinsic motivation

Can diminish performance
Can crush creativity

Can crowd out good behavior
Can encourage cheating, shortcuts, and

unethical behavior
Can become addictive

Can foster short-term thinking

193

Software Quality Metric

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

• IEEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical value
that can be interpreted as the degree to which software processes a
given attribute that affects its quality.”
• Metrics have been proposed for many quality attributes; may define

own metrics

196

Software Quality Metrics

QA badges on GitHub

https://shields.io/

External attributes: Measuring Quality

199

McCall model has 41 metrics
to measure 23 quality criteria
from 11 factors

Decomposition of Metrics

200

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

• Number of Methods per Class
• Depth of Inheritance Tree
• Number of Child Classes
• Coupling between Object Classes
• Calls to Methods in Unrelated Classes
• …

201

Object-Oriented Metrics

• Comment density
• Test coverage
• Component balance (system breakdown optimality and component

size uniformity)
• Code churn (number of lines added, removed, changed in a file)
• …

202

Other quality metrics?

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted and is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of the

weight or circumference of the brain”

• Use carefully!
• Code size dominates many metrics
• Avoid claims about human factors (e.g., readability) and quality, unless

validated
• Calibrate metrics in project history and other projects
• Metrics can be gamed; you get what you measure

203

Warning

• Measurement is difficult but important for decision making
• Software metrics are easy to measure but hard to interpret, validity

often not established
• Many metrics exist, often composed; pick or design suitable metrics if

needed
• Careful in use: monitoring vs incentives
• Strategies beyond metrics

207

Summary

