Metrics and Measurement

B:t“ The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

[BS) B5)

%), UNIVERSITY OF TORONTO

QL
nnnnn

Learning Goals

* Use measurements as a decision tool to reduce uncertainty

e Understand difficulty of measurement; discuss validity of
measurements

* Provide examples of metrics for software qualities and process

e Understand limitations and dangers of decisions and incentives based
on measurements

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

Case Study:
The Maintainability Index

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%g@ UNIVERSITY OF TORONTO

k

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.

 0-9 = Red
e 10-19 = Yellow
* 20-100 = Green

T
Code Metrics Viewer vy B X
/i Analyze Solution | |7 o i Compare.. | Maintainability Index = Min: *| Max * < Goto Next ~
Hierarchy Maintainability Index | Cyclomatic Complexity = Class Coupling | Depth of Inheritance | Lines of Code
3 «3 checkopenfile.exe @ 74 10 19 7 39
3 {) checkopenfile @ 74 10 19 7 39
3 “% Forml @ 67] 16 @ 7 36
3 4% Program @ 81 1 @ 3 @ 1 3
https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
m » | range-and-meaning

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

3 UNIVERSITY OF TORON"}O

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

Code Metrics Viewer

Max:

/i Analyze Solution | 5 i i Compare.. = Maintainability Index * Min: -
Hierarchy Maintainability Index = Cyclomatic Complexty = Class Coupling
=« checkopenfile.exe . () 4 10 19
3 {) checkopenfile @ 74 10 19
3 43 Forml o 67 9 16
3 4% Program © 81 Qe 3

00

* & Goto Next ~

- Depth of Inheritance | Lines of

7
7
7
1

vnx

Code

* Index between 0 and 100 representing the relative ease of maintaining the code.

* Higher is better. Color coded by number:

 0-9 = Red
e 10-19 = Yellow
* 20-100 = Green

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

3 UNIVERSITY OF TORON"}O

Design Rational (from MsbN blog)

* "We noticed that as code tended toward O it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."

* "The desire was that if the index showed red then we would be saying
with a high degree of confidence that there was an issue with the
code.”

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

I\/l a I ﬂta I n a bl | |ty | ﬂ d ex (Visual Studio since 2007)

- 171 = MAX (0, (171
- 5.2 * log(Halstead Volume)

- 5.2 * log(Halstead Volume) - 0.23 * (Cyclomatic Complexity)
-0.23 * (cyclomatic Complexity)) 16 > * Iog;/(LineS of CodeF)) !

- 16.2 * log(Lines of Code})*100 / 171)

Lines of Code

* Easy to measure > wc -/ filel file2...

The wc (i.e., word count) command
-[: count only the number of lines
-w: count only the number of words
-m: count only the number of characters

-c: count only the number of bytes.

http://www.linfo.org/wc.html

al & To;nputer ngineering
OF TORONTO

ectric
% UNIVERSITY

Lines of Code

loC projects

450 Expression Evaluator
2.000 Sudoku, Functional Graph Library
40.000 OpenVPN
80-100.000 Berkeley DB, SQLlight
150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800.000 gimp, glibc, mplayer, php, SVN
1.600.000 gcc
6.000.000 Linux, FreeBSD
45.000.000 Windows XP

’fi}j The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?sg UNIVERSITY OF TORONTO

Normalizing Lines of Code

* lgnore comments and empty lines

* Ignore lines < 2 characters [for (i = 0; i < 100; i += 1) printf("hello"); g
* Pretty print source code first

: : for (
e Count statements (logical lines of code) 4 i=0;

i <100;
i+=1

) {
printf("hello");

i

Normalizing per Language

Solving a particular ‘string processing problem’
Language |Statement factor

(productivity) Perl | |
C 1 Python | |
TCL |
C++ 2.5]
Lisp |
Fortran 2 Rexx |
Java 2.5 Java |
Per| 6 C '
C++ |
Python 6 | | I , |
Smalltalk 6 0 50 100 150 200 250
https://blog.codinghorror.com/are-all- Median Hours to Solve Problem
programming-languages-the-same/ https://www.connellybarnes.com/documents/language productivity.pdf

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://blog.codinghorror.com/are-all-programming-languages-the-same/
https://www.connellybarnes.com/documents/language_productivity.pdf

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

=171
-5.2*% IongaIstead Volumel)
- 0.23 * (Cyclomatic Complexity)

- 16.2 * log(Lines of Code)

’ElTlEi ard S R rs St. Depart

‘ f Electrical & puter Enmneetino
’9 UNIVERSITY OF TORONTO

Halstead Volume

* Introduced by Maurice Howard Halstead in 1977

* Halstead Volume =
number of operators&operands *
log2(number of distinct operators&operands)

* Approximates size of elements and vocabulary

al & Computer Engineering

ectrica
\EaEn)
%?ﬁ UNIVERSITY

OF TORONTO

Halstead Volume - example

-

main()

{

Halstead Volume =
number of operators&operands *
log2(number of distinct operators&operands)

int a, b, Cc, avg,
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + ¢c) / 3;

printf("avg = %d", avg); ‘_J

}
The unique operators are: main, (), {}, int, scanf, &, =, +, /, printf, ,, ; 12
The unique operands are: a, b, ¢, avg, "%d %d %d", 3, "avg = %d" 7

Volume: V' = 42 X logs19 = 178.4

cal & To;nputer ngineering
OF TORONTO

ectri
g:?:g UNIVERSITY

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

=171
- 5.2 * log(Halstead Volume)
-0.23 * {Cyclomatic Complexity)‘

- 16.2 * log(Lines of Code)

’ElTlEi ard S R rs St. Depart

‘ f Electrical & puter Enmneetino
’9 UNIVERSITY OF TORONTO

Cyclomatic Complexity

* Proposed by McCabe 1976

e Based on control flow graph, measures number of linearly
independent paths through a program

* linearly independent: each path has at least one edge that is not in
one of the other paths.
* no control flow statement: Complexity = 1
* 1 single-condition IF statement --> 2 path: Complexity = 2

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Cyclomatic Complexity

* Proposed by McCabe 1976

e Based on control flow graph, measures number of linearly
independent paths through a program

* linearly independent: each path has at least one edge that is not in
one of the other paths

 *= number of decisions
* = Number of test cases needed to achieve branch coverage

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Cyclomatic Complexity

M = #edges — #nodes + #end points

if (cl()) /-‘ 9 edges, 7 nodes and 1 end points:
£1(); 7\ M=9-7+1=3

else <:> <:>
£2(); N F

if (c2()) /O\
£3();

else <:> <:>

| £a0; \\’/

Jomputer Engineering
SITY OF TORONTO

Application of Cyclomatic Complexity

* Limiting complexity during development
* Implications for software testing

if (CI())‘% c1() == True, c2() == True

£1(); __ L
. cl() == False, c2() == False Branch Coverage

£2007 | ¢1() == True, c2() == False
if (c2()) cl() == False, c2() == True Path Coverage

£3();
else

| £40; branch coverage < cyclomatic complexity < number of paths.

’fi}j The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

Maintainability Index (Origin)
Metrics for Assessing a Software System's Maintainability

Paul Oman and Jack Hagemeister

~ Software Engineering Test Lab
University of Idaho, Moscow, Idaho 83843
oman@cs.uidaho.edu

* Developers rated a number of HP systems in C and Pascal
e Statistical regression analysis to find key factors among 40 metrics

.
171—5.2in(HV)—0.23cC—16.2In(LOC)+50.0sinv/2.46 *|COM
= percentage Of comments

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

{:%3 The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

Maintainability Index (Origin)

Carnegie Mellon University
Software Engineering Institute

"good and sufficient predictors of maintainability”
"potentially very useful for operational Department of Defense systems".

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Thoughts?

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&%?;} UNIVERSITY OF TORONTO

Thoughts

* Metric seems attractive * Parameters seem almost arbitrary,
calibrated in single small study code (few

* Easy to compute e =
developers, unclear statistical significance)

e Often seems to match intuition . o .
* All metrics related to size: just measure lines

of code?

* Original 1992 C/Pascal programs potentially
quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Maintainability

* How easy is identifying and fixing a fault in software?
* s it possible to identify the main cause of failure?
* How much effort will code modification require in case of a fault?

* How stable is the system performance while changes are being
applied?

Key concerns of Maintainability Index

* There is no clear explanation for the specific derived formula.

* The only explanation that can be given is that all underlying metrics
(Halstead, Cyclomatic Complexity, Lines of Code) are directly correlated
with size (lines of code

* The set of programs used to derive the metric and evaluate it was small,
and contained small programs only.

* Programs were written in C and Pascal, which may have rather different
maintainability characteristics than current object-oriented languages such
as C#, Java, or Javascript.

* For the experiments conducted, only few programs were analyzed, and no
statistical significance was reported

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

’;2 UNIVERSITY OF TORON"}O

Measurement for Decision Making
in Software Development

| How 10
What is Measurement? MEASURE
ANYTI ING

A I'T" RIS D

* A quantitatively expressed reduction of
uncertainty based on one or more
observations.

 Measurement is the empirical, objective
assignment of numbers, according to a rule
derived from a model or theory, to attributes
of objects or events with the intent of
describing them.

Douglas W. Hubbard

Software Engineering Metrics: What Drc; They
Measure and How Do We Know

Cem Kaner, Senior Member, IEEE, and Walter P. Bond

"i‘i{'s? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

IEEE Std 1061™-1998 (R2009)
(Revision of IEEE Std 1061-1992)

Software Quality Metric
IEEE Standard for a Software Quality
Metrics Methodology

Sponsor

Software Engineering StandardsCommittee
of the
IEEE Computer Society

2.24 software quality metric: A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software possesses a given attribute that
affects its quality.

Reaffirmed 21 January 2005
Approved 16 November 1999

American National Standards Institute

Abstract: A methodology for establishing quality requirements and identifying, implementing,
analyzing and validating the process and product software quality metrics is defined. The method-
ology spans the entire software life cycle.

Keywords: direct metric, metrics framework, quality factor, quality subfactor, software quality
metric

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

What software qualities do we care about? (examples)

’fﬁé The Edward S. Rogers Sr. Department
] | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

What software qualities did you pick for your app?

(examples)

* Scalability * Installability

* Security e Maintainability

* Extensibility e Functionality (e.g., data integrity)

* Documentation
* Performance

* Consistency

* Portability

* Availability
e Ease of use

%ThEi ard S R rs St. Depart

‘ f Electrical & puter Engmeerino

‘&?ﬁ‘ UNIVERSITY OF TORONTO

What process qualities do we care about? (examples)

’fﬁé The Edward S. Rogers Sr. Department
] | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

What process qualities do we care about? (examples)

* On-time release Measure time, costs, actions, resources,
* Development speed and quality of work packages; compare
* Meeting efficiency with predictions

* Conformance to processes e Use information from issue trackers,
communication networks, team

* Time spent on rework
structures, etc...

* Reliability of predictions
* Fairness in decision making

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Everything is measurable

* If X is something we care about, then X, by definition, must be
detectable.

 How could we care about things like “quality,” “risk,” “security,” or “public
image” if these things were totally undetectable, directly or indirectly?

* |f we have reason to care about some unknown quantity, it is because we
think it corresponds to desirable or undesirable results in some way.

 |f X is detectable, then it must be detectable in some amount.
* |f you can observe a thing at all, you can observe more of it or less of it

 |f we can observe it in some amount, then it must be measurable.

D. Hubbard, How to Measure Anything, 2010

%’% The Edward S. Rogers Sr. Department

ectrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Questions to consider.

* What properties do we care about, and how do we measure it?

* What is being measured? Does it (to what degree) capture the thing
you care about? What are its limitations?

* How should it be incorporated into process? Check in gate? Once a
month? Etc.

* What are potentially negative side effects or incentives?

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Measurement is Difficult

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

{FoR pwoume:z)‘:.
I DROPPED! [
- -

h e

MO, 1 DROPPED
IT TWo BLOLKS
POWN THE .
smem’.tj'.:

=

THEN WHY ARE
YOU LOOKING |
FOR T HERE?

L/ UNIVERSITY OF TORONTO

The streetlight effect

* A known observational bias.

* People tend to look for something only where
it’s easiest to do so.

* If you drop your keys at night, you’ll tend to
look for it under streetlights.

‘ To;‘nputer Engineering
OF TORONTO

b '~
‘ @ ctrica
(o

N

= [1Ca
;.,,gg; UNIVERSITY

What could possibly go wrong?

* Bad statistics: A basic misunderstanding of measurement theory and
what is being measured.

e Bad decisions: The incorrect use of measurement data, leading to
unintended side effects.

* Bad incentives: Disregard for the human factors, or how the cultural
change of taking measurements will affect people.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

Measurements validity

* Construct — Are we measuring what we intended to measure?

* Predictive — The extent to which the measurement can be used to
explain some other characteristic of the entity being measured

e External validity — Concerns the generalization of the findings to
contexts and environments, other than the one studied

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Correlation

» Independent variable X and dependent variable Y

» Influenceof XonY, e.g.
» Influence of file size on error rate
» Influence of comments on understandability
» Influence of GUI on usability (speed)
» Influence of heap size on performance
» Influence of #abstract methods on #test cases

» Comparing two or more metrics

» All metrics need to be well defined separately

» Statistical relationship?

{:%3 The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO

T USED 10 THINK THEN I TOOK A | | SOUNDS LKE THE
CORRELATION MPUED STATISTICS CLASS. Cmss HELPED.
CAUSATION. Now I DON'T. WELL, MAYBE

THSIE

* For causation
e Provide a theory (from domain knowledge, independent of data)
* Show correlation
* Demonstrate ability to predict new cases (replicate/validate)

’f} The Edward S. Rogers Sr. D}
‘ofElect cal & Co 1, r Eng

10
!5"; UNIVERSITY OF TORONTO

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films
(%)
oo
8=
5
S 120 drownings 4films £
2 3
= o
S]
N
= ; &
£ 100 drownings @ o 2films 9§
E . 2
S
(%]
80 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Nicholas Cage =-¢- Swimming pool drownings

tylervigen.com

http://www.tylervigen.com/spurious-correlations

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

http://www.tylervigen.com/spurious-correlations

Divorce rate in Maine
correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
4.95 per 1,000
8lbs

= =
- 09
= 4.62 per 1,000 o
£ 6lbs 5
z 2
[4v]

A O
g o g
— C
[a) * a

———

3.96 per 1,000 2lbs
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8~ Margarine consumed -¢- Divorce rate in Maine

tylervigen.com

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Confounding variables

Coffee
. < Cancer
consumption
A
] T » Associations
Smoking ———— (Causal relationship

* If you look only at the coffee consumption = cancer relationship, you can get
very misleading results

* Smoking is a confounder

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

95 UNIVERSITY OF TORON"}O

The Confounding Effect of Class Size on

CO N fO Uun d | N g Va r| 3 b | es The Validity of Object-Oriented Metrics

Khaled El Emam Saida Benlarbi

Nishith Goel
National Research Council, Canada Cistel Technology
Institute for Information Technology 210 Colonnade Road
Building M-50, Montreal Road Suite 204
Ottawa, Ontario Nepean, Ontario
Canada K1A OR6 Canada K2E 7L5

o ”On|y 4, out of 24 commonly khaled.el-emam@itt.nrc.ca . {benlarbi, ngoel)@cistel.com
used object-oriented metrics,
were actually useful in
predicting the quality of a
software module when the el |

effect of the module size was I() ot Proneness
accounted for.”

Legend
—3 Causal Relationship
<€—» Association

a “o;nputer ngineering
OF TORONTO

c)

lectr
& m{e UNIVERSITY

The McNamara fallacy

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

”%“ UNIVERSITY OF TORONTO

Quickie!
©)

ITHE MCNAMARA
FALLACY

The McNamara Fallacy

* Measure whatever can be easily measured.
* Disregard that which cannot be measured easily.
* Presume that which cannot be measured easily is not important.

* Presume that which cannot be measured easily does not exist.

— Daniel Yankelovich, "Corporate Priorities: A continuing study of the new demands on business" (1972).

https://en.wikipedia.org/wiki/Daniel_Yankelovich

Discussion: Measuring Usability

10/28 Open Source
DevOps

- Designing Usable Machine Learning-Based Applications
(Prof. Jinghui Cheng, Polytechnique Montréal)

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Discussion: Usability

* Users can see directly how well this attribute of the system is worked
out.

* One of the critical problems of usability is too much interaction or too
many actions necessary to accomplish a task.

* Examples of important indicators for this attribute are:
* List of supported devices, OS versions, screen resolutions, and browsers and
their versions.
* Elements that accelerate user interaction, such as “hotkeys,” “lists of
suggestions,” and so on.
* The average time a user needs to perform individual actions.

» Support of accessibility for people with disabilities.

%’% The Edward S. Rogers Sr. Department

e | of Electrical & Computer Engineering

;Z;@ UNIVERSITY OF TORONTO

Measurement strategies

* Automated measures on code repositories
e Use or collect process data
* Instrument program (e.g., in-field crash reports)

e Surveys, interviews, controlled experiments, expert judgment

e Statistical analysis of sample

Metrics and Incentives

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

Goodhart’s law: “When a measure becomes a
target, it ceases to be a good measure.”

3 '
OUR GOAL ISTO WRITE 38 <| 1 HOPE T'M GONNA
BUGFREE SOFTWARE. < | THIS WRITE ME A
I'LL PAY A TEN-DOLLAR |z :| DRIVES NEL MINIVAN
BONUS FOR EVERY BUG |2 i] THERIGHT ~ THIS AFTER-
YOU FIND AND FIR, 5 ¢| BEHAVIOR. NOON!
== ‘ :
13] : :

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

L/ UNIVERSITY OF TORONTO

{FoR pwoume:z)‘:.
I DROPPED! [
- -

h e

MO, 1 DROPPED
IT TWo BLOLKS
POWN THE .
smem’.tj'.:

=

THEN WHY ARE
YOU LOOKING |
FOR T HERE?

{Becayse) ‘Po2
THE LIGHT | . * S5
S BETTER. | e

e

“Measuring programming
progress by lines of code is like
measuring aircraft building
progress by weight.”

T TITUS U l,!

“In IBM there's a religion in software that says you have to count K-
LOCs, ... How big a project is it? ... And IBM wanted to sort of make it
the religion about how we got paid. How much money we made off OS
2, how much they did. How many K-LOCs did you do? And we kept
trying to convince them - hey, if we have - a developer's got a good idea
and he can get something done in 4K-LOCs instead of 20K-LOCs, should
we make less money? Because he's made something smaller and faster,

less KLOC.”

--- Steve Ballmer

https://www.pbs.org/nerds/part2.html

& isaacs/ github ® Unwatch -

Contributions

<> Code Q@ Issues 1.3k 11 Pull requests 2 (») Actions [1] Projects [Wiki () Security [~ Insights
s . Contribution graph can be harmful to contributors #627
B mxsasha opened this issue on Apr 1, 2016 - 197 comments
=
|
el R zj’i mxsasha commented on Apr 1, 2016 © ---

A common well-being issue in open-source communities is the tendency of people to over-commit. Many contributors care
deeply, at the risk of saying yes too often harming their well-being. Open-source communities are especially at risk, because

235 tOtal many contributors work next to a full-time job.

t
reo o

t

The contribution graph and the statistics on it, prominent on everyone's profile, basically rewards people for doing work on as
many different days as possible, generally making more contributions, and making contributions on multiple days in a row

without a break.

Stepping away from our work regularly is not only important to uphold high quality work, but also to maintain our well-being.
For example, | personally do not generally work in the weekends. That's completely healthy. | take a step back from work and

Contrl bUtI ng gra p hS consl d € red r spend time on other things. But in the contribution graph it means | can never make a long streak, even though | do work
. virtually every day except weekends. So the graph motivates me to work in my weekends as well, and not take breaks. And
https://www.hanselman.com/ , e peseiie) worliiny weekendsias wel ey

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

*’%‘“ UNIVERSITY OF TORONTO

gelstudios's Open Source Contributions

)

C ENEEEEEEEEEn HEEY EE
EEEE® EEEEES
@ Summary of Pull Requests, issues opened and commits. Learn more Less HEE vore
.
Pixel Art

AZ |l ey Bl 1100

Included "art" from left to right: kitty, oneup, oneup2, hackerschool, octocat, octocat2

https://github.com/gelstudios/gitfiti

Productivity Metrics

* Lines of code per day?
* Industry average 10-50 lines/day
e Debugging + rework ca. 50% of time

* Function/object/application points per month
* Bugs fixed?
* Milestones reached?

e The Edward S. Rog SD}
‘ofEl cal & Cor } r Eng

IIU
%:, UNIVERSITY e TORONTO

Stack Ranking

ard S. Rog SD}
cal & Cor n} er Engine

f ng
% UNIVERSITY OF TORONTO

John Francis Welch Jr.

(November 19, 1935 — March 1,
2020) was an American business
executive, chemical engineer,
and writer. He was chairman
and CEO of General Electric (GE)
between 1981 and 2001.

Incentivizing Productivity

* What happens when developer bonuses are based on
* Lines of code per day
* Amount of documentation written
* Low number of reported bugs in their code
* Low number of open bugs in their code
* High number of fixed bugs
e Accuracy of time estimates

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

PUNISHED

by
REWARDS

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity

Can crowd out good behavior

Can encourage cheating, shortcuts, and
unethical behavior
Can become addictive
Can foster short-term thinking

| AULIIUL UL IVU UOTILESL aliu 1 71€ OLrtovLs Uur CUTLiurert reserve I

THE NEW YORK TIMES TOP 10 BESTSELLER

‘PROVOCATIVE AND FASCINATING'
MALCOLM GLADWELL

‘ENERGETIC’ ‘ ‘INSPIRING’
FINANCIAL TIMES GUARDIAN

& ¢ €
Q ¢ ¢

&

THE SURPRISING TRUTH
ABOUT WHAT MOTIVATES US

DANIEL H. PINK

Autonomy
Mastery
Purpose

193

IEEE Std 1061™-1998 (R2009)
(Revision of IEEE Std 1061-1992)

Software Quality Metric
IEEE Standard for a Software Quality
Metrics Methodology

2.24 software quality metric: A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software possesses a given attribute that
affects its quality.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

Reaffirmed 9 December 2009
Approved 8 December 1998

IEEE-SA Standards Board

Just a
s Reaffirmed 21 January 2005
rem I nder“‘ Approved 16 November 1999

American National Standards Institute

Abstract: A methodology for establishing quality requirements and identifying, implementing,
analyzing and validating the process and product software quality metrics is defined. The method-
ology spans the entire software life cycle.

Keywords: direct metric, metrics framework, quality factor, quality subfactor, software quality
metric

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

Software Quality Metrics

* |[EEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical value
that can be interpreted as the degree to which software processes a

given attribute that affects its quality.”

* Metrics have been proposed for many quality attributes; may define
own metrics

9"%}3 The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

QA badges on GitHub 10

QUALITY ASSURANCE
Travis CI Build status

https://shields.io/

coverage 5398 Coveralls Test coverage

CodeClimate Coverage & static analysis
coverage [94%: CodeCov Test coverage

Circle CI Build status

AppVeyor Build status

' bitHound 198 BitHound Static analysis & dep. mgmt
—— - M e'g- SauceLabs Cross-browser testing

Inch CI Documentation

{15’"% The Edward S. Rogers Sr. Deparrment
‘ lectrical & Computer Engineering

%@ UNIVERSITY OF TORONTO

Metrics of software quality, i.e., design goals

Functional
correctness

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214

Adherence of implementation to the specifications

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security
Source: Braude, Bernstein,
Software Engineering. Wiley 2011

institute for
SOFTWARE
23 RESEARCH

External attributes: Measuring Quality

Criteria

Communicativeness |

Accuracy

Consistency

Device Efficiency

Accessibility

Completeness

Structuredness

Conciseness

Device independence |

Legability

Use Factor
Usability
PrOdl{Ct / » Reliability
operation \
Efficiency
Reusability
Maintainability
Product
revision “‘R: Portability
Testability

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

Self-descriptiveness |

Traceability

METRICS

McCall model has 41 metrics
to measure 23 quality criteria
from 11 factors

NIVERSITY OF TORONTO

Decomposition of Metrics

Faults count

Correctability

Maintainability

Degree of testing

Testability

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

Expandability

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

9% UNIVERSITY OF TORONTO

Object-Oriented Metrics

* Number of Methods per Class

* Depth of Inheritance Tree

 Number of Child Classes

* Coupling between Object Classes

* Calls to Methods in Unrelated Classes

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Other quality metrics?

* Comment density
* Test coverage

 Component balance (system breakdown optimality and component
size uniformity)

e Code churn (number of lines added, removed, changed in a file)

1N/

$

o

Warning

 Most software metrics are controversial
* Usually only plausibility arguments, rarely rigorously validated
* Cyclomatic complexity was repeatedly refuted and is still used

* “Similar to the attempt of measuring the intelligence of a person in terms of the
weight or circumference of the brain”

e Use carefully!
* Code size dominates many metrics

* Avoid claims about human factors (e.g., readability) and quality, unless
validated

 Calibrate metrics in project history and other projects
* Metrics can be gamed; you get what you measure

Summary

* Measurement is difficult but important for decision making

e Software metrics are easy to measure but hard to interpret, validity
often not established

* Many metrics exist, often composed; pick or design suitable metrics if
needed

e Careful in use: monitoring vs incentives
 Strategies beyond metrics

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

