
Design Patterns 2
Singleton, Factory Method, Composite

Shurui Zhou

OO Design Principles

Building stable
and flexible
systems

• A “language” for designing the
urban environment.

• The units of this language are
patterns.

• window, building, etc..
• 253 design patterns

Design Patterns

• Design Patterns – expert solutions to recurring problems in a certain
domain
• Description usually involves problem definition, driving forces,

solution, benefits, difficulties, related patterns.
• Pattern Language - a collection of patterns, guiding the users through

the decision process in building a system
• Patterns are related

How to make an intersection safer ?

How To Think Like An Architect: The Design Process

https://www.youtube.com/watch?v=vmHoGicPQQQ

• 1994

• the GoF book -- the book by the gang of four

• Elements of Reusable Object-Oriented

Software

• 23 OO patterns

Lots of books on patterns

Levels of Abstraction
• Requirements

• high-level “what” needs to be done

• Architecture (High-level design)
• high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)
• mid-level “how”, low-level “what”

• Code

• low-level “how”

Objects

Model

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

Motivating example

Proxy Pattern

Proxy Pattern

Problem:
• High-resolution images on website
• Long loading time
• Style images

Solution:
• Replace with placeholders (proxies)
• Style placeholders

+ style: css
+ image: Object

What does the pattern consist of?

• Intent of the pattern briefly describes both the problem and the

solution.

• Motivation further explains the problem and the solution the pattern

makes possible.

• Structure of classes shows each part of the pattern and how they are

related.

• Code example in one of the popular programming languages makes it

easier to grasp the idea behind the pattern.

• Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

Classification of patterns

https://circle.visual-paradigm.com/catalog/

• Creational patterns

• Singleton
• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

Classification of patterns

Singleton

Singleton
• a creational design pattern that lets you ensure that a

class has only one instance, while providing a global

access point to this instance.

• Example:

• cache

• thread pools

• registries

Singleton

• Use case: Logger

“In case it is not Singleton, every client will have its own

Logger object and there will be concurrent access on the

Logger instance in Multithreaded environment, and

multiple clients will create/write to the Log file

concurrently, this leads to data corruption.”

Singleton
• Intent:

• Ensure that a class has just a single instance

• Provide a global access point to that instance

Clients may not even realize that
they’re working with the same
object all the time.

Singleton

• How?
• Make the default constructor private, to prevent other objects

from using the new operator with the Singleton class.

• Create a static creation method that acts as a constructor.

Singleton

Singleton

• The Singleton class declares the static

method getInstance that returns the same

instance of its own class.

• The Singleton’s constructor should be hidden from

the client code.

• Calling the getInstance method should be the only

way of getting the Singleton object.

multithreaded

Singleton

Singleton (Python)

https://stackoverflow.com/questions/6760685/creating-a-singleton-in-python

Singleton - Example

• java.lang.Runtime

Every Java application has a single instance of class Runtime that allows

the application to interface with the environment in which the

application is running. The current runtime can be obtained from the

getRuntime method.

• java.awt.Desktop#getDesktop()

• java.lang.System#getSecurityManager()

http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Problems

• Hard to test

• Violation of SRP

• Poor coupling

• Hard to change/refactoring

• race condition

Singleton: Pros and Cons

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

Classification of patterns

Factory Method

Factory Method (example)

a logistics management application

Factory Method

• a creational design pattern that provides an interface for
creating objects in a superclass, but allows subclasses to
alter the type of objects that will be created.

Factory Method
Creator Products

Factory Method

Creator

Factory Method

Products

Factory Method
Creator Products

Factory Method The Product declares
the interface

Concrete Products are
different implementations of
the product interface.

The Creator class declares the
factory method that returns new
product objects. It’s important
that the return type of this
method matches the product
interface.

Concrete Creators override the base factory method
so it returns a different type of product.
Note that the factory method doesn’t have
to create new instances all the time. It can also
return existing objects from a cache, an object pool,
or another source.

Factory Method - Example
creating cross-platform UI elements

without coupling the client code to

concrete UI classes.

Exercise:
Using multiple database servers
like SQL Server and Oracle

Factory Method - Applicability

• when you don’t know beforehand the exact types and dependencies

of the objects your code should work with.

• when you want to provide users of your library or framework with a

way to extend its internal components.

• when you want to save system resources by reusing existing objects

instead of rebuilding them each time.

Factory Method – Pros and Cons

Abstract Factory

Abstract Factory

Abstract Factory

Creational patterns
• Abstract Factory

Creates an instance of several families of classes
• Builder

Separates object construction from its representation
• Factory Method

Creates an instance of several derived classes
• Object Pool

Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use
• Prototype

A fully initialized instance to be copied or cloned
• Singleton

A class of which only a single instance can exist

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

• Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

Classification of patterns

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

Classification of patterns

Composite Pattern

Composite Pattern - Problem

• 2 types of Objects
• Products

• Boxes

An Ordering System

Composite Pattern - Solution
Work with Products and Boxes through a common interface which

declares a method for calculating the total price. (Recursion)

Composite Pattern - Solution

Run a behavior recursively
over all components of an object tree.

Idea: make abstract "component" class.

Composite Example

• Book

Composite Design Pattern - Structure
The Component interface
describes operations that are
common to both simple and
complex elements of the
tree.

Composite Design Pattern - Structure

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

Composite Design Pattern - Structure

The Composite/container is an
element that has sub-elements:
leaves or other containers. A
container doesn’t know the concrete
classes of its children. It works with all
sub-elements only via the component
interface

Composite Design Pattern - Structure
Client works with all elements through the component
interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

Composite Design Pattern - Structure
The Component interface
describes operations that are
common to both simple and
complex elements of the
tree.

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

The Composite/container is an
element that has sub-elements:
leaves or other containers. A
container doesn’t know the concrete
classes of its children. It works with all
sub-elements only via the component
interface

Client works with all elements through the component
interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

Real world application –
Eclipse workspace, SWT (Standard Widget Toolkit)
• IWorkspace is the root interface and it is a Composite of IContainers

and IFiles.

violates the Liskov substitution principle (LSP)

• Leaf inherits from Component so it will

have an Add() method like any

other Component.

• But Leafs don't have children, so the

following method call cannot return a

meaningful result:

• Trade-off between safety and
transparency
• Component: transparency, because you

can treat all components uniformly.

• Composite: safety, because any attempt

to add or remove objects from leaves will

be caught at compile-time in a statically

typed language

Which classes declare add and remove children operation?

We emphasized transparency over safety in this pattern.

Composite – Pros & Cons

DevOps

Learning Goals

• Understand DevOps

• Understand CI/CD

• Integrate DevOps into your web application

Developers + Operators = DevOps

https://www.youtube.com/watch?v=_I94-tJlovg

Goal of DevOps

• Improve deployment frequency

• Achieve faster time to market

• Lower failure rate of new releases

• Shorten lead time between fixes

• Improve mean time to recovery

What Are the Challenges DevOps Solves?

• Dev is often unaware of QA and Ops roadblocks that prevent the

program from working as anticipated.

• QA and Ops are typically working across many features and have little

context of the business purpose and value of the software.

• Each group has opposing goals that can lead to inefficiency and finger

pointing when something goes wrong.

How often should you
deploy your app to the
release environment?

How often different companies deploy to the
release environment

https://opensource.com/article/19/4/devops-pipeline

CI/CD

Continuous Integration
• Merging in small code changes frequently

Continuous Delivery

Continuous Deployment

• Add additional automation and testing, get the code nearly ready to

deploy with almost no human intervention

• Deploying all the way into production without any human

intervention.

Tools - Continuous Integration

• Quickly integrating newly developed code with the main body of code

that is to be released

Continuous Integration

• Quickly integrating newly developed code with the main body of code

that is to be released

Continuous Integration

https://martinfowler.com/articles/contin
uousIntegration.html

Continuous Testing

• Selenium

SCM-Source Control Mgmt

Version
Control

Build

Brian the Build Bunny http://www.woodwardweb.com/gadgets/000434.html

Web
app
server

• Lightweight virtualization

• Separate docker images for separate services (web

server, business logic, database, …)

Automated
Testing

Automate all the things

https://solidstudio.io/blog/ci-cd-pipelines.html

https://blog.crisp.se/2013/02/05/yassalsundman/continuous-
delivery-vs-continuous-deployment

Continuous Deployment

Quality Assurance 2

QA is Hard

150

“One portion we planned for but were not able to

complete to our satisfaction was testing.”

151

Cost

152

QA has many facets

153

How do you know that your Program works?

Questions

• How can we ensure that the specifications are correct?

• How can we ensure a system meets its specification?

• How can we ensure a system meets the needs of its users?

• How can we ensure a system does not behave badly?

155

Two kinds of analysis questions

• Verification: Does the system meet its specification?

• i.e. did we build the system correctly?

• Verification: are there flaws in design or code?

• i.e. are there incorrect design or implementation decisions?

• Validation: Does the system meet the needs of users?

• i.e. did we build the right system?

• Validation: are there flaws in the specification?

• i.e., did we do requirements capture incorrectly?

Software Errors

• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

• Design defects
• Versioning and configuration errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

Definition: software analysis

The systematic examination of a software artifact to determine its

properties.

Definition: software analysis

The systematic examination of a software artifact to determine its

properties.

• Attempting to be comprehensive, as measured by, as examples:

Test coverage, inspection checklists, exhaustive model checking.

https://rochanaqa.wordpress.co
m/2015/10/05/how-to-plan-
and-test-compatibility-using-
simple-checklists/

Model Checking

Definition: software analysis

The systematic examination of a software artifact to determine its

properties.

• Automated: Regression testing, static analysis, dynamic analysis

• Manual: Manual testing, inspection, modeling

Definition: software analysis

The systematic examination of a software artifact to determine its

properties.

• Code, system, module, execution trace, test case, design or

requirements document.

Definition: software analysis

The systematic examination of a software artifact to determine its

properties.

• Functional: code correctness

• Non-functional: evolvability, safety, maintainability, security, reliability,

performance, …

VERY IMPORTANT

• There is no one analysis technique that can perfectly address all
quality concerns.
• Which techniques are appropriate depends on many factors, such as

the system in question (and its size/complexity), quality goals,

available resources, safety/security requirements, etc etc…

166

Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.

• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.

• Analysis: Tools reasoning about the program without executing it.

167

Classic Testing
(Functional Correctness)

169

Testing

• Executing the program with selected inputs in a controlled environment (dynamic

analysis)

• Goals:

• Reveal bugs (main goal)
• Assess quality (hard to quantify)
• Clarify the specification, documentation
• Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

Specifications
• Textual

• Assertions

• Formal specifications

171

• JML (Java modeling language specification)

• Textual specification with JavaDoc

Benefits of Specification

• Exact specification of what should be implemented

• Decompose a system into its parts, develop and test parts

independently

• Accurate blame assignments and identification of buggy behavior

• Useful for test generation and as test oracle

