Design Patterns 2

Singleton, Factory Method, Composite

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA



DESIGN PATTERNS

| THINK HAVE HEARD
ABOUT,IT(BEFORE

mgfiip.com



OO Design Principles

n Single responsibility Buildi ng stable
principle

and flexible
Open/closed principle systems

) Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

"i‘i{'é The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO



Christopher Alexander

Copyrighte(iiMaterial

A Pattern Language

Towns -Buildings - Construction

Christopher Iexand in 2012
* A “language” for designing the
urban environment.

* The units of this language are

Christopher Alexander
Sara Ishikawa - Murray Silverstein Pd tterns.
Max Jacobson - lnér};d Fiksdahl-King *win d OW’ b ul I d In gl EtC .o
Shfomo Auge » 253 design patterns

*:‘1 The Edward S. Rog SL)}
‘ofEl cal & Cor } r Eng

HU
;”m UNIVERSITY OF TORONTO



Design Patterns

* Design Patterns — expert solutions to recurring problems in a certain
domain

* Description usually involves problem definition, driving forces,
solution, benefits, difficulties, related patterns.

* Pattern Language - a collection of patterns, guiding the users through
the decision process in building a system

e Patterns are related







How To Think Like An Architect: The Design Process

—

\

—l 4

2

-

A
A

"
-

"

.

N

https://www.youtube.com/watch?v=vmHoGicPQQQ



Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

<4
<

e 1994
* the GoF book -- the book by the gang of four

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

* Elements of Reusable Object-Oriented
Software

* 23 OO0 patterns

N/
h—
7o)
™\
—
Z
-
<
m
W
m
<
e,
~
~
N’
mm
9
wn
—~
N
7
>~
~
~
N/
z
T
s
=
Z
e

SARAIS

Cover at © 19948 M C_ Fscher / Cordon Ast - Baam - Holland. Al rights reserved,

Foreword by Grady Booch

Copyrighted Material

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO



he Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

*%“ UNIVERSITY OF TORONTO

Memento

l Proxy |

saving state
fi l Adapter |
Builder of iteration
Iterator avoiding
creating hysteresis Bridge
composites

enumerating

children .
adding composed
responsibilities using
to objects
i
) lefining fini
adding tra ! defining
operafions versais the chain
defining
grammar
changing skin
versus guts
adding
sharing Interpreter operaiions | Chain of Res nsibility |
strategies it d

sharing

terminal
Strategy sharing ~ symbols
states Mediator
gomplex
lependenc,
egtnon ——{_Opserver |
defining
algorithm's

steps
M Template Methodj—————"’" often ”595\
//———-I Factory Method |

ld

configure factory
dynam;c\ally implement using
/I Abstract Factory
single
instance
) Facade
single
instance

Singleton

Figure 1.1: Design pattern relationships



Lots of books on patterns

Copyrighted Material

A
vy

PATTERNS s

FOR PARALLEL > Concurrent
rogramming in Java

Second Edition

Design Principles and Patterns Daston Paliarms for

Decomposition, Coordination

A Pattern Language

Towns -Buildings - Construction

on Multicore Architeciures

v
@
o
+
o
]
—
Q.
o
v
==
—_—
@
+—
—
©
Q.

Christopher Alexander

Sara Ishikawa - Murray Silverstein
WITH

Max Jacobson -Ingrid Fiksdahl-King
Shlomo Angel

S Sun

Your Brain on Design Patterns

| | Dating Design
PATTERNS Ol o Pattems

ENTERPRISE
f ; : Flements of Reusable
\ PPLICATION Objective-Oriented Paired Programming

Head First
Design Patterns

& w DESIGN ARCHITECTURE Ericha ORI
PATTERNS s

IN RUBY

- Obie Fernandez

With special Bssistance from
Sweve “Half Bao Boy Plus Protocol” Swilvelis




Levels of Abstraction

* Requirements
* high-level “what” needs to be done

Architecture (High-level design)
* high-level “how”, mid-level “what”

OO-Design (Low-level design, e.g. design patterns)
. 14 77 7 12
* mid-level "how , low-level "what

Code

e low-level “how”

cal & To;nputer ngineering
OF TORONTO

ectri
g:?:g UNIVERSITY




Objects

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

Model




Design Patterns

/o R T R TR — MWW MM ——————————— _— I
: |
! Factory > View :
|
| I
' |
' |
' |
' |
' |
[ A 4 I
|

Model I
| > <
| Observer / Subject Controller :
|
| I
' |
I A\ 4 I
' |
: Command :
' |

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO




Design Patterns

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

| >
: >
| » — ]
|
|
|
| L. A vy & - -=7T === == v
| 1 Factory > View < I <
I I '
I I '
I I :
| . v v :
: : Observer g /,\S/Iuob(;eelct < Controller ﬁ—|—
I I 4 A |
| l I I
I
1 I Command :I
| = [ —
: A
|
|
|
|
|



Design Patterns

Model
/ subject Controller
I A

Command

______ - d

—-— e o e o - -
»
Ll

[ +—

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO



Architecture

o e o e o e e mm mm e o e mm Em mm o = =y

: [ e 1 1|
| Ejj:f
|

= = e e e e e e mm = = =y

| Factory |—»|

Controller

Model
oy

Command I I

- A
I

C— :

r——-=-- —— e mm e e o mm = e o mm = = -

] I
A
] [ T ] ] [ ] W[ e ]

I [ —

i_

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO




Architecture

_-—_-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

%@g;w“‘ UNIVERSITY OF TORONTO




Architecture

_-—_-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

”%“ UNIVERSITY OF TORONTO




Motivating example

Proxy Pattern ﬂ@@

"i‘i{'é The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO



Proxy Pattern

Problem:
* High-resolution images on website

* Long loading time  {———

* Style images

Solution:
* Replace with placeholders (proxies)
e Style placeholders

{1 The E‘I ard S. Rog SD}
‘ofEl cal & Cor 1, r Eng

um

HU
ag,” 19) VERSITY OF TORONTO



ImageViewer

<<interface>>

FProxylmage

+ style: css
+ image: Object

>' Image

showlmage() : void

HighResolutionlmage

showlmage() : void

showlmage() : void

Proxylmage.showlmage() loads and display the real
image only when is needed ...




What does the pattern consist of?

* Intent of the pattern briefly describes both the problem and the
solution.

* Motivation further explains the problem and the solution the pattern
makes possible.

* Structure of classes shows each part of the pattern and how they are
related.

* Code example in one of the popular programming languages makes it
easier to grasp the idea behind the pattern.

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO




Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO



Creational

Scope Class Factory Method

Object Abstract Factory
Builder

Prototype
Singleton

https://circle.visual-paradigm.com/catalog/

Purpose

Structural

Adapter

Adapter
Bridge
Composite
Decorator
Facade

Proxy

Behavioral

Interpreter
Template Method

Chain of Responsibility
Command

lterator

Mediator

Memento

Flyweight

Observer

State

Strategy

Visitor



Classification of patterns

* Creational patterns

+ Singleton  {

* Factory Method

 Structural patterns
* Composite

* Behavioral patterns
* Strategy

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO



Singleton




OBJECT A

<

A 4

OBJECT B

> OBJECTD
A 4 A 4
SINGLETON
SHARED RESOURCE
STORED STATE
Y
OBJECT C




Singleton

* acreational design pattern that lets you ensure that a
class has only one instance, while providing a global
access point to this instance.

* Example:
* cache
* thread pools
* registries




Singleton

* Use case: Logger

“In case it is not Singleton, every client will have its own
Logger object and there will be concurrent access on the
Logger instance in Multithreaded environment, and
multiple clients will create/write to the Log file
concurrently, this leads to data corruption.”

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO




Singleton

* Intent:
* Ensure that a class has just a single instance
* Provide a global access point to that instance

SORRY, I THOUGHT
THIS ROOM WASN'T
0CCUPIED.

Clients may not even realize that
they’re working with the same
object all the time.




Singleton

* How?
* Make the default constructor private, to prevent other objects
from using the new operator with the Singleton class.

e Create a static creation method that acts as a constructor.

al & Computer Engineering

ectrica
\EaEn)
%?ﬁ UNIVERSITY

OF TORONTO



Singleton

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Client

=

Singleton P —

|

- instance: Singleton

- Singleton()
+ getinstance(): Singleton

if (instance == null) {
// Note: if you're creating an app with
// multithreading support, you should
// place a thread lock here.
instance = new Singleton()

}

return instance



Singleton P —

. - instance: Singleton
Singleton Simgleton)

Client —=>| + getInstance(): Singleton

if (instance == null) {

* The Singleton class declares the static // Note: if you're creating an app with
method getinstance that returns the same S
instance of its own class. instance = new Singleton()

)

* The Singleton’s constructor should be hidden from  return instance
the client code.

* Calling the getinstance method should be the only
way of getting the Singleton object.

al & Computer Engineering

ectric
% UNIVERSITY

OF TORONTO






Singleton

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Client

=

Singleton P —

|

- instance: Singleton

- Singleton()
+ getinstance(): Singleton

if (instance == null) {
// Note: if you're creating an app with /

// multithreading support, you should
// place a thread lock here.
instance = new Singleton()

}

return instance



Singleton (Python)

Creating a singleton in Python

Asked 10 years, 3 months ago Active 30 days ago Viewed 467k times

BH Microsoft Azure Code. Experiment. Build. ””/c N
Continuously learn new skills and experiment — >
with Azure .
\ \ = 1/\ \\\\\\\\\\\\

Report this ad

This question is not for the discussion of whether or not the singleton design pattern is
desirable, is an anti-pattern, or for any religious wars, but to discuss how this pattern is best

1286 implemented in Python in such a way that is most pythonic. In this instance | define 'most
pythonic' to mean that it follows the 'principle of least astonishment'.

| have multiple classes which would become singletons (my use-case is for a logger, but this is
not important). | do not wish to clutter several classes with added gumph when | can simply
inherit or decorate.

Best methods:

https://stackoverflow.com/questions/6760685/creating-a-singleton-in-python



Singleton - Example

e java.lang.Runtime

Every Java application has a single instance of class Runtime that allows
the application to interface with the environment in which the
application is running. The current runtime can be obtained from the
getRuntime method.

* java.awt.Desktopi#getDesktop()

» java.lang.System#tgetSecurityManager()

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO


http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Problems

* Hard to test

* Violation of SRP

* Poor coupling

* Hard to change/refactoring
* race condition

##% The Edward S. Rogers Sr. Department
y: il & P
of Electrical & Computer Engineering
C13 F &

%’a‘" UNIVERSITY OF TORON"}O




Singleton: Pros and Cons

v/ You can be sure that a class has only a
single instance.

v You gain a global access point to that
instance.

v/ The singleton object is initialized only
when it’s requested for the first time.

X Violates the Single Responsibility

Principle. The pattern solves two
problems at the time.

The Singleton pattern can mask bad
design, for instance, when the
components of the program know too
much about each other.

The pattern requires special treatment in
a multithreaded environment so that
multiple threads won't create a singleton
object several times.

It may be difficult to unit test the client
code of the Singleton because many test
frameworks rely on inheritance when
producing mock objects. Since the
constructor of the singleton class is
private and overriding static methods is
impossible in most languages, you will
need to think of a creative way to mock
the singleton. Or just don’t write the
tests. Or don’t use the Singleton pattern.



Classification of patterns

* Creational patterns

e Singleton

* Factory Method <«

e Structural patterns

 Composite

* Behavioral patterns

* Strategy




Factory Method

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘?M‘g‘ UNIVERSITY OF TORONTO



Factory Method (example)

a logistics management application

Y/
\ ]
)
Oﬁ @ QQ Nz
LOGISTICS]|
ROAD DDDDDDﬁ SEA
LoaisTIcS | | OO0 00| LLoalsTics

aaaaad

aooagg

aaaod

B \.
|



Factory Method

* a creational design pattern that provides an interface for
creating objects in a superclass, but allows subclasses to
alter the type of objects that will be created.

e The Edward S. Rog SD}
‘ofEl cal & Cor } r Eng

IIU
%:, UNIVERSITY e TORONTO



Factory Method

Creator N Products

Logistics
«interface»
Transport
+ planDelivery() Transport t = createTransport() + deliver()
+ createlransport() A
L E—
: :
l | Truck Ship
RoadLogistics Sealogistics
— —
A - ' ’ Deliver by land
\ ‘ _ Lol + deliver() + deliver()
return new Truck() + createTransport() | |+ createTransport() |~ | return new Ship()

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

Deliver by sea
in a container.

;‘;’%ﬁ UNIVERSITY OF TORONTO



Factory Method

Logistics

+ planDelivery() Transport t = createTransporty()
+ createlransport()

A

RoadLogistics Sealogistics

Creator

return new Truck() + createTransport() | |+ createTransport() | ~ | return new Ship()

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

NIVERSITY OF TORONTO




Factory Method

Deliver by land
in a box.

Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

N/ UNIVERSITY OF TORONTO

«interface»
Transport

+ deliver()

1
: :
Truck Ship
+ deliver() + deliver()

Deliver by sea
in a container.

Products




Factory Method

Creator N Products

Logistics
«interface»
Transport
+ planDelivery() Transport t = createTransport() + deliver()
+ createlransport() A
L E—
: :
l | Truck Ship
RoadLogistics Sealogistics
— —
A - ' ’ Deliver by land
\ ‘ _ Lol + deliver() + deliver()
return new Truck() + createTransport() | |+ createTransport() |~ | return new Ship()

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

Deliver by sea
in a container.

;‘;’%ﬁ UNIVERSITY OF TORONTO



Factory Method

The Creator class declares the
factory method that returns new
product objects. It's important
that the return type of this
method matches the product
interface.

Product p = createProduct()
p.doStuff()

The Product declares
the interface

Creator
«interface»
_____________________ Product
+ someOperation() >
+ createProduct(): Product + doStuff()
o o i

ConcreteCreatorA ConcreteCreatorB Concrete Concrete
ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

Concrete Creators override the base factory method

so it returns a different type of product.
Note that the factory method doesn’t have
to create new instances all the time. It can also

return existing objects from a cache, an object pool,

or another source.

Concrete Products are
different implementations of
the product interface.



Factory Method - Example

creating cross-platform Ul elements
Button okButton = createButton() ] ] ]
okButton.onClick(closeDialog) without coupling the client code to
okButton.render()

concrete Ul classes.

Dialog «interface»
____________________ > Button
+ render() + render()
+ createButton(): Button + onClick()
WindowsDialog WebDialog Windows HTML
Button Button
+ createButton(): Button + createButton(): Button

return new WindowsButton()



Exercise:

Using multiple database servers
like SQL Server and Oracle

(¢ ,onlputcr HgIHCt‘IIHg
SITY OF TORONTO



Factory Method - Applicability

* when you don’t know beforehand the exact types and dependencies
of the objects your code should work with.

* when you want to provide users of your library or framework with a
way to extend its internal components.

* when you want to save system resources by reusing existing objects
instead of rebuilding them each time.

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO






X The code may become more complicated
since you need to introduce a lot of new
subclasses to implement the pattern. The
best case scenario is when you're
Introducing the pattern into an existing
hierarchy of creator classes.

‘i‘i'% Edward S. Rogers Sr. Department
‘ ectrical & Computer Engineering
UNIVERSITY OF TORONTO

]




Factory Method — Pros and Cons

v/ You avoid tight coupling between the X The code may become more complicated
creator and the concrete products. since you need to introduce a lot of new

v/ Single Responsibility Principle. You can slibclasses o Impiement. the pattenn. The

i i best ca nario is when you’r
move the product creation code into one est case scenario Is when youre

place in the program, making the code introducing the pattern into an existing

easier to support. hierarchy of creator classes.

v/ Open/Closed Principle.You can introduce
new types of products into the program
without breaking existing client code.

Edward S. Rogers Sr. Department
| ectrical & Computer Engineering

@ S
%?:@ UNIVERSITY OF TORONTO



Abstract Factory

Chair

N
Art Deco \’%
Victorian

Modern @

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

NIVERSITY OF TORONTO

Sofa

Coffee
Table

LISTEN, T ORDERED SOME
CHAIRS LAST WEEK, BUT 1

GUESS T NEED A SOFA T00...

SOMETHING
DOES NOT
LOOK RIGHT.




Abstract Factory

«interface»
Chair
+ hasLegs()
+ sitOn()

{""""" """" H
VictorianChair ModernChair
+ hasLegs() + hasLegs()

+ sitOn() + sitOn()

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO



«interface»
Chair

Abstract Factory s

«interface»
FurnitureFactory

VictorianChair ModernChair

+ haslLegs() + haslLegs() Q’
+ sitOn() + sitOn()

;a)

bur
W

+ createChair(): Chair
+ createCoffeeTable(): CoffeeTable
+ createSofa(): Sofa

5 N i W W S S 1
(\ i "
g 3 VictorianFurnitureFactory ModernFurnitureFactory 2 ;
. A
¢ . )
e - + createChair(): Chair + createChair(): Chair ’1 o
@‘w “~ | + createCoffeeTable(): CoffeeTable + createCoffeeTable(): CoffeeTable | ~ —
$§/ €= | + createSofa(): Sofa + createSofa(): Sofa -> C:'b___*__)

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering




Creational patterns

e Abstract Factory
Creates an instance of several families of classes

e Builder . . _
Separates object construction from its representation

* Factory Method
Creates an instance of several derived classes

* Object Pool

Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use

* Prototype .
A tully initialized instance to be copied or cloned

e Singleton

A class of which only a single instance can exist



https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

4 ™
 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.
\ y,

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO



Classification of patterns

* Creational patterns
e Singleton

* Factory Method

e Structural patterns <«

 Composite

* Behavioral patterns

* Strategy




Composite Pattern

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

@%@ UNIVERSITY OF TORONTO

I




Composite Pattern - Problem

Complex .
order @ An Ordering System

' * 2 types of Objects

N\
@ % * Products

Receipt

v oo\ * Boxes

Phone Headphones Charger

e . Departme
‘ of Electrical & Computer Engineeri

e g Jomputer Engineering
qg,a?mg UNIVERSITY OF TORONTO



Composite Pattern - Solution

Work with Products and Boxes through a common interface which
declares a method for calculating the total price. (Recursion)

HOLD ON,
/ PLEASE.

WHAT'S
YOUR
PRICE?

HEY, WHAT'S
YOUR PRICE?

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO



Composite Pattern - Solution

Complex ’0\

order ‘
(FEDEX]
p”

<
Y |\ Run a behavior recursively

P @ over all components of an object tree.

Receipt

N P P Idea: make abstract "component” class.

Phone Headphones Charger

"iﬁré The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
ag,é?mg« UNIVERSITY OF TORONTO



Composite Example

Book Book
* Boo
Chapter
DocumentComponent - Section
a Paragraph
Paragraph
Paragraph Composite |- Section
T Paragraph
Chapter

Chapter Book Section Section

’f} The Edward S. Rogers Sr. D}
i ‘of Electrical & Cor 1, r Eng

IIU
%:, UNTVERSTTY G TORONTO



Composite Design Pattern - Structure

Client

The Component interface
describes operations that are \L
common to both simple and

complex elements of the \

«interface»
Component

tree.

+ execute()

Leaf Composite

- children: Component(]

+ execute() + add(c: Component)
+ remove(c: Component)
T + getChildren(): Component(]
+ execute()

Delegate all work to
child components.

%2 The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO



Composite Design

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

%2 The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Client

i

«interface»

Pattern - Structure

Component
+ execute()
B
I 0
1 !
Leaf Composite
- children: Component[]
+ execute() + add(c: Component)

Do some work.

+ remove(c: Component)
+ getChildren(): Component[]
+ execute()

Delegate all work to
child components.




Composite Design Pattern - Structure

Client

i

«interface»
Component
+ execute()
A The Composite/container is an
bommm e element that has sub-elements:
- ' leaves or other containers. A
Leaf Composite . ’
container doesn’t know the concrete
- children: Component(] / classes of its children. It works with all
+ execute() + add(c: Component) sub-elements only via the component
+ remove(c: Component) interface
Bl + getChildren(): Component]
+ execute()

Delegate all work to
child components.

Edward S. Rogers Sr. Department
Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO



Composite Design Pattern - Structure

client | Client works with all elements through the component
i/ interface. As a result, the client can work in the same way

with both simple or complex elements of the tree.

«interface»
Component

+ execute()

Leaf Composite

- children: Component[]

+ execute() + add(c: Component)

+ remove(c: Component)

+ getChildren(): Component[]
+ execute()

Do some work.

Delegate all work to
child components.

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO



= g

Composite Design Pattern - Structure

The Component interface
describes operations that are
common to both simple and

complex elements of the
tree.

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

$ UNIVERSITY OF TORONTO

N\

Client

|, Client works with all elements through the component

i

interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

«interface»

Component
+ execute()
A The Composite/container is an
T element that has sub-elements:
Leaf Composite leaves or other containers. A
container doesn’t know the concrete
" children: Component]] classes of its children. It works with all
+ execute() + add(c: Component) sub-elements only via the component
+ remove(c: Component) interface
Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to
child components.



Real world application —
Eclipse workspace, SWT (Standard Widget Toolkit)

* [Workspace is the root interface and it is a Composite of IContainers

and IFiles.
IR
esource . Composite:Component =
getParent() < ¥ Package Explorer o= O
A — =
I 4 1= Project
4 = Folder
IFile IContainer - =
members() D File fxt
getContents() getFile()
GetContents() getFolder()
_ A
Composite:Leaf ‘ 4] ™ b
| | |
IFolder IProject IWorkspaceRoot <— IWorkspace

build() getProjects()

getNature()




Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

i Elec ering
a@,”é« UNIVERSITY OF TORONTO



violates the Liskov substitution principle (LSP)

* Leaf inherits from Component so it will

have an Add() method like any
other Component. -
e But Leafs don't have children, so the S b

following method call cannot return a
meaningful result:

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO



Which classes declare add and remove children operation?

* Trade-off between safety and
transparency

 Component: transparency, because you
can treat all components uniformly.

 Composite: safety, because any attempt
to add or remove objects from leaves will
be caught at compile-time in a statically
typed language

We emphasized transparency over safety in this pattern.

Client

i

«interface»
Component
+ execute()
oo -
Leaf Composite
- children: Component[]
+ execute() + add(c: Component)
+ remove(c: Component)
Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to

child components.




Composite — Pros & Cons

v/ You can work with complex tree X It might be difficult to provide a common
structures more conveniently: use interface for classes whose functionality
polymorphism and recursion to your differs too much. In certain scenarios,
advantage. you'd need to overgeneralize the

v Open/Closed Principle.You can introduce component interface, making it harder to

new element types into the app without
breaking the existing code, which now
works with the object tree.

comprehend.

"i‘i{'s? The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO



)lc The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

> UNIVERSITY OF TORONTO

AAAAA



Learning Goals

* Understand DevOps
e Understand CI/CD
* Integrate DevOps into your web application




Developers + Operators = DevOps

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

x5 UNIVERSITY OF TORONTO




https://www.youtube.com/watch?v=_[94-tJlovg



Goal of DevOps

* Improve deployment frequency

* Achieve faster time to market

* Lower failure rate of new releases
* Shorten lead time between fixes

* Improve mean time to recovery

e The Edward S. Rog SD}
‘ofEl cal & Cor } r Eng

IIU
%:, UNIVERSITY e TORONTO



What Are the Challenges DevOps Solves?

* Dev is often unaware of QA and Ops roadblocks that prevent the
program from working as anticipated.

* QA and Ops are typically working across many features and have little
context of the business purpose and value of the software.

* Each group has opposing goals that can lead to inefficiency and finger
pointing when something goes wrong.

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO



How often should you
deploy your app to the
release environment?



How often different companies deploy to the
release environment

Company Deployment Frequency
Amazon 23,000 per day
Google 5,500 per day
Netflix 500 per day
Facebook 1 per day
Twitter 3 per week
Typical enterprise | 1 every 9 months

"iﬁré The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO



"4

PivotalTrack v : :
Py sosoma L ‘?d“’:a i & TeamCity % shippable Hashicorp <25 amazon e
< ucidchart
e /\ . AA £+ ANSIBLE
box ‘ @ Jenkins Q) @ Travis CI l') 5

draw.io

+planio .
fIOW®Ck L W p,k SRRESHIE bUddy CIrCIeCl Google Cloud Platform
riKke y ,
< Spllt @ RELEASE at
XL) DEPLOY

puppet cuer
(A rackspace

ég OpsGenie *

Google Drive

/ ﬂ Office  GoogleDocs
smartsheet @gliﬁg

a6 Basecamp
2

m W Dropbox

<,
74

i; Microsoft Teams VictorOps
¢ matters’ pagerduty
*- zoominfo.
O New Relic. ” snyk

=
Z
m
o
0
s _
§ BlueJeans 4% slack
-
o
=

AN CODE CLIMATE

Oogit ¥

w bugsnag Nagios

splunk> L@GGLY

NoLd GitLab
== EEEI ZABBIX
JFrog 7— ®SAUCELABS W TostFa T-RAYGUN o
B)FitNesse o estFairy E’j @
> l LDLLENE g SENTRY » dynatrace
ubernetes INTERCOM
A cucumber riRollbar APPDYNAMICS

VibalStudio Sonatype ZZPHYR (@) Browserstack bug _ T
feam FoundationServer @freshdesk oMETRY G QASymphony ®% OMNID [:]SoucceClear  LogicAronitor



Hey, CI/CD tool is running!

DEVELOPERS

https://opensource.com/article/19/4/devops-pipeline




Continuous Integration |
* Merging in small code changes frequently

Continuous Delivery -

* Add additional automation and testing, get the code nearly ready to
deploy with almost no human intervention

Continuous Deployment

* Deploying all the way into production without any human
intervention.

’fﬁ{f The Edward S. Rogers Sr. Department

‘ of Electrical & Computer E:
e

ngineering
%?ﬁ UNIVERSITY OF TORONTO



Tools - Continuous Integration

Hudson J enklns

* Quickly integrating newly developed code with the main body of code
that is to be released

Build and test results are
fed back to the developers

o TR S P

Commit changes

to the source code

Developer
Commit changes X
to the source code Git = jenkins > seleni — Production
‘e enium
Developer > repository iummmsam -1l L— &  Server
Jenkins check the Jenkins deploys the The build '
shared repository build application on application is then E
at periodic intervals the test server deployed to the :
Developer Commit changes i+ and every check-in production server }

to the source code i i ispulled and then
H build

e Ed gers or. Lepa
Electric l&( mputer Eng

S no
ag,”é« UNIVERSITY OF TORONTO



Continuous Integration

* Quickly integrating newly developed code with the main body of code
that is to be released

Travis Cl

"iﬁré The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO



Continuous Integration

https://martinfowler.com/articles/contin
uousintegration.html

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

@Z‘%@ UNIVERSITY OF TORONTO

Actions

Categories

APl management
Chat
Code quality

Code review

Continuous integration X

Mobile CI

Container CI

Dependency management
Deployment

IDEs

Learning
Localization

Mobile

Monitoring

Project management
Publishing

Recently added
Security

Support

Testing

Utilities

Apps

Build on your workflow with apps that integrate with GitHub.
57 results filtered by  Continuous integration | x Apps | x

B Travis Cl @
B  Testand deploy with confidence @

Google Cloud Build &

@ Build, test, and deploy in a fast, consistent,
and secure manner

Percy @

Automated visual review platform

AccessLint @
Find accessibility issues in your pull
requests

CloudBees CodeShip @

Continuous Integration and Delivery. Fast.
Customizable. Easy

WhiteSource Bolt @

Detect open source vulnerabilities in real
time with suggested fixes for quick
remediation

Cirrus Cl @

Enjoy unlimited concurrency for fast and
secure development cycle

See your test and style results without
leaving GitHub. Supporting JUnit,
Checkstyle, and more

fciove
p564
7%
=
4
Check Run Reporter &

Buddy &
One-click delivery automation for Web
Developers

© ©O00¢-0-*

AppVeyor &
Cloud service for building, testing and
deploying Windows apps

Codefresh @

A modern container-based CI/CD platform,
easily assemble and run pipelines with high
performance

GuardRails @

GuardRails provides continuous security
feedback for modern development teams

Cloud 66 for Rails @
Build, deploy, and maintain your Rails apps
on any cloud or server

Semaphore @
Test and deploy at the push of a button

BuildPulse @

Automatically detect, track, and rank flaky
tests so you can regain trust in your test
suite

Hound @

Automated code reviews

Flaptastic @

Manage flaky unit tests. Click a checkbox
to instantly disable any test on all
branches. Works with your current test
suite

Azure Pipelines @
Continuously build, test, and deploy to any
platform and cloud



Continuous Testing

About ~ Downloads Documentation Projects Support Blog English ~ Q Search this site...

e Selenium

Selenium automates browsers. That's it!

What you do with that power is entirely up to you.

Primarily it is for automating web applications for testing purposes, but is certainly not limited to just that.
Boring web-based administration tasks can (and should) also be automated as well.

TEST REPORTS

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

?g.g@ UNIVERSITY OF TORONi"O




Version
Control

Ah. We can now effectively collaborate
across the team to develop the source
codes!

DEVELOPERS Source Control Client

CHECK IN (CI)

CHECK OURICO) .

SCM

&5 B Source Codes

SCM-Source Control Mgmt




Our CI/CD tool can now checkout the
source codes from our SCM and build it.
Cool.

% Build Tools
DEVELOPERS ; Source Control Client

CHECK IN (Cl)

CHECK OURYCO) .
v | : Source Codes

SCM - Build Tool Config




developer A developer B

o [
master branch ‘/

developer C
Breaking change!

ALLTHAVETO DO IS CHECK IN MY==
LATEST.CHANGES TO THE CURRENT, BUILD

“ANDZIT'S BROKE!

imgflip.com

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
CODESHACH

%?:@ UNIVERSITY OF TORONTO



http://www.woodwardweb.com/gadgets/000434.html

Brian the Build Bunny




W e b APP SERVER APP SERVER APP SERVER APP SERVER APP SERVER APP SERVER

app QA
server

: Build Tools
DEVELOPERS : Source Control Client

CHECK IN (Cl)

CHECK OUTNCO) .
: Source Codes

SCM - Build Tool Config




&dockw

* Lightweight virtualization

kubernetes

» Separate docker images for separate services (web
server, business logic, database, ...)

{15’"% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

%g UNIVERSITY OF TORONTO



APP SERVER APP SERVER APP SERVER APP SERVER APP SERVER APP SERVER

Automated
Testing -

. Build Tools
DEVELOPER Source Control Client
. Code Testing Framework
Middleware Automation Tools
Other Tools & Plugins

CHECK IN (CI)

CHECK OURICO) .

SC™M




Automate all the things

mameagenaralor.nat

INSTALL.SH

#!/bin/bosh

pip install ;’91; i&

_install “$1° &
m install “$1" &
npm install ‘61" &
yum install “$1" & dnf install “$1" &
docker run $1" &
Pkg install ‘81" &
apt-get install “$1" &
sudo opt-get instal| “$1° &
steomcmd +app_update ‘81" validate &
git clone https:/github.com/"$1’/°$1" &
cd “$1";. /configure; make; make install &
curl“$1" | bosh &




o
COMMIT % ? QQ
O Q @ 00
BUILD UNIT |INTEGRATION
TESTS TESTS
O

CI PIPELINE

RELATED CODE

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

https://solidstudio.io/blog/ci-cd-pipelines.html

@ =l Fo%

REVIEW STAGING PRODUCTION

CD PIPELINE

NIVERSITY OF TORONTO



com’ INVUOUS TDELIVERY
il 4<cTe§Tme
fanuaL

auvtd

CONT \ANUOUS DEPLOYMENT
m:::::;::

autld

URIT Tms — tmec\me

UN\TTES'\'S _— ‘NTE"W\ATé

https://blog.crisp.se/2013/02/05/yassalsundman/continuous-
delivery-vs-continuous-deployment

Edward S. Rogers Sr. DP artment
lectrical & Cor } uter Engineering

dé@ UNIVERSITY OF TORONTO



Continuous Deployment

Google ETELIX
B “ood

@ amazon




ine for DevOps




Quality Assurance 2

##% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
%2 UNIVERSITY OF TORONTO




QA is Hard

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO




“One portion we planned for but were not able to
complete to our satisfaction was testing.”

’fi"é The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO



Cost

theguardian

News | US | World Sports Comment Culture Business Money Environment Science

[News ) Technology > Heartbleed

Heartbleed: developer who introduced =~ ®sware «o

' e '
the error regrets 'oversight e
Submitted just seconds before new year in 2012, the bug 8+ | 27
'slipped through' — but discovery 'validates' open source Share -~ 103

Email

Alex Hern
W Follow @alexhern W Follow @guardiantech E B
theguardian.com, Friday 11 April 2014 03.05 EDT Tactmclagy

Heartbleed - Open source
- Programming - Software
- Internet - Hacking - Data
and computer security

&) Jump to comments (108)

More news

More on this story

N .

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

Heartbleed bug 'will cost millions'

Revoking all SSL certificates leaked by Heartbleed will cost
millions of dollars, according to Cloudflare, which provides
services to website hosts

A Image: Codenomicon

*’%‘“ UNIVERSITY OF TORONTO



QA has many facets

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO




How do you know that your Program works?

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO




Questions

* How can we ensure that the specifications are correct?
* How can we ensure a system meets its specification?
* How can we ensure a system meets the needs of its users?

* How can we ensure a system does not behave badly?

al & To;nputer ngineering
OF TORONTO

ectric
% UNIVERSITY



Two kinds of analysis questions

* Verification: Does the system meet its specification?
* i.e. did we build the system correctly?

* Verification: are there flaws in design or code?
* i.e. are there incorrect design or implementation decisions?

 Validation: Does the system meet the needs of users?
* i.e. did we build the right system?

 Validation: are there flaws in the specification?
* i.e., did we do requirements capture incorrectly?

?fi},? The Edward S. Rogers Sr. Department
e | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO



Software Errors

* Functional errors * Design defects

* Performance errors  Versioning and configuration errors
e Deadlock * Hardware errors

* Race conditions * State management errors

* Boundary errors * Metadata errors

Error-handling errors
* Integration errors User interface errors
Usability errors APl usage errors
Robustness errors . ...

* Load errors

Buffer overflow

= | a Computer Engineering

OF TORONTO

B lectr
;;”;4 UNIVERSITY

o



Definition: software analysis

The systematic examination of a software artifact to determine its
properties.




Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Attempting to be comprehensive, as measured by, as examples:

Test coverage, inspection checklists, exhaustive model checking.

al & Computer Engineering

fe ctrica
q%g« UNIVERSITY

OF TORONTO



Type

General

ID Checkpoint

1

Identify the potential target users of the system

Yes/No

Comments

- Demographics

- User groups

What aspects of the application is sensitive to HW and
SW differences

Are there any universal standards and guidelines, to
which the application should adhere [E.g. iPhone]

oS

Create OS compatibility matrix

Get client confirmation for OS compatibility matrix

Identify testing scope [domain specific]

Setup multiple virtual machines for each OS

Browser

Create Browser compatibility matrix

Get client confirmation for Browser compatibility matrix

wr s |w |-

Identify testing scope [domain specific] - Include most
navigable and most frequently accessible pages

Whether to use Downgradable Browser Versions

Setup multiple virtual machines if applicable

Device

Create Device compatibility matrix

Get client confirmation for Device compatibility matrix

W (N[O

Identify testing scope [Domain specific + Ul aspects +
Configurations]

-

Setup simulators [For Mobile Devices]

Should application work on jail-broken/rooted devices?

Network

Create scope on possible access points to system [Dial-
up, wireless, 4G, low bandwidth, with proxy, without
proxy..etc.]

Create scope on possible access points from system
[Printer in same network, access to internet, access
external network via firewall]

Get client confirmation on the possible access points
identified

Environment setup for each network configuration

https://rochanaqa.wordpress.co
m/2015/10/05/how-to-plan-
and-test-compatibility-using-
simple-checklists/



Model Checking

- S

Results

System State Machine MOdEl
Model

Checker

\Dé; -  o(pote)a) e

T I Counterexample
' empora
Requirements po Trace

Property

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO




Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Automated: Regression testing, static analysis, dynamic analysis

* Manual: Manual testing, inspection, modeling




Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Code, system, module, execution trace, test case, design or
requirements document.




Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Functional: code correctness

* Non-functional: evolvability, safety, maintainability, security, reliability,
performance, ...

al & Computer Engineering

@ Ctrica
;%;g UNIVERSITY OF TORONTO



VERY IMPORTANT

* There is no one analysis technique that can perfectly address all
quality concerns.

* Which techniques are appropriate depends on many factors, such as

the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc...

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO



Principle technigues

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.




Classic Testing
Functional Correctness

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

N/ UNIVERSITY OF TORONTO




Testing

* Executing the program with selected inputs in a controlled environment (dynamic
analysis)

* Goals:
* Reveal bugs (main goal)
» Assess quality (hard to quantify)
* Clarify the specification, documentation

* Verify contracts

"Testing shows the presence,

not the absence of bugs
Edsger W. Dijkstra 1969




Specifications

e Textual
* Assertions

* Formal specifications




Algorithms.shortestDistance(g, "Tom", "Anne");

> ArrayOutOfBoundsException

Algorithms.shortestDistance(g, "Tom", "Anne");

-1

class Algorithms {

int shortestDistance(..) {..}

class Algorithms {

int shortestDistance(..) {..}




public int debit(int amount) {

}

e JML (Java modeling language specification)

public int read(byte[] buf) throws IOException
{

return read(buf, 0, buf.length);

}

* Textual specification with JavaDoc

e Edward S. Rogers Sr. Department
£ Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO



Benefits of Specification

* Exact specification of what should be implemented

* Decompose a system into its parts, develop and test parts
independently

* Accurate blame assignments and identification of buggy behavior
» Useful for test generation and as test oracle

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO



