
Design Patterns 3
Observer, Adaptor, Proxy, Decorator

Shurui Zhou

OO Design Principles

Building stable
and flexible
systems

•A “language” for designing the
urban environment.
• The units of this language are

patterns.
•window, building, etc..
•253 design patterns

• 1994

• the GoF book -- the book by the gang of four

• Elements of Reusable Object-Oriented
Software

• 23 OO patterns

Levels of Abstraction
• Requirements
• high-level “what” needs to be done

• Architecture (High-level design)

• high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)

• mid-level “how”, low-level “what”

• Code
• low-level “how”

• Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

Classification of patterns

https://circle.visual-paradigm.com/catalog/

• Creational patterns

• Singleton
• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

Classification of patterns

Singleton

Singleton
• a creational design pattern that lets you ensure that a

class has only one instance, while providing a global
access point to this instance.

• Example:
• cache
• thread pools
• registries

Singleton

• The Singleton class declares the static
method getInstance that returns the same
instance of its own class.

• The Singleton’s constructor should be hidden from
the client code.

• Calling the getInstance method should be the only
way of getting the Singleton object.

Singleton - Example

• java.lang.Runtime

Every Java application has a single instance of class Runtime that allows
the application to interface with the environment in which the
application is running. The current runtime can be obtained from the
getRuntime method.

• java.awt.Desktop#getDesktop()

• java.lang.System#getSecurityManager()

http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Singleton: Pros and Cons

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

Classification of patterns

Factory Method (example)

a logistics management application

Factory Method
Creator Products

Factory Method The Product declares
the interface

Concrete Products are
different implementations of
the product interface.

The Creator class declares the
factory method that returns new
product objects. It’s important
that the return type of this
method matches the product
interface.

Concrete Creators override the base factory method
so it returns a different type of product.
Note that the factory method doesn’t have
to create new instances all the time. It can also
return existing objects from a cache, an object pool,
or another source.

Factory Method - Example
creating cross-platform UI elements
without coupling the client code to
concrete UI classes.

Factory Method – Pros and Cons

Abstract Factory

Creational patterns
• Abstract Factory

Creates an instance of several families of classes
• Builder

Separates object construction from its representation
• Factory Method

Creates an instance of several derived classes
• Object Pool

Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use
• Prototype

A fully initialized instance to be copied or cloned
• Singleton

A class of which only a single instance can exist

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

Classification of patterns

Composite Pattern

Composite Pattern - Problem

• 2 types of Objects
• Products
• Boxes

An Ordering System

Composite Design Pattern - Structure
The Component interface
describes operations that are
common to both simple and
complex elements of the
tree.

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

The Composite/container is an
element that has sub-elements:
leaves or other containers. A
container doesn’t know the concrete
classes of its children. It works with all
sub-elements only via the component
interface

Client works with all elements through the component
interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

violates the Liskov substitution principle (LSP)

• Leaf inherits from Component so it will
have an Add() method like any
other Component.

• But Leafs don't have children, so the
following method call cannot return a
meaningful result:

• Trade-off between safety and
transparency
• Component: transparency, because you

can treat all components uniformly.
• Composite: safety, because any attempt

to add or remove objects from leaves will
be caught at compile-time in a statically
typed language

Which classes declare add and remove children operation?

We emphasized transparency over safety in this pattern.

Composite – Pros & Cons

• Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

Classification of patterns

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

Classification of patterns

Strategy
• Strategy is a behavioral design pattern that lets you define a family of

algorithms, put each of them into a separate class, and make their
objects interchangeable.

Navigation app

- automatic route planning

Strategy

• Grouping related algorithms under an abstraction, which allows
switching out one algorithm or policy for another without modifying
the client.

• Instead of directly implementing a single algorithm, the code receives
runtime instructions specifying which of the group of algorithms to
run.

Strategy
The Context maintains a
reference to one of the
concrete strategies and
communicates with this
object only via the
strategy interface.

The Strategy interface is
common to all concrete
strategies. It declares a
method the context uses to
execute a strategy.

Concrete
Strategies implement
different variations of
an algorithm the
context uses.

The context calls the execution
method on the linked strategy
object each time it needs to run the
algorithm. The context doesn’t
know what type of strategy it
works with or how the algorithm is
executed.

The Client creates a specific
strategy object and passes it
to the context. The context
exposes a setter which lets
clients replace the strategy
associated with the context
at runtime.

Strategy Pattern

• Sorting
• Layout manager in UI Toolkits
• Data compression
• in a game where we can have different characters and each character

can have multiple weapons to attack but at a time can use only one
weapon.
• character as the context, for example King, Commander, Knight ,Soldier and

weapon as a strategy where attack() could be the method/algorithm which
depends on the weapons being used
• concrete weapon classes were Sword, Axe, Crossbow, BowAndArrow etc ..

they would all implement the attack() method

https://stackoverflow.com/questions/370258/real-world-example-of-the-strategy-pattern

Strategy – Pros & Cons

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

• Observer

Classification of patterns

Observer Pattern

The observer + The subject

Observer Pattern

Visiting the store vs. sending spam

Observer Pattern

•Observer is a behavioral design pattern that lets you
define a subscription mechanism to notify multiple
objects about any events that happen to the object
they’re observing.
•Publishers + Subscribers = Observer Pattern

How newspaper or magazine
subscriptions work?
1. A newspaper publisher goes into business and begins publishing

newspapers.

2. You subscribe to a particular publisher, and every time there’s a
new edition it gets delivered to you. As long as you remain a
subscriber, you get new newspapers.

3. You unsubscribe when you don’t want papers anymore, and they
stop being delivered.

4. While the publisher remains in business, people, hotels, airlines,
and other businesses constantly subscribe and unsubscribe to the
newspaper.

Observer Pattern

All subscribers implement the same interface and that the publisher
communicates with them only via that interface.

Observer Pattern
The Publisher issues events of interest to
other objects. These events occur when the
publisher changes its state or executes
some behaviors.

Observer Pattern
The Subscriber interface declares the
notification interface. In most cases, it
consists of a single update method.

Observer Pattern
Concrete Subscribers
implement the same interface
so the publisher isn’t coupled
to concrete classes.

Observer Pattern

The Client creates publisher
and subscriber objects
separately and then registers
subscribers for publisher
updates.

Observer Pattern

Observer - Applicability

•When changes to the state of one object may require changing
other objects, and the actual set of objects is unknown
beforehand or changes dynamically.

• Common related/special case use: MVC (Model-View-Controller)

https://medium.com/@patrickackerman/the-observer-pattern-with-vanilla-javascript-8f85ea05eaa8

Observer Pattern –
Example (GUI)

Real world Application
• Splitwise group : Anyone adds or updates any entry in the group - all

members of group get a notification
• Following a post/event: If one follows a post , (s)he gets added to the

observers & any further comments on the same post , send a notification to
all the other observers
• Software Repository: Under the push notification model , devices are

observable for the central software repository & as soon as there is new
software from one of the observers , all the devices registered will be sent a
push notification to check for that software
• Weather update
• Stock prices update
• Train ticket confirmation

Observer - Pros and Cons

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Behavioral patterns
• Strategy

• Observer

Classification of patterns

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

MVC Architecture

MVC Architecture
• Model – Observer Pattern

MVC Architecture
• View – Composite

MVC Architecture
• View + Controller – Strategy Pattern

MVC Architecture

• Model – Observer Pattern

• View – Composite + Strategy

• Controller -- Strategy Pattern

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Adapter

• Behavioral patterns
• Strategy

• Observer

Classification of patterns

Adapter

https://medium.com/@fazalcs13/adapter-design-pattern-acd51418572f

Adapter

• Adapter is a structural design pattern that allows objects with
incompatible interfaces to collaborate.

Adapter

Adapter - Intent

• Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

• Wrap an existing class with a new interface.

• Impedance match an old component to a new system

Adapter - Problem

An "off the shelf" component offers compelling functionality that you
would like to reuse, but its "view of the world" is not compatible with
the philosophy and architecture of the system currently being
developed.

a legacy Rectangle component's display() method expects to
receive "x, y, w, h" parameters. But the client wants to pass
"upper left x and y" and "lower right x and y".

Adapter

Adapter is a class that’s able to work
with both the client and the service: it
implements the client interface, while
wrapping the service object. The
adapter receives calls from the client
via the adapter interface and translates
them into calls to the wrapped service
object in a format it can understand.

Adapter – Pros and Cons

• Creational patterns
• Singleton

• Factory Method

• Structural patterns
• Composite

• Adapter

• Proxy

• Behavioral patterns
• Strategy

• Observer

Classification of patterns

Proxy Pattern

Problem:
• High-resolution images on website

• Long loading time

• Style images

Solution:
• Replace with placeholders (proxies)

• Style placeholders

+ style: css
+ image: Object

Proxy Pattern

Implement lazy initialization: create this object only when it’s
actually needed.

Proxy Pattern

• After the proxy finishes its
processing (e.g., lazy initialization,
logging, access control,
caching, etc.), it passes the
request to the service object.

Proxy Pattern - Application
• Access control

• Logging requests

Proxy vs Adapter
• Adapter provides a different interface to its

subject. Proxy provides the same interface
• Adapter is meant to change the interface of

an existing object

• Creational patterns
• Singleton
• Factory Method

• Structural patterns
• Composite
• Adapter
• Proxy
• Decorator

• Behavioral patterns
• Strategy
• Observer

Classification of patterns

Decorator Pattern

• Starbuzz Coffee Ordering
System

Scrambling to update their
ordering systems to match
their beverage offerings.

class explosion!

why do we need all these classes?
Can’t we just use instance variables and
inheritance in the superclass to keep
track of the condiments?

Decorator Pattern

• Decorator is a structural design pattern that lets you attach new
behaviors to objects by placing these objects inside special wrapper
objects that contain the behaviors.

Decorator Pattern

Each component can be used on its

own, or wrapped by a decorator.

The ConcreteComponent

is the object we’re going

to dynamically add new

behavior to.

Each decorator HAS-A

(wraps) a component, which

means the decorator has an

instance variable that holds a

reference to a component.

Decorator Pattern

Composite vs Decorator

https://refactoring.guru/design-patterns/catalog

• https://github.com/faif/python-patterns

https://www.youtube.com/watch?v=bsyjSW46TDg

Criticism of Design Patterns
• Kludges for a weak programming language

Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.

• Inefficient solutions

Patterns try to systematize approaches that are already widely used.

• Unjustified use

If all you have is a hammer, everything looks like a nail.

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

Developers + Operators = DevOps

Continuous Integration
• Merging in small code changes frequently

Continuous Delivery

Continuous Deployment

• Add additional automation and testing, get the code nearly ready to
deploy with almost no human intervention

• Deploying all the way into production without any human
intervention.

Tools - Continuous Integration

• Quickly integrating newly developed code with the main body of code
that is to be released

Continuous Integration

https://martinfowler.com/articles/contin
uousIntegration.html

Continuous Testing

• Selenium

Build

Brian the Build Bunny http://www.woodwardweb.com/gadgets/000434.html

• Lightweight virtualization

• Separate docker images for separate services (web
server, business logic, database, …)

Automate all the things

Continuous Deployment

Continuous * (Perpetual Development)

FSE’16

Quality Assurance 3

Testing, Analysis

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

• Attempting to be comprehensive, as measured by, as examples:

Test coverage, inspection checklists, exhaustive model checking.

https://rochanaqa.wordpress.co
m/2015/10/05/how-to-plan-
and-test-compatibility-using-
simple-checklists/

Classic Testing
(Functional Correctness)

147

Testing

• Executing the program with selected inputs in a controlled
environment (dynamic analysis)

• Goals:

• Reveal bugs (main goal)
• Assess quality (hard to quantify)
• Clarify the specification, documentation
• Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

150

Testing Levels

• Unit testing

• Integration testing

• System testing

151

Test Driven Development
• Tests first!
• Popular

agile technique
• Write tests as

specifications before code
• Never write code without

a failing test
• Claims:

• Design approach toward testable design
• Think about interfaces first
• Avoid writing unneeded code
• Higher product quality (e.g. better code, less defects)
• Higher test suite quality
• Higher overall productivity

(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

“Traditional” coverage

• Statement: Has each statement in the program been executed?

• Branch: Has each of each control structure been executed?

• Function: Has each function in the program been called?

• Path: requires that all paths through the Control Flow Graph are covered.

• ...

154

We can measure coverage on almost anything

Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification

space.

156

White box testing

Tests internal structures or workings of an application, as opposed to its
functionality.

• Unit Test

• Testing for Memory Leaks

• Penetration Testing
• “What would a cybercriminal do to harm my organization’ computer

systems, applications, and network?”

The Oracle Problem

Parameters

Input
generator SUT

Golden
standard

Comparator

Fail

Pass

ObserverInput
generator SUT Exception

Normal

Parameters

Crash

Input
generator SUT

Pass

Parameters

Fails

Assertions

System under test (SUT)

https://www.youtube.com/watch?v=q2t91jLmh3k

Black box testing

• Functionality of application is tested without looking at the
implementation details

• Types
• Functional Testing

• Smoke Testing
• Regression Testing
• ...

• Non-Functional Testing
• Performance Testing
• Compatibility Testing
• Stress Testing

Smoke Testing

• Determines whether the
deployed software build is
stable or not.

• We perform smoke testing
on a new build.

Black box testing

• Functionality of application is tested without looking at the
implementation details

• Types
• Functional Testing

• Smoke Testing
• Regression Testing
• ...

• Non-Functional Testing
• Performance Testing
• Compatibility Testing
• Stress Testing

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

• Application scenario:
• When new functionalities are added
• In case of change requirements
• When there is a defect fix
• When there are performance issues
• In case of environment changes
• When there is a patch fix

4 Types of Regression Testing

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

169

Manual Testing?

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?

https://www.youtube.com/watch?v=UmAa8UJATkE

Automating GUI/Web Testing

• First: why is this hard?

• Capture and Replay Strategy
• mouse actions
• system events

• Test Scripts: (click on button
labeled "Start" expect value X
in field Y)

• Lots of tools and frameworks
• e.g. JUnit + Jemmy for

Java/Swing

172

A/B testing

Usability: A/B testing

• Controlled randomized experiment with two variants, A and B, which
are the control and treatment.

• One group of users given A (current system); another random group
presented with B; outcomes compared.

• Often used in web or GUI-based applications, especially to test
advertising or GUI element placement or design decisions.

176

Example

• A company sends an advertising email to its customer database,
varying the photograph used in the ad...

177

Example: group A (99% of users)

•Act now! Sale
ends soon!

178

Example: group B (1%)

•Act now! Sale
ends soon!

179

Usability: A/B testing

• However, it cannot..
• Tell you why
• Let you test drastic redesigns of your website or app.
• Tell you if you’re solving the right/wrong problem.

180

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

181

Quality Attributes

Performance Testing

• Specification? Oracle?

• Test harness? Environment?

• Nondeterminism?

• Unit testing?

• Automation?

• Coverage?

185

Unit and regression testing for performance
• Measure execution time of critical components

• Log execution times and compare over time

186

Profiling

• Finding bottlenecks in
execution time and
memory

187

Profiling
• Memory profile as a function of time memory-profile package

https://pypi.org/project/memory-profiler/

https://www.youtube.com/watch?v=0sEgkZ27gtY https://www.telerik.com/

Robustness: Stress Testing

• Robustness testing technique: test beyond the limits of normal
operation.

• Can apply at any level of system granularity.

• Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal circumstances.

Soak testing

• Problem: A system may behave exactly as expected under artificially
limited execution conditions.
• E.g., Memory leaks may take longer to lead to failure

• Soak testing: testing a system with a significant load over a significant
period of time

• Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

193

Testing purposes - 1

Technique Description
Baseline testing • Execute a single transaction as a single virtual user for a set

period of time or for a set number of transaction iterations
• Carried out without other activities under otherwise normal

conditions
• Establish a point of comparison for further test runs

Load testing • Test application with target maximum load but typically no
further

• Test performance targets (i.e. response time, throughput, etc.)
• Approximation of expected peak application use

Scalability testing • Test application with increasing load
• Scaling should not require new system or software redesign

Testing purposes - 2
Technique Description
Soak (stability)
testing

• Supply load to application continuously for a
period of time

• Identify problems that appear over extended
period of time, for example a memory leak

Spike testing • Test system with high load for short duration
• Verify system stability during a burst of concurrent

user and/or system activity to varying degrees of
load over varying time periods

Stress testing • Overwhelm system resources
• Ensure the system fails and recovers gracefully

