Design Patterns 3

Observer, Adaptor, Proxy, Decorator

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

OO Design Principles

n Single responsibility Buildi ng stable
principle

and flexible
Open/closed principle systems

) Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

"i‘i{'é The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Christopher Alexander

Copyrighte(iiMaterial

A Pattern Language

Towns -Buildings - Construction

Christopher Iexand in 2012
* A “language” for designing the
urban environment.

* The units of this language are

Christopher Alexander
Sara Ishikawa - Murray Silverstein Pd tterns.
Max Jacobson - lnér};d Fiksdahl-King *win d OW’ b ul I d In gl EtC .o
Shfomo Auge » 253 design patterns

*:‘1 The Edward S. Rog SL)}
‘ofEl cal & Cor } r Eng

HU
;”m UNIVERSITY OF TORONTO

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

<4
<

e 1994
* the GoF book -- the book by the gang of four

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

* Elements of Reusable Object-Oriented
Software

* 23 OO0 patterns

N/
h—
7o)
™\
—
Z
-
<
m
W
m
<
e,
~
~
N’
mm
9
wn
—~
N
7
>~
~
~
N/
z
T
s
=
Z
e

SARAIS

Cover at © 19948 M C_ Fscher / Cordon Ast - Baam - Holland. Al rights reserved,

Foreword by Grady Booch

Copyrighted Material

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

he Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

*%“ UNIVERSITY OF TORONTO

Memento

l Proxy |

saving state
fi l Adapter |
Builder of iteration
Iterator avoiding
creating hysteresis Bridge
composites

enumerating

children .
adding composed
responsibilities using
to objects
i
) lefining fini
adding tra ! defining
operafions versais the chain
defining
grammar
changing skin
versus guts
adding
sharing Interpreter operaiions | Chain of Res nsibility |
strategies it d

sharing

terminal
Strategy sharing ~ symbols
states Mediator
gomplex
lependenc,
egtnon ——{_Opserver |
defining
algorithm's

steps
M Template Methodj—————"’" often ”595\
//———-I Factory Method |

ld

configure factory
dynam;c\ally implement using
/I Abstract Factory
single
instance
) Facade
single
instance

Singleton

Figure 1.1: Design pattern relationships

Levels of Abstraction

* Requirements
* high-level “what” needs to be done

Architecture (High-level design)
* high-level “how”, mid-level “what”

OO-Design (Low-level design, e.g. design patterns)
. 14 77 7 12
* mid-level "how , low-level "what

Code

e low-level “how”

cal & To;nputer ngineering
OF TORONTO

ectri
g:?:g UNIVERSITY

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Creational

Scope Class Factory Method

Object Abstract Factory
Builder

Prototype
Singleton

https://circle.visual-paradigm.com/catalog/

Purpose

Structural

Adapter

Adapter
Bridge
Composite
Decorator
Facade

Proxy

Behavioral

Interpreter
Template Method

Chain of Responsibility
Command

lterator

Mediator

Memento

Flyweight

Observer

State

Strategy

Visitor

Classification of patterns

* Creational patterns

+ Singleton {

* Factory Method

 Structural patterns
* Composite

* Behavioral patterns
* Strategy

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Singleton

OBJECT A

<

A 4

OBJECT B

> OBJECTD
A 4 A 4
SINGLETON
SHARED RESOURCE
STORED STATE
Y
OBJECT C

Singleton

* acreational design pattern that lets you ensure that a
class has only one instance, while providing a global
access point to this instance.

* Example:
* cache
* thread pools
* registries

Singleton P —

. - instance: Singleton
Singleton Simgleton)

Client —=>| + getInstance(): Singleton

if (instance == null) {

* The Singleton class declares the static // Note: if you're creating an app with
method getinstance that returns the same S
instance of its own class. instance = new Singleton()

)

* The Singleton’s constructor should be hidden from return instance
the client code.

 Calling the getinstance method should be the only
way of getting the Singleton object.

al & Computer Engineering

ectric
% UNIVERSITY

OF TORONTO

Singleton - Example

e java.lang.Runtime

Every Java application has a single instance of class Runtime that allows
the application to interface with the environment in which the
application is running. The current runtime can be obtained from the
getRuntime method.

* java.awt.Desktopi#getDesktop()

» java.lang.System#tgetSecurityManager()

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Singleton: Pros and Cons

v/ You can be sure that a class has only a
single instance.

v You gain a global access point to that
instance.

v/ The singleton object is initialized only
when it’s requested for the first time.

X Violates the Single Responsibility

Principle. The pattern solves two
problems at the time.

The Singleton pattern can mask bad
design, for instance, when the
components of the program know too
much about each other.

The pattern requires special treatment in
a multithreaded environment so that
multiple threads won't create a singleton
object several times.

It may be difficult to unit test the client
code of the Singleton because many test
frameworks rely on inheritance when
producing mock objects. Since the
constructor of the singleton class is
private and overriding static methods is
impossible in most languages, you will
need to think of a creative way to mock
the singleton. Or just don’t write the
tests. Or don’t use the Singleton pattern.

Classification of patterns

* Creational patterns

e Singleton

* Factory Method <«

e Structural patterns

 Composite

* Behavioral patterns

* Strategy

Factory Method (example)

a logistics management application

Y/
\]
)
Oﬁ @ QQ Nz
LOGISTICS]|
ROAD DDDDDDﬁ SEA
LoaisTIcS | | OO0 00| LLoalsTics

aaaaad

aooagg

aaaod

B \.
|

Factory Method

Creator N Products

Logistics
«interface»
Transport
+ planDelivery() Transport t = createTransport() + deliver()
+ createlransport() A
L E—
: :
l | Truck Ship
RoadLogistics Sealogistics
— —
A - ' ’ Deliver by land
\ ‘ _ Lol + deliver() + deliver()
return new Truck() + createTransport() | |+ createTransport() |~ | return new Ship()

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

Deliver by sea
in a container.

;‘;’%ﬁ UNIVERSITY OF TORONTO

Factory Method

The Creator class declares the
factory method that returns new
product objects. It's important
that the return type of this
method matches the product
interface.

Product p = createProduct()
p.doStuff()

The Product declares
the interface

Creator
«interface»
_____________________ Product
+ someOperation() >
+ createProduct(): Product + doStuff()
o o i

ConcreteCreatorA ConcreteCreatorB Concrete Concrete
ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

Concrete Creators override the base factory method

so it returns a different type of product.
Note that the factory method doesn’t have
to create new instances all the time. It can also

return existing objects from a cache, an object pool,

or another source.

Concrete Products are
different implementations of
the product interface.

Factory Method - Example

creating cross-platform Ul elements
Button okButton = createButton()]]]
okButton.onClick(closeDialog) without coupling the client code to
okButton.render()

concrete Ul classes.

Dialog «interface»
____________________ > Button
+ render() + render()
+ createButton(): Button + onClick()
WindowsDialog WebDialog Windows HTML
Button Button
+ createButton(): Button + createButton(): Button

return new WindowsButton()

Factory Method — Pros and Cons

v/ You avoid tight coupling between the X The code may become more complicated
creator and the concrete products. since you need to introduce a lot of new

v/ Single Responsibility Principle. You can slibclasses o Impiement. the pattenn. The

i i best ca nario is when you’r
move the product creation code into one est case scenario Is when youre

place in the program, making the code introducing the pattern into an existing

easier to support. hierarchy of creator classes.

v/ Open/Closed Principle.You can introduce
new types of products into the program
without breaking existing client code.

Edward S. Rogers Sr. Department
| ectrical & Computer Engineering

@ S
%?:@ UNIVERSITY OF TORONTO

Abstract Factory

Chair

N
Art Deco \’%
Victorian

Modern @

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

NIVERSITY OF TORONTO

Sofa

Coffee
Table

LISTEN, T ORDERED SOME
CHAIRS LAST WEEK, BUT 1

GUESS T NEED A SOFA T00...

SOMETHING
DOES NOT
LOOK RIGHT.

Creational patterns

e Abstract Factory
Creates an instance of several families of classes

e Builder . . _
Separates object construction from its representation

* Factory Method
Creates an instance of several derived classes

* Object Pool

Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use

* Prototype .
A tully initialized instance to be copied or cloned

e Singleton

A class of which only a single instance can exist

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

Classification of patterns

* Creational patterns
e Singleton

* Factory Method

e Structural patterns <«

 Composite

* Behavioral patterns

* Strategy

Composite Pattern

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

@%@ UNIVERSITY OF TORONTO

I

Composite Pattern - Problem

Complex .
order @ An Ordering System

' * 2 types of Objects

N\
@ % * Products

Receipt

v oo\ * Boxes

Phone Headphones Charger

e . Departme
‘ of Electrical & Computer Engineeri

e g Jomputer Engineering
qg,a?mg UNIVERSITY OF TORONTO

= g

Composite Design Pattern - Structure

The Component interface
describes operations that are
common to both simple and

complex elements of the
tree.

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

$ UNIVERSITY OF TORONTO

N\

Client

|, Client works with all elements through the component

i

interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

«interface»

Component
+ execute()
A The Composite/container is an
T element that has sub-elements:
Leaf Composite leaves or other containers. A
container doesn’t know the concrete
" children: Component]] classes of its children. It works with all
+ execute() + add(c: Component) sub-elements only via the component
+ remove(c: Component) interface
Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to
child components.

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

i Elec ering
a@,”é« UNIVERSITY OF TORONTO

violates the Liskov substitution principle (LSP)

* Leaf inherits from Component so it will

have an Add() method like any
other Component. -
e But Leafs don't have children, so the S b

following method call cannot return a
meaningful result:

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Which classes declare add and remove children operation?

* Trade-off between safety and
transparency

 Component: transparency, because you
can treat all components uniformly.

 Composite: safety, because any attempt
to add or remove objects from leaves will
be caught at compile-time in a statically
typed language

We emphasized transparency over safety in this pattern.

Client

i

«interface»
Component
+ execute()
oo -
Leaf Composite
- children: Component[]
+ execute() + add(c: Component)
+ remove(c: Component)
Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to

child components.

Composite — Pros & Cons

v/ You can work with complex tree X It might be difficult to provide a common
structures more conveniently: use interface for classes whose functionality
polymorphism and recursion to your differs too much. In certain scenarios,
advantage. you'd need to overgeneralize the

v Open/Closed Principle.You can introduce component interface, making it harder to

new element types into the app without
breaking the existing code, which now
works with the object tree.

comprehend.

"i‘i{'s? The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.
\ y,

9’% The Ei ard S. Rog SD}
‘ofl I&L 1, r Eng

IlU
% UNIVERSITY e TORONTO

Classification of patterns

* Creational patterns
e Singleton

* Factory Method

e Structural patterns

* Composite

* Behavioral patterns

Strategy

 Strategy is a behavioral design pattern that lets you define a family of
algorithms, put each of them into a separate class, and make their
objects interchangeable.

TransportationToAirport Strategy
< >
? Navigation app
| | ’ - automatic route planning
@Q\e)

City bus Personal car Taxi

Concrete strategies (options)

ectric: ing
ag,", UNIVERSITY (03 TORONTO

Strategy

* Grouping related algorithms under an abstraction, which allows
switching out one algorithm or policy for another without modifying
the client.

* Instead of directly implementing a single algorithm, the code receives
runtime instructions specifying which of the group of algorithms to
run.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

The Strategy interface is
St ra t o Context <nterfaces / common to all concrete
gy - strategy Strategy strategies. It declares a
O—> method the context uses to
The Context maintains a / + setStrategy(strategy) + execute(data) execute a strategy.
reference to one of the + doSomething() A
concrete strategies and !
E%EZQUOHAF;E/?; méh this strategy.execute() H —
strategy interface. ConcreteStrategies IR
Client ----- > | Concrete
+ execute(data) m Strategies implement
The Client creates a specific str = new SomeStrategy() \ different variations of
strategy object and passes it zzg::::zztssé:zgiyé;tg an algorithm the
to the context. The context v context uses.
exposes a setter which lets other = new OtherStrategy()
clients replace the strategy context.setStrategy(other) ——» The context calls the execution
associated with the context context.doSomething() method on the linked strategy
at runtime. object each time it needs to run the

algorithm. The context doesn’t
know what type of strategy it
works with or how the algorithm is
executed.

Strategy Pattern @ ﬂz For Example!
K\

* Sorting c/ L
* Layout manager in Ul Toolkits

* Data compression

* in a game where we can have different characters and each character
can have multiple weapons to attack but at a time can use only one

weapon.

e character as the context, for example King, Commander, Knight ,Soldier and
weapon as a strategy where attack() could be the method/algorithm which
depends on the weapons being used

* concrete weapon classes were Sword, Axe, Crossbow, BowAndArrow etc ..
they would all implement the attack() method

https://stackoverflow.com/questions/370258/real-world-example-of-the-strategy-pattern

Strategy — Pros & Cons

v You can swap algorithms used inside an
object at runtime.

v/ You can isolate the implementation
details of an algorithm from the code
that uses it.

v/ You can replace inheritance with
composition.

v/ Open/Closed Principle. You can introduce
new strategies without having to change
the context.

X |f you only have a couple of algorithms
and they rarely change, there’s no real
reason to overcomplicate the program
with new classes and interfaces that
come along with the pattern.

X Clients must be aware of the differences
between strategies to be able to select a
proper one.

X A lot of modern programming languages
have functional type support that lets
you implement different versions of an
algorithm inside a set of anonymous
functions. Then you could use these
functions exactly as you'd have used the
strategy objects, but without bloating
your code with extra classes and
interfaces.

Classification of patterns

* Creational patterns
* Singleton
* Factory Method
* Structural patterns
* Composite
* Behavioral patterns
* Strategy
* Observer <

The Edward S. Rog SD}
‘ofElect cal & Cor } t Eng

IlU
% UNTVERSTTY G TORONTO

Observer Pattern @3\%‘)

- Follow

\re

The observer + The subject

Observer Pattern

X ‘OHIPUYK‘I Ilgl[leflIlg
SITY OF TORONTO

Observer Pattern

* Observer is a behavioral design pattern that lets you
define a subscription mechanism to notify multiple
objects about any events that happen to the object
they’re observing.

e Publishers + Subscribers = Observer Pattern

How newspaper or magazine
subscriptions work?

1.

A newspaper publisher goes into business and begins publishing
newspapers.

You subscribe to a particular publisher, and every time there’s a
new edition it gets delivered to you. As long as you remain a
subscriber, you get new newspapers.

You unsubscribe when you don’t want papers anymore, and they
stop being delivered.

While the publisher remains in business, people, hotels, airlines,
and other businesses constantly subscribe and unsubscribe to the
newspaper.

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

o

24 UNIVERSITY OF TORONTO

Observer Pattern

Hey, sign me

up, please! Publisher
’ Subscriber]‘ ,
- subscribers(]
+ addSubscriber(subscriber)
[Subscriber] + removeSubscriber(subscriber)

Me too!

All subscribers implement the same interface and that the publisher
communicates with them only via that interface.

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

The Publisher issues events of interest to
other objects. These events occur when the

publisher changes its state or executes

some behaviors.
1

Publisher !

Observer Pattern

«interface»

- subscribers: Subscriberf(] <>—>>| Subscriber
- mainState

foreach (s in subscribers) + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
mainState = newState + notifySubscribers() B
notifySubscribers() Concrete

+ mainBusinessLogic() Subscribers

'T\ >... M

s = new ConcreteSubscriber() =~

publisher.subscribe(s) + update(context) [
| |
Client

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

[l of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

The Subscriber interface declares the
notification interface. In most cases, it
consists of a single update method.

[

Observer Pattern

Publisher . [
«interface»
- subscribers: Subscriberf(] <>—>>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
inState = newStat ' [B
nmoilirfwy Szbes crir:;vrvsoa e : nOt-If)éSUt-)SC“bLerSQ Concreta
mainBusinessLogic() Subscribers

'T\ > ... M

s = new ConcreteSubscriber() ull
publisher.subscribe(s)

L~ l
Client

+ update(context) [

i Elec ering
a@,”é« UNIVERSITY OF TORONTO

Concrete Subscribers
iImplement the same interface

Observer Pattern so the publisher isn’t coupled

to concrete classes.

Publisher .
«interface»
- subscribers: Subscriberf(] <>—>>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
inState = newStat ' [B
nmoilirfwy Szbes crir:;vrvsoa e : nOt-If)éSUt-)SC“bLerSQ Concreta
mainBusinessLogic() Subscribers

'T\ > ... M

s = new ConcreteSubscriber() ull
publisher.subscribe(s)

L~ l
Client

+ update(context) [

e Edward S. Rogers Sr. Department
& Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Observer Pattern

Publisher .
«interface»
- subscribers: Subscriberf(] >—>>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
nmoatlirf]jstzic:ri?;v:ss(;ate : :noat ilr%Sut?: :fsleLirSiOCO Concrete N
9 Subscribers
The Client creates publisher IT\ . _-e"T 7| I
) . s = new ConcreteSubscriber() U
and subscriber objects publisher.subscribe(s) *l update(context)
separately and then registers L
. . Client
subscribers for publisher

updates.

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Observer Pattern

foreach (s in subscribers)
s.update(this)

mainState = newState
notifySubscribers()

‘i‘i{'r? e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%@ UNIVERSITY OF TORONTO

Publisher

k

- subscribers: Subscriber(]

- mainState
I

+ subscribe(s: Subscriber)

+ unsubscribe(s: Subscriber)
+ notifySubscribers()

+ mainBusinessLogic()

p

s = new ConcreteSubscriber()
publisher.subscribe(s)

L4
| -
£

Client

—
- -
—
——
e

-

«interface»
Subscriber

+ update(context)

-

2\

0
1

Concrete
Subscribers

+ update(context)

Observer - Applicability

* When changes to the state of one object may require changing
other objects, and the actual set of objects is unknown
beforehand or changes dynamically.

 Common related/special case use: MVC (Model-View-Controller)

p
Model

s Encapsulates application state

* Responds to state queries

* Exposes application
functionality

* Notifies views of changes

£ (2

Controller
« Renders the models * Defines applic_ation behavior
* Requests updates from models . Mazsyusec; 3th'°”9 {0
» Sends user gestures 1o controller mogaei upcaies
<Al I ! 1 e et » Selects view for response
ows controller o select view User Gestures : '
* One for each functionality

Method Invocations @Observable @EventListener @Observer

DOD Events

Model -t Controller -— View

notifyAll()

update()

I Subject

https://medium.com/@patrickackerman/the-observer-pattern-with-vanilla-javascript-8f85ea05eaa8

Observer <>‘+observer(ollection
| .] +registerObserver(observer)
+notify() +unregisterObserver(observer)
+notifyObservers()
, ‘ AN
notifyObservers()
for observer in observerCollection
call observer.notify()
ConcreteObserverA I ConcreteObserverB
[+notify() |+notify() ’

i lectr ering
a@,”é« UNIVERSITY OF TORONTO

java.util

Interface Observer

public interface Observer

A class can implement the Observer interface when it wants to be informed of changes in observable objects.
Since:

JDK1.0
See Also:

Observable

Method Summary

Methods

Modifier and Type Method and Description

void update (Observable o, Object argqg)
This method is called whenever the observed object is changed.

Observer Pattern —
Example (GUI)

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

User performs actions

Events are
generated and
event handlers
are called

-----’

Event Handlers

update the model

---------’

‘ text ficld
List item 1 b
Listitem 2
List item 3
G -
ListSelection Document Action
Event Event Ewvent
L 4
walueChanged() { changedlpdate () { actionPerformed() {
“es . . “es
) \) } /
v

hModel

Ohjects

——--_-_-——————_b

Model changes are
updated in the GUI

Keyboard and Mouse Events

Mouse Events: Keyboard Events:

clickAndHold() « keyDown()
contextClick() e keyUp()
doubleClick() e sendKeys()

dragAndDrop()

dragAndDropBy()
moveByOffset()
moveToElement()

releasel()

Real world Application

» Splitwise group : Anyone adds or updates any entry in the group - all
members of group get a notification

* Following a post/event: If one follows a post, (s)he gets added to the
observers & any further comments on the same post, send a notification to
all the other observers

* Software Repository: Under the push notification model, devices are
observable for the central software repository & as soon as there is new
software from one of the observers, all the devices registered will be sent a
push notification to check for that software

* Weather update
* Stock prices update
* Train ticket confirmation

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

;Z;@ UNIVERSITY OF TORONTO

Observer - Pros and Cons

v/ Open/Closed Principle.You can introduce X Subscribers are notified in random order.
new subscriber classes without having to
change the publisher’s code (and vice
versa if there’s a publisher interface).

v You can establish relations between
objects at runtime.

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns

e Singleton

* Factory Method

e Structural patterns

* Composite

* Behavioral patterns

* Strategy

* Observer

Design Patterns

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

| >
: >
| » —]
|
|
|
| L. A vy & - -=7T === == v
| 1 Factory > View < I <
I I '
I I '
I I :
| . v v :
: : Observer g /,\S/Iuob(;eelct < Controller ﬁ—|—
I I 4 A |
| l I I
I
1 I Command :I
| = [—
: A
|
|
|
|
|

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

”%“ UNIVERSITY OF TORONTO

MVC Architecture

VIEW

Gives you a presentation

CONTROLLER

Takes user input and figures out
what it means to the model.

Heve's the treamy .
tontroller; i lives in

MODEL

The model holds all
the data, state and
application logic. The
model is oblivious to

of the model. The view wddle- :
usually gets the state the middle N the view and controller,
and data it needs to although it provides an
display directly from interface to manipulate
’rhepmz),del, K and retrieve its
/ state and it can send
@ notifications of state
changes to observers.
Change your
The user did Controller state
something /
@ Change your
dlsp|0Y class Player

play () {}

@ rip() ()
burn() ()
T've changed! ————

. : /
T -

Model

View

Hcrc’s the
modC\} .‘t
handles all
ay\?\\ca‘t'\on data
and logic-

This is the user information

\n‘tﬁ‘{:au'

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

a%?:@ UNIVERSITY OF TORONTO

MVC Architecture

* Model — Observer Pattern

Observel' w All these obsevvers will be

notified whenever state
changcs in the model.

Observers

Observable
My state has

changed!

class Foo
void bar(

doBar ()

Controller

inkevested n state

s changcs in the modc\
rcg\sl:crs with the
model as an obsevver.

\D \ Any doject Ehat

I'd like to register
as an observer

The model has no dependenties on

View . I
viewevrs or tontrollers!

MVC Architecture

* View — Composite

Composite NN i view i 3 campasbe

MOOO Window \ o{: 6[“ (,om\?onCn{:s (\at):\)s;
SerBPM; buktons, text entry, vt

‘- The top-level tomponent
% (,on‘l‘,ains o{:\\cr COm\?onCn{',S,

— - Wh‘t)\ Con‘{"a.\h O‘E‘\Cr

(\(\ = un{',.\\
w = comVonCh{:S; and so on
R —— N 1 to the leak nodes.

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

MVC Architecture

* View + Controller — Strategy Pattern

Strategy e hortraler 8

[essoiticsacts S Ss it

The user did for the view
somethin ‘ stratedy ¥o°
///—\iy 9 //, _,\{E-£h6<*060t‘€;it
The vi — knows how to han
¢ View ' ‘H\C usev ac;{:'\ons.
del eqates 4o Controller
{f:ch COnf;\ro’ ’cr D W,
andle +he — & We tan sy in
user aetions. > anothey bcfavior fov-
View the view by ¢hanging

the Controller-.

The view only worries about presentation. The controller Controller

worvies about translating user input to attions on the model.
{15’"% The E
‘ of Electrical & Co

Hlll, r
@%@ UNIVERSITY

puter tngineering
OF TORONTO

CONTROLLER

MV C Arch itectyre T e o ot _—

VIEW The model holds all

Heve's the creamy the da‘rq, state and
Gives you a presentation controlle; it lives n apphca“non lpguc. The
of the model. The view Lhe middle: model is oblivious to
usually gets the state Ry the view and controller,
and data it needs to although it provides an

display directly from in‘r;rface to manipulate
and retrieve its
* Model — Observer Pattern the model. / e bl i cansen

@ notifications of state

* View — Composite + Strategy @ i e e Gerge yar changes:ta obisesyers.
somethin
* Controller -- Strategy Pattern (9 @Changeyﬁr
display class Player

play () {}

@ rip() ()
| burn () {}
T've changed! \

; = Model
/(\Vlew \I need%r sme/

; ve's the
This is the user information icodc\i &
nkevfate. handles all
ay\:\'\caﬁon data
and logic-

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns
* Singleton

* Factory Method

e Structural patterns

 Composite

 Adapter <«

* Behavioral patterns

* Strategy

 Observer

Adapter

Adapter Adaptee
| (External
Client (Converts requests to Incompatible
(Original form of be compatible)

request)

Client needs to get the service from Adaptee, which is incompatible &
cannot interact directly

Figure 1-Adapter Pattern Concept

https://medium.com/@fazalcs13/adapter-design-pattern-acd51418572f

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

x5 UNIVERSITY OF TORONTO

Adapter

* Adapter is a structural design pattern that allows objects with
incompatible interfaces to collaborate.

(— T | ' '
|Q|@|!V Application
Core Classes
Stock Data —— Analytics
Provider XML =>| XML ¥-=>| JISON T

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Application

Core Classes

Stock Data —

Provider XML [XML

XML to JSON ——
Adapter JSON JSON

-'ﬁi'% The Edward S. Rogers Sr. Deparrment
‘ lectrical & Computer Engineering
e g

% UNIVERSITY OF TORONTO

Adapter - Intent

e Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

* Wrap an existing class with a new interface.
* Impedance match an old component to a new system

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Adapter - Problem

An "off the shelf" component offers compelling functionality that you
would like to reuse, but its "view of the world" is not compatible with
the philosophy and architecture of the system currently being

developed.

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

a legacy Rectangle component's display() method expects to
receive "X, y, w, h" parameters. But the client wants to pass
"upper left x and y" and "lower right x and y".

Client

«interface»
= Shape
+display(in x1, in y1, in X2, in y2)
PN
«adaptee»
Rectangle LegacyRectangle
~
~
+display(in x1,in y1,in x2, in y2) +display(in x1,in y1,in w, in h)

Delegate and map to adaptee.

Adapter

«interface»
S Client Interface

Client

+ method(data)

A

Adapter Service

Adapter is a class that’s able to work / - adaptee: Service |——=]...

with both the client and the service: it : :
implements the client interface, while + method(data) + serviceMethod(specialData)

wrapping the service object. The
adapter receives calls from the client
via the adapter interface and translates
them into calls to the wrapped service
object in a format it can understand.

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Adapter — Pros and Cons

v/ Single Responsibility Principle. You can X The overall complexity of the code
separate the interface or data conversion increases because you need to introduce
code from the primary business logic of a set of new interfaces and classes.
the program. Sometimes it’s simpler just to change the

v’ Open/Closed Principle. You can introduce service class so that it matches the rest

new types of adapters into the program of your code.
without breaking the existing client
code, as long as they work with the

adapters through the client interface.

Edward S. Rogers Sr. Department
| ectrical & Computer Engineering

@ S
%?:@ UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns
* Singleton

* Factory Method

e Structural patterns
 Composite

* Adapter

* Proxy <

* Behavioral patterns
* Strategy

e QObserver

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Proxy Pattern

Problem:
* High-resolution images on website

* Long loading time 4 ——

* Style images

Solution:
* Replace with placeholders (proxies)
e Style placeholders

{1 The E‘I ard S. Rog SD}
‘ofEl cal & Cor 1, r Eng

um

HU
ag,” 19) VERSITY OF TORONTO

ImageViewer

<<interface>>

FProxylmage

+ style: css
+ image: Object

>' Image

showlmage() : void

HighResolutionlmage

showlmage() : void

showlmage() : void

Proxylmage.showlmage() loads and display the real
image only when is needed ...

Proxy Pattern

Implement lazy initialization: create this object only when it’s
actually needed.

«interface»
Payment

+ pay(amount)

CreditCard > Cash @ ﬁﬂ

"i‘i{'é The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Client > «|t1terface»
Servicelnterface
Proxy Pattern - :
+ operation()
* After the proxy finishes its Z.;

processing (e.g., lazy initialization, 5 i
Ioggi.ng, access.control, Proxy e
caching, etc.), it passes the - _ — - ~
request to the service object. I realService: Service _0_}."' |

+ Proxy(s: Service) + operation()

+ checkAccess()

+ operation() realService = s

if (checkAccess()) {
realService.operation()

}

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Proxy Pattern - Application

° ACCGSS CO ntrol Administration

com puters
Restricted access

Facebook

R&D computers

Proxy server
D Restncted access

Sales computers Twitter

* Logging requests

[

(3 ctrica gineering
az,” UNIVERSITY OF TORONTO

* Adapter provides a different interface to its
subject. Proxy provides the same interface

* Adapter is meant to change the interface of
an existing object

Proxy vs Adapter

. «interface»
Client [——=> .
Servicelnterface
+ operation() «interface»
4 Client S Client Interface
_____________ | + method(data)
! : A
Proxy Service i
- realService: Service |[——=>| ... Adapter Service
. . - adaptee: Service |——=]...

+ Proxy(s: Service) + operation() i
+ checkAccess() + method(data) + serviceMethod(specialData)
+ operation() realService =s

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

if (checkAccess()) {
realService.operation()

28 of Electrica) cert
a@,”é« UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns
e Singleton
* Factory Method

e Structural patterns
 Composite
* Adapter
* Proxy
* Decorator «

* Behavioral patterns

* Strategy
* Observer

afl The Edward S. Rog SD}
K2R of Electrical & Cor 1, r Eng

IIU
%:, UNIVERSITY e TORONTO

Decorator Pattern

e Starbuzz Coffee Ordering
System

Scrambling to update their
ordering systems to match
their beverage offerings.

Edward S. Rogers Sr. Department
Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Beverage is an abstratt class,
subtlassed b\, all beverages
offeved the tobfee shop-

The eost() methed is
abstratt; subtlassses
need to define their
own im\?\tmtn{a{ion.

4

—

Beverage

description & —

getDescription()
costf)

/I Other useful methods...

The deseription instante variable

s seb in eath subclass and holds a
deseviption of the bcvcvagc,”hkc

“Most Excellent Dark Roast .

The 5C{Dcstr\?{ion() method
veturns the deseviption.

HouseBlend

cost()

cost()

DarkRoast |

Decaf Espresso
cost()

cost()

~)

Each subtlass implements tost() 4o veturn the cost of the beverage.

/

Beverage

description

getDescription()
cost()

1/ Other useful methods...

SRS o RV

/

class explosion!

I EspressoWithSteamedMilk
HouseBlendWithSteamedMilk DarkRoastWithSteamedM| De -thSteamedMilk andMocha
andMocha andMocha cafV and“ TS
HouseBlen
cost()
| cost) Dumozﬁstrmm.k andCaramel costl)| EspressoWithWhipandMocha

HouseBIendWithi cost])
1

EspressoWithSteamedMilk
andWhip

3 EspressoWithWhipandSoy

{ HouseBI Whip,———]
e BarkRoastWitiSteamed] 51 cost)
| - I HouseBl| cost() cost()
| cost) -
HouseBlendWithWhipandSoy DarkRoast
0 e
DarkRoastWithSteamedN DecafWithSteamet
.- .
DarkRoastWithWhipandSoy DecafWithWhipandSoy
cost()

cost()

cost()

why do we need all these classes?

Can’t we just use instance variables and
inheritance in the superclass to keep
track of the condiments?

Beverage

Now let’s add 1n the subclasses, one for ﬁcﬁpﬁon
each beverage on the menu: soy
mocha
The supertlass cost() will ealeulate {;:\e ke
ts all of the wnd'mcnts» while getDescription()
io\\sc overvidden eost() in the sublasses 1> cost)
will extend that Qw’c‘wﬂ:‘;}yfway hasMilk()
- elude costs for that sp setMilk()
hasSoy()
e
€ ath tost() method needs to tompute iy
{:\a\c cost of the beverdge and"chc;’\m sefMocha(
 the tondiments by calling hasWhip()
add in .on of tostl): setWhip()

/I Other useful methods..

HouseBlend

Espresso

cost() cost()

cost()

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

i Elec ering
a@,”é« UNIVERSITY OF TORONTO

Decorator Pattern

* Decorator is a structural design pattern that lets you attach new
behaviors to objects by placing these objects inside special wrapper
objects that contain the behaviors.

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

(You Il se€ hO¥ T

)
3 few PR
2 Whip calls tost() on Motha é?
€ First, we call tast() on the & Nssiah sl s

$1.29

s tost, 19 conts.
O Whip adds its total, 10 cents,
{'p ch V‘Cshl{l “’\V‘OH\ MoChag and O Mdha adds rts COS{, 10 CCV\{SJ
returns the fnal vesult—f1.29 Lo the vesult from DarkRoaft

and returrs the new total, il.19.

Decorator Pattern

_— N

— —— -

VAVAVAVAVAVAw —

——

‘ — .'

: - e V/
W-.-'.v'

=

]

T e
VSR Ny

TR
Yy

S—

a = new ConcComponent()

Client b = new ConcDecoratorl(a)
¢ = new ConcDecorator2(b)
c.execute()

. // Decorator -> Decorator -> Component
«interface»

- Component | <

Each component can be used on its [* &<l

own, or wrapped by a decorator.
Concrete Base Decorator
Component E >
- wrappee: Component

The ConcreteComponent
. . , . + execute(+ BaseDecorator(c: Component) wrappee = ¢
is the object we're going + execute()
to dynamically add new 2 wrappee.execute(

. Concrete |
behaV|or to. Decorators

+ execute() o | super:execute()

+ extra() sl
3

R a = new ConcComponent()
Client b = new ConcDecoratorl(a)
¢ = new ConcDecorator2(b)

\l/ c.execute()

. Decorator -> Decorator -> Component
«interface» / P

Component |

+ execute()

Concrete Base Decorator
Component
- wrappee: Component -
+ BaseDecorator(c: Component) wrappee = ¢
+ execute() + execute()

Each decorator HAS-A 4&

wrappee.execute()

(wraps) a component, which Concrete F

Decorators

means the decorator has an

instance variable that holds a + execute() o [- -| super:execute(

+ extra() sl

reference to a component. \

Decorator Pattern

v/ You can extend an object’s behavior X |It's hard to remove a specific wrapper
without making a new subclass. from the wrappers stack.

v/ You can add or remove responsibilities X It's hard to implement a decorator in
from an object at runtime. such a way that its behavior doesn'’t

v/ You can combine several behaviors by depend on the order in the decorators

wrapping an object into multiple stack.

decorators. X The initial configuration code of layers

v/ Single Responsibility Principle. You can MIgIL 00k prelty gLy,

divide a monolithic class that
implements many possible variants of
behavior into several smaller classes.

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

$ UNIVERSITY OF TORONTO

Composite vs Decorator

Cli a = new ConcComponent()
ent b = new ConcDecoratorl(a)
R ¢ = new ConcDecorator2(b)
Client c.execute()
- // Decorator -> Decorator -> Component
«interface»
Component |
«interface» + execute()
Component A
J o o o o o o o o .
+ execute() : :
A Concrete Base Decorator
T e e e e ——— Component
| | - wrappee: Component O
Leaf Composite + BaseDecorator(c: Component) wrappee = ¢
+ execute() + execute()
- children: Component(] le
+ execute() + add(c: Component) wrappee.execute()
+ remove(c: Component) DConcrctate
ol + getChildren(): Component(] ecorators
+ execute()
+ execute() super:execute()
Delegate all work to + extra() extra()
child components.

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%@ UNIVERSITY OF TORONTO

= 8= dh =R RN =l=l=l= I;]
=t B GLED "@" & ooo

[KpEpEpKpKal]

Factory Abstract Adapter Bridge Chain of Command Iterator Mediator
Method Factory Responsibility
A Bralo-Friencly Guide
o Ve = = .
T =~ N A
B = = On®) %)g} = A
Builder Prototype Composite Decorator Memento Observer State Strategy

il .
Cln EEE

QLY

Singleton Facade Flyweight Template Visitor - .
Method kindle edition,

D:>E

https://refactoring.guru/design-patterns/catalog

of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

H faif / python-patterns Public L\ Notifications v¢ Star 29.4k % Fork 6k

<> Code (*) Issues 12 i1 Pull requests () Actions ("]l Projects 00 wiki (@) Security

¥ master ~ Go to file About

A collection of design

',I:Ig faif Merge pull request #379 from g-paras/Issue#375 ... X onJul7 788 patterns/idioms in Python

* https://github.com/faif/python-patterns

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

AUAPTER

https://www.youtube.com/watch?v=bsyjSW46TDg

Criticism of Design Patterns

* Kludges for a weak programming language

Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.

* Inefficient solutions

Patterns try to systematize approaches that are already widely used.
* Unjustified use

If all you have is a hammer, everything looks like a nail.

?fi},? The Edward S. Rogers Sr. Department
e | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

Are SOLID principles Cargo Cult?

It looks like a plane, but will it fly?

Developers + Operators = DevOps

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

x5 UNIVERSITY OF TORONTO

Continuous Integration |
* Merging in small code changes frequently

Continuous Delivery -

* Add additional automation and testing, get the code nearly ready to
deploy with almost no human intervention

Continuous Deployment

* Deploying all the way into production without any human
intervention.

’fﬁ{f The Edward S. Rogers Sr. Department

‘ of Electrical & Computer E:
e

ngineering
%?ﬁ UNIVERSITY OF TORONTO

Tools - Continuous Integration

Hudson J enklns

* Quickly integrating newly developed code with the main body of code
that is to be released

Build and test results are
fed back to the developers

o TR S P

Commit changes

to the source code

Developer
Commit changes X
to the source code Git = jenkins > seleni — Production
‘e enium
Developer > repository iummmsam -1l L— & Server
Jenkins check the Jenkins deploys the The build '
shared repository build application on application is then E
at periodic intervals the test server deployed to the :
Developer Commit changes i+ and every check-in production server }

to the source code i i ispulled and then
H build

e Ed gers or. Lepa
Electric l&(mputer Eng

S no
ag,”é« UNIVERSITY OF TORONTO

Continuous Integration

https://martinfowler.com/articles/contin
uousintegration.html

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

@Z‘%@ UNIVERSITY OF TORONTO

Actions

Categories

APl management
Chat
Code quality

Code review

Continuous integration X

Mobile CI

Container CI

Dependency management
Deployment

IDEs

Learning
Localization

Mobile

Monitoring

Project management
Publishing

Recently added
Security

Support

Testing

Utilities

Apps

Build on your workflow with apps that integrate with GitHub.
57 results filtered by Continuous integration | x Apps | x

B Travis Cl @
B Testand deploy with confidence @

Google Cloud Build &

@ Build, test, and deploy in a fast, consistent,
and secure manner

Percy @

Automated visual review platform

AccessLint @
Find accessibility issues in your pull
requests

CloudBees CodeShip @

Continuous Integration and Delivery. Fast.
Customizable. Easy

WhiteSource Bolt @

Detect open source vulnerabilities in real
time with suggested fixes for quick
remediation

Cirrus Cl @

Enjoy unlimited concurrency for fast and
secure development cycle

See your test and style results without
leaving GitHub. Supporting JUnit,
Checkstyle, and more

fciove
p564
7%
=
4
Check Run Reporter &

Buddy &
One-click delivery automation for Web
Developers

© ©O00¢-0-*

AppVeyor &
Cloud service for building, testing and
deploying Windows apps

Codefresh @

A modern container-based CI/CD platform,
easily assemble and run pipelines with high
performance

GuardRails @

GuardRails provides continuous security
feedback for modern development teams

Cloud 66 for Rails @
Build, deploy, and maintain your Rails apps
on any cloud or server

Semaphore @
Test and deploy at the push of a button

BuildPulse @

Automatically detect, track, and rank flaky
tests so you can regain trust in your test
suite

Hound @

Automated code reviews

Flaptastic @

Manage flaky unit tests. Click a checkbox
to instantly disable any test on all
branches. Works with your current test
suite

Azure Pipelines @
Continuously build, test, and deploy to any
platform and cloud

Continuous Testing

About ~ Downloads Documentation Projects Support Blog English ~ Q Search this site...

e Selenium

Selenium automates browsers. That's it!

What you do with that power is entirely up to you.

Primarily it is for automating web applications for testing purposes, but is certainly not limited to just that.
Boring web-based administration tasks can (and should) also be automated as well.

TEST REPORTS

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

?g.g@ UNIVERSITY OF TORONi"O

Our CI/CD tool can now checkout the
source codes from our SCM and build it.
Cool.

% Build Tools
DEVELOPERS ; Source Control Client

CHECK IN (Cl)

CHECK OURYCO) .
v | : Source Codes

SCM - Build Tool Config

developer A developer B

o [
master branch ‘/

developer C
Breaking change!

ALLTHAVETO DO IS CHECK IN MY==
LATEST.CHANGES TO THE CURRENT, BUILD

~ANDZIT'S BROKE!

imgflip.com

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
I will not break the build.
CODESHACH

%?:@ UNIVERSITY OF TORONTO

http://www.woodwardweb.com/gadgets/000434.html

Brian the Build Bunny

&dockw

* Lightweight virtualization

kubernetes

» Separate docker images for separate services (web
server, business logic, database, ...)

{15’"% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

%g UNIVERSITY OF TORONTO

Automate all the things

mameagenaralor.nat

INSTALL.SH

#!/bin/bosh

pip install ;’91; i&

_install “$1° &
m install “$1" &
npm install ‘61" &
yum install “$1" & dnf install “$1" &
docker run $1" &
Pkg install ‘81" &
apt-get install “$1" &
sudo opt-get instal| “$1° &
steomcmd +app_update ‘81" validate &
git clone https:/github.com/"$1’/°$1" &
cd “$1";. /configure; make; make install &
curl“$1" | bosh &

Continuous Deployment

Google ETELIX
B “ood

@ amazon

Continuous * (Perpetual Development)

Development Ops Support

Unit Test
Function Test pesgn Cont. Experimentation mx;g
Performance Test L
_~-u:”A|. 1OU! 1l i_t.- ‘A‘l:.,
Reliability Test
=) e [0 Manual Test Depioy ot and
staging
(production-like)

Edward S. Rogers Sr. Department
ectrical & Computer Engineering

%, UNITVERSITY OF TORONTO

Continuous Deployment of Mobile Software at Facebook

(Showcase)
Chuck Rossi Elisa Shibley
Facebook Inc. University of Michigan
1 Hacker Way 2260 Hayward Street
Menlo Park, CA USA 94025 Ann Arbor, Ml USA 48109
chuckr@fb.com eshibley@umich.edu
Kent Beck Tony Savor
Facebook Inc. Facebook Inc.
1 Hacker Way 1 Hacker Way
Menlo Park, CA USA 94025 Menlo Park, CA USA 94025
kbeck@fb.com tsavor@fb.com

Release engineering and push karma: Chuck Rossl

Facebook Engineering
April 5, 2012 - 5 min read -

Shi Su

Carnegie Mellon University
PO Box 1
Moffett Field, CA USA 94035

shis@andrew.cmu.edu

Michael Stumm

University of Toronto
10 Kings College Rd
Toronto, Canada M8X 2A6

stumm@eecg.toronto.edu

l_(‘l_116

i lectr ering
a@,”é« UNIVERSITY OF TORONTO

Quality Assurance 3

Testing, Analysis

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Attempting to be comprehensive, as measured by, as examples:

Test coverage, inspection checklists, exhaustive model checking.

al & Computer Engineering

fe ctrica
q%g« UNIVERSITY

OF TORONTO

Type

General

ID Checkpoint

1

Identify the potential target users of the system

Yes/No

Comments

- Demographics

- User groups

What aspects of the application is sensitive to HW and
SW differences

Are there any universal standards and guidelines, to
which the application should adhere [E.g. iPhone]

oS

Create OS compatibility matrix

Get client confirmation for OS compatibility matrix

Identify testing scope [domain specific]

Setup multiple virtual machines for each OS

Browser

Create Browser compatibility matrix

Get client confirmation for Browser compatibility matrix

wr [|w |-

Identify testing scope [domain specific] - Include most
navigable and most frequently accessible pages

Whether to use Downgradable Browser Versions

Setup multiple virtual machines if applicable

Device

Create Device compatibility matrix

Get client confirmation for Device compatibility matrix

[TORN ST S R B S

Identify testing scope [Domain specific + Ul aspects +
Configurations]

Setup simulators [For Mobile Devices]

Should application work on jail-broken/rooted devices?

Network

Create scope on possible access points to system [Dial-
up, wireless, 4G, low bandwidth, with proxy, without
proxy..etc.]

Create scope on possible access points from system
[Printer in same network, access to internet, access
external network via firewall]

Get client confirmation on the possible access points
identified

Environment setup for each network configuration

https://rochanaqa.wordpress.co
m/2015/10/05/how-to-plan-
and-test-compatibility-using-
simple-checklists/

Classic Testing
Functional Correctness

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

N/ UNIVERSITY OF TORONTO

Testing

* Executing the program with selected inputs in a controlled
environment (dynamic analysis)

e Goals:

* Reveal bugs (main goal)
* Assess quality (hard to quantify)
* Clarify the specification, documentation

e Verify contracts -
Y "Testing shows the presence,

not the absence of bugs
Edsger W. Dijkstra 1969

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Testing Levels

* Unit testing
* Integration testing

* System testing

Test Driven Development

———————————————————— —Repeat- — — 4

Test
succeeds

Tests first!

Popular
agile technique

Write tests as
specifications before code

Never write code without
a failing test

Claims:
* Design approach toward testable design
* Think about interfaces first
e Avoid writing unneeded code
* Higher product quality (e.g. better code, less defects)
* Higher test suite quality
* Higher overall productivity

succeed

http://en.wikipedia.org/wiki/User:Excirial

‘II

“Traditional” coverage

e Statement: Has each statement in the program been executed?
* Branch: Has each of each control structure been executed?
* Function: Has each function in the program been called?

e Path: requires that all paths through the Control Flow Graph are covered.

w ctrica ng
%"&?f UNIVERSITY OF TORONTO

We can measure coverage on almost anything

Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification
space.

’fi}i The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

White box testing ffm_)

Tests internal structures or workings of an application, as opposed to its
functionality.

e Unit Test

* Testing for Memory Leaks

* Penetration Testing

* “What would a cybercriminal do to harm my organization’ computer
systems, applications, and network?”

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

The Oracle Problem

Parameters Fail
Parameters
T oace —> Normal
generator I t .
npu SUT Observer —> Exception
generator
— —> Crash
standard
Parameters Assertions

System under test (SUT)

Input
generator

he Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://www.youtube.com/watch?v=q2t91jLmh3k

Black box testing o) [)

* Functionality of application is tested without looking at the
implementation details

* Types
* Functional Testing
* Smoke Testing
* Regression Testing
* Non-Functional Testing

* Performance Testing
e Compatibility Testing

* Stress Testing

Re-Build

Smoke Testing [oo

e Determines whether the

. . QA
deployed software build is
stable or not.
* We perform smoke testing
. Prioritise test
on a new build.
Fails Pass
Development ‘ Execute the test Functional
team cases testing

cal & Computer Engineering

OF TORONTO

@ ectri
,%4 UNIVERSITY

Black box testing o) [)

* Functionality of application is tested without looking at the
implementation details

* Types
* Functional Testing
* Smoke Testing

‘ * Regression Testing

* Non-Functional Testing

* Performance Testing
e Compatibility Testing

* Stress Testing

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

* Application scenario:

 When new functionalities are added RCQTCSS'O"'-

. "when you fix one bug, you
In case of change requirements : =
. . infroduce several newer bugs.

When there is a defect fix
When there are performance issues
In case of environment changes |
When there is a patch fix |

1

é i
) pl

&
|

——

al & Computer Engineering

ectric
% UNIVERSITY

OF TORONTO

4 Types of Regression Testing

Retest all

Regression Testing

Hybrid

Regression test selection

Test Case Prioritization

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

=P « The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
¥ Select “Send Message” Message 1s correctly sent

* Live System?
* Extra Testing System?

* Check output / assertions?
e Effort, Costs?
Reproducible?

e Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

N/ NIVERSITY OF TORONTO

https://www.youtube.com/watch?v=UmAa8UJATKE

Automating GUI/Web Testing

* First: why is this hard?
* Capture and Replay Strategy

* mouse actions
* system events

 Test Scripts: (click on button
labeled "Start" expect value X
in fieldY)

e Lots of tools and frameworks

e e.g. JUnit + Jemmy for
Java/Swing

"i‘i{'s? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

A/B testing

st

T

R

Usability: A/B testing

* Controlled randomized experiment with two variants, A and B, which
are the control and treatment.

* One group of users given A (current system); another random group
presented with B; outcomes compared.

e Often used in web or GUI-based applications, especially to test
advertising or GUI element placement or design decisions.

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Example

* A company sends an advertising email to its customer database,
varying the photograph used in the ad...

’fi"ri The Edward S. Rogers Sr. Department
) | ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Example: group A (99% of users)

eAct now! Sale
ends soon!

Example: group B (1%

eAct now! Sale
ends soon!

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%é@ UNIVERSITY OF TORONTO

Usability: A/B testing

* However, it cannot..
* Tell you why
* Let you test drastic redesigns of your website or app.
* Tell you if you’re solving the right/wrong problem.

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

==» « The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Quality Attributes

System Software
Product Quality

Maintainability Portability

Functional Pt arion
Reliability

suitability SHsioncy Compatibility

Functional
completeness

Appropriateness Maturity Confidentiality Modularity Adaptability

Time behavior Coexistence S
recognizability

Functional

correctness Resource - - .“
utilization Interoperability Learnability Availability

Integrity Reusability Installability

Functional
appropriateness

Fault tolerance Nonrepudiation Analyzability Replaceability

Capacity Operability

U
prseedrigri:)onr Recoverability Accountability Modifiability
Just a
L]
remi nder". User interface Authenticity Tecizbiily

aesthetics

Accessibility

Performance Testing

* Specification? Oracle?

e Test harness? Environment?
* Nondeterminism?

* Unit testing?

* Automation?

* Coverage?

Unit and regression testing for performance

* Measure execution time of critical components
* Log execution times and compare over time

Jenkins gatling_load_test Gatling

Back to Dashboard gatling_load_test - Performance Trend

O, Status

— 99th percentile response time
Changes 1200 ms

g_, Workspace

£) Build Now 1000 ms
 Delete Project "/ﬂ‘:
2. Configure H00.ms ‘
@;@ Gatling o
600 ms
Build History trend =
o #18 28-Apr-2015 11:33 400 ms
o #7 28-Apr-2015 11:32 ‘
o #16 28-Apr-2015 11:31 200 ms o~
@ #15 28-Apr-2015 11:30 S (I 7 =t
o #4 28-Apr-2015 11:29 oms

#6 #7 #8 #9 #10 #11 #12 #13

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Profiling

* Finding bottlenecks i
execution time and
memory

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

”%“ UNIVERSITY OF TORONTO

& VisualVM 1.2

Fie Appications Vi Tools Window Hap

1 R 3'RR
‘5 Applications a=n
= ecal
¢ VouawWM
= & Javal2Demo (pvd 4376)
(& [snapshot] 11:57:27 AM
& Remote
G Snapshots

| s Call Tree | [Mot Spots | [Combined @ Info|

|

StartPage | & Javaemo (pid 437) | L= (=]
1 [dOmmen’ b Monitoe [émw[gsawg'@m @ [snapshot] 11:57:27 AM |
< Java2Demo (pid 4376)
Profier Snapshot
B ver: Cineess - (@E) Q @ &
Call Tree - Method Time [%] v Time Teme (CPU) Ivecatons In]
-} CJ AWT-EventQueus-0 T 21563 (100 20523 me 1 -
W svaantEventDispatchTivead. G 21563 ... (100 0523 ms 110
-5 java.ant.EventDepatchTrre [21545 ... (100% 0523 ms 110
= 3 sava.awt.EventDspatc (NG 21563 ... (100% 0523w 110
= 9 pve.awtsveneo: G 2155 ... 1o 20523 ms 110
= % javaswt.Evert NG 21563 ... (10 0523 ms 110 ~
4 m ’
Mot Spots - Method Selftime ... v Seif tme Seif ime (CPU) Irwocabons ﬂ
s javadd, SurGraphics2D . drawString) I~ 169410 16793 ms 113 -
sun.Javad. SunGraphecs 20. fill 1 1447 s 135t ms |
yvax.swng. JComponent. paintimmedsat | 1218 ms 978ms 109
SN Java2d, SunGraphics 20 draw | 650 1s 690 ms
java ot font. TextLayout. <init> | Dsms 404ms
Anaan ek fant YoM e | 200 s o Ty — X
- -

Profiling

* Memory profile as a function of time memory-profile package

50000 : : : I ‘ 1 . :
|
40000 |- : 7
|
|
o) |
- .
= 30000} ; |
= :
: . :
; |
S 20000 i
E |
Q |
£ .
|
10000 | Ll * J
|
|
: r - 4 *

0 1 1 1 1 1 1] 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
time (in seconds)

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://pypi.org/project/memory-profiler/

s_Ewe

https://www.youtube.com/watch?v=0sEgkzZ27gtY https://www.telerik.com/

Robustness Testing

-
;-

Twitter is over capacity.

Please wait a moment and try agaisQror more information, check out Twitter Status »

A7 eV UAY AV UATRY AL WA VLAY U4

‘ Load

V/s

Robustness: Stress Testing

Stress

* Robustness testing technique: test beyond the limits of normal
operation.

e Can apply at any level of system granularity.

e Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal circumstances.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Soak testing

* Problem: A system may behave exactly as expected under artificially
limited execution conditions.

* E.g., Memory leaks may take longer to lead to failure

* Soak testing: testing a system with a significant load over a significant
period of time

* Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Testing purposes - 1

Baseline testing

Load testing

Scalability testing

Execute a single transaction as a single virtual user for a set
period of time or for a set number of transaction iterations
Carried out without other activities under otherwise normal
conditions

Establish a point of comparison for further test runs

Test application with target maximum load but typically no
further

Test performance targets (i.e. response time, throughput, etc.)
Approximation of expected peak application use

Test application with increasing load
Scaling should not require new system or software redesign

Testing purposes - 2

Soak (stability)
testing

Spike testing

Stress testing

Supply load to application continuously for a
period of time

|dentify problems that appear over extended
period of time, for example a memory leak

Test system with high load for short duration
Verify system stability during a burst of concurrent
user and/or system activity to varying degrees of
load over varying time periods

Overwhelm system resources
Ensure the system fails and recovers gracefully

