
Quality Assurance 4

Testing 2, Program analysis

Testing

• Executing the program with selected inputs in a controlled
environment (dynamic analysis)
• Goals:

• Reveal bugs (main goal)
• Assess quality (hard to quantify)
• Clarify the specification, documentation
• Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

18

Testing Levels

• Unit testing
• Integration testing
• System testing

19

White box testing

Tests internal structures or workings of an application, as opposed to its
functionality.
• Unit Test
• Testing for Memory Leaks
• Penetration Testing
• “What would a cybercriminal do to harm my organization’ computer

systems, applications, and network?”

Black box testing

• Functionality of application is tested without looking at the
implementation details

• Types
• Functional Testing

• Smoke Testing
• Regression Testing
• ...

• Non-Functional Testing
• Performance Testing
• Compatibility Testing
• Stress Testing

Smoke Testing

• Determines whether the
deployed software build is
stable or not.

• We perform smoke testing
on a new build.

Black box testing

• Functionality of application is tested without looking at the
implementation details

• Types
• Functional Testing

• Smoke Testing
• Regression Testing
• ...

• Non-Functional Testing
• Performance Testing
• Compatibility Testing
• Stress Testing

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

• Application scenario:
• When new functionalities are added
• In case of change requirements
• When there is a defect fix
• When there are performance issues
• In case of environment changes
• When there is a patch fix

4 Types of Regression Testing

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

27

Manual Testing?

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?

A/B testing

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

30

Quality Attributes

Performance Testing

• Specification? Oracle?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

32

Unit and regression testing for performance
• Measure execution time of critical components
• Log execution times and compare over time

33

Profiling

• Finding bottlenecks in
execution time and
memory

34

https://www.youtube.com/watch?v=0sEgkZ27gtY https://www.telerik.com/

Robustness: Stress Testing

• Robustness testing technique: test beyond the limits of normal
operation.

• Can apply at any level of system granularity.
• Stress tests commonly put a greater emphasis on robustness,

availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal circumstances.

Soak testing

• Problem: A system may behave exactly as expected under artificially
limited execution conditions.
• E.g., Memory leaks may take longer to lead to failure

• Soak testing: testing a system with a significant load over a significant
period of time

• Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

39

Performance testing tools: JMeter

http://jmeter.apache.org

http://jmeter.apache.org/

Performance testing tools: Locust
https://github.com/locustio/locust

Reliability: Fuzz testing

• To send anomalous data to a system in order to crash it, therefore
revealing reliability problems.

• Programs and frameworks that are used to create fuzz tests or
perform fuzz testing are commonly called fuzzers.

• Also known as fuzzing or monkey testing

Reliability: Fuzz testing
• Negative software testing method that feeds malformed and unexpected

input data to a program, device, or system with the purpose of finding
security-related defects, or any critical flaws leading to denial of service,
degradation of service, or other undesired behavior

• black-box testing

46

https://www.youtube.com/watch?v=17ebHty54T4

Fuzzing Process

System under test (SUT)

Reliability: Fuzz testing

49

(A. Takanen et al, Fuzzing for Software Security Testing and

Quality Assurance, 2008)

Chaos Engineering

Principle of Chaos Engineering

Proactively inject failures in order to be prepared when disaster
strikes.

“Chaos Engineering is the discipline of experimenting on a distributed system in
order to build confidence in the system’s capability to withstand turbulent
conditions in production.”

Goal: To intentionally break things, compare measured with expected
impact, and correct any problems uncovered this way.

Principle of Chaos Engineering

4 steps:
- Define the system’s normal behavior
- Hypothesize about the steady state behavior of an experimental group, as compared

to a stable control group.
- Expose the experimental group to simulated real-world events such as server crashes,

malformed responses, or traffic spikes.
- Test the hypothesis by comparing the steady state of the control group and the

experimental group.

The smaller the differences, the more confidence we have that the system is resilient.

https://www.youtube.com/watch?v=3WRVgC8SiGc

55

Chaos monkey/Simian army
• “Malicious” programs randomly trample on

components, network, datacenters, AWS
instances…
• Other monkeys include Latency Monkey, Doctor

Monkey, Conformity Monkey, etc… Fuzz testing at
the infrastructure level.
• Force failure of components to make sure that

the system architecture is resilient to
unplanned/random outages
• open-sourced

56

https://github.com/dastergon/awesome-chaos-engineering

https://www.youtube.com/watch?v=VUwi5Jtw3ow&feature=youtu.be

Limits of Testing
• Cannot find bugs in code not executed, cannot assure

absence of bugs
• Oracle problem
• Nondeterminism, flaky tests

• Certain kinds of bugs occur only under very unlikely
conditions

• Hard to observe/assert specifications
• Memory leaks, information flow, …

• Potentially expensive, long run times
• Potentially high manual effort
• Verification, not validation
• …

60

Summary

• Quality assurance is important, often underestimated
• Many forms of QA, testing popular
• Testing beyond functional correctness

62

Program Analysis

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

65

Principle techniques

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

69

What is Static Analysis?

• Systematic examination of an abstraction of program state space.
• Does not execute code! (like code review)

• Abstraction: produce a representation of a program that is simpler to
analyze.
• Results in fewer states to explore; makes difficult problems tractable.

70

Syntactic Analysis

Find every occurrence of this pattern:

grep "if \(logger\.inDebug" . -r

public foo() {
…
logger.debug(“We have ” + conn + “connections.”);

}
public foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
}

Type Analysis

72

Abstraction: abstract syntax tree

• Tree representation of the syntactic
structure of source code.
• Parsers convert concrete syntax into

abstract syntax, and deal with resulting
ambiguities.

• Records only the semantically relevant
information.
• Abstract: doesn’t represent every detail

(like parentheses); these can be inferred
from the structure.

• (How to build one? Take compilers!)

• Example: 5 + (2 + 3)

+

5 +

2 3

73

Type checking

74

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” +

conn + “connections.”);
}

}
}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter
…

Logger

boolean

expects boolean

Logger

Logger ->boolean

String -> void
String

void

Summary:
Syntactic/Structural Analyses
• Analyzing token streams or code structures (ASTs)
• Useful to find patterns
• Local/structural properties, independent of execution paths

76

Tools

• Checkstyle
• Many linters (C, JS, Python, …)
• Findbugs (some analyses)

77

Tool -- Linter

• Lint, or a linter, is a static code analysis tool used to flag
programming errors, bugs, stylistic errors and suspicious
constructs. – [wikipedia]

https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Software_bug

Control/Dataflow analysis

• Reason about all possible executions, via paths through a control flow
graph.
• Track information relevant to a property of interest at every program point.
• Including exception handling, function calls, etc

• Define an abstract domain that captures only the values/states
relevant to the property of interest.

• Track the abstract state, rather than all possible concrete values, for
all possible executions (paths!) through the graph.

80

Control flow graphs
• A tree/graph-based

representation of the flow
of control through the
program.
• Captures all possible

execution paths.
• Each node is a basic block:

no jumps in or out.
• Edges represent control

flow options between
nodes.
• Intra-procedural: within

one function.
• cf. inter-procedural

1. a = 5 + (2 + 3)
2. if (b > 10) {
3. a = 0;
4. }
5. return a;(entry)

a=5+(2+3)

if(b>10)

a = 0

return a;

(exit) 81

Data- vs. control-flow

• Dataflow: tracks abstract values for each of (some subset of) the
variables in a program.

• Control flow: tracks state global to the function in question.

82

Tools

• Dead-code detection in many compilers (e.g. Java)
• Instrumentation for dynamic analysis before and after decision

points; loop detection

83

Other application scenarios

85

On GitHub, it is hard to figure out who has
implemented what feature ...

8686

Dependency Graph

3 Dependencies

File 1: Email.h File 2: Email.c

INFOXGoal: a Better Overview of ForksDependency Graph

8787

Dependency Graph

3 Dependencies

File 1: Email.h File 2: Email.c

Dependency GraphINFOXGoal: a Better Overview of ForksDependency Graph

8888

Dependency Graph

3 Dependencies

File 1: Email.h File 2: Email.c

Dependency GraphINFOXGoal: a Better Overview of ForksDependency Graph

8989

Dependency Graph

3 Dependencies

File 1: Email.h File 2: Email.c

Dependency GraphINFOXGoal: a Better Overview of ForksDependency Graph

9090

Dependency Graph

upstream
fork

diff

Clustering
features

Labeling
features

Dependency GraphINFOXGoal: a Better Overview of ForksDependency Graph

Dependency
graph

Principle techniques

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

92

Wouldn’t it be nice if we could learn about the
program’s memory usage as it was running?

How can we tackle this problem?

• Testing:

• Inspection:

• Static analysis:

93

Dynamic analysis:
learn about a program’s properties by executing it

• How can we learn about properties that are more interesting than
“did this test pass” (e.g., memory use)?

• Short answer: examine program state throughout/after execution
by gathering additional information.

94

Common dynamic analyses

• Coverage
• Performance
• Memory usage
• Security properties
• Concurrency errors
• Invariant checking
• Fault localization
• Anomaly detection

95

Collecting execution info

• Instrument at compile time
• Run on a specialized VM
• Instrument or monitor at runtime

96

Collecting execution info

• Instrument at compile time
• e.g., Aspects, logging

• Run on a specialized VM
• e.g., valgrind

• Instrument or monitor at runtime
• also requires a special VM
• e.g., hooking into the JVM using debugging symbols to profile/monitor

(VisualVM)

Avoid mixing up static things done to
collect info and the dynamic
analyses that use the info.

Note: some of these methods
require a static pre processing step!

97

Example: Test Coverage

• Statement: Has each statement in the program been executed?
• Branch: Has each of each control structure been executed?
• Function: Has each function in the program been called?
• Path: requires that all paths through the Control Flow Graph are covered.
• ...

Q: How might tools that compute
test suite coverage work?

Instrumentation: a simple example

• One option: instrument the code to track a certain type of data as the
program executes.
• Instrument: add of special code to track a certain type of information as a

program executes.
• Rephrase: insert logging statements (e.g., at compile time).

• What do we want to log/track for branch coverage computation?

99

1. int foobar(a,b) {
2. if (a > 0) {
3. b -= 5;
4. a -= 10;
5. }
6. if(a > 0) {
7. if (b > 0)
8. return 1;
9. }
10. return 0;
11. }

if (a > 0)

b -= 5
a -= 10

if (a > 0)

if (b > 0)

return 1 return 0

(entry)

(exit)

Branch #1

Branch #2

Branch #3

100

b -= 5
a -= 10

③ if (b > 0)

return 1 return 0

(exit)

log(“branch 1:
true”)

log(“branch 1: false”)

log(“branch 2:
true”)

log(“branch 2: false”)

log(“branch 3:
true”)

log(“branch 3: false”)

① if (a > 0)

② if (a > 0)

(entry)

101

b -= 5
a -= 10

③ if (b > 0)

return 1 return 0

(exit)

① if (a > 0)

② if (a > 0)

(entry)

b -= 5
a -= 10

printf(“1:t”)

printf(“1:f”)

return 0

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

102

1. int foobar(a,b) {
2. if (a > 0) {
3. b -= 5;
4. a -= 10;
5. }
6. if(a > 0) {
7. if (b > 0)
8. return 1;
9. }
10. return 0;
11. }

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5
a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

103

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5
a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

104

1.int foobar(a,b) {
2. if (a > 0) {
3. printf(“1:t”);
4. b -= 5;
5. a -= 10;
6. } else {
7. printf(“1:f”);
8. }
9. if(a > 0) {
10. printf(“2:t”);
11. if (b > 0) {
12. printf(“3:t”);
13. return 1;
14. } else {
15. printf(“3:f”);
16. }
17. } else {
18. printf(“2:f”);
19. }
20. return 0;
21.}

• Test cases: (0,0), (1,0), (11,0), (11,6)
• foobar(0,0): “1:f 2:f ”
• foobar(1,0): “1:t 2:f ”
• foobar(11,0): “1:t 2:t 3:f ”
• foobar(11,6): “1:t 2:t 3:t “

Assuming we saved how many branches
were in this method when we

instrumented it, we could now process
these logs to compute branch coverage.

1.int foobar(a,b) {
2. if (a > 0) {
3. printf(“1:t ”);
4. b -= 5;
5. a -= 10;
6. } else {
7. printf(“1:f ”);
8. }
9. if(a > 0) {
10. printf(“2:t ”);
11. if (b > 0) {
12. printf(“3:t ”);
13. return 1;
14. } else {
15. printf(“3:f ”);
16. }
17. } else {
18. printf(“2:f ”);
19. }
20. return 0;
21.}

105

Limitation: Dynamic analysis

• Cost
Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?

Costs

Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?

110

Very input dependent

• Good if you have lots of tests!
• Can also use logs from live software runs that include actual user

interactions (sometimes, see next slides).
• Or: specific inputs that replicate specific defect scenarios (like

memory leaks).

111

Too much data

• Logging events in large and/or long-running programs (even for just
one property!) can result in HUGE amounts of data.

• How do you process it?
• Common strategy: sampling

115

Lifecycle

• During QA
• Instrument code for tests
• Let it run on all regression tests
• Store output as part of the regression

• During Production
• Only works for web apps
• Instrument a few of the servers

• Use them to gather data
• Statistical analysis, similar to seeding defects in code reviews

• Instrument all of the servers
• Use them to protect data

116

Summary

• Dynamic analysis: selectively record data at runtime
• Data collection through instrumentation
• Integrated tools exist (e.g., profilers)
• Analyzes only concrete executions, runtime overhead

117

