Quality Assurance 4

Testing 2, Program analysis

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

Testing

* Executing the program with selected inputs in a controlled
environment (dynamic analysis)

e Goals:

* Reveal bugs (main goal)
* Assess quality (hard to quantify)
* Clarify the specification, documentation

e Verify contracts -
Y "Testing shows the presence,

not the absence of bugs
Edsger W. Dijkstra 1969

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Testing Levels

* Unit testing
* Integration testing

* System testing

White box testing ffm_)

Tests internal structures or workings of an application, as opposed to its
functionality.

e Unit Test

* Testing for Memory Leaks

* Penetration Testing

* “What would a cybercriminal do to harm my organization’ computer
systems, applications, and network?”

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Black box testing o) [)

* Functionality of application is tested without looking at the
implementation details

* Types
* Functional Testing
* Smoke Testing
* Regression Testing
* Non-Functional Testing

* Performance Testing
e Compatibility Testing

* Stress Testing

Re-Build

Smoke Testing [oo

e Determines whether the

. . QA
deployed software build is
stable or not.
* We perform smoke testing
. Prioritise test
on a new build.
Fails Pass
Development ‘ Execute the test Functional
team cases testing

cal & Computer Engineering

OF TORONTO

@ ectri
,%4 UNIVERSITY

Black box testing o) [)

* Functionality of application is tested without looking at the
implementation details

* Types
* Functional Testing
* Smoke Testing

‘ * Regression Testing

* Non-Functional Testing

* Performance Testing
e Compatibility Testing

* Stress Testing

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

* Application scenario:

 When new functionalities are added RCQTCSS'O"'-

. "when you fix one bug, you
In case of change requirements : =
. . infroduce several newer bugs.

When there is a defect fix
When there are performance issues
In case of environment changes |
When there is a patch fix |

1

é i
) pl

&
|

——

al & Computer Engineering

ectric
% UNIVERSITY

OF TORONTO

4 Types of Regression Testing

Retest all

Regression Testing

Hybrid

Regression test selection

Test Case Prioritization

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

=P « The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
¥ Select “Send Message” Message 1s correctly sent

* Live System?
* Extra Testing System?

* Check output / assertions?
e Effort, Costs?
Reproducible?

e Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

N/ NIVERSITY OF TORONTO

A/B testing

st

T

R

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

==» « The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Quality Attributes

System Software
Product Quality

Maintainability Portability

Functional Pt arion
Reliability

suitability SHsioncy Compatibility

Functional
completeness

Appropriateness Maturity Confidentiality Modularity Adaptability

Time behavior Coexistence S
recognizability

Functional

correctness Resource - - .“
utilization Interoperability Learnability Availability

Integrity Reusability Installability

Functional
appropriateness

Fault tolerance Nonrepudiation Analyzability Replaceability

Capacity Operability

U
prseedrigri:)onr Recoverability Accountability Modifiability
Just a
L]
remi nder". User interface Authenticity Tecizbiily

aesthetics

Accessibility

Performance Testing

* Specification? Oracle?

e Test harness? Environment?
* Nondeterminism?

* Unit testing?

* Automation?

* Coverage?

Unit and regression testing for performance

* Measure execution time of critical components
* Log execution times and compare over time

Jenkins gatling_load_test Gatling

Back to Dashboard gatling_load_test - Performance Trend

O, Status

— 99th percentile response time
Changes 1200 ms

g_, Workspace

£) Build Now 1000 ms
 Delete Project "/ﬂ‘:
2. Configure H00.ms ‘
@;@ Gatling o
600 ms
Build History trend =
o #18 28-Apr-2015 11:33 400 ms
o #7 28-Apr-2015 11:32 ‘
o #16 28-Apr-2015 11:31 200 ms o~
@ #15 28-Apr-2015 11:30 S (I 7 =t
o #4 28-Apr-2015 11:29 oms

#6 #7 #8 #9 #10 #11 #12 #13

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Profiling

* Finding bottlenecks i
execution time and
memory

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

’

& VisualVM 1.2

(File_Applications View Tools Window_ Help

a8 SN

‘EApp«canons
= Lecal
¢ VouawWm
= & Javal2Demo (pd 4376)
(& [snapshot] 11:57:27 AM
& Remote
G Snapshots

StartPage | & Javaemo (pid 437) | iy~
||| 8 Overview b Monitor [éﬂrewsl‘g,wwiu'!’@?roﬂu @ [snapshot] 11:57:27 AM ¥ |
< Java2Demo (pid 4376)
Profier Snapshot
BE| e Cneeess - [FE) A % &
Call Tree - Method Time [%] v Time Tme (CPU) Ivecations In]
-1 CJ AWT-EventQueus-0 T 21563 ... (100 20523 me 1 -
W svaantEventDispatchtivead. G 21563 ... (100 0523 ms 110
-5 java.ant.EventDepatchTire [21543 ... (100% 0523 ms 110
= 3 sava.awt.EventDspatch (G 21563 ... (100 0523w 110
=9 pve.awtsveneo: G 21553 ... 1o 20523 ms 110
= 3 javaswt.Evert NG 21563 ... (1o 0523 ms 110 ~
< m ’
Mot Spots - Method Selfime ... v Seif tme Seif ime (CPU) Irwocabons ﬂ
s javadd, SurGraphics2D . drawString) I~ 169410 16793 ms 113 -
sun.Javad. SunGraphecs 20. fill 1 1447 s 135t ms |
yavax.swng. JComponent. paimtimmedsa! l 1218 ms 97 8ms 105
SN Java2d, SunGraphics 20 draw | 650 s 690 ms
jova et foot. TextLayout. <init> | W4 ms 404ms
PRSP ! 200 s 3 o Ty — 2 X
W Method Name Fits -
|55 Cal Tree | B Mot Spots | 2 Combined @ Info|

|

”%“ UNIVERSITY OF TORONTO

LA

https://www.youtube.com/watch?v=0sEgkzZ27gtY https://www.telerik.com/

Robustness Testing

-
;-

Twitter is over capacity.

Please wait a moment and try agaisQror more information, check out Twitter Status »

A7 eV UAY AV UATRY AL WA VLAY U4

‘ Load

V/s

Robustness: Stress Testing

Stress

* Robustness testing technique: test beyond the limits of normal
operation.

e Can apply at any level of system granularity.

e Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal circumstances.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Soak testing

* Problem: A system may behave exactly as expected under artificially
limited execution conditions.

* E.g., Memory leaks may take longer to lead to failure

* Soak testing: testing a system with a significant load over a significant
period of time

* Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Performance testing tools: JMeter

© ® HTTP DoS Attacker.jmx (/Users/jsg/Documents/MSE/Classes/17-699_S12/JMeter/apache-jmeter-2.7/bin/HTTP DoS Attacker.jmx) - Apache JMeter (2.7 r1342410)
File Edit Search Run Options Help

113 WV = . = : % =
v [TestPlan
v 7 HTTP Dos Attacker HTTP Request

[<7] View Results in Table Name: | HTTP Request

4i## HTTP Request Defaults

Padi 7P Request Comments:

Graph Results Web Server
|iZ| workBench

0 A o/0 I

Timeouts (milliseconds)
Server Name or IP: www.mal.com

Port Number: 80 Connect: Response:
HTTP Request
Implementation: C Protocol [http]: Method: CET S Content encoding:

Path:

Redirect Automatically v/ Follow Redirects Use KeepAlive Use multipart/form-data for POST

Send Parameters With the Request:

Browser-compatible headers

Name: Value Encode? Include Equals?
Detail Add Add from Clipboard Delete Up Down
Send Files With the Request:
File Path: Parameter Name: MIME Type:
Add Browse.. Delete

http://jmeter.apache.org

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO

http://jmeter.apache.org/

Performance testing tools: Locust

An open source load testing tool.
https://github.com/locustio/locust
Define user behaviour with Python code, and swarm

your system with millions of simultaneous users.

¥ Tweet ¥ Follow @locustio

:051}/ . ?{TGTNU:IING SLAVES RPS FAILURES i -
ttp://api.initech. 0, eset
@ LOCUST s 21400 users 6 240 Ok

Edit

Statistics Charts Failures Exceptions Download Data Slaves

Average Average size Current
(ms) (bytes) RPS

Requests # Fails
/ 5416 21 20336
/blog 1745 26 20370
/blog/[post-slug] 1824 15 19943
/groups/create 185 55 3273
/signin 26 19949

/signin 82 20030

/users/[username] 3 20194

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Reliability: Fuzz testing

* To send anomalous data to a system in order to crash it, therefore
revealing reliability problems.

* Programs and frameworks that are used to create fuzz tests or
perform fuzz testing are commonly called fuzzers.

* Also known as fuzzing or monkey testing yovmy s o e

LR~ o" 1A>p a~zvz wEe*1FM \,
w’rcuc-n K"0+100 >R
HHE Z .8 m'l OF<G* OAl'%é e 9 c

A0 Ad
At

“1 1Y6/ ol)
Ve, b66€oA1 a%o A
souﬂjcsu
S lf

Reliability: Fuzz testing

* Negative software testing method that feeds malformed and unexpected
input data to a program, device, or system with the purpose of finding
security-related defects, or any critical flaws leading to denial of service,
degradation of service, or other undesired behavior

* black-box testing

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

— ' - ' ‘ - '

(~J

INTRO TO FUZZING

https://www.youtube.com/watch?v=17ebHty54T4

Fuzzing Process

FUZZER

—

GET / HTIT/1.1

Wwecupts dmoge/eil, ivage/x->iteag,
tmage/joen, */°

Accepr-Encoding: qzip, deflate
Ascopc- 09 : en-ug

Connacticn: Fesp-Alivo

) —

SUT

VALID request KTIP/1.1 200 o

Seyver: nysedSetrwer/2.1

MoCept-Rangea; Dyres

-~

'GET a’afnaiaiaiaiaiaisiaiafaiaiaiaiaiak
HTTP/1.1

Accept: inage/glf, Llmage/x-dbDitsap,
irag=/jceq, */*

Accept-Erooding: qzip, dellate
ACCept-Langunoe: Cn-un

Connecticn: Feep-Alive

S—

Coneent-Length: 130
Conurction: <loae
Centent -Type: toxt/Mml;

VALID response

Date: Wed, 07 Now 2007 09:44:49 0T

ftagc-dodifled: Wed, 07 Nov 2007 09:44:36 OMT

1L nux)

charaes-UTF-8

e
B

ANOMALOUS request

KTTP/3.1 404 Mot Found

Server: MyWebServe=z/2.1
Cenitent -length: 224

—

‘GET tatntxtstatatotstotats HTTP/1.1
ccept: inage/gif, image/x-Xbitmsp,
iraga/jpeg. */*

Accept-Irooding: gzlp, d=flate

Ascept-Lan t en-us

Connecticn: Feep-Allve

S

Connectica: <lose
Content-Type: text/keml;
ChaTeet el 20-8359-1

ERROR response

Dote: Wed, 07 Now 2007 03:49:27 GMT

| Linuxh

J\

ANOMALY sent

Eorver: (I

—

GET hrrp://(TaladsishahkalshaRshadadsis
Aalarararaisiadaraishaladai:C] ETTPS1.1
Accept: fmagc/olf, (sage/x->Litswp,
leage/jpca, </

Asgeprt-Encoding: gip, deflate
ATCopt-lanpiane: ©R-USs

Connocticn: ¥eep-Alive

—

Centent-iength: -1
Coneent-Type: YTV
Correction: close

@ ANOMALOUS response

KTIP/3.1 509 Intormal Server Srror
Dates Tue, 01 Jan 1570 €&.00:00 T

ANOMALY sent

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

‘;g; UNIVERSITY OF TORONTO

cesssnsns| NO RESPONSE] sssssssan

J\

System under test (SUT)

ARTECH HOUSE

Reliability: Fuzz testing

for Software Security

Testing and
THE #1 PROGRAMMER EXCUSE Quality Assurance

FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S M

HEY! GET BACK
T0 \JORK'

FUZZING!

N
')

A -
v 0
] f -

ARITAKANEN « JARED D.DEMOTT
CHARLES MILLER

(A. Takanen et al, Fuzzing for Software Security Testing and
Quality Assurance, 2008)

9"33 The Edward S. Rogers Sr. D}
;i: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Chaos Engineering

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

5 Lessons We’ve Learned Using

Netflix Technology B
Dec 16, 2010 - 4 min1

In my last post I talke

computing platform.
our own data center:
helpful to share with

lessons we’ve learne

3. The best way to avoid failure is to fail constantly.

We've sometimes referred to the Netflix software architecture in AWS as
our Rambo Architecture. Each system has to be able to succeed, no matter
what, even all on its own. We’re designing each distributed system to expect
and tolerate failure from other systems on which it depends.

If our recommendations system is down, we degrade the quality of our
responses to our customers, but we still respond. We’ll show popular titles
instead of personalized picks. If our search system is intolerably slow,

streaming should still work perfectly fine.

o | | NETFLIX
Principle of Chaos Engineering

Proactively inject failures in order to be prepared when disaster
strikes.

“Chaos Engineering is the discipline of experimenting on a distributed system in
order to build confidence in the system’s capability to withstand turbulent
conditions in production.”

Goal: To intentionally break things, compare measured with expected
impact, and correct any problems uncovered this way.

o | | NETFLIX
Principle of Chaos Engineering

4 steps:

- Define the system’s normal behavior

- Hypothesize about the steady state behavior of an experimental group, as compared
to a stable control group.

- Expose the experimental group to simulated real-world events such as server crashes,
malformed responses, or traffic spikes.

- Test the hypothesis by comparing the steady state of the control group and the
experimental group.

The smaller the differences, the more confidence we have that the system is resilient.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

https://www.youtube.com/watch?v=3WRVgC8SiGc

ot
s*mm Y <

AR

1, er Engmeenno

i ectti
ag,” UNIVERSITY OF TORONTO

NETFLIX

Chaos monkey/Simian army

* “Malicious” programs randomly trample on
components, network, datacenters, AWS
instances...

e Other monkeys include Latency Monkey, Doctor
Monkey, Conformity Monkey, etc... Fuzz testing at
the infrastructure level.

* Force failure of components to make sure that
the system architecture is resilient to
unplanned/random outages

* open-sourced

g R\\\

Awesome Chaos Engineering (&

A curated list of awesome Chaos Engineering resources.

https://github.com/dastergon/awesome-chaos-engineering

Your First Chaos Experiment

YOUR FIRST

Chaos Experiment

i
ul

e Edward S. Rog SD}t nt

Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

Use Gremlin fo validate
your moniforing.

https://www.youtube.com/watch?v=VUwi5Jtw3ow&feature=youtu.be

«@ The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
% UNIVERSITY OF TORONTO

* User
Acceptance
Testing

» Operational
Readiness Test

e Requirements
Verification

e Automation Strategy
e Test Schedule
* Resource Planning

Test Plans
Test Matrix
Test Scripts
Test Data

* Bug Tracking
* Bug Fixing
* Bug Verification

Defect
Management

» Defects
e Test Reports
e Test Metrics

Limits of Testing

e Cannot find bugs in code not executed, cannot assure
absence of bugs

* Oracle problem

* Nondeterminism, flaky tests

* Certain kinds of bugs occur only under very unlikely
conditions

* Hard to observe/assert specifications
* Memory leaks, information flow, ...

* Potentially expensive, long run times
* Potentially high manual effort
 Verification, not validation

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

But coverage has limitations.

, | ‘ 2
Are there still going
:,;i ﬂ,_'s::ur Do you have to be unexplainable
100 % bugs and reusability

S
passing: code coverage? issues?

Low coverage means
y insufficient testing.
(p Yep ’
® ® \ 3

R

Summary

e Quality assurance is important, often underestimated
* Many forms of QA, testing popular

* Testing beyond functional correctness

Program Analysis

«;é* The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
a8 &

%2 UNIVERSITY OF TORONTO

QL
AAAAA

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

Just a
reminder...

Principle technigues

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

Just a
reminder...

e Edward S. Rog SD}t nt
Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

Principle technigues

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

Just a
reminder...

e Edward S. Rog SD}t nt
Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

What is Static Analysis?

e Systematic examination of an abstraction of program state space.
* Does not execute code! (like code review)

* Abstraction: produce a representation of a program that is simpler to
analyze.

* Results in fewer states to explore; makes difficult problems tractable.

Syntactic Analysis

Find every occurrence of this pattern:

public foo() {

}

logger.debug(“We have ” + conn + “connections.”);

public foo() {

if (logger.inDebug()) {
logger.debug(“We have

}

}

" + conn + “connections.”);

grep "if \(logger\.inDebug" . -r

Type Analysis

= public void| foo() {

o int a = computeSomething();

(X if (a _=="5")

IIIIII VNS AR A AL AR S

o doMoreStuff();

"i‘i{'é The Edward S. Rogers Sr. Deparrment
& | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Abstraction: abstract syntax tree

* Tree representation of the syntactic e Example: 5+ (2 + 3)
structure of source code.

* Parsers convert concrete syntax into +
abstract syntax, and deal with resulting A
ambiguities.
- 5 +
* Records only the semantically relevant
information. A
* Abstract: doesn’t represent every detail 2 3

(like parentheses); these can be inferred
from the structure.

* (How to build one? Take compilers!)

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Type checking class X
__—

field method
logger foo
Logger _—
class X { if stmt
Logger logger;
public \foid f00() { /exp'ects boolean
method block
if (logger.inDebug()) { invoc.
logger.debug(“We have ” + __beolean~, N
conn + “connections.”); logger ||inDebug method
} } Logger | |->boolean invoc.
} logger || debug | | parameter
class Logger { Logger ..String
boolean /inDebug() {..} String -> void
void debug(String msg) {..}

= | a Computer Engineering
I

&= ectr
% UNIVERSITY

The Edward S. Rogers Sr. Department
lectri

OF TORONTO

Summary:
Syntactic/Structural Analyses

* Analyzing token streams or code structures (ASTs)
e Useful to find patterns
* Local/structural properties, independent of execution paths

’fﬁ{f The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

File Edit Source Refactor Navigate Search Project Run Window Help
Iti-H@l3s-0-0 - |BH#c-|®s |4k
= ,m |- Resource

I-l_] DefaultContext.java m CheckStyleTask.java Q] DefaultConfigurat...

Tools

* This class provides the functionality to check a set of files.

* @aut Oliver Burn

* @anthor Stephane Bailliez<
w t lkuehne

* Checkstyle
* Many linters (C, JS, Python, ...)
* Findbugs (some analyses)

/** maintains error count ¥/

private final Jystsentence should end with a period.[RT€T =
new Sev Press 'F2’ for focus|CvLevel . ERRCOR) ;

/** wvector of listeners ¥/

private final ArrayList mListeners = new ArrayList():

/** vector of fileset checks */
private final ArrayList mFileSetChecks = new ArrayList():

/** class loader to resolve classes with. ¥/

0

private ClassLoader mLoader =
Thread.currentThread() .getContextClassLoader ()

v

4|
[L Problems &3 | Javadoc | Dedaration | Error Log }:(,
11 errors, 89 warnings, 0 infos (Filter matched 100 of 8,682 items)
] Description] Resource I In Folder] Location |
& '{ should be on the previous line. Checker.j... checkstyle/src/checkstyle/... line 52

.
>

First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 53
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... 'line 57
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 60
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 67
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... ' line 70
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 72
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 75

of Electrical & Computer Engineering R L

o
>

.

.
=

(

.
=

[

~
==

he Edward S. Rogers Sr. Department

[«

=

'%Zg" UEIVERS TSRO ES TORONTS I] Writable Smart Insert 56:1

Tool -- Linter

* Lint, or a linter, is a static code analysis tool used to flag
programming errors, bugs, stylistic errors and suspicious
constructs. ~ [wikipedia]

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Software_bug

[github / super-linter Public

® Watch ~ 251 vy Star 7.3k % Forl

<> Code () Issues 24 i1 Pull requests 28 7)) Discussions (® Actions [T Projects 1 0J wiki @ Security |~ Insights

Workflows All workflows

Showing runs from all workflows
All workflows

%
%
%
%
%

Q Filter workflow runs

.github/workflows/Security-TrivySc...
.github/workflows/deploy-DEV-sii... 23,439 workflow runs
.github/workflows/deploy-DEV-sta...

@ Stale[bot]
.github/workflows/deploy-DEV.yam| Stale[bot] #3763: Scheduled

.github/workflows/deploy-PROD-sl... . ‘ "
eln yOU

Event ~ - Actor ~

wory READN‘E >

_ .— .aw0UrS ago

G)3s

Control/Dataflow analysis

* Reason about all possible executions, via paths through a control flow
graph.
* Track information relevant to a property of interest at every program point.
* Including exception handling, function calls, etc

* Define an abstract domain that captures only the values/states
relevant to the property of interest.

* Track the abstract state, rather than all possible concrete values, for
all possible executions (paths!) through the graph.

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Control flow graphs

* Atree/graph-based
representation of the flow

l. a=5+ (2 + 3
of control through the , ()
program. 2. 1f (b > 10) {

* Captures all possible 3. a=0;
execution paths. 4. }

e Each node is a basic block: 5. retur (entry)

Nno jumps in or out.
=5+(2+3
* Edges represent control a=>)
ﬂg\évecs)ptlons between £ (b>10)
* Intra-procedural: within a =0
one function. T~

 cf. inter-procedural

ectrical & To;nputer ngineering
%ﬁ‘ UNIVERSITY OF TORONTO

2
%/

Data- vs. control-flow

e Dataflow: tracks abstract values for each of (some subset of) the
variables in a program.

e Control flow: tracks state global to the function in question.

Tools

* Dead-code detection in many compilers (e.g. Java)

* Instrumentation for dynamic analysis before and after decision
points; loop detection

Other application scenarios

Identifying Features in Forks

Shurui Zhou Stefan Stanciulescu Olaf Lef3enich
Carnegie Mellon University IT University of Copenhagen University of Passau
Yingfei Xiong Andrzej Wasowski Christian Késtner

Peking University IT University of Copenhagen Carnegie Mellon University

On GitHub, it is hard to figure out who has

implemented what feature ...

Dependency Graph

File 1: Email.h File 2: Email.c
1| struct ean“ ,1 |+ void printMail (struct email *msg)
2 { \§\ 72 { -
. r
3 char *subyest; L7 3 printf ("SUBJECT:", msg’-;’subject);
4 char *bd(\}\(; N e 4|+ printf ("SIGNED:", msg-»isSigned);
5|+ intisEncrypted; | ’ 5 |+ if (0 == (isEncrypted(nfsg)))
6| L \ \\ \\ e 6 printft”BODY:”, msg -> body);
7| void printMail § struct email *msg); g 7 |+ else /
8 \\ \\ 8 | + prindf (“Encrypted msg.”);
9|+ intisEncrypted (ssruct email *msg);|¢_ 9 } /
10 Y TS~ 10
11|+ intisSigned (struct email *msg); . T ~11 |+ intisEncrypted (struct email *msg)
S o 12 |+ { -
] S 13 |+ return msg->isEncrypted;
3 Dependencies s 14+)
S 15

"""" * DU - Definition-Usage s 16 | + intisSigned (struct email *msg)

------- » CF - Control Flow 17 |+ | -7

........ » H — Hierarchy; A - Adjacency 18 | + return msg->isSigned;

19 |+ } 86

Dependency Graph

File 1: Email.h File 2: Email.c
1| struct email 1 |+ void printMail (struct email *msg)
2| | 2 {
3 char *subject; 3 printf ("SUBJECT:", msg -> subject);
4 char *body; 4 | + printf ("SIGNED:", msg->isSigned);
50+ int isEncrypted; (..-——"5 + if (0 == (isEncrypted(msg)))
6| L l\ ~-==6 printf (“BODY:”, msg -> body);
7| void printMail (struct email *msg); ::» 7|+ else
8 . _ 8|+ printf (“Encrypted msg.”);
9|+ intisEncrypted (struct email *msg); 9 }
10 10
11|+ intisSigned (struct email *msg); 11 | + intisEncrypted (struct email *msg)
12 |+ |
. 13 | + return msg->isEncrypted;
3 Dependencies 14 [+ }
15
"""" * DU - Definition-Usage 16 | + intisSigned (struct email *msg)
-------- * CF - Control Flow 17 [+ A
........ » H - Hierarchy; A - Adjacency 18 |+ return msg->isSigned;
19 [+ } 87

Dependency Graph

File 1: Email.h File 2: Email.c
/”1 struct email 71+ void printMail (struct email *msg)
2| | 27 2 {
'\ S-3 char *subject; / (\ ~- 3 printf ("SUBJECT:", msg -> subject);
\: 4 char *body; \\ T==4% printf ("SIGNED:", msg->isSigned);
B+ int isEncrypted; T 5 |+ if (0 == (isEncrypted(msg)))
6| L 6 printf (“BODY:”, msg -> body);
7| void printMail (struct email *msg); 7 |+ else
8 8 |+ printf (“Encrypted msg.”);
9|+ intisEncrypted (struct email *msg); 9 }
10 10
11|+ intisSigned (struct email *msg); R 7 11 |+ intisEncrypted (struct email *msg)
(12 |+ |
. T=-13 |+ return msg->isEncrypted;
3 Dependencies 14 |+ }
15
"""" * DU - Definition-Usage 16 | + intisSigned (struct email *msg)
------- » CF - Control Flow - 717 |+ |
........ » H - Hierarchy; A - Adjacency (18 |+ return msg->isSigned;
T==19 |+ } 88

Dependency Graph

\
y
(BN

-
N

AN AN AN
\
v' !4! v

I

File 1: Email.h

struct email

{

char *subject;
char *body;
+ int isEncrypted;
2

void printMail (struct email *msg);

+ intisEncrypted (struct email *msg);

+ intisSigned (struct email *msg);

3 Dependencies

""""" * DU - Definition-Usage
-------- * CF - Control Flow
-------- » H — Hierarchy; A - Adjacency

=

/

-

/

AW ANWAWA YW

\
y
[y

\
N

Vi
\/

|
ONOUL AW

= = = e e e e e e e
LCooO~NOODUL S WNEOUW

File 2: Email.c

+ void printMail (struct email *msg)

{

+ if (0 == (isEncrypted(msg)))

+ else
+ printf (“Encrypted msg.”);

}

int isEncrypted (struct email *msg)

{

return msg->isEncrypted;

}

+ + + +

int isSigned (struct email *msg)

{

return msg->isSigned;

+ + + +

}

printf ("SUBJECT:", msg -> subject);
+ printf ("SIGNED:", msg->isSigned);

printf (“BODY:”, msg -> body);

89

Dependency Graph

®
~ ™
fork o0 CP Dependency
diff 1 graph
N /
T
a N
Clustering
features
J
~
~
Labeling
@ labeled, changed code features

A base code - / %0

dCmqueue

September 16, 2021
Volume 19, issue 4

™ PDF

Static Analysis at GitHu

An experience report
Timothy Clem and Patrick Thomson

GitHub, a code-hosting website built atop the Git
hundreds of millions of repositories of code uploa
developers. The Semantic Code team at GitHub bu
technologies that power symbolic code navigation
navigation lets developers click on a named identi
to the definition of that entity, as well as the rever
list all the uses of that identifier within the project

static analysis 1cr 26

Static
Analysis (0)

itHub

TIMOTHY CLEM AND PATRICK THOMSON

AN | itHub, a code-hosting website built atop the
EXPERIENCE Git version-control system, hosts hundreds of
millions of repositories of code uploaded by

REPORT |
more than 65 million developers. The Semantic

| Code team at GitHub builds and operates a suite

. of technologies that power symbolic code navigation on

github.com. Symbolic code navigation lets developers click

=

Principle technigues

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

4 . N
* Dynamic:

* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

_)
[Jta } Wouldn’t it be nice if we could learn about the
reminder... . .
. program’s memory usage as it was running?

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

How can we tackle this problem?
* Testing:

* Inspection:

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Dynamic analysis:
learn about a program’s properties by executing it

* How can we learn about properties that are more interesting than
“did this test pass” (e.g., memory use)?

* Short answer: examine program state throughout/after execution
by gathering additional information.

’fi}i The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

Common dynamic analyses

* Coverage

* Performance

* Memory usage

* Security properties
* Concurrency errors
* Invariant checking
* Fault localization

* Anomaly detection

Collecting execution info

* Instrument at compile time
* Run on a specialized VM

* Instrument or monitor at runtime

Collecting execution info

" Note: some of these methods
require a static pre processing step!

e e.g., valgrind

strument or maitor at

Avoid mixing up static things done to
collect info and the dynamic
analyses that use the info.

e

o profile/monitor

o U

idward S. Rogers Sr. Department
ectrical & Computer Engineering
UNIVERSITY OF TORONTO

Example: Test Coverage

e Statement: Has each statement in the program been executed?
==» « Branch: Has each of each control structure been executed?
* Function: Has each function in the program been called?

* Path: requires that all paths through the Control Flow Graph are covered.

Q: How might tools that compute
test suite coverage work?

?fi},? The Edward S. Rogers Sr. Department

‘ of Electrical & Computer E:
(o

ngineering
%?fg UNIVERSITY OF TORONTO

Instrumentation: a simple example

* One option: instrument the code to track a certain type of data as the
program executes.

* Instrument: add of special code to track a certain type of information as a
program executes.

* Rephrase: insert logging statements (e.g., at compile time).

* What do we want to log/track for branch coverage computation?

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

W 00 N o U1 b W N =
(]

=
N)
[] []

int foobar(a,b) {
if (a > 0) {

if(a > 0) {
if (b > 0)
return 1;

}

return 0;

Branch #1

(entry)

if (a > 0)

Branch #2

Branch #3

if (b > 0)

return 1

return 0

(exit)

100

i \ ®if (

og

log(“branch 1:

false”)

(entry)

a > 0)

\

Bl 0 -0

log(“branch 2:

log(

false”)

3) if (b > 0)

o

“branch 3:

false")

return 0

(exit)

101

printf(“1:t")

0 O
|
I

é

(entry)

D if (a > 0)
b -=5
a == 10 printf(“1:£")
0 \
T .
2 if (a > 0)

printf(“2:t")

\

3) if (b > 0)

printf(“2:£")

(3) if (b > 0)

return 1

return 1

return 0

(exit)

A\/4

return 0

102

1. int foobar(a,b) { (entry)
2. if (a > 0) {
3. b -= 5; ® if (a > 0)
4. a -= 10; printf(“1:t")
>5. t v printf(“1:£")
6. if(a > 0) { b -=25
a -= 10
7. if (b > 0)
8. return 1;) if (a > 0)
9. } :
printf(“2:t")
10. return O0;
11.} (3) if (b > 0) printf(“2:£")
printf(“3:t") printf(“3:£")
return 1 return 0

—_— =

(exit)

103

1.
2
3
4.
5
6
7
8

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.}

int foobar(a,b) {

if (a > 0) {
printf(“1l:t"”);
b -=5;
a -= 10;
} else {
printf(“1:£");
}
if(a > 0) {
printf(“2:t");
if (b > 0) {
printf(“3:t");
return 1;
} else {
printf(“3:£");
}
} else {
printf(“2:£");
}

return 0;

(entry)

(1) if (a > 0)
printf(“1l:t")
! printf(“1:£")
b -= 5 :
a -= 10
) if (a > 0)
printf(“2:t")
() if (b > 0) printf(“2:£")
printf(“3:t") printf(“3:£")
return 1 return 0

(exit)

104

1.intffoobar(()a,b) { ® TeSt cases: (0,0), (1’0)’ (11’0)’ (11,6)
2. 1 >
3 pijntf(,)llft "y e foobar(0,0): “1:f 2:f”
4. b -= 5; e foobar(1,0): “1:t 2:f”
2- } ° 107 » foobar(11,0): “1:t 2:t 3:f”
. else
7 printf(“1:f); e foobar(11,6): “1:t 2:t3:t “
8. }
9. if(a > 0) {

0. printf(“2:t "); Assuming we saved how many branches

(b >0) Ao were in this method when we
12. printf(“3:t "); . .

13. return 1 instrumented it, we could now process
14. } else { these logs to compute branch coverage.
15. printf(“3:£f ");

16. }

17. } else {

18. printf(“2:£ ”);

19. }

20. return 0;
21.}

Limitation: Dynamic analysis

* Cost

Performance overhead for recording
* Acceptable for use in testing?
* Acceptable for use in production?

Costs

Performance overhead for recording
* Acceptable for use in testing?
* Acceptable for use in production?

cal & Computer Engineering

OF TORONTO

@ ectri
1%4 UNIVERSITY

Very input dependent

* Good if you have lots of tests!

* Can also use logs from live software runs that include actual user
interactions (sometimes, see next slides).

 Or: specific inputs that replicate specific defect scenarios (like
memory leaks).

Too much data

* Logging events in large and/or long-running programs (even for just
one property!) can result in HUGE amounts of data.

* How do you process it?
e Common strategy: sampling

Lifecycle

* During QA
* Instrument code for tests
* Let it run on all regression tests
 Store output as part of the regression

e During Production
* Only works for web apps

* |Instrument a few of the servers

e Use them to gather data

 Statistical analysis, similar to seeding defects in code reviews
* |Instrument all of the servers

e Use them to protect data

Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

%;g« UNIVERSITY OF TORONTO

Summary

* Dynamic analysis: selectively record data at runtime
e Data collection through instrumentation
* Integrated tools exist (e.g., profilers)

* Analyzes only concrete executions, runtime overhead

al & Computer Engineering

ectric
% UNIVERSITY

OF TORONTO

