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Quantum modelling of charge distribution in single and
multiple heterojunction modfets}

SORIN VOINIGESCUt

A quantum model is derived and implemented for the detailed investigation of
high-speed and high-frequency quantum devices. For the first time the electron
wave-functions and depth profiles are computed for single- and multiple-quantum
well MODFETs. The charge distribution in the channel(s) reveals multiple local
maxima in agreement with experimental data. The influence of bias conditions and
device parameters is studied at room- and liquid nitrogen temperatures. Finally,
the limits of classical approaches using Fermi-Dirac statistics, or analytic formula-
tions, are discussed. The latter is found to be conducive to a reduced spreading of
the electron profile in the channel, with direct influence on the value of the gate
capacitance.

1. Introduction

The last years have marked an ever-increasing interest in heterojunction devices
as most suited applicants for very high speed logic (VHS) and monolithic-
microwave (MM) integrated circuits. Two of the most versatile and promising
heterostructure devices are the Heterojunction Bipolar Transistor (HBT) and the
Modulation-Doped Field Effect Transistor (MODFET), the latter also known as the
High Electron Mobility Transistor (HEMT) and the Two-Dimensional Electron
Gas Transistor (TEGFET). Both devices require very accurate control of layer
doping and layer thickness, as well as band geometry engineering. The basic
material used in the fabrication of these devices is the AlGaAs/GaAs system
(Morkog et al. 1978). For room temperature operation (and especially for HBTs) the
InP/InGaAs combination appears more promising due to higher band offsets and
larger electron velocity.

The MODFET is by now a mature device with a variety of designs (Thorne et
al. 1983), including complementary structures (Matsumoto et al. 1985), whose oper-
ation resembles in many respects the behaviour of MOS and MIS field-effect tran-
sistors. In this case, however, the channel electrons (or holes) are confined in a
quasi-triangular or rectangular potential well to form a quantized two-dimensional
gas (2-DEG or 2-DHG). Due to size-quantization the carriers occupy discrete
energy levels in the narrow well. The number of excited (occupied) energy subbands
and their energy values are extremely important for the correct evaluation of the
two-dimensional carrier density and, eventually, for the derivation of the I-V curves
and device parameters. It must be pointed out that, in MODFETs, quantizing
effects and carrier transport appear (to a great extent) along mutually perpendicular
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directions. This allows for the separate analysis of quantum and transport pheno-
mena.

Most previous studies have focussed on the analytical or computer simulations
of carrier transport. Quantum effects have been mainly analytically formulated ( and
included as such in computer simulations). Computer simulations addressing this
topic are very few and refer to simple and idealized structures. Since device fabrica-
tion techniques have reached a high level of refinement, it becomes increasingly
more apparent that the theoretical modelling of MODFETs also requires advanced
sophistication that would facilitate large scale IC production.

Analytical and computer formulations of the electron-gas energies and sheet
density in MODFETs (Schubert and Ploog 1985, Pierret 1985) have only dealt with
the SH device neglecting tunnelling and carrier mass dependence on Al mole frac-
tion and carrier energy (Vinter 1984, Stern and Das Sarma 1984, Yoshida 1986). An
attempt has been made (Ravaioli and Ferry 1986) to apply a complete Monte Carlo
investigation to an SH-MODFET. Although quite evolved, this approach has yet to
include a more realistic model (i.e. other than the conventional analytical one) of the
electron gas.

This paper presents a method for the accurate and very efficient simulation of
the quantum effects in modulation-doped structures with arbitrary band geometry,
which self-consistently solves the Schrodinger and Poisson equations. The approach
applies equally well for n- and p-channel transistors and can be viewed as a starting
point for the investigation of other quantum well devices such as Real-Space-Trans-
fer Oscillators and the newly proposed quantum-base or quantum-emitter tran-
sistors (Chang et al. 1986).

The first section resumes the basics of quantum device physics and recasts the
Schrodinger and Poisson equations in a form that includes energy-dependent mass
effects, as well as impurity deionization via shallow and deep traps. Next, the mathe-
matical formalism, based on a finite difference scheme, is developed. The final sec-
tions deal with results obtained through computer simulation of single and multiple
heterojunction FET’s, with an emphasis on electron wave-function profiles and
quantum coupling in multiple channel devices.

2. Quantum physics of modulation-doped structures

In a conventional MODFET structure, the electron moves in an effective poten-
tial energy profile shown in Fig. 1 and described in eqn. (1).

V(z) = —qu(z) + Eo — X (2) + V(2) + Viul2) (1)

where u(z) is the electrostatic potential, X (z) is the position-dependent electron
affinity, V,(z) is the local exchange correlation potential energy and E, is the
vacuum level potential energy (usually set at 0 eV).

In the case of an abrupt Al Ga, _,As/GaAs heterojunction, expressions for the
image potential energy V;,(z) and the local exchange correlation potential are avail-
able in the literature (Stern and Das Sarma 1984).

The wave function y(z) of an electron in subband i is given by a Schrédinger
equation of the BenDaniel-Duke form in which V(z) is derived from eqn. (1) (Stern
and Das Sarma, 1984, Vinter 1984).

—h*/2 dfdz[1/m(2) dy(2)/dz] + V(W (2) = E¥{2) @)
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Figure 1. Conduction band outlines at various bias voltages in a conventional SH-
MODFET.

and which must be solved in conjunction with Poisson’s equation for the electro-
static potential

d/dz[K, K(z) du(z)/dz] = q.Z N:1¥(2)|* — Ro(2) 3
where
N; = mo(E; — V(2)Kg T/(wh?) In [1 + exp (Ex — E)/(K5 T)] @

is the position dependent 2-DEG density per electron energy and m,, describes the
energy-dependent carrier mass in the channel;

Ro(z) = q[Np(2) — Na(2) — ng(z)] 4
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represents the three-dimensional charge density and

ng(z) = 2(m) " 2N (2)F 1 2([Ern(z) — EL2)]/(Kp T)) (6)
is the three-dimensional free electron bulk charge. The ionized donor concentration
in AlGaAs can be computed from Lee et al. 1983, Ponse et al. 1985:

N3 (2) = sNp(2)/(1 + 2 exp [—(Ec — Egn — Epan)/(Ks T)])
+ (1 = Np(2)/(1 + 2 exp [—(Ec — Egy — Epd/(Ky T))  (7)

in which Ep, (40-50meV) and Ep, (0-4-0-6¢V) are the energy levels of the shallow
and deep traps relative to the bottom of the conduction band, respectively, and s
describes the proportion of shallow and deep traps in the overall impurity concen-
tration.

The average electron gas sheet concentration in the quantum well is given by:

no= 3 f N{2)|Y2)|* dz ®)

i=0 JZim
(Z,,, and L are the positions of the heterojunction and substrate, respectively).

It should be underlined that a strong coupling exists between the Schrodinger
and Poisson equations. First, the right-hand side of eqn. (3) depends on the wave
functions ¥, through N;. Also, the wave functions are linked to the potential profile
u(z) due to the presence of V(z) (actually the bottom of the conduction band) in the
Schrodinger equation. The self-consistency is further enhanced if the energy-
dependent mass replaces the effective mass model (as is the case of this paper).

The expressions presented above can be applied to solve the semiconductor
equations at equilibrium in the z-direction, defined as the direction perpendicular to
the interfaces. Since the size quantization acts only along this axis, and as the
material parameters in eqns. (2) and (3) (m and K) are dependent on z alone, a
two-dimensional analysis (along z and y axes) can be performed by solving the
z-axis Schrodinger equation at each y location (to obtain the eigenvalues E(y) and
wave function surfaces ¥(y, z) and the y-z Poisson equation with a conventional
two-dimensional solver.

Because the two-dimensional analysis is a repetitive replica of the one-
dimensional case, a simplified one-dimensional procedure will be considered further
which enables a thorough investigation of the quantum-mechanical effects in a
single- and multiple-quantum-well MODFETSs. The latter have been given little
attention in the literature and it is mainly the z-direction quantum modelling that
deviates from the single heterojunction device.

3. Finite difference scheme

To simplify the computer simulation procedure and to avoid overflow and/or
underflow, all equations have been normalized. The normalizing factors are listed in
Table 1. They are similar to those usually employed in classical semiconductor
simulations. The only difference rests with the device coordinates and carrier-density
normalizing factors, which have been modified to better scale the submicron dimen-
sions of MODFET structures and to recast the Schrodinger equation in a simple
format.

The formulae describing the material parameters of Al,Ga,_,As have been
taken from Kawai et al. 1984 and updated where necessary (Heiblum et al. 1985,
Weiler and Ayasli 1984).
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Parameter to

(expression and value

normalize Normalization factor for GaAs)
X, ¥,z Lp = h/(2m K, T)'? 4714
u V.=KyzT/q 0-02584 V
E, E E,=KyT 414E-211]

v, ¥, = 1/L}? 1457-1cm ™12
Np, a>Np n, = KoKV /(qL2) 8412E17cm 3
N, ng, N; ng =n,Lp 3-962E11 cm 2

D,, D, D, 1cm?/s
t t,= L%/D, 2:2184RE-13s
Jor Jous J J,= —qDn/Ly 2-86E6 A/cm?
R, G U U,= D,n/L} 3-79E30s " !cm 3
Hos By u, = D/JV, 38-699 cm?/Vs
v,, U, v, = D/Lp 2-123E6cm/s
Ay, Ay a = 1/Lp 2-123E6cm !
Area A =L} 2:2184E-13cm?
Impedance Z, = V/(qD,n, Lp) 4-07E6Q

Table 1. Normalization factors used in computer simulation.

Ec = 0-65[1247x + 1-147(x — 0.45)%]
Ey = 0-35[1-247x + 1-147(x — 0-45)%]
N, = 2-508E19(T/300)%%(0-067 + 0-083x)*(cm~3)
Ny, = 2-508E19(7/300)>*[(0-068 + 0-192x)*? + (0-5)*%] (cm ~3)
¢ = 0-85 + 0-62x
K =129 —-29x
my, = (0-48 + 0-31x)m,
m, = m&*As 4 0-083xm,
For GaAs the following expressions have been employed.
my(E) = (0-0665 + 0-0436E + 0-0236E? — 0:147E%)m,
E/T)=1-519 — 5-405E — 4T?*/(204 + T)
(all energies are in eV).

Throughout this section, the parameters dependent on the Al mole fraction x,
will be normalized to those of GaAs and noted with the “*’ superscript (for example,
m(2) = m(z)/m3*).

With these observations, the initial equations are recast in normalized form (the
symbols of the original variables have been retained).

V=u+Ey—X.+V,.+ Vi (1a)

VA/mEVy) +(E—Vi; =0 2a)

V(K*Vu) = 3 N;|y;1* — Ry (Ba
i=0

Applying the finite difference scheme in the one-dimensional case, the following
systems of discrete linear equations are obtained.
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by W—1+ajy;+by; ;=0 9)
bj_yuj—y + aju; + bjuyy = (hy + hj_1)ncu; — Roj) (10)
wherej=1,...,N — 1;(N + 1is the number of meshpoints),
h; = z;,, — z; (local mesh-step),
a; = (E — V)}h; + hj_,) — (1/m} — 1/m¥, )/h; — (m}f + Vmf_)/h;_,,
b; = (1/m¥ + 1/m¥, )/h, (for eqn. (9)) and
a;= —[(K¥ + K¥.)/h; + (K¥ + K¥_1)/h; ],
b; = (K¥ + K}, )/h; (for eqn. (10))

y; and u; are sampled values of Y and u, respectively, at meshpoint j, while ncy;
— Ry; is the sampled right-hand side of eqn. (3).

Solving eqn. (10) poses no problems as it has been thoroughly treated in the
literature. Equation (9) represents a homogeneous system of N — 1 equations with
N + 1 unknowns. Two more equations are added by imposing the continuity of the
wave-function and its derivative at the boundaries (z, = 0 and zy = L) (Messiah
1970). The matrix of this system is tridiagonal and symmetric and its determinant
(Dy) must be nil so that non-zero solutions can be found.

a by 0 0 0 O 0 0 0 0
by a. by 0 0 O 0 0 0 0
0 b, a, b 0 O 0 0 0 0
Dy=10 0 b, a3 by O 0 0 0 0 |=0 (1)
0 0 0 0 0 0 crr 0 bN—-Z ay -1 bn—l
O 0 0 0 0 0 -+ 0 0 by_1 ax
where
ao = —(1 + hoBo)bo; ay=—(1 + hy_1By)by 4
and
By = [m§(Vo — EN]'?; By = [mi(Vy — E)]'?
Dy can be computed using the recursive scheme
D_y=1; Dgy=ay; Dy=a Dy, —bi_ Dy, (12)

Relation (11) represents a nonlinear equation in E whose zeros are the energy
eigenvalues E;. To solve it, a Newton-type algorithm has been employed. The elec-
tron wave-function is fully determined by imposing the normalizing condition

N
Ty =1 (13)
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A similar treatment can be applied to the discretized Poisson eqn. (10) to obtain
a nonhomogeneous system of linear equations in which the unknowns are the cor-
rection potentials Auf** = u} ™! — uf (superscripts refer to iteration number).
b Au;_, + A;Au; + b;Au;,, = D; (104a)
A;j=a;— [Np/(1 + 0-5exp (+Ec; — Ep; — Ep)) + dngj/duj](h; + h;_,)
Dj=(h;+ h;j_ )ncu; — Roj) — bj_u;j—y — a;u; — bjujy,y
j=1,2..,N—1

A; contains information regarding the derivatives of the free electron bulk charge np
and of the ionized impurity profile in the case of shallow traps (deep traps are
included in a similar manner). This informations speeds up convergence. Also, both
A; and D; express the self-consistency with the Schrodinger equation due to the
presence of E — V;in a;and ncy;in D;, respectively.

The potential is determined by solving eqn. (10a) with the proper boundary
conditions:

EO — XSaAs + ESaAs/z
up = Vg — ¢p + Ey(0)/2
Auy=0; duy/dz=0

Because in the normal range of gate bias the gate currents are very low (Ponse,
Masselink and Morkog 1985), the quasi-Fermi level Eg is assumed to be constant
throughout the simulation region. This is a minor and habitual approximation
(Vinter 1984, Stern and Das Sarma 1984) which prevents the inclusion of the addi-
tional current balance equation.

Based on the above algorithms, the simulation starts by iteratively solving the
Poisson equation until a reasonable potential change between two successive iter-
ations is achieved (usually below 1 mV). Quantum effects are neglected at this stage
and Fermi statistics are assumed. We use a nonuniform discretization mesh and an
analytic initial solution. The computational process continues with the alternate
iterative solving of the Schrodinger and Poisson equations until the desired preci-
sion is gained. After each Poisson iteration, the electric potential u; is updated using
a damping coefficient to improve convergence: ™! = u* + rAu**!. The damping
coefficient depends on device temperature and takes values between 0-1 and 1 (at
low temperatures small r values are required). The Schrédinger equation is solved
with floating left- and right-hand boundaries (in a device zone surrounding the het-
erointerface, that expands as the two-dimensional electron-gas energies become
larger). First, the eigen-energies are obtained in a Newton-loop from eqn. (11). The
electron wave functions and the corresponding subband electron populations are
then computed throughout the well region. Based on the physical properties of the
solution (Messiah 1970), the WKB approximation is used to derive wave function
and clectron profiles in the barrier layers, away from the well. This procedure
severely shrinks computation time in the Schrédinger iteration and allows for the
correct evaluation of tunnelling effects.

More investigation of the wave-function boundary conditions’ influence on
simulation results must be performed since different sets of boundary conditions
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have been employed by other authors. For instance, Yoshida (1986) assumes
vanishing wave-functions at fixed gate and substrate boundaries, while Laux and
Stern (1986) consider, more in line with present work and physical consistency,
that the wave functions must be conserved at these boundaries. The next paragraph
elaborates on this aspect.

The most time-consuming part of the computational scheme is the Newton-loop,
which solves the transcendental eigenvalue eqn. (11). The problem lies with separa-
tion of the intervals containing each eigenvalue and it becomes extremely compli-
cated in multiple channel devices. A study of the solution behaviour has indicated
that, in all cases, the position of the energy eigenvalues, relative to the minimum of
the conduction band energy in the well, changes only slightly from one iteration to
the other, while the whole frame of the energy profile of the quantum well shifts
upwards or downwards. Consequently, the eigenvalue intervals can be fast separat-
ed using information from the previous iteration concerning energy eigenvalues.

The computation time with this algorithm is no more than twice that required
for the analysis of unipolar heterojunction devices under similar conditions
(comparable mesh, Gauss solver for linear systems, etc.) while the store-core remains
roughly the same even with the introduction of a third equation for carrier contin-
uity. As a conseqgence, this algorithm can be efficiently extended for the two-
dimensional quantum simulation of quantum well devices. The one-dimensional
program has been implemented in Turbo-Pascal and a shortened pseudo-code
version of the algorithm is listed below.

InitialProblemDefinition

WHILE max(Au;) > 1 meV DO

BEGIN
EvaluatePoissonCoefficients
SolvePoissonEquation
uj=u; + rAu;

END

1:WHILE max(Au;) > 0-01 meV DO
BEGIN

EvaluateSchrodingerCoefficients
SeparateEigenvaluelntervals
Determine E;Number:NE
FOR i:=1TO NEDO
BEGIN

NewtonLoopForE;

Compute ¥; ;, N, ;, | ;12
END

NE
Rcyji = Z Ni,j|'/’i,j|2

i=1
EvaluatePoissonCoefficients
SolvePoissonEquation

u:=u; + ry Au;
END

IncrementGateVoltage
GOTO 1.
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Figure 2. Electron wave function and depth profiles in an SH-MODFET at 300°K and
77 °K for various gate voltages. The device has 0-3 Al mole fraction and the thickness
of the AlGaAs region (N, = 10'®cm™3) is 500 A (a normally-ON device) including an
undoped (N, = 10'5cm™3) 50 A spacer layer. The GaAs channel has a thickness of
1500 A and an unintentional doping of 10'3cm™3 (p-type). Electron charge profiles
obtained through quantum and Fermi-Dirac simulations are compared in the bottom

graph.
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Figure 3. 2-DEG profiles computed with the energy-dependent-mass model in an SH-
MODFET identical to the one in Figure 2, except for the 10A undoped spacer. The
eigen-energies, relative to the minimum of the conduction band are listed below.

77°K E,=00618¢V; Ns,= 8428 10" cm™2;
E, =0-0955e¢V; Ns, =0808 10''cm™?

E, = 01079eV; Ns, = 0-151 10! cm~2

300°K E, =0-0624eV; Ns,= 5917 10'' ¢cm™~2;
E, = 0:1070eV; Ns; = 1497 10t ecm~2;

E, =01312eV; Ns, =0632 10" cm™?

E,=01466eV; Ns;=036110'""cm™?

E,=01588¢eV; Ns,=023110"cm™%
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Most of the performed calculations have been carried out with a non-uniform mesh
of 150 to 400 points.

4. Results and discussions

4.1. Behaviour of single-heterojunction FETs

Al Ga, _,As n-channel SH-MODFET structures have been simulated. To keep
in line with more recent experimental results, 65% rather than 85% of the bandgap
difference is assumed to lie in the conduction band at the AlGaAs/GaAs interface.
Lack of reliable material data has prevented the study of devices in other material
systems.

Figures 2 and 3 present one-dimensional computer-analysis electron wave-
function and charge profiles in an SH-MODFET, for various gate voltages, at
300°K and 77 °K. Before interpreting the results, we refer to the literature for an
evaluation of their reliability by comparison with experimental and theoretical data
(Schubert and Ploog 1985, Hikosaka et al. 1986, Pospieszalski et al. 1986, Taka-
kuwa et al. 1986).

Since actual subband energies might vary from case to case in theoretical calcu-
lations (depending on the choice of potential energy reference), their mutual spacing
or separation from the channel imref, which is independent of the energy reference,
will be considered further. Comparison with other self-consistent simulations is
slightly hampered by the lack of real-device results. Most of the calculations per-
formed in literature concern idealized structures, particularly the AlGaAs/GaAs
interface, and are not related to design-oriented parameters, such as gate voltage
and donor doping (Stern and Das Sarma 1984). However, the variation of subband
spacings as a function of the 2-DEG concentration is an intrinsic characteristic of
an AlGaAs/GaAs heterojunction (linked to the band offset) and does not directly
relate to gate voltage and donor doping in the AlGaAs barrier. (Actually, it is the
2-DEG concentration that depends on bias and ionized donors.) If this variation is
compared to that of Stern and Das Sarma, computed in the effective mass approx-
imation, agreement within 1% is achieved both at 77°K and 300°K. Also, despite
the fact that the present work systematically predicts somewhat lower subband
spacing (more in line with experimental data), our results on the device simulated by
Yoshida (1986) with 85% of the bandgap offset residing in the conduction-band,
give the same carrier distribution among the energy subbands. The only difference
stems from the different carrier profile along the z-axis. One cause might rest with
the choice of fixed-boundary conditions for the Schrodinger equation which could
lead to over-elongated wave-functions, smoothing-out the electron profile. Another
is related to the 0-volt substrate boundary condition in the Poisson equation that
raises the level of the conduction band in GaAs and slightly increases subband
spacing and the number of higher order eigenvalues.

Experimental data refer mostly to the overall carrier density in the channel. In
the case of an SH-MODFET with a 4904, 1.5 x 10'®cm 3 doped layer and 10A
spacer (Takakuwa et al. 1986), the measured concentration, both at 77°K and
300°K, is 1-2 x 10'2cm 2. With 0-3V gate bias at liquid nitrogen temperatures and
0-5V at room temperature, the computations indicate 1-18 x 10!2 and
1-21 x 10'2cm ™2, respectively.

By examination of Figs. 2 and 3 and Table 2, it is noticed that, although the
overall sheet charge is roughly the same, only 64% of the electron population
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N, N, N, N, N,
T E,—E, E,E,
(°K) (meV) (meV) (10" cm™?)
1)
300 38.45 22:39 415 1117 0-516  0-285 68
1)
77 2647 1331 66 092 0153 0-057 77
2)
77 3498 13-43 91 0-99 0165 0057 104
3)
77 2584 — 4875 0435 — — 531
4)
77 2584 — 4865  0-434 — — 53
4) 5)
77 262 — — — — — 51
6)
77 9791 — 13-41 1-03E-3 — — 13-41
6)
300 99-39 — 1096 0533 — — 115
7)
300 9923 — 1159 05975 — — 12:17
8)
300 99-68 — 9955  0-4417 — — 10-397
9)
300 10057 — 8416 03196 — — 8735

1) SH-MODFET: Ny, = 10'8c¢m~%; Np, = 10'%cm ™3, N, = 10 cm ~3; Z;,, = 500A; S0A

spacer; V; =0V.

2) Same as 1) but no spacer.

3) Same as 1) with 100 A spacer.

4) Same as 3) but N, = 10'*cm 3.

5) Stern and Das Sarma 1984.

6) DH-MODFET: Np, = 10!¥¢cm™%; Np,=10cm™3; N, =10"%cm™3, Np3=35
107 cm,”3; Z,,, = 500 A; 50 A spacers; 1001()channe]; Vg=0V.

7) Same as 5) but V5 =0-3V.

8) Same as 5) but Vg = —0-3V:

9) Same as S)but V;= —0-6V.

To facilitate comparison with other theoretical works, all simulated results are obtained
within the effective mass approximation.

Table 2. Subband energies and sheet charge concentrations in MODFETs.

occupies the lowest energy level at 300 °K, as compared to 83% at 77 °K. Also, for
the device in Fig. 2, at 300°K and zero gate voltage, all subband energies are
located above the channel imref (even at a positive gate bias of 0-7V the lowest
subband is slightly above the Fermi level). The higher electron energies contribute
to the poor mobility values at this temperature. At 77 °K the first subband is well
below the channel imref causing more than 80% of the carriers to travel at low
energy levels and higher mobilities. This situation is mainly due to the large differ-
ence in the degree of AlGaAs impurity ionization at low and high temperatures,
respectively, which greatly alters the conduction band profile in the channel and
bulk GaAs. Energy spacing is larger at 300 °K because of the larger value of the
conduction band energy at the substrate boundary. This also influences the degree
of electron wave-function spreading, which tends to be slightly more pronounced
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Figure 4. Electron profiles in a reverse biased DH-MODFET at room temperature. The
device is identical to the one in Table 2, except for the 0-24 Al mole fraction and the
200 A-well. The eigen-energies, relative to the minimum of the conduction band, are
listed below. Energy-dependent mass was considered in the channel.
E,=0-0537eV; Nsy=3-64210' cm™?;
E, =00925eV; Ns, =0981 10''cm™2;
E, =0-1415eV; Ns, =0-16110'' cm™2

with higher 77 °K subbands and is related to increased tunnelling in bulk GaAs as
the right-hand barrier height lowers. A similar explanation stands for the wave-
function spreading as the gate voltage shifts to lower and negative values. The
spreading mainly affects the rightmost lobe of the electron wave-function associated
to each energy eigenvalue. This lobe presents larger heights and widths than those
to its left, suggesting that most of the subband population is concentrated away
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from the heterointerface (Fig. 3). Hence the relatively good estimations obtained
with Schubert and Ploog’s theory (1985), as compared to other analytic approx-
imations of the electron gas. Their assumption that higher subband electrons are
located at the z-coordinate where the conduction band energy and the subband
energy are equal (and the subsequent influence on conduction band profile) is an
excellent substitute for the real case.

Figure 2 also compares the electron charge distributions in the channel,
obtained through classical (Fermi statistics) and quantum simulations. It is easily
noticed that the latter approach gives rise to a typically quantum electron distribu-
tion with local maxima corresponding to higher subbands. At liquid nitrogen tem-
perature, the carrier profile in the channel tends to be sharp, with steep slopes on
either side (see Fig. 3). At room temperature, the number of local maxima is higher
leading to a wider distibution at lower electron concentrations (in bulk GaAs). A
similar carrier profile (with local maxima) was measured by the C-V method in
[>-HEMTs (Kinoshita et al. 1986). To the author’s knowledge, the only other theo-
retically estimated carrier profile in the channel was given by Yoshida (1986) and it
does not reveal any local maxima. Although it leads to practically the same overall
two-dimensional charge density in the channel, the Fermi-Dirac approach (Fig. 2) is
seen to overestimate interface charge and to underestimate the center of mass of the
electron distribution. The latter directly affects the value of the gate capacitance.
The error becomes larger at lower temperatures.

As a general rule, the electron distribution in the channel is more scattered at
low bias voltages and 2-DEG concentrations (Fig. 2) and gets thinner as the gate
voltage and 2-DEG concentration increase (Fig. 3), while the subband spacings
become larger.

4.2. Behaviour of double- and multiple-heterojunction FETs

As expected, the double-heterojunction device (Figs. 4 and 5) exhibits an
enhancement of the electron concentration under similar bias conditions. The higher
carrier concentration is caused by the increased donor charge, available in the left
and right barrier layers, and hardly at all by the rectangular shape of the well, which
lowers the first subband energy value and increases subband spacing. Remarkably,
for the DH-device in Table 2, the subband separation E; — E, is pinned at 100 meV,
even though the gate bias varies from —0.6 to 0-3V. As a consequence, in the
100 A-well DH-MODFET, more than 95% of the electron population resides on the
lowest subband for a wide range of bias voltages. Since the lowest subband is closer
to the conduction-band edge in the DH than in the SH device, mobilities should be
higher in the first structure at room temperature. This phenomenon can be inhibited
by the larger proportion of electrons that tunnel in the adjacent AlGaAs barrier
layers and by the lower layer-quality of fabricated DH-FETs. Still, mobilities as
high as 1-2 x 10°cm?/Vs have been measured at 77°K in a 100 A-well transistor,
confirming this judgement (Hikosaka et al. 1986).

The reduced bias and temperature dependence of the 2-DEG eigen-energies in
the well is a consequence of the fact that the quantum well is defined by the band
offset (less sensitive to temperature alterations and approximately insensitive to
doping and bias if the channel is open). The situation departs from this ideal case if
the quantum channel is wide or reverse biased (Figs. 4 and 5). In this device nearly
33% of the channel charge occupies the second subband and a third level has
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Figure 5. Electron profiles for the zero-biased DH-MODFET of Figure 4 at room tem-
perature. Carriers in the barrier regions have also been plotted. The eigen-energies,
relative to the minimum of the conduction band, are listed below:

Eo = 0-0447eV; Nso =718 10''cm™2;
E, =0.0686eV; Ns, =3-8110''cm™?;
E,=01189eV; Ns, =070 10''cm™2

emerged. Still, the overall charge is little changed because, as is the case with all
simulated devices, SH-, DH- or MH-MODFETs, the sum total of the electron
charge in the channel is set by the gate voltage and ionized donor concentration in
the barrier layers, and not by band profiles. The latter adjust themselves, relative to
the imref, according to the former. This explains why the average overall 2-DEG
charge was little affected by the effective mass approximation, despite the altered
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distribution among subbands. Details of how this approximation influences the
accuracy of SH- and DH-MODFET simulations will be addressed elsewhere. It is
only mentioned here that the error can be as high as 8% with higher order sub-
bands in wide channel DH devices.

The investigation of DH transistors can be used in the understanding of multiple
channel (also known as multiple quantum well) devices (Saunier and Lee 1986). In
these structures, a narrow barrier layer separating adjacent channels could lead to
subband splitting due to the quantum coupling of the two wells. Figure 6 shows a
schematic representation of this phenomenon. The analysis was performed analyti-
cally and numerically on an idealized band structure, neglecting the self-consistent
influence of channel charge on conduction band profiles. In comparison with the
100 A single-well structure, this structure exhibits two closely spaced (1 meV) lower
subbands and two higher (more loosely spaced 6-7 meV) subbands. The energy
spacing between these two sets of subbands is approximately equal to the subband
separation in the single well. The coupling reduces (as does the splitting) with widen-
ing barrier layers. When the barrier layer becomes large enough, roughly more than
100 A in this case, the two channels are completely de-coupled. In closely-spaced
channel devices, as can be gathered from Figs. 5 and 6, a large proportion of elec-

- — — —
1 1
1 0 1 1 0
0 0 0
L, =94 A Ly =47 A
Ly =94 A
Eg = 260 meV
v,
I"- N I’-\
N / \
Ey =140 meV AN v AE; = 65 meV
S \‘_’4‘
N 2N
Ey = 38 meV AEg =1 meV

Figure 6. Subbands and wave functions in an idealized quadruple heterojunction structure
with quantum channel coupling.
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trons are located in the low mobility/low velocity AlGaAs barrier, deteriorating
transistor performance. Even with large barrier layers between adjacent channels,
electron-wave-function coupling will remain a problem because of the emergence of
a middle channel due to band bending. However, in narrow channels, this phenome-
non will affect mainly the second and higher subbands, which often have a low
occupancy and the effect on the overall electron concentration will be relatively
small. From the wave-function profiles, it is clear that a two-channel MODFET
would accommodate almost twice as many free carriers as does the single-channel
device of similar well geometry (triangular or rectangular) leading to increased
power capability. Compared to the corresponding SH device, the increase is not
four-fold because quite a few carriers are wasted in the middle barrier layer (Figs. 5
and 6).

Despite these encouraging results, renewed efforts are required to clarify the
minor, though systematic, conflict which appears between calculated and measured
overall 2-DEG charge, in all investigated structures. This is a problem other investi-
gators have not raised or chose to ignore, although examination of their main
results confirms its presence in SH-MODFETs (Vinter 1984, Stern and Das Sarma
1984, Ponse et al. 1985). Irrespective of the theoretical approach (quantum or
Fermi-Dirac, effective or energy-dependent mass), the computed electron concentra-
tion in the channel is higher at 77°K than at 300°K for identical bias conditions
(contrary to existing experimental data which, however, are rather unclear about
actual bias voltages). The constant Fermi level, assumed in the present model, is a
reasonable and almost universally accepted approximation for MODFET structures
operating up to moderate forward gate bias and cannot be seriously blamed for this
anomaly, least of all at 0V (Ponse et al. 1985). A study of the ionized donor charge,
as described by eqn. (7), has indicated that, even with 100% deep traps (s = 0), the
integral of the ionized donor charge over the AlGaAs layer is larger at 77 °’K, while
that of the total free charge (barrier and channel) is smaller than at 300 °K. It is
highly probable that the measured 2-DEG charge includes the electrons in the
AlGaAs region, thus explaining the aforementioned discrepancy. All investigated
structures have revealed much lower electron concentrations in the barrier at 77 °K,
compensation of the donor charge requiring more electrons in the channel.

5. Conclusion

The quantum model has been successfully used to derive the accurate electron-
gas charge and wave-function profiles for various bias conditions in single and
multiple heterojunction FETs.

Computer results are in good agreement with experimental data. In narrow-
channel, forward-biased DH-MODFETs the analytic rectangular-well-approach
compares favourably with quantum computer analyses. However, at reverse bias
and devices with channels wider than 100 A, the bottom of the conduction band in
the well is strongly distorted from the rectangular one and the analytic solution yields
poor results. Computations have revealed that the width of the rectangular channel
hardly influences the overall 2-DEG charge if the doping profile in the device is not
altered. Consequently, narrow channels should be preferred because most electrons
will reside on the ground level at high velocities and subband spacing will be large.
In MH-MODFETs this will also reduce quantum coupling of adjacent channels.
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In all studied cases, the electron distribution in the channel presents an absolute
maximum (correlated with the wave-function maximum on the lowest subband) fol-
lowed by decreasing local kinks corresponding to higher subbands. Such electron
profiles have been measured in I12>-HEMTs but not noticed in self-consistent calcu-
lations performed by other authors. The local maxima are more pronounced in
devices with fewer subbands (DH-MODFETs and SH-MODFETs at 77 °K). The
quantum charge profile in the channel will directly reflect on the computed value of
the gate capacitance. The classical Fermi-Dirac approach, which leads to reduced
spreading of the electron profiles at the heterojunction interface in SH-MODFETs,
will overestimte the capacitance. However, at 300 °K in SH-MODFETs, the error is
acceptable.
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