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Abstract— A D-band 1/Q RF-DAC featuring two 6-bit
DAC elements driven in quadrature, each with its own
on-die antenna, and a total effective isotropic radiated
power (EIRP) of 13.2 dBm, is demonstrated in a 45-nm
SOI-CMOS technology. The carrier signal is first amplified by the
30-dB gain LO path and is directly modulated by the 12 baseband
bit streams, without linear upconversion or power amplification.
QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM single-
carrier (SC) and OFDM constellations are formed in free space
and measured above the die at data rates up to 12 Gb/s and at dis-
tances over 15 cm. The large-signal bandwidth—from the carrier
input pad to the output of the transmitter above the antennas—
is 130-142 GHz and was obtained by sweeping the frequency
of the D-band external carrier, modulating it on die at
0.4 Gb/s using 16-QAM format, and measuring the error vector
magnitude (EVM) with an instrumentation receiver. The highest
data rate of 12 Gb/s was measured for QPSK SC modulation
with a corresponding EVM of —12.2 dB. Lower maximum
data rates of 7 Gb/s with —14.3-dB EVM and 3.6 Gb/s with
—19-dB EVM were observed for 16-QAM and 64-QAM formats,
respectively. Spectral shaping and OFDM transmission were
also demonstrated at up to 2.5 Gb/s. The prototype consumes a
total of 1.25 W, with an energy efficiency of 104 pJ/b.

Index Terms— CMOS, digital transmitter, direct modulation,
mm-wave, OFDM, QAM, RF-DAC, SOI.

I. INTRODUCTION
ULLY digital mm-wave transmitters based on RF-DACs
have been proposed in recent years as the potential
solutions to improve the energy efficiency and to increase
the data rate of mm-wave wireless terminals, because they
do not require broadband linear upconversion and power
amplifier (PA) back-off. Typically, the RF-DAC output stage
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Fig. 1. Free-space constellation formation concept.

operates in deep saturation at maximum efficiency. Until
now, the mm-wave implementations of digital transmitters
have been limited to simpler modulation formats, such as
QPSK [1]-[6], 4-PAM [7], 8-QAM [3], 9-QAM [6], and
16-QAM [1], [2], [5], due to the difficulty of designing high
modulation-depth digital modulators at mm-wave frequencies.

In this paper, we expand on the highest frequency and
the highest modulation order digital mm-wave transmitter
introduced in [8]. The circuit was implemented in a 45-nm
SOI-CMOS process and features a new digital I/Q RF-
DAC architecture with free-space quadrature summation of
independently amplitude- and phase-modulated carrier signals
(Fig. 1). The key benefit of spatial combining is that the
transmitter output power and the link budget gain 4-5 dB
from the array factor and from averting the losses of on-
chip passive power combiners. The transmitter also features
transistor gate segmentation in the RF power-DAC output
stage, which, for the first time, allows for the demonstration
of 64-QAM single-carrier (SC) and OFDM transmission at D-
band without upconversion. The carrier frequency selected in
this paper is based on the requirements for Phase III of the
DARPA ELASTX program [9].

This RF-DAC is different from our previous work at
W-band [6], [10] and 45 GHz [11], which use a switched-
PA output stage without transistor segmentation and would
require >14 antenna elements to synthesize 64-QAM signals.
Compared to those RF-DACs, the proposed architecture suffers
from a reduction in the PAE when averaged over all transmit-
ted signal constellations because, unlike a switched-PA or a
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Fig. 2. (a) Spatially distorted 64-QAM constellation as seen by a receiver
located at & = 10° (elevation), ¢ = 45° (azimuth). (b) Simulated EVM for
an OFDM 64-QAM signal as a function of elevation angle. Dashed curves:
beam steering with £40° phase shifts between the I and Q transmit elements.
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digital-PA output stage, the proposed RF-DAC output stage
uses a Gilbert-cell-based amplitude modulator that is always
fully biased, trading off back-off efficiency for the increased
modulation speed. At lower frequencies, where antennas are
bulky and transistors exhibit higher power gain and isolation,
this concept can be implemented by direct on-chip I/Q summa-
tion in the output stage, as recently demonstrated for a multi-
octave 1-32-GHz RF-DAC [12].

In addition to the material covered in [8], this paper presents
a detailed analysis of the impact of modulation depth and beam
steering on system performance, as well as the transistor-level
schematics of all blocks and new measurement results.

II. SYSTEM CONSIDERATIONS
A. Free-Space Constellation Formation

In this paper, free-space constellation formation is used to
avoid the insertion loss and poor isolation of on-die I/Q passive
summation circuits at > 100 GHz and to benefit from the array
factor gain, which increases the maximum transmit power level
beyond what is possible with on-chip power combining. The
isolation between antenna elements, greater than the isolation
of an on-chip power combiner, minimizes the parasitic load
pulling between the in-phase (I) and the quadrature-phase (Q)
RF-DAC elements and reduces the impact of their output
impedance variations.

Despite its benefits, as illustrated in Fig. 1, this [/Q RF-DAC
concept suffers from a deterministic distortion of the trans-
mitted symbols when received at a location away from the
intended direction of transmission. The latter phenomenon
occurs, because the independently modulated I- and Q-carrier
signals add at the desired phase only along a single direc-
tion or plane. It was first reported in [1] and is absent in
traditional phased arrays. Nevertheless, it can be corrected
in an I/Q array by incorporating dedicated phase shifters in
each transmit element. The phase correction is supplementary
to the fixed phase difference introduced by the I/Q hybrid used
to generate the I and Q LO phases.

The deterministic symbol distortion is illustrated in Fig. 2(a)
for a 64-QAM constellation as the receiver is moved by 10°
along the elevation plane (¢ in Fig. 1) away from the desired
location. Fig. 2(b) plots the error vector magnitude (EVM) at
different elevation angles from which a —20-dB information
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Fig. 3. (a) 64-QAM constellation with digital phase correction as seen by
a receiver located at # = 10° (elevation), ¢p = 45° (azimuth). (b) Simulated
EVM for an OFDM 64-QAM signal with digital phase correction as a function
of elevation angle.
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Fig. 4. 64-QAM constellation modulated with (a) ideal 2 x 6-bit 1/Q

transmitter with 15-dB modulation depth and (b) ideal 6 + 6-bit polar
transmitter with 15-dB modulation depth.

beamwidth [1] of +5° along the elevation plane can be
determined. Fig. 2(b) also demonstrates that the information
beamwidth can be readily steered by introducing relative phase
shifts between the I and Q elements. Since the individual I and
Q elements are independently modulated, the spacial distortion
can be corrected if the location of the receiver is known
a priori. Fig. 3(a) illustrates how the digital phase correction
can be applied for a 64-QAM constellation whereas Fig. 3(b)
demonstrates correction for an OFDM 64-QAM signal for
different angles of reception. The EVM degradation that can
be observed in Fig. 3(b) when the receiver is displaced from
the 0° position is a result of quantization noise since a smaller
portion of the total number of symbols can be used.

B. Modulation Depth

An important but often overlooked metric in digital trans-
mitters is the modulation depth, which is defined as the ratio of
maximum to minimum amplitude levels that can be generated
(MD = Vix max/ Vix,min)- A low modulation depth manifests
itself as LO leakage and increased EVM for the low amplitude
symbols. This is illustrated for both the digital I/Q architecture
and the digital polar architecture [13] in Fig. 4, where the
64-QAM signals are modulated with 15 dB of modulation
depth. The modulation depth is especially important at mm-
wave frequencies where most transistors have poor isolation
due to increasing signal leakage through Cgq and Cgs.
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Fig. 5. Simulated EVM as a function of (a) modulation depth and modulation
format and (b) modulation depth and the number of bits. The bits are encoded
as 1’s complement, i.e., 1 sign bit + n — 1 magnitude bits for each I and Q
RF-DAC.

The modulation depth requirements for a digital transmitter
depend on the characteristics of the signals that need to be
generated. Fig. 5(a) illustrates the impact of modulation depth
on the EVM for SC signals as well as for multi-carrier OFDM
signals. The general trend is that the high dynamic range
signals and signals with large peak-to-average power ratios
(PAPRs) require larger modulation depth. This is particularly
relevant for the OFDM signals since they are characterized by
even larger PAPRs.

As shown in Fig. 5(b), the EVM of a digital I/Q transmitter
can either be modulation depth limited or resolution limited.
For OFDM signals, an insufficiently high modulation depth
increases the quantization noise as if the resolution of the I/Q
RF-DAC was too low. The higher quantization noise appears
both as degraded EVM and higher spectral emissions in the
adjacent channels.

Finally, it should be noted that the EVM and the effective
number of bits (ENOB) are related alternative parameters that
characterize the SNR. However, unlike EVM that describes
the modulation accuracy of a signal with a high PAPR, ENOB
characterizes the modulation accuracy of a sinusoid.

C. Two-Stage Modulation Architecture

Unlike the W-band circuit in [14], where the modulation of
the carrier signal was performed in the output stage, in this
paper it is split over two stages—a sign (BPSK) modulator
followed by a single-quadrant amplitude modulator [12], [15].
The advantage of the two-stage modulator architecture is
threefold: 1) it reduces the number of devices that are off in
the output amplitude modulation stage, which in turn reduces
the capacitive losses and improves the PAE; 2) it avoids the
asymmetries introduced by the inductive layout parasitics of
the Gilbert cell since only single-polarity amplitude symbols
need to be generated in the output stage; and 3) it has
smaller footprint and smaller LC delay differences between
transistor segments, allowing for a higher modulation depth.
The BPSK modulator is placed first, because it can operate in
saturation mode, without distortion. By applying the amplitude
modulation in the last stage, the power output stage and all
the preceding circuits can be operated deep into saturation,

LO Amplifier
Q phase adjust

Fig. 6. Block diagram of the 130-142-GHz 1/Q RF power-DAC.
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Fig. 7. Schematic of the lumped transformer-based 1/Q hybrid.

at maximum PAE, with minimal distortion and maximum
modulated carrier bandwidth. Nevertheless, since the output
stage is biased at constant current and has a more complex
topology, its efficiency is lower than that of a switched power
amplifier, even when saturated.

The block diagram of the proposed proof-of-concept
two-element I/Q RF-DAC is shown in Fig. 6. It consists of
two 6-bit RF-DAC elements, each with its own differential
antenna. The external D-band carrier (LO) signal is first split
into quadrature phases by an on-die 90° hybrid and then
amplified by the LO amplifiers in each DAC element. The
twelve independent data bit streams are provided through an
on-chip high-speed 50Q-matched interface which is realized
with the transimpedance amplifiers.

III. CIRCUIT DESIGN
A. LO Distribution

The lumped I/Q hybrid is based on the transformer topol-
ogy shown in Fig. 7, which was first proposed in [16]
at GHz frequencies and was later scaled to the W-band
[14], [17], [18]. Equations (1)—(2) are used to establish the
required coil inductances (L) and coupling factor (k) for the
symmetric transformer [16]. Unlike [16], the lumped mutual
capacitances (Cys) and capacitances to ground (C¢g) are fully
absorbed into the parasitics of the transformer layout. The
transformer layout geometry, coil width, and coil spacing
to the ground plane are adjusted with the help of an EM
simulator [19] to obtain the required parasitic capacitances as
per (3) and (4). A square transformer geometry is preferred
over an octagonal layout to take advantage of charge crowding
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Fig. 8. To-scale 3-D layout view of the 138-GHz I/Q hybrid.
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Fig. 9. Monte Carlo simulation of the 3-¢ variation of (a) phase difference
and (b) amplitude imbalance of the 138-GHz I/Q hybrid.
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A 3-D rendering of the 138-GHz I/Q hybrid is shown
in Fig. 8. The total area of the transformer is 48.5 x 48.5 um?.
The primary/top coil of the transformer (UB layer) is made
narrower than the secondary/bottom coil (UA layer) to com-
pensate for the additional inductance introduced by the vias
needed to contact the bottom coil. The input/output ports of
the hybrid are contacted with grounded coplanar waveguides,
G-CPW, formed in the top Alucap layer, LB, and which are
used to route the LO signals. Monte Carlo simulations with
40 iterations were conducted to predict the impact of process
variation on the amplitude imbalance and phase difference
of the I/Q hybrid across the 115-165-GHz frequency range
and are shown in Fig. 9. When 3-¢ deviations in the metal
and dielectric layer thicknesses are considered, the phase error
and amplitude imbalance remain lower than 0.52° and 1 dB,
respectively.
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B. D-Band LO Amplifier

The schematic of the LO amplifier is reproduced in Fig. 10
and consists of six gain stages. The MOSFETs in the first
stage are sized such that it can be matched to the 50-Q input
line through a transformer, which also performs single-ended
to differential signal conversion. The role of the next three
stages is to provide sufficient amplification and common-mode
rejection without consuming excessive dc power. Fig. 11(a)
reproduces the measured MSG of fully wired n-MOSFETSs and
p-MOSFETs with 780-nm gate finger widths throughout the
D-band. The power gain of both transistors remains higher
than 6 dB up to 170 GHz and is comparable or larger than
the MAG of the best SiGe HBTs in this frequency range [20].
To further maximize the power gain per stage, all the LO
amplifier stages feature differential cascodes biased at a drain
current density of 0.29 mA/um from a 1.1-V supply. The last
two stages are each scaled by a factor of 2 to fully saturate
the BPSK and ASK modulation stages. Transformers are used
for interstage matching, dc biasing, and dc blocking. The
matching networks separating the 10-mA stages also include
a 10-fF capacitor placed in shunt. This capacitor is introduced
to reduce the transformer ratio from two (130:70 pH) to one
(70:70 pH), which is easier to form in the 45-nm SOI-CMOS
back end. Including the insertion loss of the transformers,
each stage provides >4 dB of gain for a total of 26 dB of
small-signal gain [Fig. 12(a)].

Phase tuning is introduced in the LO amplifier by
replacing the 10-fF capacitor of the first stage with a pair of
40 x 0.78 um x 40 nm accumulation-mode MOS varactors.
The simulated phase adjustment as a function of varactor
control voltage is reproduced in Fig. 12(b). A phase
adjustment of £9.5° is possible with this scheme at 138 GHz
with a corresponding small-signal amplitude error of £2 dB.
Similarly as for the I/Q hybrid, some small-signal amplitude
error can be tolerated since the whole transmitter is operated
in deep saturation. Fig. 12(a) reproduces the simulated
large-signal gain of the amplifier at the two extremes of the
phase adjustment range.

C. Direct Sign and Amplitude Modulators

The sign (BPSK) and amplitude (ASK) power modulator
stages, shown in Fig. 13(a) and (b), are implemented with a
common-gate Gilbert cell topology with series stacking. The
modulator topology is termed common-gate since the input
signal is applied directly to the source terminals of the Gilbert
cell quad transistors through a transformer. This arrangement
is selected instead of a Gilbert cell topology with bottom
common-source devices [7], [14] since the quality factor of
the input impedance looking into the source terminals of the
common-gate Gilbert cell is lower at D-band, allowing for a
wider bandwidth inter-stage matching network. The operation
of the modulators is based on digitally modulating their large-
signal transconductance. For the BPSK modulator, only the
sign of the transconductance is modulated

G (bsign) = G (—1)Psien, 5)
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The ASK modulator stage is realized as a single-quadrant
Gilbert cell by adding the common-gate MOSFETs M5 and
Mg, which provide a fixed transconductance, in parallel with
MOSFETs M-M4, which are used to modulate the transcon-
ductance. The latter are segmented into binary-weighted
groupings of 1, 2, 4, 8, and 16 gate fingers, each controlled
by a separate bit stream, by to bs. For the highest amplitude
code, the signal passing through the fixed transconductance
MOSFETs M5 and Mg adds constructively with the signal
passing through M; and My, whereas for the lowest amplitude
code, M; and My are switched OFF and the signal passing
through M3 and M, cancels a portion or all of the signal
through the fixed transconductance MOSFETs Ms and Mg.
The code-dependent transconductance of the ASK modulator
stage can therefore be expressed as

n—1
Gnbo, s ba-1) = Gmfixea = G, | D (=127 ). (6)
i=0

n—1
Gubo,....ba1) =G, (2" = 1= (=2 ). ()
i=0

As shown in Fig. 14, to minimize parasitics and device
mismatch, all MOSFETs that form the amplitude modula-
tor core are laid out as a single active area (6 x 31 X
1.56 um x 40 nm). Wide source and drain straps in the top
copper metal layer are used to connect all the segments and
to minimize the inductive parasitics. The latter are critical
for delay matching all the segments and maximizing the
modulation depth [14].

By placing appropriately sized capacitors between the gates
of the MOSFETs in the stack and ground, the gain and
voltage swing at the output of the series stack are maxi-
mized [21] while simultaneously achieving broadband large-
signal matching to the antenna impedance. The dc voltage drop
per transistor remains 1.1 V, within the recommended safe
operating region of the MOSFETs. At D-band, three series-
stacked devices proved optimal in maximizing the gain and
output power for both the BPSK and ASK modulator stages.
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Fig. 15. Layout and cross section of the 138-GHz differential dipole antenna.

D. Antenna

The differential dipole antenna topology from [22] was
selected and is shown in Fig. 15. It is based on the single-
ended antenna first introduced in [23] and is preferred because
it avoids the lossy differential-to-single-ended conversion that
would degrade the power-added efficiency of the transmitter.
The dipole antenna was formed by a gold-plated quartz super-
strate placed on top of the silicon chip. An on-chip feed layer
is used to electromagnetically couple the antenna without the
need of a direct ohmic contact, thereby increasing its efficiency
while keeping a simple planar fabrication procedure. This
arrangement allows for an on-chip ground plane to shield from
the dielectric and modal losses of the silicon substrate [24].

The optimum superstrate thickness in terms of radiation
efficiency for this frequency range is 50 xum [25]. However,
a 100-um superstrate thickness was selected to maximize the
bandwidth, critical to achieve high data rates, at the expense
of ~10% degradation in radiation efficiency. As shown
in Fig. 16, the simulated antenna gain is 1.85 dBi and the
efficiency is 34%.

IV. EXPERIMENTAL RESULTS

The circuit was manufactured in a 45-nm SOI-CMOS
process with eleven metal layers, two of which are
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Fig. 18. Free-space measurement setups for (a) continuous wave (CW) output
power and (b) modulated (multi-)carrier spectra and EVM.

1.2-um-thick Cu layers and the top is a 2.2-um-thick Al
layer. The measured f7/fmax of the fully wired n-MOSFETSs
and p-MOSFETs with 780-nm gate finger widths are
243/244 and 178/255 GHz, respectively [Fig. 11(b)]. The total
die area, including the on-die antenna feeds and all pads,
is 2.0 x 2.1 mm?. The quartz superstrate containing the differ-
ential dipole antennas was fabricated separately and was man-
ually positioned on the SOI-CMOS chip. A microphotograph
of the chip-quartz assembly is reproduced in Fig. 17. The mea-
surements were conducted on die, through the air, at distances
up to 15.2 cm, using the setups in Fig. 18(a) and (b).
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Fig. 20. Measured constellations at 135 GHz and a distance of 10 cm for
QPSK and 16-QAM signals without DPD. The EVM is normalized to the
signal rms value.

To establish the center frequency of the circuit and the
correct drive level for the input LO signal, the output power
was measured for an unmodulated carrier above the die,
as shown in Fig. 18(a). A D-band power sensor was used
directly in order to minimize de-embedding and calibration
uncertainties. Peak effective isotropic radiated power (EIRP)
values of 12.2 and 13.2 dBm were obtained with a 23.8-dBi
rectangular horn and with an open waveguide, respectively.
The antenna gain of the open waveguide was calculated
through the effective aperture (A, = 0.81 ab [26]) with

dr A, 47(0.81-ab)
Gopen—waveguide: 12 = 12 . (8)

The effective aperture at 138 GHz for a WR-6 waveguide
(a =1.651 mm and » = 0.8255 mm) results in an antenna gain
of 4.7 dBi. The EIRP averaged over several measurements at
different heights up to 69 mm was 13.2 dBm. Accurate mea-
surements beyond 69 mm were not possible due to the lower
antenna gain of the open waveguide and limited sensitivity of
the power sensor.

The setup loss up to the probe tips, at the LO input of
the die, was measured from 110 to 170 GHz with a two-
tier VNA calibration and de-embedded to establish the exact
input power. From the bottom-left corner of Fig. 19(a), the
EIRP-P;, gain is 32.4 dB. By accounting for the on-chip
antenna gain, the Pyy—Pj gain is 30.6 dB. The measured EIRP
versus frequency is shown in Fig. 19(b) with a peak-EIRP
value occurring at 138 GHz.

In the modulated carrier measurements, the power meter
was replaced with a subharmonic LO down-convert mixer
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(a) before and (b) after linear equalization.
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Fig. 22.  Block diagram of the setup used for DPD measurements.
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Fig. 23. Measured (a) EVM of a 16-QAM signal versus carrier frequencies

and (b) EVM of 138-GHz, 16-QAM, and 8-PSK signals with DPD versus the
total number of I and Q bits used. The EVM is normalized to the signal rms
value.

whose IF output is amplified and displayed on a 63-GHz
bandwidth real-time oscilloscope, as shown in Fig. 18(b). The
twelve data streams come from off-chip and were manually
aligned with the 1-ps adjustment accuracy of the external
pattern generator. The total noise figure of the down-convert
mixer and IF amplifier used in the experiments was 11 dB.
For the initial modulated measurements without corrections,
a carrier frequency of 135 GHz was selected since it is
where the on-chip I/Q hybrid has the least amount of intrinsic
imbalance. The measured QPSK and 16-QAM constellations
are reproduced in Figs. 20 and 21(a) achieving a data rate
of 12 Gb/s for QPSK and 5 Gb/s for 16-QAM. To separate
the linear from the non-linear EVM contributions, the QPSK
constellation in Fig. 21(a) was also equalized with a linear
14-tap FIR filter computed in MATLAB through an LMS
algorithm. Fig. 21(b) shows the equalized constellation, which
has 2.2-dB improvement in EVM. The remaining —16.3 dB
EVM is most likely due to non-linear contributions and would
require a non-linear memory digital pre-distortion (DPD)
algorithm.

To correct for the modulation accuracy and increase the
modulation order, a memory-less DPD based on a 2-D lookup
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Fig. 25. Measured EVM versus data rate at 138 GHz for (a) various single-
carrier modulation formats and (b) various OFDM signals with oversampling
ratios of 2 and 4, respectively.

table (2-D-LUT) was used in all the remaining measurements.
A block diagram of the setup used for the DPD measurements
is shown in Fig. 22. The LUT training was done by running
a calibration sequence and recovering the resulting I and Q
signals with the external down-converter and real-time oscil-
loscope from Fig. 18(b). The calibration sequence involved
triggering the oscilloscope with a large pulse generated by
the DUT and then sweeping through all I/Q code words
at a relatively slow rate (e.g., 100-MHz rate). A serpentine
trajectory was selected for an I/Q sweep to minimize large
jumps that may introduce error.

Using DPD, the EVM of a 0.4-Gb/s 16-QAM signal was
measured at different carrier frequencies to precisely char-
acterize the frequency range over which the I/Q RF-DAC
can transmit with high modulation accuracy. As shown
in Fig. 23(a), an EVM better than —19.2 dB was achieved
from 130 to 142 GHz. The measured EVM for 8-PSK and
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Fig. 26. (a) Measured spectra of a 138-GHz OFDM signal with a 200-MHz
FFT rate. Measured constellations for (b) 138-GHz 16-QAM OFDM signal
and (c) 138-GHz 32-QAM OFDM signal. (d) Summary of the OFDM signal
characteristics. The EVM is normalized to the signal rms value.

16-QAM modulation formats versus the total number of I and
Q bits used are summarized in Fig. 23(b). The results show
that in this frequency range, there is a little benefit to using
more than 8 bits (4 I and 4 Q bits) to transmit an 8-PSK signal
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TABLE 1
STATE-OF-THE-ART DIGITAL TRANSMITTERS AT >60 GHz
Ref.|Tech.|,  TX  |Freq.m g::: EVMzus| pp¢ | #of Ele;; B(a:‘f;fk- Poc
|Architectur GHz) Format (Gbls) (dB) Antennas) g o)l (dB) (mWw)
36 | 19.7
OFDM |51 QAM)(64QAM) on-chip
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ork RF-DAC | 142 (16QAM)(16QAM) Quartz :
cMOs| 16QAM
QPSK 12 -12.2 superstrate|
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45nm [le] on-c
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40nm|  1Q 8QAM 10 | 93 | "
Bl cMos| Modulator | 114 | aPsk | (@Psk)|(@psk) | ¥irebond | 1 5671 0 | 220
32nm
[l 4PAM 20 | -124
71| sol 94 no ~ | a=] o | 22
onos RF-DAC QPSK | (QPSK) | (QPSK)
65nm|  11Q 16QAM 6 | -162
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40nm|  Polar 16QAM | 6.7 | -18.1 "
Bl cmos| rRr-DAC | %0 | apsk  [(160AMy(160AM) ™ ~- 1087 5 |70

*Estimated from information available in the paper, **Saturated output power measured on-chip
***Excludes contribution of baseband

and more than 10 bits (5 T and 5 Q bits) to transmit a 16-QAM
signal.

DPD also made it possible to transmit higher order mod-
ulation formats, such as 32- and 64-QAM. Free-space con-
stellations measured at 10 cm above the die for various SC
modulation formats are reproduced in Fig. 24. Systematic dis-
tortion in the constellations can be observed when comparing
the same modulation format at different data rates. These were
most likely caused by LO drifts during the LUT calibration
procedure since they appear greater that an LSB. This source
of distortion can likely be eliminated by employing an iterative
calibration procedure as it was done in [12]. The EVM
degradation with increasing data rate can likely be alleviated
through the use of a memory-based DPD algorithm. It should
be noted that for cases where the symbols begin to merge,
the EVM metric from the Keysight VSA is optimistic since
it does not correctly account for the impact of erroneous
symbols. The EVM of the measured constellations, with and
without DPD, are summarized in Fig. 25(a) for data rates up
to 12 Gb/s. The highest data rate was achieved with QPSK
modulation.

Multi-carrier QPSK, 16-QAM, 32-QAM, and 64-QAM
OFDM signals were also successfully generated with the 1/Q
RF-DAC and recovered by the real-time oscilloscope. The
downconverted spectra and the EVM of 138-GHz 16-QAM
and 32-QAM OFDM signals with 0.2-GHz FFT rates are
shown in Fig. 26. From the measured EVM of —23.7 dB and
the simulation results in Fig. 5(b), the ENOB is approximately
2 x 4 bit. The maximum data rate of 2.4 Gb/s was achieved
for OFDM signals with 16-QAM modulation format and
—16.7 dB EVM. Fig. 25(b) shows the EVM results as a
function of data rate for various OFDM signals. Higher OFDM
data rates were achieved by increasing the FFT rate and/or
by increasing the number of sub-carriers (i.e., reducing the
effective oversampling ratio).

The total power consumption is 1.25 W, with an energy
efficiency of 104 pJ/b for QPSK, 125 pJ/b for 16-QAM,
and 312 plJ/b for 32-QAM formats. The performance of the
proposed I/Q RF-DAC is summarized and compared with the
state of the art in Table 1.
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V. CONCLUSION

A 2 x 6-bit I/Q RF power-DAC transmitter with on-die
antennas was demonstrated for the first time at 138 GHz.
This circuit is the only one to achieve direct 64-QAM and
OFDM modulation of a mm-wave carrier without upconver-
sion or back-off. The highest data rate of 12 Gb/s was obtained
with SC QPSK modulation. Multi-carrier QPSK, 16-QAM,
32-QAM, and 64-QAM OFDM signals were also successfully
formed in free space, above the die, and recovered at a
maximum data rate of 2.4 Gb/s for 16-QAM OFDM. The
>30 dB of gain and 13.2 dBm EIRP were made possible at
more than half the fyax frequency of the 45-nm SOI-CMOS
technology through the use of series-stacked supercascode
topologies.

As expected, the SC and OFDM transmission measurements
show that the EVM degrades with increasing data rates and
that the achievable data rates are lower for higher order
modulation formats. It is clear from these experiments that
a larger number of bits are needed to achieve better EVM
and higher data rates when using 32-QAM, 64-QAM, and
OFDM modulation format. In addition, it should be mentioned
that the data rate and bit efficiency are largely limited by
the antenna bandwidth and not by the RF power-DAC archi-
tecture or circuit topologies. Both will improve with wider
bandwidth antennas.

Although the overall power consumption is high, in a
transmitter implementation with on-chip VCO and PLL, most
of the 140-GHz LO tree blocks, introduced here for testing
purposes, would be removed, reducing power consumption.
Moreover, this architecture is easily scalable to more advanced
CMOS nodes. Measurements of 22-nm FDSOI building blocks
at W- and D-band show that the power consumption of the
LO tree and of the digital circuits will continue to decrease
because of the power supply reduction from 1.1 to 0.8 V.
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