Circuits Topologies and Design Methodologies for High Data Rate Radio in SOI and FDSOI CMOS

Sorin P. Voinigescu

University of Linz, December 12, 2018

Outline

- Unique Transistor Features and Performance
- Design Fundamentals
- Specific mm-wave and high-speed circuit topologies
- Design Examples
- Conclusions

28nm, 22nm, 12nm FDSOI cross-section

Unlike bulk planar and FinFET CMOS, the body is floating Can control V_t , I_{ON} , g_m , f_T and f_{MAX} characteristics Si/Ge sheet channel scalable to 5nm physical gate length

Transconductance vs. V_{GS} , V_{BG}

 $f_{\rm T}$ and $f_{\rm MAX}$ vs. $V_{\rm GS}$, $V_{\rm BG}$

28nm FDSOI Peak values occur at $V_{BGN} = -0.5$ V and $V_{BGP} = 0.5$ V When charge accumulates at top interface

Plot f_{T} and f_{MAX} vs. I_{DS} , V_{BG}

[S. Shopov and S.P. Voinigescu, IEEE JSSC 2016]

 $g'_{\rm m}$ vs. $I_{\rm DS}$, $V_{\rm BG}$

MAG in 28/22nm FDSOI with back-gate bias

f_{Tbg} for backgate input: 22nm FDSOI

Outline

- Unique Transistor Features and Performance
- **Design Fundamentals**
- Specific mm-wave and high-speed circuit topologies
- Design Examples
- Conclusions

Mm-wave circuit design starts with layout!

Electromigration RULES! Hard to bias at > 0.2mA/umEnlarged gate pitch and S/D contact area More flexibility than in FinFET Impact of layout RC parasitics higher than in older nodes Optimal $W_f = 0.3-0.6 \ \mu m$

n-MOSFET 40x28nmx780nm double-sided gate contact

Most compact fine pitch layout in 22nm FDSOI

Double-sided gate contact not possible Source and drain on the same side High f_{τ} , good f_{MAX} Optimal $W_{f} =$ 0.4-0.6 μm

40x20nmx590nm single-sided gate contact, 1x pitch

Using relaxed pitch in 22nm FDSOI

n-MOSFET 40x20nmx720nm double-sided gate contact 2x pitch

Extract C'_{gs}, C'_{gd}, C'_{db}: 1x pitch single-side gate

22nm FDSOI

N-MOSFET 40x20nmx590nm

Extract C'_{gs}, C'_{gd}, C'_{db}: 2x pitch, double-side gate

Extract R_{q} : single vs. double side gate contact

Extract R'_{s} => source stripe width matters

2x pitch: $R'_{s} = 185 \Omega^{*}\mu m$

$$J_{opt}$$
=0.2mA/µm: constant across nodes, frequency

J_{opt} =0.2mA/µm: constant across topologies

NF_{50} of series-stacked cascodes vs. V_{DS}

Constant peak- $g_{\rm m}$, $f_{\rm T_{r}}$, $f_{\rm MAX}$, $J_{\rm opt}$ vs. temperature

22nm FDSOI cascodes vs. 55nm MOS-HBT cascodes

22nm FDSOI

22nm FDSOI vs. 55nm MOS-HBT cascodes

22nm n-MOSFET and SiGe HBT at 60 GHz

22nm n-MOSFET cascodes and SiGe BiCMOS cascodes at 80, 120 and 160 GHz

Design methodology summary

- Lay out & extract MOSFETs with different $W_{\rm f}$, $\frac{1}{2}$ gate contacts, source/drain contact pitch, and styles
- Simulate or measure C'_{gs} , C'_{gd} , C'_{db} , g'_{m} , $R_{g}(W_{f})$, R'_{s}
- Simulate or measure peak- f_{T} , NF_{MIN} , peak-MAG, J_{opt} , $J_{peak-MAG}$
- Optimize layout based on NF_{MIN} , peak-MAG at desired frequency
- Now *design circuits by hand*: Find W, N_f, I_{DS} of all transistors
- Use computer simulation after extraction to design matching network without changing transistor sizes and bias current
- Design/model your inductors, transformers to suit top layout

Outline

- Unique Transistor Features and Performance
- Design Fundamentals
- Specific mm-wave and high-speed circuit topologies
- Design Examples
- Conclusions

Unique circuit topologies

- Series-stacked, large-swing PA and SiPh modulator driver with individual back-gate control
- 4-terminal mm-wave varactor VCO with small KVCO
- Series-stacked doubler LVT/HVT back-gate control
- Series-stacked switches (as in 180nm/45nm PDSOI CMOS)
- CMOS switches with back-gate control
- 0.8V CMOS Quasi-CML LVT/HVT back-gate control

Series-stacked n-MOSFET or CMOS PA/Driver

Transistor sizing

- Dynamic current I_m is reduced higher up in the stack
- Progressively smaller transistor width higher up in the stack can handle the smaller current
- Minimizes C_{out} and increases Z_{in} , Z_{out} , BW_{3dB}

Inductive broadbanding (inductive neutralization)

- Artificial transmission line
- Unlike Miller (negative capacitance) neutralization which

improves MAG but degrades NF_{MIN} and f_{T} , it improves

- MAG
- f_{τ} , and

• NF_{MIN}

• f_{MAX} remains unchanged (as Miller neutralization)

New design freedom in FDSOI

Increasing backgate voltage in upper

stack: LVT n-MOS BG at 1, 2, 3V

• Output matching without matching

network from C_i where i=2,3

• Replace C_3 with varactor => adjust

output impedance and output swing

Control reliability of top n-MOSFET

Varactor control of R_{out} in 22nm FDSOI

- 4-nmos stack
- Thick oxide varactor
- Control voltage: 1.8-3.8 V

Large-swing/power cascodes in 22nm FDSOI

$V_{DD}/V_{OUT}/I_{DD}$ control in 3-stack CMOS inv 22nm FDSOI

Comparison with 45nm PDSOI

3/4-nmos stack

160x720nm=115μm

- 3-CMOS inverter stack
- 224x720nm=161µm

[M.S. Dadash et al., BCICTS 2018]

3-stack CMOS inv.: 22nm FDSOI vs. 45nm PDSOI

3-stack CMOS PA: 22nm FDSOI vs. 45nm PDSOI

$P_{\rm SAT}$ and drain efficiency vs. frequency

[M.S. Dadash et al., BCICTS 2018]

22nm cascodes: 28-GHz P_{OUT}, PAE, G

- CMOS cascode => best linearity, output power
- 3-stack n-MOSFET cascode=> best efficiency

22nm cascodes: 79-GHz P_{OUT} , PAE, G

3-CMOS stack 64QAM, 18 Gb/s at 5.5 GHz

RI	MS	:500
----	----	------

EVM	=	2.1189	9	6rms	5.6272		% pk	at	sym		181
Mag Err	=	1.5701	9	6rms	-5.0168		% pk	at	sym		181
Phase Err	r =	2.0056		deg	-9.9991		deg pk	at	sym	:	232
Freq Err	=	-698.59		Hz							
IQ Offset	=	-56.284		dB	SNR (ME	ER)	= 29.7	72		dB	
Quad Err	=	132.62	n	ndeg	Gain Im	nb	= 0.01	9		dB	

P_{OUT} = 14 dBm, EVM = -33.6 dB

3-CMOS stack 64QAM, 18 Gb/s at 28 GHz

RMS:500

EVM	=	2.4051	%rms	8.2064	%pkat	sym	111
Mag Err	=	1.5306	%rms	4.5496	%pkat	sym	163
Phase Err	- =	2.3267	deg	11.798	deg pk at	sym	149
Freq Err	=	-6.7232	kHz				
IQ Offset	=	-55.776	dB	SNR (MER	() = 28.69		dB
Quad Err	=	139.08	mdeg	Gain Imb	= 0.028		dB

$P_{OUT} = 6 \text{ dBm}, \text{EVM} = -32.4 \text{ dB}$

3-nMOS stack 64QAM, 18 Gb/s at 28 GHz

4-nmos stack optical modulator driver performance

[M.S. Dadash et al., BCICTS 2018]

3-nmos stack optical modulator driver performance

	Tech.	Topology	Data Rate (Gb/s)	Output Swing (V _{pp})	P _{dc} (mW)	Efficiency (pJ/bit)
This work	22nm CMOS	3-CMOS stack single-ended	100 (50GBaud 4-PAM)	NRZ: 4 @ 16Gb/s, 1.8 @ 56Gb/s 4-PAM: 2.1 @ 100Gb/s	230	2.3
This work	22nm CMOS	3-nMOS stack single-ended	112 (56GBaud 4-PAM)	NRZ: 2.7 @ 56Gb/s, 2.2 @ 64Gb/s 4-PAM: 2.4 @ 112Gb/s	140	1.25
ISSC 2018	10nm FinFET	CML differential	112 (56GBaud 4-PAM)	4-PAM: 0.7 @ 112Gb/s	193	1.72
ISSC 2018	14nm FinFET	stacked-CMOS differential	112 (56GBaud 4-PAM)	4-PAM: 0.5 @ 112Gb/s	230	2.06
MTT 2017	55nm SiGe BiCMOS	push-pull differential	168 (56GBaud 8-PAM)	8-PAM: 3.8 @ 168Gb/s 4-PAM: 4.8 @ 128Gb/s	820/600**	4.88/3.57**

0.8V VCO with 4-terminal Varactor

- p-MOS BG at -3 V
- n-MOS BG at 3 V
- Varactor with backgate and D/S control
- node
- Digital and fine control
- Allows low voltage and high voltage control of KVCO
- 1/f corner => longer gate
- Higher PN due to lower swing

Measured tuning curves vs. top and back gates

First CMOS cross-coupeld VCO above 70 GHz, P_{out} = 2 dBm (CMOS inv. buffers driving 50 Ω

First 80-GHz VCO with static divider chain in CMOS at 125 °C

Comparison with 45nm PDSOI, SiGe HBT 60GHz VCOs

Low-power, 3-4mW P_{DC} cross-coupled VCOs for ambient sensors

[S.P. Voinigescu, et al., 2018]

Divider/PLL/LO tree: 0.8V Quasi-CML > 80 GHz

• HVT n-MOS BG at -3 V

• 0.4V_{pp} quasi-CML swing

• LVT n-MOS BG at 3 V

• 40-GHz CML-to-CMOS logic

160-GHz doubler source

Series-stacked antenna switches: DC-30 GHz

- FoM = $R_{on}C_{off}$ = 0.08-0.11 ps
- L_{\min} to reduce R_{on}
- $W_{\rm f} > 1\mu {\rm m}$ to reduce $R_{\rm on}C_{\rm off}$
- $R_{\rm G},\,R_{\rm NW}$ (2-5 kΩ) reduce $C_{\rm off}$
- 8-12 series n-FETs
- Series stacking increases P_{1dB}
- $P_{_{1dB}} > 30 \text{ dBm}$

[F. Zhang , GF in 22nm CMOS at SOI Consortium, April 2018]

Outline

- Unique Transistor Features and Performance
- Design Fundamentals
- Specific mm-wave and high-speed circuit topologies
- **Design Examples**
- Conclusions

mm-Wave 5G User Terminals?

- We have been there before (2004-2018) at 60 GHz
- Size (antennas, #of dies) and dc power matter
- What if user's hand covers the phased array?
- Circuit topologies have not changed
- 28 GHz should be easier and lower power than 60 GHz

What's new? =>MIMO with dual polarization antenna

28GHz phased-array transceiver in 28nm RFCMOS

Bidirectional transceiver lane block diagram

- 4-element transceiver phased array for mobile terminals
- MIMO with dual polarization antennas
- 24-element transceiver phased array for base station
- Linear upconverter and transceiver requires backoff => NOT efficient

Comparison of 28GHz phased-array transceivers

Parameter	This Work	[2]RFIC17	[3]ISSCC17	[4]IMS17	[5]RFIC17
Technology	28nm LP-RF CMOS 1P7M	28nm LP CMOS 1P7M	0.13um SiGe BiCMOS	0.18um SiGe BiCMOS	0.13um SiGe BiCMOS
Simultaneous Polarizations per IC	2	1	2	1	1
Front end channels per IC	24	8	32	4	4
TX Input / RX output interface	6.5GHz IF	Analog IQ BB	3GHz IF	RF	RF
Phase Shifter Resolution	3 bit	3 bit	5 bit	6 bit	5 bit
RF 3dB BW (GHz)	7.5 (TX), 5.5 (RX)	2.2	1.5	7 (TX), 6(RX)	4
TX Gain (dB)	34-44	50-52 (4 patches)	24-32	12	9.4-14.3
TX Psat (dBm)	>14	10.5	16	-	>12.5
TX OP1dB (dBm)	>12	9.5	13.5	10.5	>5.5
TX 64QAM Pout (dBm)	6	3	-	2.5	-
TX 64QAM PAE	7.5%	3%	-		
TX Total Power (W)	0.36 (4xCH)	0.416 (4xCH)	4.6	0.8	1.08
TX Power per Channel (mW)	90	104	287.5	200	270
RX Gain (dB)	32-34dB (4xCH max)	49-50 (4 patches)	28-34	18	8.7 to 11.5
LNA NF w/SW & PS (dB)	3.8-4.4	5.6	6.0-6.9	4.6	4.5-6.9
RX NF (dB)	4.4-4.7	6.7	-	4.6	4.5-6.9
RX Total Power per IC (W)	0.167 (4xCH)	0.291 (4xCH 100MHz BW)	3.3	0.42	0.68
RX Power per channel (mW)	42	73	206	105	170
Die Size (mm x mm)	4.65 x 5.97	2.6 x 2.8	10.5 x 15.8	2.5 x 4.7	2.93 x 2.35
Die Size per channel (mm ²)	1.16	0.91	5.18	2.94	1.72

28GHz and 60GHz

phased-array elements

suffer from poor

PAE (<10%) and

low
$$P_{sat} = 4..6 \text{ dBm}$$

[J.D. Dunworth et al., ISSCC 2018]

Sorin P. Voinigescu

IQ-Power DAC 1-32GHz, 22-32GHz, 18dBm transmitters

Sorin P. Voinigescu

Topologies and design methodologies in FDSOI

Measured perfomance

Perfomance comparison with other digital TX

Ref.	Tech.	Freq. (GHz)	3-dB BW (GHz)	Modulation Format	Data Rate (Gb/s)	EVM (%rms)	Energy Eff. (pJ/b)	Gain (dB)	Peak P _{SAT} (dBm)	Peak PAE (%)
This work	45nm SOI CMOS	15–32	18–32	16QAM 32QAM 64QAM	26 30 12	7.9 6.9 4	24.6 29.5 	> 25	19.9	10.3
This work	45nm SOI CMOS	1–32	1–24	16QAM 32QAM 64QAM	20 15 6	7.2 6.6 4.4	44.6 59.3 150	> 25	18.4	5.8
[9]	45nm SOI CMOS	38–49	42–47	16QAM QPSK	0.04 1.25	8 5.5	675*	7.1	21.3	16
[10]	65nm CMOS	57–64	58–62*	16QAM QPSK	6 3.5	15.5 17.8	43.3 74.3		9.6**	17.4
[13]	40nm CMOS	50–67	50–67	16QAM QPSK	6.7 3.3	15 9.3	6.7 14.1	20.3	10.8	

*Estimated from information available in the paper, **Peak EIRP is 22 dBm

138GHz I/Q 6bit Power-DAC TX in 45nm PDSOI

antenna

Q antenna

Measured 138GHz constellations and OFDM spectra

60GHz polar digital transmitter in 28nm RFCMOS

60GHz transceiver comparison

Metric	This Work		[4] ISSCC'17	[5] ISSCC'16	[6] ISSCC'14	[7] ISSCC'14
Technology	28 nm CMOS		65 nm CMOS	28 nm CMOS	40 nm CMOS	65 nm CMOS
	Integration TX: Digital polar RX: Direct conv.		TX: Direct conv.	TX: Direct conv.	TX: Heterodyne	TX: Direct conv.
Integration			RX: Direct conv.	RX: Direct conv.	RX: Heterodyne	RX: Direct conv.
TV.DV	Ant.: wire	-bond PCB	Ant.: Horn	Алт.: Раскаде	Алт.: Раскаде	Ant.: Horn
Ant./Array Gain (dBi)	7 (1TX + 1RX)		28 (1TX + 1RX)	24 (4TX + 4RX)	45 (16TX+16RX)	24 (4TX + 4RX)
DC Power / element	TX + LO:	210 mW ¹	TX: 169 mW	TX: 167 mW	TX: 74 mW	TX: 251 mW
DC Power / element	RX + LO: 110 mW		RX: 139 mW	RX: 107 mW	RX: 60 mW	RX: 220 mW
Constellation	QPSK	16QAM	64QAM	16QAM	16QAM	16QAM
Data Rate (Gb/s) ²	16	27.8	42.24	7	4.6	28.16
EVM wrt avg. (dB)	-12.5	-18	-21.1	-20	-19.5	-17.2
pJ / bit / element	20	11.5	7.3	39.3	29.2	16.7
Bits / symbol	4	8	6	4	4	4
Normalized Distance ³ (ND, cm)	13	5	0.35	14.1	14	0.7
pJ / bit / element / ND	1.5	2.3	20.5	2.8	2.4	26.8
Multipath Channel Measurements	Yes		No	No	Yes	No
Die Area (mm ²) / element	3	.9	7.2	3.9	1	2
MIMO Streams		2	1	1	1	1

 $P_{sat} < 5 \text{ dBm per element}$

No amount of DPD

can improve P_{sat}, PAE

Phase Noise and NF.

Including digital TX driver power at highest rate

² Data rate for BER < 1E-3

³ Link distance (BER < 1E-3) normalized to antenna gain in this work (3.5 dBi averaged over beam-width)

[S. Daneshgar et al, ISSCC 2018]

153-162GHz radar sensor/radio MIMO transceiver

P_{sat}=9 dBm per element, I/Q linear up/down conversion

Receiver Gain > 20 dB, NF < 12 dB

10ns PLL settling, PN@1MHz < -110 dBc/Hz at 160 GHz

Conclusions

- $g_{\rm m}$, $f_{\rm T}$, MAG < 170 GHz continue to improve with scaling
- Back-gate control of current density, output swing, linearity
- Simpler or series-stacked topologies for PA, large-swing driver
- Similar or better mm-wave and high-speed digital performance than in older nodes with lower power consumption and supply
- Unlike FinFET or planar CMOS, large-swing and large-power as well as low-noise low-power circuits possible

- Graduate students: Sadegh Dadash, Stefan Shopov, Shai Bonen, Utku Alakusu, Alireza Zandieh, Ioannis Sarkas, Andreea Balteanu
- GLOBALFOUNDRIES, CMC, and STMicroelectronics for technology access
- NSERC, DARPA, Ciena, Robert Bosch, Finisar for funding
- Jaro Pristupa and CMC for CAD Tools
- Integrand for EMX Software

U and MAG vs. frequency at J-Band

Sorin P. Voinigescu

n-MOS 3-stack 64QAM, 18 Gb/s at 5.5 GHz

CMOS 60GHz PAs Use Miller Neutralization

Why Miller Neutralization?

Dangers of Miller Neutralization: f_{T} , NF_{MIN} Degradation

