

In the clouds:

Towards 1Tb/s per carrier S.P. Voinigescu

University of Toronto

University of Southern California, October 12, 2012

Credits

Graduate students

* Yannis Sarkas
*Andreea Balteanu
*Alex Tomkins
*Eric Dacquay
*Katya Laskin

Collaborators
*Juergen Hasch
*Pascal Chevalier
*Peter Asbeck
*Gabriel Rebeiz
*Jim Buckwalter
*Larry Larson

- NSERC, OCE
- Robert Bosch GmbH, DARPA, Ciena, Gennum for funding
- STMicroelectronics, Darpa, Ciena for chip donations

Outline

- Why?
- How?
-System
*Antenna
*Baseband
*Radio transceiver
- When

We are addicted ...

What's in a cloud?

wireless

 links- optical fiber links
- data centers

Sorin Voinigescu, October 12, 2012

What's in a data center?

- Optical fiber links
- Coaxial cable links
- Routers
- Boards
- Backplanes

$-\frac{4}{4}$
Sorin Voinigescu, October 12, 2012

Facebook pictures...

- 40 Million pictures uploaded per day to Facebook > $10^{15} \mathrm{bits} /$ day $=>15 \mathrm{~Gb} / \mathrm{s}$
- Worldwide: 2049 data centers
consume 30 Billion Watts = 30 nuclear power stations

Evolution of CMOS since 2000

- $130 \mathrm{~nm}, \mathrm{f}_{\mathrm{T}}=80 \mathrm{GHz}: \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$
- 2002 => $90 \mathrm{~nm}, \mathrm{f}_{\mathrm{T}}=120 \mathrm{GHz}: \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$
*Strained channel, SiGe S/D
- 2004 => $65 \mathrm{~nm}, \mathrm{f}_{\mathrm{T}}=180 \mathrm{GHz}: \mathrm{V}_{\mathrm{DD}}=1.1-1.2 \mathrm{~V}$
*More strain
- 2006 => $45 \mathrm{~nm}, \mathrm{f}_{\mathrm{T}}=240 \mathrm{GHz}: \mathrm{V}_{\mathrm{DD}}=1.0-1.2 \mathrm{~V}$
*High-K MG, more strain
- 2008 => 32 nm, $\mathrm{f}_{\mathrm{T}}=360$? $\mathrm{GHz}: \mathrm{V}_{\mathrm{DD}}=0.9-1.2 \mathrm{~V}$
*High-K MG, more strain
- 2011 => $22 \mathrm{~nm}, \mathrm{f}_{\mathrm{T}}=500$?? $\mathrm{GHz}: \mathrm{V}_{\mathrm{DD}}=0.9 \mathrm{~V}$
*Tri-gate, High-K MG, more strain

Some observations

$$
E \propto f \cdot C \cdot V_{D D}^{2}
$$

- Moore's law is alive!
*More transistors per area => C decreases

Some observations

$$
E \propto f \cdot C \cdot V_{D D}^{2}
$$

- Moore's law is alive!
*More transistors per area => C decreases
- Transistor f_{T} (intrinsic speed) continues to improve as 1/L
*Clock frequency should improve=> Hint, hint digital designers

Some observations

$$
E \propto f \cdot C \cdot V_{D D}^{2}
$$

- Moore's law is alive!
*More transistors per area => C decreases
- Transistor f_{T} (intrinsic speed) continues to improve as $1 / L$
*Clock frequency should improve
- But Dennard's constant-field scaling law (physics) is dead! $\bullet V_{00}$ has not scaled

Some observations

$$
E \propto f \cdot C \cdot V_{D D}^{2}
$$

- Moore's law is alive!
*More transistors per area => C decreases
- Transistor f_{T} (intrinsic speed) continues to improve as $1 / \mathrm{L}$
*Clock frequency should improve
- But Dennard's constant field scaling law (physics) is dead! ${ }^{*} V_{D D}$ has not scaled
- Moore's law without Dennard's?
- A nuclear power station for the DIGITAL die!

Some observations

$$
E \propto f \cdot C \cdot V_{D D}^{2}
$$

- Moore's so-called law is alive!
*More transistors per area => C decreases
- Transistor f_{T} (intrinsic speed) continues to improve as $1 / \mathrm{L}$
*Clock frequency should improve
- But Dennard's constant field scaling law (physics) is dead!
${ }^{*} V_{D D}$ has not scaled
- Moore's law without Dennard's?
* A nuclear power station for the DIGITAL die!

Millimeter \& sub-millimeter wave circuits are OK!

Why can't we reduce V_{DD} ?

- Because the subthreshold slope, S, does not scale
- S determined by the Fermi-Dirac distribution function

$$
S[V / \text { decade }]=\frac{k T}{q} \cdot \ln (10)
$$

Valid in
*3-D (Fin)FETs, bipolar transistors
*2-D crystal FETs (graphene, MoS_{2})
*1-D FETs (nanowire, carbon nanotube)

So what are we to do?

$$
S[V / \text { decade }]=\frac{k T}{q} \cdot \ln (10)
$$

k and q are constants, T is a variable

Solutions

*Refrigeration: 77 K (liquid nitrogen), 4 K (space station?)
*Not in your hand!
*Possible in the data center
*New physics:
-Tunnel FETs? Maybe, but S is V_{95}-dependent.

More immediate solutions in...

- Wireless, wireline, fiberoptic system architectures that *Increase data rate >1 Tb/s carrier (imperative in fiber links) *Increase efficiency per bit
- Faster, more efficient circuit topologies
${ }^{*}$ CMOS logic at $50-100 \mathrm{~Gb} / \mathrm{s}$ to save power?
-Stacked CMOS logic for large swing drivers?
- Can we push the carrier frequency to 300 GHz ?

Energy Efficiency of Communication Links

	4G WiMAX	60 GHz LOS Radio	Wireline IEE 802.3.an	Fiber SerDes VCSEL	Fiber DP-QPSK/BPSK
Data Rate	$\leq 1 \mathrm{Gbps}$	5.3 Gbps	10 Gbps	10 Gbps	50 Gbps
Power	1.76 W	350 mW	2 W	2.5 W	25 W
Distance		2 m	100 m	20 km	3500 km
Energy/bit	$1.6 \mathrm{~nJ} / \mathrm{b}$	$66 \mathrm{pJ} / \mathrm{b}$	200pJ/b	250 pJ/b	500pJ/b
Energy/bit/m		$33 \mathrm{pJ} / \mathrm{b} / \mathrm{m}$	$2 \mathrm{pJ} / \mathrm{b} / \mathrm{m}$	$12.5 \mathrm{fJ} / \mathrm{b} / \mathrm{m}$	$0.14 \mathrm{fJ} / \mathrm{b} / \mathrm{m}$
Reference	[Krishnamurthy, -RFIC 2010]	[Laskin, -RFIC 2011]	[Gupta, ISSCC 2012]	[Voinigescu, CICC 2001]	[Crivelli, ISSCC 2012]

Energy Efficiency of Communication Links

Optical: 10 fJ/b/m

5000 km

Energy Efficiency of Communication Links

Optical: 10 fJ/b/m

5000 km

Source: Belden Inc.

Wireline: $2 \mathrm{pJ} / \mathrm{b} / \mathrm{m}$

Source: Belden Inc.

Energy Efficiency of Communication Links

Wireless> $30 \mathrm{pJ} / \mathrm{b} / \mathrm{m}$

Optical: $10 \mathrm{fJ} / \mathrm{b} / \mathrm{m}$

Source: Belden Inc.

Wireless is the most inefficient, yet most popular!
Wireline: $2 \mathrm{pJ} / \mathrm{b} / \mathrm{m}$

100 m

Source: Belden Inc.

Why Tb/s wireless?

- Near field communications

- Short-range reconfigurable wireless data transmission in the data center

$1 \mathrm{~Tb} / \mathrm{s}$ wireless @

1Tb/s wireless @ $240-480 \mathrm{GHz}$

OE IC
Transceiver

$1 \mathrm{~Tb} / \mathrm{s}$
Optical fibers
Bias and control lines
Optical fibers

Why 200-300 GHz?

- Silicon transistors with $\mathrm{f}_{\text {max }}>400 \mathrm{GHz}$
- 100 GHz of bandwidth with no absorbtion
- Small antenna size with good gain
- Lower power LNA, mixer, receiver
- But...
* higher power PLL,
\rightarrow reduced $\mathrm{P}_{\text {out }}$
* shorter range $\sim 1 /{ }^{2}$

Source: G. Rebeiz UCSD

Outline

- Why?
- How?
-System
*Antenna
*Baseband
*Radio transceiver
- When

Scalable Digital Radio Transmitters

-Can we improve efficiency by increasing the modulation rate per carrier at fixed $\mathrm{P}_{\text {out }}$?

Scalable Digital Radio Transmitters

${ }^{\text {•Can }}$ we improve efficiency by increasing the modulation rate per carrier at fixed $\mathrm{P}_{\text {out }}$?

-Example: $0.3 \mathrm{~Tb} / \mathrm{s}$ with 1 W PA => $3.3 \mathrm{pJ} / \mathrm{b}$

Scalable Digital Radio Transmitters

${ }^{\bullet}$ Can we improve efficiency by increasing the modulation rate per carrier at fixed $\mathrm{P}_{\text {out }}$?
-Example: $0.3 \mathrm{~Tb} / \mathrm{s}$ with 1 W PA => $3.3 \mathrm{pJ} / \mathrm{b}$

- But $0.3 \mathrm{~Tb} /$ s with 64 QAM modulation requires $50-\mathrm{Gb} / \mathrm{s}$ serial baseband lanes,
- difficult to realize efficiently with up-conversion transmitter architecture

Potential Solution: Direct Modulation TX Radio

Sorin Voinigescu, October 12, 2012

Like Coherent Fiberoptics links: $110 \mathrm{~Gb} / \mathrm{s}$ TX-RX

200+ Gb/s Dual-Polarization TX/RX (ii)

How can we get to $1 \mathrm{~Tb} / \mathrm{s}$ per carrier?

- Fiber: Dual-polarization, 16 QAM at 125 Gbaud
- 8 baseband lanes at $125 \mathrm{~Gb} / \mathrm{s}$
- Power consumption is not that critical here....
- Need phase equalization in receiver
- Need large swing (>5V) 6-bit 125 GS/sec DACs
- Wireless: 256 QAM at 125 Gbaud
- Power consumption is critical
- Need amplitude and phase equalization in receiver

Direct Modulation TX Radio

- 2-bit polar-modulated, binary weighted PA cells driven in quadrature
- No back-off needed for linearity
- Phase/Amp bits @ 1-100 Gbps
[A. Balteanu et al. IMS 2012]
- On chip free-space power combiner

IQ DAC TX with Antenna Level Segmentation

 antenna segmentation

* Reconfigurable modulation format
- 娄

IQ DAC TX Constellation

Full 81 + 8Q Constellation

Wish list for sub-millimetre wave radio

- $100 \mathrm{~Gb} / \mathrm{s}$ standard CMOS baseband lanes
*Efficiency scalable with data rate
- $\mathrm{P}_{\mathrm{TX}}=10 \mathrm{dBm}$
- PLL with $\mathrm{PN}<-90 \mathrm{dBc} / \mathrm{Hz}$ in band at 300 GHz
- $\mathrm{NF}<12 \mathrm{~dB}$
- $P_{D C}<1 W$
- $\mathrm{BW}=25-30 \%$
- Antenna gain > 20 dB (lens)
- Distance: 10's cm

Outline

- Why?
- How?
-System
*Antenna
*Baseband
*Radio transceiver
- When

Antenna Integration

On-chip

Above IC

[J. Hasch et al, March 2010]

120/160 GHz Transceiver Packaging

Chip: $2.2 \mathrm{~mm} \times 2.6 \mathrm{~mm} \quad$ Package: $7 \mathrm{~mm} \times 7 \mathrm{~mm}$
[I. Sarkas Trans MTT, March 2012]

Sorin Voinigescu, October 12, 2012

142-152 GHz Antenna and die in QFN package

EU SUCCESS Project

- Antenna design by Stefan Beer, Karlsruhe Institute of Technology
- Packaging by Robert Bosch GmbH
- Fundamental frequency transceiver with self-test
[I. Sarkas CSICS 2012]
Package: $7 \mathrm{~mm} \times 7 \mathrm{~mm}$

Outline

- Why?
- How?
-System
*Antenna
-Baseband
*Radio transceiver
- When

Rise/fall time, efficiency/bit in 45-nm SOI

40+ Gb/s inductively-peaked CMOS logic

05 Oct $2012 \quad 15: 54$
Precision Timebase

1.0 V

Time:20.0 ps/div Delay 24.0190 ns

Delay:24.0190 ns

3) $100 \mathrm{mV} / \mathrm{div}$

Time:10.0 ps/divy
Trig: Free Run CPattem

Sorin Voinigescu, October 12, 2012

Broadband, large swing stacked CMOS LOGIC

[I. Sarkas, ISSCC 2012]

Eye diagrams at $12 \mathrm{~Gb} / \mathrm{s}$

Outline

- Why?
- How?
-System
*Antenna
-Baseband
-Radio transceiver
- When

1.5-bit DAC Cell with stacked-CMOS inv.

- Input balun for single ended to differential conversion
- the only tuned component in chain
- needed for testing
- Input CMOS TIAs for broadband matching
- CMOS Inverter based class-D driver chain

Power-DAC Cell with $\mathbb{N}-M O S$ output stage

- DC - 50 GHz in 45-nm SOI
- CMOS inverter based. Purely digital
- Scalable to 240 GHz using tuned LO path

TIA, BPSK Modulator

Sorin Voinigescu, October 12, 2012

Differential output stage with On-Off switch

4-Stacked n-MOS Cascode

Sorin Voinigescu, October 12, 2012

4-Stacked n-MOS Cascode (iii)

4-Stacked n-MOS Cascode (iiii)

4-Stacked n-MOS Cascode (iv)

DAC Cell: 28 Gb/s Eyes

Sorin Voinigescu, October 12, 2012

DAC Cell: 36 Gb/s Eyes

45-GHz IQ DAC Cell: Eyes, P ${ }_{\text {sat }}$

Psat Over Supply Voltages @ 45 GHz

Pout of $45-\mathrm{GHz}$ DAC cell vs. time

- $P_{\text {sat }}=23 \mathrm{dBm}, \eta_{\text {Drain }}=30 \%, \mathrm{PAE}=20 \%, 4.1 \mathrm{~V} / 1.3 \mathrm{~V}$
$\cdot P_{\text {sat }}=24.3 \mathrm{dBm}, \eta_{\text {Drain }}=22 \%, \mathrm{PAE}=16.3 \% .5 .1 \mathrm{~V} / 1.4 \mathrm{~V}$

2-Gb/s ASK+ 2-Gbs BPSK Mod of 45-GHz Carrier

Sorin Voinigescu, October 12, 2012

45-GHz 8-bit IQ DAC chiplet

Die photo

Sorin Voinigescu, October 12, 2012

45-GHz 32-bit IQ-DAC board

- > 34 dBm , to be designed and packaged by UCSD
$-\frac{10}{\text { and }}$

Dual Receive Channel Transceiver

Push-Push 148-170 GHz VCO

148-170 GHz LO Tree and TX Amplifiers

Amplitude Modulator

$$
\mathrm{P}_{\text {out }}>2 \mathrm{dBm}
$$

$$
P_{D}=117 \mathrm{~mW}
$$

148-170 GHz Low Noise Amplifier

$$
P_{D}=67 \mathrm{~mW}, \text { Gain }=20 \mathrm{~dB}, \mathrm{NF}<12 \mathrm{~dB} .
$$

Die photograph

Chip: $2.1 \mathrm{~mm} \times 2.9 \mathrm{~mm}$
130-nm BiCMOS9MW: SiGe HBT $\mathrm{f}_{\mathrm{T}}=230 \mathrm{GHz}, \mathrm{f}_{\text {max }}=280 \mathrm{GHz}$
Sorin Voinigescu, October 12, 2012

RX Breakout Gain and Noise Figure

Sorin Voinigescu, October 12, 2012

Transceiver PLL Phase Noise

On-die Doppler Test

$-\frac{\text { 青 }}{\text { en }}$
Sorin Voinigescu, October 12, 2012

Packaging

Dr. J. Hasch

Sorin Voinigescu, October 12, 2012

In-package Antennas Simulation

$-\frac{10}{\text { DTM }}$

240-GHz Transceiver Blocks

240-GHz Amplifíier

240-GHz Amplifier

150-GHz VCO-prescaler

[A. Balteanu et al IMS 2012]

Measurements

Sorin Voinigescu, October 12, 2012

$300-G H z$ VCO-Doubler

A. Tomkins et al., BCTM 2012

Layout

Sorin Voinigescu, October 12, 2012

300-GHz Signal Source Comparison

300-GHz Signal Source Comparison (ii)

Phase Noise of VCO-doubler at 309 GHz

File Operation Status, C:\SCREN115.GIF file saved

Measured Pout and Phase Noise $300-\mathrm{GHz}$ VCO+buffer+doubler

300-GHz vs. 150-GHz Phase Noise

SAME VCO in BOTH!

Conclusions

- Why?
* Because we can!
* "Cloud" unsustainable without 10x speed and 100x efficiency improvement
* Need 1Tb/s for near field and intra data center comms
- How?
-50-100 Gb/s inductively peaked CMOS logic
- Mm-wave Power-DAC Transmittter
* H-Band SoCs with on-die antennas
- Low-cost QFN package

Antenna Efficiency \& Bandwidth

Si Transistor Performance at H -Band

SiGe vs. Alumina μ strip-lines: H-Band

Sorin Voinigescu, October 12, 2012

50-GS/s 6-bit Fully Segmented RZ-DAC 3Vpp swing per side

A. Balteanu et al. IMS 2012

Block Diagram

- Distributed Segmentation: 7 MSBs and 7 LSBs in 8:1 size ratio
- Each bit retimed at up to 50 GHz

BPSK Cell Schematics

Distributed Power DAC Simulations (V2)

$\$ 21$

Die Photo (V1)

سய®'เ

3.1 mm

ST's 130-nm SiGe BiCMOS Production Process

$\mathrm{f}_{\mathrm{T}} / \mathrm{f}_{\text {MAX }}=230 / 280 \mathrm{GHz}$

Measured S-parameters (V1)

-意

Dynamic Range from S-parameters (V1)

4 GHz large signal: one MSB at a time (V2)

2.8Vpp per side, no de-embedding
$-\frac{1}{9}$
Sorin Voinigescu, October 12, 2012

2.5 GHz large signal swing (V2)

5 GHz large signal swing, spectra (V2)
File Control Setup Measure Calibrate Utilities Help Oscilloscope Mode

Sorin Voinigescu, October 12, 2012

10 GHz large signal swing, spectra (V2)

10 GHz large signal patterns (V2)

On-Off

Sine

- 糟

20 GHz large signall swing, spectra (V2)

7 MSBs + 5 LSBs switching at $2.5 \mathrm{~Gb} / \mathrm{s}$ each

Agilent 19:13:43 Apr 25, 2012

