
LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation

Chris Lattner Vikram Adve
University of Illinois at Urbana-Champaign

{lattner,vadve}@cs.uiuc.edu
http://llvm.cs.uiuc.edu/

ABSTRACT
This paper describes LLVM (Low Level Virtual Machine),
a compiler framework designed to support transparent, life-
long program analysis and transformation for arbitrary pro-
grams, by providing high-level information to compiler
transformations at compile-time, link-time, run-time, and
offline. LLVM defines a common, low-level code representa-
tion in Static Single Assignment (SSA) form, with several
novel features: a simple, language-independent type-system
that exposes the primitives commonly used to implement
high-level language features; an instruction for typed ad-
dress arithmetic; and a simple mechanism that can be used
to implement the exception handling features of high-level
languages (and setjmp/longjmp in C) uniformly and effi-
ciently. The LLVM compiler framework and code repre-
sentation together provide a combination of key capabili-
ties that are important for practical, lifelong analysis and
transformation of programs. To our knowledge, no existing
compilation approach provides all these capabilities. We de-
scribe the design of the LLVM representation and compiler
framework, and evaluate the design in three ways: (a) the
size and effectiveness of the representation, including the
type information it provides; (b) compiler performance for
several interprocedural problems; and (c) illustrative exam-
ples of the benefits LLVM provides for several challenging
compiler problems.

1. INTRODUCTION
Modern applications are increasing in size, becoming more

dynamic, change behavior throughout their execution, and
often have components written in multiple different lan-
guages. While some applications have small hot spots, oth-
ers spread their execution time evenly throughout the ap-
plication [11]. In order to provide maximum efficiency for
all of these programs, we believe that program analysis and
transformation must be performed throughout the lifetime
of the program. Such “lifelong code optimization” tech-
niques encompass interprocedural optimizations performed

at link-time (to preserve the benefits of separate compila-
tion), machine-dependent optimizations at install time on
each system, dynamic optimization at runtime, and profile-
guided optimization between runs (“idle-time”) using profile
information collected from the end-user.

Program optimization is not the only use for lifelong anal-
ysis and transformation. Other emerging applications of
static analysis are fundamentally interprocedural, and are
therefore most convenient to perform at link-time (exam-
ples include static debugging, static leak detection [22], and
memory management transformations [26]). Sophisticated
analyses and transformations are being developed to enforce
program safety, but must be done at software installation
time or load-time [17]. Allowing lifelong reoptimization of
the program gives architects the power to evolve processors
and exposed interfaces in more flexible ways [10, 18], while
allowing legacy applications to run well on new systems.

This paper presents LLVM — Low-Level Virtual Ma-
chine — a compiler framework that aims to make lifelong
program analysis and transformation available for arbitrary
software, and in a manner that is transparent to program-
mers. LLVM achieves this through two parts: (a) a code rep-
resentation with several novel features that serves as a com-
mon representation for analysis, transformation, and code
distribution; and (b) a compiler design that exploits this
representation to provide a combination of capabilities that
is not available in any previous compilation approach we
know of.

The LLVM code representation describes a program using
an abstract RISC-like instruction set but with key higher-
level information for effective analysis, including type infor-
mation, explicit control flow graphs, and an explicit dataflow
representation (using an infinite, typed register set in Static
Single Assignment form [14]). There are several novel fea-
tures in the LLVM code representation: (1) A low-level,
language-independent type system that can be used to imple-
ment data types and operations from high-level languages,
exposing their implementation behavior to all stages of op-
timization. (2) Instructions for performing type conversions
and low-level address arithmetic while preserving type in-
formation. (3) Two low-level exception-handling instruc-
tions for implementing language-specific exception seman-
tics, while exposing exceptional control flow to the compiler
explicitly. (4) A simple, low-level memory model distin-
guishing heap, stack, global data, and code memory regions,
accessed through typed pointers.

The LLVM representation is source-language-independent,
for two reasons. First, it uses a low-level instruction set and

memory model, only slightly richer than standard assembly
languages, and the type system does not prevent represent-
ing code with little type information. Second, it does not
impose any particular runtime requirements or semantics on
programs. Nevertheless, it’s important to note that LLVM
is not intended to be a universal compiler IR. In particular,
LLVM does not represent high-level languages features di-
rectly (so it cannot be used for some language-dependent
transformations), nor does it capture machine-dependent
features or code sequences used by back-end code genera-
tors (it must be lowered to do so).

Because of the differing goals and representations, LLVM
is complementary to high-level virtual machines (e.g., Small-
Talk, Self, JVM, Microsoft’s CLI, and others), and not an
alternative to these systems. It differs from these in three
key ways: (1) LLVM has no notion of high-level constructs
such as classes, inheritance, or exception-handling seman-
tics, even when compiling source languages with these fea-
tures. (2) LLVM does not specify a runtime system or par-
ticular object model: it is low-level enough that the run-
time system for a particular language can be implemented
in LLVM itself. Indeed, LLVM can be used to implement
high-level virtual machines. (3) LLVM does not guarantee
type safety, memory safety, or language interoperability any
more than the assembly language for a physical processor
does.

The LLVM compilation framework exploits the code rep-
resentation to provide a combination of five capabilities that
we believe are important in order to support lifelong analysis
and transformation for arbitrary programs. In general, these
capabilities are quite difficult to obtain simultaneously, but
the LLVM design does so inherently: (1) Lifelong compi-
lation model : The compilation model allows sophisticated
optimizations to be performed at all stages of an appli-
cation’s lifetime, including runtime and idle-time between
runs, by preserving the LLVM code representation. (2) Of-
fline code generation: Despite the previous point, it is pos-
sible to compile programs into efficient native machine code
offline, using aggressive code generation techniques that are
not suitable for runtime code generation. This is crucial
for performance-critical programs, the most important tar-
get for lifelong optimization. (3) User-based profiling and
optimization: The LLVM framework gathers profiling infor-
mation at run-time in the field so that it is representative of
actual users, and can apply it for profile-guided transforma-
tions both at run-time and in “idle-time”1. (4) Transparent
runtime model : The system does not specify any particular
object model, exception semantics, or runtime environment,
thus allowing any language (or combination of languages)
to be compiled to it. (5) Uniform, whole-program compila-
tion: Language-independence makes it possible to optimize
and compile all code comprising an application in a uniform
manner (after linking), including language-specific runtime
libraries and system libraries.

We believe that no previously existing system provides
all five of these properties. Source-level compilers provide
#2 and #4, but do not attempt to provide #1, #3 or #5.
Link-time interprocedural optimizers, common in commer-
cial compilers, provide the additional capability of #1 and
#5 but only for link-time. Profile-guided optimizers for
static languages provide benefit #2 at the cost of trans-

1The idle-time optimizer is planned, but has not yet been
implemented.

parency, and most crucially do not provide #3. High-level
virtual machines such as JVM or CLI provide #3 and most
of #1, but do not provide #2, #4 or #5. Binary runtime
optimization systems provide #2, #4 and #5, but provide
#3 partially and do not provide #1. We explain these in
more detail in Section 3.

We evaluate the effectiveness of the LLVM system with re-
spect to three issues: (a) the size and effectiveness of the rep-
resentation, including the ability to extract useful type infor-
mation for C programs; (b) the compiler performance (not
the performance of generated code which depends on the
particular code generator or optimization sequences used);
and (c) examples illustrating the key capabilities LLVM pro-
vides for several challenging compiler problems.

To summarize, the overall contributions of this work are
as follows:

• LLVM defines a rich, low-level code representation
with low-level operations and memory model, but with
rich type, control-flow and dataflow information neces-
sary for powerful, language-independent analyses and
transformations. It achieves these goals through the
novel instruction set features described earlier.

• The LLVM compiler framework provides transparent,
lifelong analysis and optimization of arbitrary pro-
grams. The design provides all five capabilities we
believe are important for effective lifelong code anal-
ysis and optimization of arbitrary programs, as listed
above. To our knowledge, it is unique in this respect.

• Our experimental results show that the LLVM com-
piler can prove that an average of 74.6% of memory
accesses are type-safe across a range of SPECINT 2000
C benchmarks. We also discuss based on our experi-
ence how the type information captured by LLVM is
enough to safely perform a number of aggressive trans-
formations that would traditionally be attempted only
on type-safe languages in source-level compilers. We
show that the LLVM representation is comparable in
size to SPARC machine code (a RISC architecture)
and roughly 25% larger than x86 code on average, de-
spite capturing much richer type information as well
as infinite register set in SSA form. Finally, we present
example timings showing that the LLVM representa-
tion is amenable to extremely efficient interprocedural
optimizations.

Our implementation of LLVM to date supports C and
C++, which are traditionally compiled entirely statically.
We are currently exploring whether LLVM can be beneficial
for implementing dynamic runtimes such as JVM and CLI
as well. LLVM is freely available under a non-restrictive
license.2

The rest of this paper is organized as follows. Section 2 be-
gins by describing the LLVM code representation. Section 3
then describes the design of the LLVM compiler framework.
Section 4 discusses our evaluation of the LLVM system as
described above. Section 5 compares LLVM with related
previous systems. Section 6 concludes with a summary of
the paper.

2See the LLVM home-page: http://llvm.cs.uiuc.edu/.

2. PROGRAM REPRESENTATION
The LLVM representation is one of the key factors that

differentiates LLVM from other systems. There are three
specific design features in LLVM that we believe are novel:
(1) The LLVM type system & getelementptr instruction
(which implements type-safe pointer arithmetic). (2) The
LLVM memory model, and (3) The invoke and unwind

instructions, used to implement source-language exception
handling features. This section of the paper gives an
overview of the LLVM instruction set, describes these fea-
tures, and briefly describes the offline and in-memory rep-
resentations. The detailed syntax and semantics of the rep-
resentation is defined in the LLVM reference manual [25].

2.1 Overview of the LLVM Instruction Set
The LLVM instruction set captures the key operations of

ordinary processors but avoids machine-specific constraints
such as physical registers, pipelines, and low-level calling
conventions. LLVM provides an infinite set of typed virtual
registers which can hold values of primitive types (boolean,
integral, floating point, and pointers). The virtual registers
are in Static Single Assignment (SSA) form [14]. LLVM
is a load/store architecture: programs transfer values be-
tween registers and memory solely via load and store op-
erations using typed pointers. The LLVM memory model is
described in Section 2.3.

The entire LLVM instruction set consists of only 31 op-
codes. This is possible because, first, we avoid multiple op-
codes for the same operations3. Second, most opcodes in
LLVM are overloaded (For example, the add instruction can
operate on any integer or floating point operand type). Most
instructions, including all arithmetic and logical operations,
are in three-address form: they take one or two operands
and produce a single result.

LLVM uses SSA form as its primary code representation,
i.e., each SSA register is defined exactly once, and each use
of a register is dominated by its definition. The LLVM in-
struction set includes an explicit phi instruction, which cor-
responds directly to the standard (non-gated) φ function of
SSA form. SSA form simplifies many dataflow optimizations
and enables fast, flow-insensitive algorithms to achieve many
of the benefits of flow-sensitive algorithms without expen-
sive dataflow analysis. It also dramatically simplifies many
transformations because registers cannot have aliases.

LLVM also makes the Control Flow Graph (CFG) of every
function explicit in the representation. A function is a set
of basic blocks, and each basic block is a sequence of LLVM
instructions, ending in exactly one terminator instruction
(branches, return, unwind, or invoke; the latter two are
explained later below). Each terminator explicitly specifies
its successor basic blocks.

2.2 Language-independent Type Information,
Cast and GetElementPtr

One of the fundamental design feature of LLVM is the
inclusion of a language-independent type system. Every
SSA register and explicit memory object has an associated
type, and all operations obey strict type rules. This type
information is used in conjunction with the instruction op-
code to determine the exact semantics of an instruction (e.g.

3For example, there are no unary operators: not and neg
are implemented in terms of xor and sub, respectively.

floating point vs. integer add). This type information en-
ables a broad class of high-level transformations on low-level
code (for example, see Section 4.1.1). In addition, type mis-
matches can be used to detect optimization bugs.

The LLVM type system includes source-language-independent
primitive types with predefined sizes (void, bool, signed/un-
signed integers from 8 to 64 bits, single- and double-precision
floating-point types). This makes it possible (but not re-
quired) to write portable code using these types. LLVM
also includes (only) four derived types: pointers, arrays,
structures, and functions. We believe that most high-level
language data types are eventually represented using some
combination of these four types in terms of their operational
behavior (e.g., C++ classes with inheritance are described
in Section 4.1.2).

The LLVM ’cast’ instruction is used to convert a value of
one type to another, arbitrary, type (needed for supporting
non-type-safe languages, like C). The cast instruction is the
only way to convert values: a program without casts is nec-
essarily type-safe (in the absence of memory access errors,
e.g., array overflow [17]). LLVM types can also be used by
aggressive interprocedural optimizations to check the cor-
rectness of a wide variety of transformations. Section 4.1.1
shows that despite allowing values to be arbitrarily cast to
other types, reliable type information is actually available
for most memory accesses in C programs compiled to LLVM.

A critical difficulty in preserving type information for
low-level code is implementing address arithmetic. The
getelementptr instruction is used by the LLVM system to
perform type-safe pointer arithmetic. Given a typed pointer
to an object of some aggregate type, this instruction calcu-
lates the address of a sub-element of the object in a type-
preserving manner (effectively a combined ’.’ and ’[]’ opera-
tor for LLVM). For example, given a pointer to a structure
and a field number, the getelementptr instruction returns
a pointer to the field. Given a pointer to an array and an
integer index, it returns a pointer to the specified element.
Load and store instructions take a single pointer and do
not perform any indexing. This design makes processing of
memory accesses simple and uniform.

2.3 Explicit Memory Allocation and Unified
Memory Model

LLVM provides instructions for typed memory allocation.
The malloc instruction allocates one or more elements of
a specific type on the heap, returning a typed pointer to
the new memory. The free instruction releases memory al-
located through malloc4. The alloca instruction is similar
to malloc except that it allocates memory in the stack frame
of the current function instead of the heap, and the mem-
ory is automatically deallocated on return from the function.
All stack-resident data (including “automatic” variables) are
allocated explicitly using alloca.

In LLVM, all addressable objects (“lvalues”) are explicitly
allocated. Global variable and function definitions define a
symbol which provides the address of the object, not the
object itself. This gives a unified memory model in which
all memory operations, including call instructions, occur
through typed pointers. There are no implicit accesses to

4When native code is generated for a program, malloc and
free instructions are converted to the appropriate native
function calls, allowing custom memory allocators to be
used.

memory, simplifying memory access analysis, and the rep-
resentation needs no “address of” operator.

2.4 Function Calls and Exception Handling
For ordinary function calls, LLVM provides a call in-

struction that takes a typed function pointer (which may be
a function name or an actual pointer value) and typed ac-
tual arguments. This abstracts away the calling conventions
of the underlying machine and simplifies program analysis.

One of the most unusual features of LLVM is that it
provides an explicit, low-level, machine-independent mech-
anism to implement exception handling in high-level lan-
guages. In fact, the same mechanism also supports setjmp

and longjmp operations in C, allowing these operations to be
analyzed and optimized in the same way that exception fea-
tures in other languages are. The common exception mech-
anism is based on two instructions, invoke and unwind.

The invoke and unwind instructions together support
an abstract exception handling model logically based on
stack unwinding (though LLVM-to-native code generators
may use either “zero cost” table-driven methods [8] or
setjmp/longjmp to implement the instructions). The invoke
instruction operates just like a call instruction, but asso-
ciates an extra basic block with the call which is the starting
block for an exception handler. When the program executes
an unwind instruction, the program logically unwinds the
stack until it removes an activation record created by an
invoke instruction. It then transfers control to the basic
block specified by the invoke. These two instructions ex-
plicitly expose exceptional control flow in the LLVM CFG,
which is a critical aspect of its design.

These two primitive instructions can be used to imple-
ment a wide variety of exception handling mechanisms (we
have currently implemented support for C’s setjmp/longjmp
calls and full support for the C++ exception model). The
unwind instruction is used to implement exception throwing
(and longjmp) in high-level languages. Code which must
be executed if an exception is thrown (for example, setjmp,
“catch” blocks, automatic variable destructors in C++, etc)
uses the invoke instruction to stop unwinding, execute the
desired code, then continue execution or unwinding as nec-
essary.

{
Class Object; // Has a destructor
func(); // Might throw
...

}
Figure 1: C++ exception handling example

The example in Figure 1 illustrates a case where the
invoke instruction is generated by a C++ front-end, in or-
der to execute destructors of the stack-allocated Object if
an exception is thrown as a result of the func() call. Fig-
ure 2 shows the LLVM code for the example. A front-end
for Java would use similar code to unlock locks that are
acquired through synchronized blocks or methods when ex-
ceptions are thrown. Finally, a catch clause (e.g., in C++,
Java, OCaml, and other languages) would be implemented
directly in terms of an exception destination. All of the ex-
ception semantics of the high-level language are written us-
ing runtime libraries that are called in the exception blocks.

2.5 Plain-text, Binary, and In-memory Repre-
sentations

...
; Allocate stack space for object:
%Object = alloca %Class, uint 1
; Construct object:
call void %Class::Class(%Class* %Object)
; Call ‘‘func()’’:
invoke void %func() to label %OkLabel

except label %ExceptionLabel
OkLabel:
; ... execution continues...

ExceptionLabel:
; If unwind occurs, excecution continues
; here. First, destroy the object:
call void %Class::~Class(%Class* %Object)
; Next, continue unwinding:
unwind

Figure 2: LLVM code for the example

The LLVM representation is a first class language which
defines equivalent textual, binary, and in-memory (i.e., com-
piler’s internal) representations. The instruction set is de-
signed to serve effectively both as a persistent, offline code
representation and as a compiler internal representation,
with no semantic conversions needed between the two5. Be-
ing able to convert LLVM code between these representa-
tions without information loss makes debugging transfor-
mations much simpler, allows test cases to be written easily,
and decreases the amount of time required to understand
the in-memory representation.

3. COMPILER ARCHITECTURE
The goal of the LLVM compiler framework is to enable

sophisticated transformations at link-time, run-time, and
after an application is installed in the field, by operating
on the LLVM representation of a program at all stages. To
be practical though, it must be transparent to application
developers and end-users, and it must be efficient enough
for use with real-world applications. This section describes
how the overall system and the individual components are
designed to achieve all these goals.

3.1 High-Level Design of the LLVM Compiler
Framework

Figure 3 shows the high-level architecture of the LLVM
system. Briefly, static compiler front-ends emit code in the
LLVM representation, which is combined together by the
LLVM linker. The linker performs a variety of link-time op-
timizations, then produces highly optimized native code for
a given target (this step may alternatively be deferred to in-
stall time), and saves LLVM code with the native code. At
runtime, a light-weight instrumentation system is used to
detect program hot spots and perform simple runtime opti-
mizations. The program behavior collected by the runtime
optimizer can be collected and attached to the program,
allowing an offline optimizer to perform aggressive profile-
driven interprocedural optimizations in the field during idle-
time, using profile information gathered from the end-user’s
and not the developer’s runs.

This strategy provides five powerful benefits that are not
available in the traditional model of static compilation to na-

5In contrast, typical JVM implementations convert from the
stack-based bytecode language used offline to an appropriate
representation for compiler transformations, and some even
convert to SSA form for this purpose (e.g., [7]).

Native
CodeGen

Linker
IPO/IPA

.

. Runtime
Optimizer

Offline Reoptimizer

Profile
& Trace

Info

LLVM

LLVM
Libraries

Compiler FE 1

Compiler FE N
.o files

LLVM
LLVM

exe &
LLVM

LLVM

CPU

JIT

Profile
Info

exe &
LLVM

exe

LLVM

exe

LLVM

Figure 3: LLVM system architecture diagram

tive machine code. We argued in the Introduction that these
capabilities are important for lifelong analysis and transfor-
mation, and we named them: (1) lifelong compilation model ,
(2) offline code generation, (3) user-based profiling and op-
timization, (4) transparent runtime model , and (5) uniform,
whole-program compilation. These are difficult to obtain si-
multaneously for at least two reasons. First, offline code gen-
eration (#2) normally does not allow optimization at later
stages on the higher-level representation instead of native
machine code (#1 and #3). Second, lifelong compilation
have traditionally been associated only with bytecode-based
languages, which do not provide #4.

In fact, we noted in the Introduction that no existing com-
pilation approach provides all the capabilities listed above.
Our reasons are as follows:

• Traditional source-level compilers provide #2 and #4,
but do not attempt #1, #3 or #5. They do pro-
vide interprocedural optimization, but require signifi-
cant changes to application Makefiles.

• Several commercial compilers provide the additional
benefit of #1 and #5 at link-time by exporting their
intermediate representation to object files [19, 4, 23]
and performing optimizations at link-time. No such
system we know of is also capable of preserving its
representation for runtime or offline use (benefits #1
and #3).

• Higher-level virtual machines like JVM and CLI pro-
vide benefit #3 and partially provide #1 (in particu-
lar, the need for bytecode verification greatly restricts
the optimizations that may be done before runtime)
and #5 (e.g., CLI can support code in multiple lan-
guages). They do not provide #2 because runtime
optimization is generally only possible when using JIT
code generation. They do not aim to provide #4, and
instead provide a rich runtime framework for languages
that match their runtime and object model, e.g., Java
and C#.

• Transparent binary runtime optimization systems like
Dynamo and the runtime optimizers in Transmeta pro-
cessors provide benefits #2, #4 and #5, but not #1,
and provide benefit #3 to a limited extent at run-
time because they are constrained to work on native
binary code, limiting the optimizations they can per-
form. Omniware [1] provides #2, #4 and perhaps #5,
but does not provide a representation suitable for high-
level analysis and optimization (i.e., #1).

• Profile Guided Optimization for static languages pro-
vide benefit #3 at the cost of not being transparent
(they require a multi-phase compilation process). Ad-
ditionally, PGO suffers from three main problems: (1)

Empirically, developers are unlikely to use PGO, ex-
cept when compiling benchmarks. (2) When PGO is
used, the application is tuned to the behavior of the
training run. If the training run is not representative
of the end-user’s usage patterns, the program may ac-
tually be pessimized by the profile information. (3)
The profiling information is completely static, meaning
that the compiler cannot make use of phase behavior
in the program or adapt to changing usage patterns.

There are also limitations of the LLVM strategy. First,
language-specific optimizations must be performed in the
front-end before generating LLVM code. (LLVM is not de-
signed to be a universal representation for source languages.)
Second, it is an open question whether languages requiring
sophisticated runtime systems such as Java can benefit di-
rectly from LLVM. We are currently exploring the potential
benefits of implementing higher-level virtual machines such
as JVM or CLI on top of LLVM.

The subsections below describe the key components of
the LLVM compiler architecture, emphasizing design and
implementation features that make the capabilities above
practical and efficient.

3.2 Compile-Time: External front-end & static
optimizer

External static LLVM compilers (referred to as front-ends)
translate source-language programs into the LLVM virtual
instruction set. Each static compiler can perform three key
tasks, of which the first and third are optional: (1) Per-
form language-specific optimizations, e.g., optimizing clo-
sures in languages with higher-order functions. (2) Trans-
late source programs to LLVM code, preserving as much use-
ful type information for data values as possible. (3) Invoke
LLVM passes for global or interprocedural optimizations at
the module level. The LLVM optimizations are built into
libraries, making it easy for front-ends to use them. The
front-end does not have to perform SSA construction. In-
stead, variables can be allocated on the stack (which is not
in SSA form), and the LLVM stack promotion pass can be
used to build SSA form.

Note that many “high-level” optimizations are not language-
dependent, and are often special cases of more general opti-
mizations which may be performed on the LLVM level e.g.,
virtual function resolution for C++ as described in Sec-
tion 4.1.2. If this is the case, it is often useful to extend
the LLVM optimizer rather than investing effort in code
which only benefits a particular front-end. This also allows
the optimizations to be performed throughout the lifetime
of the program.

3.3 Linker & Interprocedural Optimizer
Link time is the first phase of the compilation process

where most6 of the program is available for analysis and
transformation. As such, link-time is a natural place to per-
form aggressive interprocedural optimizations across the en-
tire program. The link-time optimizations operate on LLVM
directly, and can take advantage of the semantic information
it contains.

The design of compile- and link-time optimizers permit
the use a well-known technique for speeding up interproce-
dural analysis: at compile-time, interprocedural summaries
can be computed for each function in the program and at-
tached to the LLVM bytecode. The link-time interprocedu-
ral optimizer can then process these interprocedural sum-
maries as input instead of having to compute results from
scratch. This technique can dramatically speed up incre-
mental compilation when a small number of translation units
are modified [6]. Note that this is achieved without build-
ing a program database or deferring the compilation of the
input source code until link-time.

3.4 Offline or JIT Native Code Generation
After link-time optimization, a code generator is selected

to translate from LLVM to native code for the current plat-
form (we currently support the Sparc V9 and x86 architec-
tures), in one of two ways. In the first configuration, the
code generator is run offline (i.e., statically) at link time
to generate high performance native code for the applica-
tion, potentially expensive code generation techniques. If
the user decides to use the post-link (runtime and offline)
optimizers, a copy of the entire LLVM bytecode for the pro-
gram is included into the executable itself7. In addition, the
code generator inserts light-weight instrumentation into the
program to identify frequently executed loop regions.

Alternatively, a Just-in-time Execution Engine can be
used which invokes the appropriate code generator at run-
time, translating a function at a time for execution (or uses
a portable LLVM interpreter if no native code generator is
available).

3.5 Runtime Path Profiling & Reoptimization
One of the goals of the LLVM project is to develop a new

strategy for runtime optimization of ordinary applications.
We briefly describe the strategy and then summarize its key
benefits.

As a program executes, the most frequently executed ex-
ecution paths are identified through a combination of of-
fline and online instrumentation. The offline instrumenta-
tion is inserted just before native code generation (described
above), identifying frequently executed loop regions in the
code. An online instrumentation library then instruments
such a hot loop region to identify frequently executed paths
within that region. Once “hot” paths are identified, we du-
plicate the original LLVM code into a trace, perform LLVM
optimizations on it, and then regenerate native code into a
software trace cache. The native code is then stitched into
the existing application code for subsequent executions.

The strategy described here is powerful because it com-
bines the following three characteristics: (a) Native code
generation can be performed ahead-of-time using sophisti-

6Note that shared libraries and system libraries may not
be available for analysis at link time, or may be compiled
directly to native code.
7Eliminating the possibility that the runtime or offline op-
timizers will get the wrong bytecode for a given program.

cated algorithms to generate high-performance code. (b)
The native code generator and the runtime optimizer can
work together since they are both part of the LLVM frame-
work, allowing the runtime optimizer to exploit support
from the code generator (e.g., for instrumentation and sim-
plifying transformations). (c) The runtime optimizer can
use high-level information from the LLVM representation to
perform sophisticated runtime optimizations.

We believe these three characteristics together represent
one “optimal” design point for a runtime optimizer because
they allow the best choice in three key aspects: high-quality
initial code generation (offline rather than online), coopera-
tive support from the code-generator, and the ability to per-
form aggressive optimizations (by using LLVM rather than
native code as the input).

3.6 Offline Reoptimization with Enduser Pro
file Information

Some applications are not particularly amenable to run-
time optimization: these applications often have a large
amount of code, none of which is very “hot”. Because of
this, the runtime optimizer cannot afford to spend a large
amount of time improving any one piece of the code, al-
though it can still detect the most frequent paths executed
by the program (for code layout optimizations).

In order to support these applications and to support
other optimizations which require potentially expensive
analyses or transformations, an offline reoptimizer can be
used. It is designed to be run during idle time on the user’s
computer, allowing it to be much more aggressive than the
runtime optimizer.

The offline reoptimizer combines profile information gath-
ered by the runtime optimizer with the LLVM to optimize
and recompile the application. In this way it is able to per-
form aggressive profile-driven interprocedural optimization
without competing with the application for processor cy-
cles. As the usage pattern of the application changes over
time, the runtime and offline reoptimizers could coordinate
to ensure the highest achievable performance.

4. APPLICATIONS AND EXPERIENCES
Sections 2 and 3 describe the design of the LLVM code

representation and compiler architecture. In this section,
we evaluate this design in terms of three categories of issues:
(a) the effectiveness of the representation; (b) the speed of
performing whole-program analyses and transformations in
the compiler; and (c) illustrative uses of the LLVM system
for challenging compiler problems, focusing on how the novel
capabilities in LLVM benefit these uses.

4.1 Representation Issues
One of the key contributions of the LLVM representation

is the language-independent type system. Does this type
system provide any fundamental value when it can be vio-
lated with casts? Second, how do high-level language fea-
tures (e.g., classes) map onto the LLVM type system and
code representation? Third, how large is the LLVM repre-
sentation when written to disk?

4.1.1 What value does type information provide?
Reliable type information about programs can enable the

optimizer to perform aggressive transformations that would
be difficult otherwise (such as reordering two fields of a

structure or optimizing memory management [26]). How-
ever, since LLVM is a weakly-typed language, declared type
information is not reliable and some analysis (typically in-
cluding a pointer analysis) must check the declared type in-
formation before it can be used. A key question is how much
reliable type information is available in programs compiled
to LLVM?

LLVM includes a flow-insensitive, field-sensitive and context-
sensitive points-to analysis called Data Structure Analy-
sis (DSA) [27], and several transformations in LLVM use
DSA as the main foundation (e.g., Automatic Pool Allo-
cation [26]). As part of the analysis, DSA extracts LLVM
types for memory objects in the program which it verified
to be accessed in a type-safe manner. It does this by us-
ing the types present in the LLVM representation as specu-
lative type information, and checks conservatively whether
that type information is correct. DSA performs no type-
inference: it only verifies that memory accesses agree with
the declared types8.

For a wide range of benchmarks, we measured the frac-
tion of static load and store operations for which reli-
able type information about the accessed objects is avail-
able. Table 1 shows this statistic for the C benchmarks in
SPEC CPU20009. Simpler benchmarks (e.g., the Olden and
Ptrdist benchmarks) had even better results, scoring close
to 100% in most cases.

Benchmark Typed Untyped Typed
Name Accesses Accesses Percent

164.gzip 1674 15 99.1%
175.vpr 3986 400 90.9%
179.art 585 0 100.0%
181.mcf 581 0 100.0%
183.equake 881 48 94.8%
186.crafty 9849 603 94.2%
188.ammp 1570 3279 32.4%
197.parser 1532 2207 41.0%
254.gap 6578 15508 29.8%
255.vortex 15845 8725 64.5%
256.bzip2 1020 52 95.1%
300.twolf 7279 7249 50.1%
average 74.3%

Table 1: Loads and Stores which are provably typed

The table shows that many of these programs (164, 176,
179, 181, 183, 186, & 256) are surprisingly type-safe, despite
the fact that the programming language does not enforce
type-safety. The leading cause of loss of type-safety in the
remaining programs is the use of custom memory allocators
(i.e., 197, 254, 255, & 300) and DSA not being aggressive
enough (in 188). Despite the use of custom allocators, DSA
is still able to prove a significant number of accesses to be
type-safe.

It is important to note that similar results would be very
difficult to obtain if LLVM had been an untyped represen-
tation. As an example, an earlier version of the C-to-LLVM
front-end was based on GCC’s RTL internal representation,
which provided little useful type information and both DSA

8DSA is actually quite aggressive: it can often prove that
objects stored into “generic” void* data structure (and then
loaded from it later) are type-safe despite the casts to and
from void*.
9Unfortunately, LLVM bugs prevented getting numbers for
176.gcc, 177.mesa, and 253.perlbmk in time for submission.

and pool allocation were much less effective. Our new C
front-end is based on the AST representation in the GCC
front-end, which makes much more type information avail-
able.

4.1.2 How do high-level features map onto LLVM?
Compared to source languages, LLVM is a much lower

level representation. Even C, which itself is quite low-level,
has many features which must be lowered by a compiler
targeting LLVM. For example, complex numbers, struc-
ture copies, unions, bit-fields, variable sized arrays, and
setjmp/longjmp all must be lowered by an LLVM C com-
piler. In order for the representation to support effective
analyses and transformations, the mapping from source-
language features to LLVM should capture the high-level
operational behavior as cleanly as possible.

We discuss this issue by using C++ as an example, since
it is the richest language for which we have an implemented
front-end. We believe that all the complex, high-level fea-
tures of C++ are expressed clearly in LLVM, allowing their
behavior to be effectively analyzed and optimized:

• Implicit calls (e.g. copy constructors) and parameters
(e.g. ’this’ pointers) are made explicit.

• Templates are fully instantiated by the C++ front end
before LLVM code is generated.

• Base classes are expanded into nested structure types.
For this C++ fragment:

class base1 { int Y; };

class base2 { float X; };

class derived : base1, base2 { short Z; };

the LLVM type for the “derived” class is ’{ {int},
{float}, short }’. If the classes have virtual func-
tions, a v-table pointer would also be included and
initialized at object allocation time to point to the vir-
tual function table, described below.

• A virtual function table is represented as a global, con-
stant table of typed function pointers, plus the type-id
object for the class. With this representation, virtual
method call resolution can be performed by the LLVM
optimizer as effectively as by a typical source compiler
(more effectively if the source compiler uses only per-
module instead of whole-program pointer analysis).

• C++ exceptions are lowered to the ’invoke’ and ’un-
wind’ instructions as described in Section 2.4, exposing
exceptional control flow in the CFG. In fact, having
this information available at link time enables LLVM
to use an interprocedural analysis to eliminate unused
exception handlers. This optimization is much less ef-
fective if done on a per-module basis in a source-level
compiler.

We believe that similarly clean LLVM implementations
exist for most constructs in other language families like
Scheme, SmallTalk, the ML family, Java and Microsoft CLI
(important examples include closures and continuations).
We aim to explore this issue in the future and preliminary
work is underway on the implementation of Java and Scheme
front-ends.

4.1.3 How compact is the LLVM representation?
Since code for the compiled program is stored in the

LLVM representation throughout its lifetime, it is impor-
tant that it not be overly large. The flat, three-address
form of LLVM is well suited for a simple linear layout, with
most instructions requiring only a single 32-bit word each
in the file. Figure 4 shows the size of LLVM files for SPEC
CPU2000 executables after linking, compared to native X86
and 32-bit Sparc executables produced by GCC 3.3 in both
cases (using -O3).

164 175 179 181 183 186 188 197 254 255 256 300 Avg
0K
50K
100K
150K
200K
250K
300K
350K
400K
450K
500K
550K
600K
650K
700K
750K
800K
850K
900K

LLVM
X86
Sparc

Figure 4: Executable sizes for LLVM, X86, Sparc

The figure shows that LLVM code is about the same size
as native executables for SPARC, and is roughly 25% larger
on average for x86 (a much denser, variable-size instruction
set). We believe this is a very good result given that LLVM
encodes rich type information, control flow information, and
data-flow (SSA) information that native executables do not.
We have not yet attempted to optimize the size of the byte-
code files, so this may be further reduced in the future.

4.1.4 How fast is LLVM?
An important aspect of LLVM is that the low-level rep-

resentation enables efficient analysis and transformation,
because of the small, uniform instruction set, the explicit
CFG and SSA representations, and careful implementation
of data structures. This speed is important for uses “late”
in the compilation process (i.e., at link-time or run-time).
In order to provide a sense for the speed of LLVM, Figure 5
shows the table of runtimes for several interprocedural op-
timizations. All timings were collected on an 3.06GHz Intel
Xeon processor.

The table includes numbers for DGE (aggressive10 Dead
global variable and function Elimination), DAE (an aggres-
sive Dead Argument Elimination), inline (a function inte-
gration pass), DSA (Data Structure Analysis), and GCC

(time to compile the programs with the gcc 3.3 compiler at -
O3, provided as a reference point). All these interprocedural
optimizations work on the whole program at link-time.

We find that in all cases, the optimization time is sub-
stantially less than that to compile the program with GCC,
despite the fact that GCC does no cross module optimiza-
tion, and very little interprocedural optimization within a

10“Aggressive” DCE’s all assume objects are dead until
proven otherwise, allowing dead objects with cycles to be
deleted.

x
Benchmark DGE DAE inline DSA GCC
164.gzip 0.0052 0.0001 0.0241 0.0299 3.10
175.vpr 0.0001 0.0000 0.0045 0.0081 7.11
179.art 0.0005 0.0000 0.0096 0.0047 0.69
181.mcf 0.0005 0.0000 0.0202 0.0040 2.00
183.equake 0.0006 0.0000 0.0119 0.0054 0.91
186.crafty 0.0178 0.0005 0.0917 0.2709 10.98
188.ammp 0.0066 0.0003 0.1693 0.1115 6.81
197.parser 0.0088 0.0006 0.1888 0.2880 6.17
254.gap 0.0345 0.0034 0.3856 7.8341 20.08
255.vortex 0.0287 0.0073 1.2419 3.0451 24.15
256.bzip2 0.0022 0.0000 0.0322 0.0154 1.86
300.twolf 0.0128 0.0003 0.2580 0.1381 17.34

Figure 5: Interprocedural optimization timings (in seconds)

translation unit. Optimizations such as DGE and DAE are
very efficient, because they only have to touch small por-
tions of the program to perform their analysis. The inlining
pass is also fairly quick, taking time linear in the number of
inlines it must perform (in 255.vortex, for example, it inlines
792 functions, deleting the bodies of 292 functions which are
subsequently dead). Data Structure Analysis is the most
aggressive analysis of the group, owing largely to the fact
that it is a context-sensitive, field-sensitive, flow-insensitive
pointer analysis, but it too is relatively fast compared with
GCC.

4.2 Applications using lifetime analysis and
optimization capabilities of LLVM

Finally, to illustrate the capabilities provided by the com-
piler framework, we briefly describe three examples of how
LLVM has been used for widely varying compiler problems,
using the novel capabilities described in the introduction.

4.2.1 Projects using LLVM as a general compiler
infrastructure

As noted earlier, we have implemented several compiler
techniques in LLVM. The most aggressive of these are
Data Structure Analysis (DSA) and Automatic Pool Alloca-
tion [26], which analyze and transform programs in terms of
their logical data structures. These techniques inherit a few
significant benefits from LLVM, especially, (a) these tech-
niques are only effective if most of the program is available,
i.e., at link-time (b) type information allows is crucial for
their effectiveness; (c) the techniques are source-language
independent; and (c) SSA significantly improves the preci-
sion of DSA, which is flow-insensitive.

Other researchers not affiliated with our group have been
actively using or exploring the use of the LLVM compiler
framework, in a number of different ways. These include
using LLVM as an intermediate representation for binary-
to-binary transformations, as a compiler back-end to sup-
port a hardware-based trace cache and optimization system,
as a basis for runtime optimization and adaptation of Grid
programs, and as a compiler for memory partitioning and
optimization of embedded codes.

4.2.2 SAFECode: A safe low-level representation
and execution environment

SAFECode provides a “safe” code representation and ex-
ecution environment, based on a type-safe subset of LLVM.
The goal of our work is to enforce memory safety of pro-
grams in the SAFECode representation through static anal-

ysis, by using a variant of automatic pool allocation instead
of garbage collection [17], and using extensive interprocedu-
ral static analysis to minimize runtime checks [24, 17].

The SAFECode system exploits nearly all capabilities of
the LLVM framework, except runtime optimization. It di-
rectly uses the LLVM code representation, which provides
the ability to analyze C and C++ programs, which is crucial
for supporting embedded software, middle-ware, and sys-
tem libraries. SAFECode relies on the type information in
LLVM (with no syntactic changes) to check and enforce type
safety. It relies on the array type information in LLVM to
enforce array bounds safety, and uses interprocedural anal-
ysis to eliminate runtime bounds checks in many cases [24].
It uses interprocedural safety checking techniques, exploit-
ing the link-time framework to retain the benefits of separate
compilation (a key difficulty that led many related systems
to avoid using interprocedural techniques [16, 21]).

4.2.3 External ISA design for Virtual Instruction Set
Computers

Virtual Instruction Set Computers are processor designs
that use distinct instruction set architectures for the exter-
nal program representation (the virtual ISA or V-ISA) and
for the actual hardware ISA in a particular implementation
(I-ISA). A software translator co-designed with the hard-
ware (essentially, a sophisticated, implementation-specific
back-end compiler) translates V-ISA code to the I-ISA, and
is the only software that is aware of the I-ISA.

In recent work, we argued that an extended version of the
LLVM instruction set could be a good choice for the external
V-ISA for such processor designs [2]. We proposed a novel
implementation strategy for the virtual-to-native translator
that enables offline code translation and caching of trans-
lated code in a completely OS-independent manner11.

That work exploits the important features of the instruc-
tion set representation, and extends it to be suitable as a
V-ISA for hardware. The fundamental benefit of LLVM
for this work is that the LLVM code representation is low-
level enough to represent arbitrary external software (in-
cluding operating system code), yet provides rich enough
information to support sophisticated compiler techniques in
the translator. A second key benefit is the ability to do both
offline and online translation, which is exploited by the OS-
independent translation strategy.

5. RELATED WORK
We focus on comparing LLVM with three classes of pre-

vious work: other virtual machine-based compiler systems,
research on typed assembly languages, and link-time or dy-
namic optimization systems.

As noted in the Introduction, the goals of LLVM are com-
plementary to those of higher-level language virtual ma-
chines such as SmallTalk, Self, JVM, and Microsoft CLI. We
noted three key differences in the goals of LLVM vs. these
systems, and we do not repeat them here. The Omniware
virtual machine [1] is perhaps the most similar to LLVM:
they use an abstract low-level RISC architecture and can
support multiple source languages. However, the goals of
their work are to provide safety, not performance. In par-
ticular, they do not include high-level information necessary

11The goals and contributions are quite different from this
work, though both are based on the LLVM instruction set.

for lifelong optimization.
There has also been a a wide range of work in the field

of typed intermediate representations. Functional languages
often use strongly typed intermediate languages (e.g. [31])
as a natural extension of the source language. Projects on
typed assembly languages (e.g., TAL [28] and LTAL [9]) fo-
cus on preserving high-level type information and type safety
during compilation and optimizations. The SafeTSA [3] rep-
resentation is a combination of type information with SSA
form, which aims to provide a safe but more efficient rep-
resentation than JVM bytecode for Java programs. In con-
trast, the LLVM virtual instruction set does not attempt
to preserve type safety of high-level languages, to capture
high-level type information from such languages, or to en-
force code safety directly (though it can be used to do so).
Instead, the goal of LLVM is to enable sophisticated analy-
ses and transformations beyond static compile time.

There have been attempts to define a unified, generic, in-
termediate representation. These have largely failed, rang-
ing from the original UNiversal Computer Oriented Lan-
guage [33] (UNCOL), which was discussed but never im-
plemented, to the more recent Architecture and language
Neutral Distribution Format [13] (ANDF), which was im-
plemented but has seen limited use. These unified repre-
sentations attempt to describe programs at the AST level,
implying that they must include features from all possible
source languages. LLVM is much less ambitious and is more
like an assembly language: it uses a small set of types and
low-level operations, and the “implementation” of high-level
language features is described in terms of these types. In
some ways, LLVM simply appears as a very strict RISC ar-
chitecture.

Kistler and Franz describe a compilation architecture for
performing optimization in the field, using simple initial
load-time code generation, followed by profile-guided run-
time and offline optimization. Their system uses Slim Bi-
naries [20] as its code representation, a very compact tree-
based code representation. Kistler and Franz observe that
other representations could be used. LLVM could be di-
rectly used within this architecture, making it unnecessary
to regenerate SSA form for every recompilation, as they sug-
gest.

Several systems perform interprocedural optimization at
link-time. Some operate on assembly code for a given
processor [29, 32, 12, 30] (focusing primarily on machine-
dependent optimizations), while others export additional in-
formation from the static compiler, either in the form of an
IR or annotations) [34, 19, 4, 23]. None of these approaches
attempt to support optimization at runtime or offline after
software is installed in the field, and would also be difficult
to directly extend to do so.

There have also been several systems that perform trans-
parent runtime optimization of native code [5, 18, 15]. These
systems inherit all the challenges of optimizing machine-level
code [29] in addition to the constraint of operating under the
tight time constraints of runtime optimization. In contrast,
LLVM aims to provide type, dataflow (SSA) information,
and an explicit CFG for use by runtime optimizations. For
example, our online tracing framework (Section 3.5) directly
exploits the CFG to perform limited instrumentation of hot
loop regions at runtime. Finally, none of these systems sup-
ports link-time, install-time, or offline optimizations, with
or without profile information.

6. CONCLUSION
This paper has described LLVM, a system for performing

lifelong code analysis and optimization. The system that
we describe uses a low-level (but fully typed) language as
the representation of a program throughout its lifetime. Be-
cause the LLVM representation is language independent, all
of the code for a program, including system libraries and
portions written in multiple languages, can be compiled
and optimized together. The LLVM compiler framework
includes a powerful link-time interprocedural optimizer, a
low-overhead tracing technique for runtime trace-based op-
timization, and both Just-In-Time and static code genera-
tors.

We showed experimentally and based on experience that
LLVM makes available extensive type information even for
C programs, which can be used to safely perform a num-
ber of aggressive transformations that would normally be
attempted only on type-safe languages in source-level com-
pilers. We also showed that the LLVM representation is
comparable in size to SPARC machine code and only 25%
larger than x86 code on average, despite capturing much
richer type information as well as an infinite register set in
SSA form. Finally, we showed that several example whole-
program optimizations can be performed very fast on the
LLVM representation. A key question we are exploring cur-
rently is whether high-level language virtual machines can
be implemented effectively on top of the LLVM runtime op-
timization and code generation framework.

7. REFERENCES
[1] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and

R. Wahbe. Efficient and language-independent mobile
programs. In Proceedings of the ACM SIGPLAN 1996
conference on Programming language design and
implementation, pages 127–136. ACM Press, 1996.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and
B. Gaeke. A Low-level Virtual Instruction Set
Architecture. page (to appear), San Diego, CA, Dec
2003.

[3] W. Amme, N. Dalton, M. Franz, and J. ery. SafeTSA:
A type safe and referentially secure mobile-code
representation based on static single assignment form.
In PLDI, June 2001.

[4] A. Ayers, S. de Jong, J. Peyton, and R. Schooler.
Scalable cross-module optimization. ACM SIGPLAN
Notices, 33(5):301–312, 1998.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In PLDI,
pages 1–12, June 2000.

[6] M. Burke and L. Torczon. Interprocedural
optimization: eliminating unnecessary recompilation.
TOPLAS, 15(3):367–399, 1993.

[7] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño Dynamic
Optimizing Compiler for Java. In Java Grande, pages
129–141, 1999.

[8] D. Chase. Implementation of exception handling. The
Journal of C Language Translation, 5(4):229–240,
June 1994.

[9] J. Chen, D. Wu, A. W. Appel, and H. Fang. A
provably sound TAL for back-end optimization. In

PLDI, San Diego, CA, Jun 2003.

[10] A. Chernoff, et al. FX!32: A profile-directed binary
translator. IEEE Micro, 18(2):56–64, 1998.

[11] R. Cohn, D. Goodwin, and P. Lowney. Optimizing
Alpha executables on Windows NT with Spike. Digital
Technical Journal, 9(4), 1997.

[12] R. Cohn, D. Goodwin, P. Lowney, and N. Rubin.
Spike: An optimizer for Alpha/NT executables, 1997.

[13] A. Consortium. The Architectural Neutral
Distribution Format, http://www.andf.org/.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
TOPLAS, pages 13(4):451–490, October 1991.

[15] J. C. Dehnert, et al. The Transmeta Code Morphing
Software: Using speculation, recovery and adaptive
retranslation to address real-life challenges. In Proc.
1st IEEE/ACM Symp. Code Generation and
Optimization, San Francisco, CA, Mar 2003.

[16] R. DeLine and M. Fahndrich. Enforcing high-level
protocols in low-level software. In PLDI, Snowbird,
UT, June 2001.

[17] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.
Memory safety without runtime checks or garbage
collection. In LCTES, San Diego, CA, Jun 2003.

[18] K. Ebcioglu and E. R. Altman. DAISY: Dynamic
compilation for 100% architectural compatibility. In
ISCA, pages 26–37, 1997.

[19] M. F. Fernández. Simple and effective link-time
optimization of Modula-3 programs. ACM SIGPLAN
Notices, 30(6):103–115, 1995.

[20] M. Franz and T. Kistler. Slim binaries.
Communications of the ACM, 40(12), 1997.

[21] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in cyclone. In PLDI, Berlin, Germany,
June 2002.

[22] D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive c and c++ memory leak
detector. In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and
implementation, pages 168–181. ACM Press, 2003.

[23] IBM Corp. XL FORTRAN: Eight Ways to Boost
Performance. White Paper, 2000.

[24] S. Kowshik, D. Dhurjati, and V. Adve. Ensuring code
safety without runtime checks for real-time control
systems. In CASES, Grenoble, France, Oct 2002.

[25] C. Lattner and V. Adve. LLVM Language Reference
Manual.
http://llvm.cs.uiuc.edu/docs/LangRef.html.

[26] C. Lattner and V. Adve. Automatic Pool Allocation
for Disjoint Data Structures. In Proc. ACM SIGPLAN
Workshop on Memory System Performance, Berlin,
Germany, Jun 2002.

[27] C. Lattner and V. Adve. Data Structure Analysis: A
Fast and Scalable Context-Sensitive Heap Analysis.
Tech. Report UIUCDCS-R-2003-2340, Computer
Science Dept., Univ. of Illinois at Urbana-Champaign,
Apr 2003.

[28] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. TOPLAS,

21(3):528–569, May 1999.

[29] R. Muth. Alto: A Platform for Object Code
Modification. Ph.d. Thesis, Department of Computer
Science, University of Arizona, 1999.

[30] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong,
H. Levy, B. Bershad, and B. Chen. Instrumentation
and optimization of Win32/Intel executables using
Etch. In Proc. USENIX Windows NT Workshop,
August 1997.

[31] Z. Shao, C. League, and S. Monnier. Implementing
Typed Intermediate Languages. In International
Conference on Functional Programming, pages
313–323, 1998.

[32] A. Srivastava and D. W. Wall. A practical system for
intermodule code optimization at link-time. Journal of
Programming Languages, 1(1):1–18, Dec. 1992.

[33] T. Steel. Uncol: The myth and the fact. Annual
Review in Automated Programming 2, 1961.

[34] D. Wall. Global register allocation at link-time. In
Proc. SIGPLAN ’86 Symposium on Compiler
Construction, Palo Alto, CA, 1986.

