
BranchTap: Improving Performance with Very Few Checkpoints
Through Adaptive Speculation Control

Abstract

Checkpoint prediction and intelligent management have been
recently proposed for reducing the number of coarse-grain
checkpoints needed to achieve high performance through
speculative execution. In this work, we take a closer look at
various checkpoint prediction and management alternatives,
comparing their performance and requirements as the scheduler
window size increases. We also study a few additional design
choices. The key contribution of this work is BranchTap, a novel
checkpoint-aware speculation strategy that temporarily throttles
speculation to reduce recovery cost while allowing speculation to
proceed when it is likely to boost performance. BranchTap
dynamically adapts to application behavior. We demonstrate that
for a 1K-entry window processor with a FIFO of just four
checkpoints, our adaptive speculation control mechanism leads to
an average performance degradation of just 1.49% compared to a
processor that has an infinite number of checkpoints. This
represents an improvement of 28.3% over using just prediction-
based checkpoint allocation. Average performance degradation
without BranchTap is 2.08%. For the same configuration,
BranchTap decreases the worst case deterioration from 8.99% to
5.64%.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream
Architectures

General Terms

Performance, Design

Keywords
Branch misprediction, speculation control, state recovery, state
checkpointing

1 Introduction
Modern processors use control flow speculation to improve

performance. To preserve correctness, recovery mechanisms
restore the machine’s state on mispeculations. Modern processors
utilize two such recovery mechanisms. The first is the re-order
buffer (ROB) which allows recovery at any instruction including
mispeculated branches. Recovering from the ROB amounts to
squashing, i.e., reversing the effects of each mispeculated
instruction, a process that requires time proportional to the number
of squashed instructions. The second recovery mechanism uses a
number of global checkpoints (GCs) which are allocated at decode
time. A GC contains a complete snapshot of all relevant processor
state. Recovery at an instruction with a GC is “instantaneous”, i.e.,
it requires a fixed, low latency.

Ideally, a GC would be allocated at every instruction such that
the recovery latency is always constant. In practice, only a limited
number of GCs can be implemented without impacting the clock
cycle significantly and thus reducing overall performance (we
explain this issue further in Section 2.2).

For processors with relatively small scheduling windows, using
a few GCs is sufficient. For example, the MIPS R10000 had a 32-
entry window and used just four GCs which were allocated to
branches in-order [24]. If no GC was available for a branch,
decoding was stalled.

Recent work has demonstrated that for processors with larger
scheduling windows a lot more checkpoints are needed [1,2,4,16].
Using checkpoint prediction was proposed for allocating few GCs
judiciously to low confidence, or weak branches (i.e., those that are
likely to cause a mispeculation) [1,2,16]. In addition, advanced GC
management methods were proposed to further improve GC
efficiency [16]. We review these proposals in more detail and other
related work in Section 4. For many programs at least eight and
often 16 GCs were needed to maintain performance within 2% of
that possible with an infinite number of checkpoints even with a
256-entry window [16]. A method that improves GC efficiency
further is highly desirable for the following three reasons: (1) it
will reduce overall GC requirements thus improving scalability for
future wider window processors, (2) it will reduce the overall cost,
and thus power of the GC mechanism, and (3) more importantly, a
method that allows us to use few checkpoints would permit
embedding those checkpoints inside all relevant structures thus
eliminating the need for expensive interconnects for checkpoint
content transfers (see Section 2.2).

Accordingly, in this work we are concerned with methods that
maximize performance with very few GCs (four or less) for
processors with relatively large scheduling windows (i.e., 512 or
1K instructions). Existing GC allocation methods reduce the
mispeculation recovery cost by allocating GCs to those branches1

that are likely to be mispeculated. Unfortunately, this task becomes

Patrick Akl and Andreas Moshovos
Electrical and Computer Engineering

University of Toronto
{pakl, moshovos}@eecg.toronto.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
ICS06, June 28-30, Cairns, Queensland, Australia.
Copyright C 2006 ACM 1-59593-282-8/06/0006...$5.00

increasingly harder as the number of GCs is reduced and as the
scheduler window size and thus the number of in-flight branches
increases.

We observe that, in addition to checkpoint prediction, we can
further reduce recovery costs by also trying to reduce the number
of instructions that would need to be squashed. Accordingly, the
key contribution of this work is BranchTap, a method that
combines adaptive speculation control with prediction-based
checkpoint allocation to maximize performance. Our method
works by tracking the number of in-flight weak branches without a
GC. The fetch stage is stalled while the aforementioned number
exceeds a threshold. We demonstrate that using a fixed threshold is
suboptimal across programs. Accordingly, we propose a method
that dynamically adapts this threshold using short sampling
intervals. BranchTap successfully improves performance for most
programs even though the underlying trade-offs are complex. In
particular, speculation control can significantly impair
performance when used often, and can be ineffective in reducing
recovery costs if used sparingly.

BranchTap requires little additional resources and its
implementation is straightforward. BranchTap builds upon
previous work in speculation control for power reduction, e.g.,
[9,13]. However, as we also explain in Section 4, there are three
significant differences: (1) previous work assumed fixed recovery
latencies at all mispeculations and thus ignored their impact on
performance, (2) the metric, and (3) the policy used by BranchTap
are very different. To the best of our knowledge, this is the first
work that proposes combining speculation control with checkpoint
prediction and that also proposes an adaptive method for adjusting
speculation control.

The contributions of this work are:
• We propose BranchTap, a method that uses adaptive

speculation control coupled with checkpoint prediction for
improving over previous checkpoint allocation and
management methods. Specifically, we demonstrate that our
method reduces average mispeculation recovery cost by
28.3% compared to a previously proposed technique that uses
checkpoint-prediction alone, when only four checkpoints are
available for a 1K-entry scheduler.

• We also compare the previously proposed checkpoint
prediction and allocation policies studying more closely the
underlying design trade-offs. We discuss possible
implementations of the more advanced checkpoint
management methods and suggest a few simple to implement
improvements.

The rest of this paper is organized as follows. In Section 2, we
start by reviewing existing checkpointing alternatives and discuss
the underlying performance trade-offs. In Section 3, we present
BranchTap. In Section 4, we review related work. In Section 5, we
present the results of our experimental analysis of BranchTap. We
summarize our key findings in Section 6.

2 Checkpoint/Recovery Background
In this section, we start with a brief overview of existing

checkpoint/recovery mechanisms. We then discuss the underlying
performance trade-offs and how previously proposed techniques
exploit these trade-offs to improve performance. In our discussion,

without loss of generality, we focus on checkpointing for the
register alias table (RAT) for clarity. The same concepts are
applicable to other processor structures such as the register free list
and the queue pointers and valid bits of the scheduler.

2.1 RAT Checkpoint/Recovery
Register renaming eliminates false register dependencies, thus

increasing instruction level parallelism. In our work, we focus on
the register renaming implementation used in the MIPS R10000
where architectural registers are dynamically mapped onto a larger
set of physical registers [24]. The current mapping is held in the
Register Alias Table (RAT). This table is used by every instruction
during the decode phase: the instruction’s input operands are
mapped to physical registers as specified in the RAT and then its
destination register is mapped to a free physical register by
updating the corresponding RAT entry. Detailed descriptions of
RAT-based renaming can be found in [15,16,24]. To rename up to
N instructions per cycle for an instruction set with two input and
one output register operands, 3xN read ports and N write RAT
ports are needed. Furthermore, for a W-entry window processor,
W physical registers are typically used. Thus, each RAT entry
contains lg(W) bits.

2.2 ROB and GC Checkpoint/Restore
There are two commonly used methods for RAT checkpointing

and recovery. The first is the reorder buffer (ROB) and the second
uses a set of global checkpoints. The ROB is a circular buffer.
Instructions allocate an ROB entry in program order as they are
decoded and release it upon commit. The ROB entry contains
sufficient information for reversing the effects of the
corresponding instruction on a mispeculation. For the RAT, it is
sufficient to keep the previous mapping for the instruction’s
destination register. The ROB is a fine-grain checkpoint
mechanism as it allows recovery at any instruction as follows:
starting from the most recently decoded instruction, we traverse
the ROB in reverse order while writing back the previous
mappings into the RAT until we reach the branch that was
mispeculated. The number of cycles required for ROB recovery is
proportional to the number of instructions being squashed. It is
reasonable to assume that up to N instructions can be squashed per
cycle if the machine is capable of decoding N instructions per
cycle. Because the ROB is fine-grain, it can be used to recover
from any exception in addition to branch mispeculations.

The second method uses global checkpoints (GCs) which
contain complete RAT content snapshots. Conceptually, as shown
in Figure 1(a), the GCs form a queue of complete RAT replicas.
As implemented in the R10000 processor, each RAT bit has
embedded next to it a small queue (shown in Figure 1(b)). A GC is
taken by shifting into the queue a copy of the corresponding RAT
bit (all RAT bits are copied in parallel into their own little queues).
Recovery amounts to copying the contents of one of the queue
elements back to the corresponding RAT bit. This can be done at a
fixed latency which is independent of the number of instructions
that are squashed. Thus, the more instructions are squashed, the
more preferable it is to use GC over ROB recovery. GC is a
coarse-grain checkpoint/restore mechanism as it allows recovery
only at some instructions.

Ideally, we would allocate a GC to every instruction.
Unfortunately, implementing more GCs can impact RAT latency
and thus overall performance. If the GCs are embedded inside the
RAT next to each RAT bit cell, embedding more GC bits will

1 Because of the high frequency of branch mispredictions relative to
interrupts and exceptions we only consider control flow instructions as
potential causes for machine state recovery.

elongate either the wordlines or the bitlines or both. If we
implement the GCs separately, additional bit lines would be
needed to communicate all RAT content from or to the GC store.
This will also elongate the RAT bitlines or wordlines since
additional wires will be needed to transfer the RAT content. For
example, for a 64-entry RAT and a 512-entry physical register file,
64x9 wires are needed to checkpoint the complete RAT.
Elongating the wordlines or the bitlines increases their
capacitance, access latency, and power. It may also require the use
of larger transistors in the RAT cells to maintain stability.
Accordingly, it is desirable to maintain the number of GCs as
small as possible. In this work we target four or less GCs for
processors with 512- or 1K-entry windows (the MIPS R10000
used four GCs too but it had a window of 32 instructions).

2.3 GC Prediction
Previous work has observed that checkpoint prediction can be

used to improve efficiency over naive checkpoint allocation [16].
Specifically, as originally used in R10000, GCs were allocated to
all branches at the decode stage. If no GC was available, decode
stalled. GCs were released in-order as the branches were resolved.
Previous work showed that many GCs would be needed for larger
window processors if this conventional policy was used [1,2,16].

Accordingly, rather than allocating GCs to all branches previous
work suggested using a confidence mechanism to allocate GCs
only for low confidence (weak) branches. Moshovos used
anyweak, a simple confidence mechanism relying on the bias of
existing branch predictors [16], while Akkary et. al. [1,2] used the
dedicated confidence estimator proposed by Jacobsen et. al. [11].

2.4 Performance Trade-offs with GC Prediction
When GCs are allocated only to some branches there are two

possible recovery scenarios. In the first, the mispeculation occurs
at a branch with a GC. In this case recovery latency is fixed and
independent of the number of squashed instructions. In the second,
the mispeculation occurs at a branch without a GC. In this case two
possible recovery policies are possible. In the first used by
Moshovos [16] and shown in Figure 2, recovery proceeds into two
phases. First, the closest subsequent GC, if any exists, is used to
partially recover the machine state at that instruction, and then the
ROB is used to complete the recovery. In this case, the recovery
latency is proportional to the number of instructions in-between
the mispeculated branch and the closest subsequent branch with a
GC (or the end of the ROB if no such branch exists). In the second
policy, used by Akkary et. al. [1,2], the closest preceding branch
with a GC is located and used to restore machine state. Instructions
following the GC and up to the mispeculated branch are re-

executed1. The advantage of this method is that it can be used
without an ROB. In this work, we focus on the first recovery
model. However, BranchTap can potentially also be used with the
second recovery model. In this case, BranchTap can help when a
branch that would cause a mispeculation is delayed until a GC
becomes available. An investigation of this aspect is beyond the
scope of this work.

Under this recovery model, the recovery cost can be expressed
as the sum of the number of cycles required to perform three tasks
in sequence:

As we explain in Section 5.2.5, when GCs are allocated in-
order, it is straightforward to locate the next GC. However, when
out-of-order allocation is used it may not be possible to locate the
next GCs in a single cycle [16]. Specifically, when there are just
four GCs it is reasonable to assume that locating the next GC from
any instruction can be done with a fixed latency (we calculate the
distance to all four GCs in parallel and select the minimum). When
more GCs are used, a tree-like structure similar to that used for
selecting instructions for wake-up in schedulers can be used [17]
(see Section 5.2.5).

3 BranchTap
In this work, we are interested in improving overall performance

for processors with relatively large windows (i.e., 512 and 1K
instructions), and with very few GCs (e.g., four or less). We can
improve performance by trying to improve how we allocate the
GCs so that more mispeculated branches are given a GC.
Unfortunately, trying to identify the branches that will be
mispeculated becomes increasingly more difficult as the number of
instructions in the window increases, and as the number of GCs is
reduced. As we demonstrate in Section 5, using a larger and thus
more accurate confidence estimator does improve performance.
However, BranchTap offers a significantly better performance vs.
cost tradeoff. BranchTap requires few counters and comparators
whose cost is negligible. For most programs, at least an additional
12Kbits are needed for the confidence table to provide similar
benefits.

In developing BranchTap, we observe that rather than trying to
allocate GCs more effectively, we can instead try to minimize the
number of instructions that have to be recovered from the ROB

Figure 1: GC RAT Checkpointing. (a) Conceptual
organization. (b) Actual implementation.

RAT

working copy

GCs

(a)

RAT

working copy

GCs

(b)

1 The closest earlier checkpoint can be detected early at decode time for all
instructions if in-order checkpoint allocation and release is used as
in [1,2].

Figure 2: Checkpoint recovery cost when not all branches
have a GC. (1) First we find the next branch with a GC if any.
(2) Then we recover at that branch using the GC. (3) Finally,

we use the ROB to roll-back to the mispeculated branch.

yo
un

ge
st i

nst
ruc

tio
n

old
est

 in
str

uc
tio

n

misp
ecu

lat
ed

 br
an

ch

bra
nc

h w
/ G

C

bra
nc

h w
/ G

C

1

3

2

RecoveryCost
CyclesToLocateNextGC …+

CyclesToRecoverAtNextGC …+
CyclesToRecoverFromROBStartingAtNextGC

=

when it was not possible to allocate a GC. This is the last factor in
the aforementioned recovery cost model. BranchTap achieves this
goal by temporarily stalling the fetch stage while the number of
preceding unresolved weak branches that do not have a GC
exceeds a threshold WT. The insight behind this approach is as
follows: when the aforementioned condition holds true, then the
delayed instructions follow a relatively long sequence of in-flight,
unresolved weak branches. The probability that those instructions
will not be squashed is thus relatively small and becomes smaller
the more weak branches are in-flight. If we were to allow more
instructions to proceed, then we are most likely increasing the
number of instructions that will have to be squashed. Since all GCs
are currently allocated to earlier branches, these instructions will
have to be squashed from the ROB and hence recovery latency will
only become longer.

BranchTap uses an adaptive policy for dynamically adjusting its
threshold WT. This allows it to adapt across and within
applications. Figure 2 illustrates how BranchTap is integrated into
the pipeline and the sampling process it uses. We have
experimented with many different adaptive policies. The policy
that performed well across all benchmarks works in two repeating
phases. During the first phase, execution proceeds for a relatively
long time (we use one million cycles) with the current threshold.
During the second phase, sampling is used to determine whether
the threshold should change. The second phase consists of a
number of relatively small sampling sub-phases of 25000 cycles
each where we count the number of committed instructions for
three possible threshold values: Current, Current-4 and Current+4.
We then update WT with the threshold value that resulted in the
largest number of committed instructions. We use very short
sampling intervals to minimize their effect on overall performance.

BranchTap requires very few resources (a few counters and
comparators, and the ability to temporarily stall the decode stage).
Thus, its use may be justified even when it does not improve
performance drastically.

4 Related Work
BranchTap is orthogonal to checkpoint prediction methods

proposed by Moshovos [16] and Akkary et. al. [1,2]. A
contribution of this work is that it compares these two proposals

under the recovery model used in [16]. Another contribution of
this work is that it analyzes the impact of several design choices on
overall performance. BranchTap can be used with an ROB as in
[16] or without one1 as in [1,2]. In this study we focus only on
using BranchTap with an ROB.

BranchTap builds upon previous work on speculation control
for power reduction [9,13]. With BranchTap there are three key
differences. First, previous work assumed a fixed recovery cost
from mispeculations. Accordingly, the performance trade-offs we
are interested in were not accounted for in previous work where
speculating more could never increase recovery cost, and hence
hurt performance. Second, previous work relied on counting the
number of unresolved, weak branches currently in flight. We
instead rely on those branches that do not have a GC. Finally, the
most important difference is that previous work used a fixed
threshold. We demonstrate that using a fixed threshold is
suboptimal across programs and that the performance differences
can be significant for some programs.

BranchTap relies on a confidence estimator for identifying weak
branches. We study both the anyweak estimator [16] and the
confidence estimator proposed by Jacobsen et. al. [11]. Jimenez
and Lin studied composite branch confidence estimators that are
more accurate but require more resources [12]. BranchTap is
orthogonal to the choice of the confidence estimator; thus it can be
used to boost performance as needed with little additional cost.

Another approach to reducing the cost of mispeculations is to
execute multiple control flow paths at hard to predict branches
using predication techniques, e.g., [3] or dynamically, e.g., [23].
Also, control independence can be exploited to avoid complete re-
execution of some instructions that are squashed [5,6,8,18,21].
These approaches are orthogonal to BranchTap and require
additional support.

Modern checkpoint/recovery mechanisms have evolved out of
earlier proposals for supporting speculative execution [10,19,22].

Other proposals for improving scalability for wider window
processors target early reclamation of processor resources [4,14].
As we have seen, allowing fetch to proceed in parallel with RAT
recovery reduces the performance loss on mispeculations. Zhou et.
al. proposed a more aggressive method where some of the
instructions down the correct control path may be renamed while
RAT recovery is still in progress [25]. It may be possible to use
BranchTap with these techniques. However, this investigation is
beyond the scope of this paper.

5 Evaluation
In Section 5.1 we detail our experimental methodology. In

Section 5.2 we compare previously proposed checkpointing
alternatives and study some of the design space parameters in more
detail. In Section 5.3 we demonstrate that once a good checkpoint
prediction policy is used, most mispeculations occur on branches
with a GC but most of the cycles lost to recovery are caused by
branches without a GC. This result illustrates that significant
potential exists for BranchTap. In Section 5.4 we show that
different programs require different speculation control thresholds
(WT) to perform best. This result motivates the use of adaptive
speculation control in BranchTap. Finally, in Section 5.5 we study
performance with BranchTap.

Figure 3: (a) How BranchTap is integrated into the pipeline
(threshold = WT). (b) How BranchTap adapts its threshold

WT.

(b)

1M cycles
25K cycles

W
T

W
T-4

W
T+4

W
T

No Adaptation Sample & Adapt

PHASE i PHASE i+1

(a)

Fetch Decode/
Rename Writeback... Commit

In Flight
Weak Branches

Without GCs
Counter

If (Counter > WT) Stall WT

C_Counter3

Increment Decrement

C_Counter2

C_Counter1

Current WT

1 In this case, BranchTap could improve performance if it delays a branch
long enough for a GC to become available. Different performance trade-
offs apply in this case.

5.1 Methodology
We used Simplescalar v3.0 [7] to simulate the processor

detailed in Table 1. We compiled the SPEC CPU 2000
benchmarks for the Alpha 21264 architecture using HP’s
compilers and for the Digital Unix V4.0F using the SPEC
suggested default flags for peak optimization. All benchmarks
were ran using a reference input data set. It was not possible to
simulate some of the benchmarks due to insufficient memory
resources. As a result the following SPEC CPU 2000 benchmarks
are included in our experiments: ammp, applu, apsi, art, bzip2,
crafty, eon, equake, facerec, fma3d, galgel, gap, gcc, gzip, lucas,
mcf, mesa, mgrid, parser, swim, twolf, vortex, vpr and wupwise. To
obtain reasonable simulation times, samples were taken for one
billion committed instructions per benchmark. We first skipped
100 billion committed instructions prior to collecting
measurements for all benchmarks except for art and parser for
which we only skipped 20 billion instructions.

Unless otherwise noted all performance results are normalized
over an identical configuration that has an infinite number of GCs.
We refer to this configuration as “perfect checkpointing”, or
PERF. However, in some cases having fewer GCs results in better
performance. We explain why this is possible in Section 5.2.4.

5.2 Existing Checkpointing Alternatives
Before investigating BranchTap we study existing checkpoint

alternatives to better understand the underlying trade-offs and their
relative performance. To the best of our knowledge no previous
study compared the performance of the recently proposed
checkpoint-prediction-based techniques of [1,2,16]. The
checkpoint design parameters that we consider in this work are the
following:
• Checkpoint count: While having more GCs makes

checkpoint allocation easier, it also increases complexity,
latency, and power.

• Checkpoint prediction: It is desirable to utilize the limited
number of available checkpoints efficiently. We consider
using a confidence estimator as in [1,2] or the anyweak
estimator of [16]. The latter is less accurate but requires
virtually no additional resources.

• Checkpoint release stage: Checkpoints can be released at
commit or at writeback. Release at commit requires no
additional support while release at writeback requires
additional support for tracking the release status of preceding
branches.

• Checkpoint release order: If GCs are released at writeback
there are two possibilities: release them in-order or out-of-
order. In the first case, a GC is held until all preceding
branches have been resolved, whereas in the second case a
branch can release its GC as soon as it decides its direction.
With out-of-order checkpoint release, additional hardware
support is needed for tracking the order of GCs and for
locating the nearest subsequent checkpoint on a
mispeculation.

• Checkpoint stealing: This option can only be used with out-
of-order checkpoint release. In particular, as proposed in [16],
GCs are initially allocated to all branches in order. A
subsequent weak branch can steal the GC of an earlier strong
branch if all GCs have been allocated.

• Stages stalled during recovery: While a recovery is
underway we can chose to stall the whole front-end (fetch and
decode stages) or just the decode stage. In the latter case, the
fetch stage can be redirected a single cycle after the
mispeculation is detected and thus start fetching instructions
while the decode stage is stalled for RAT recovery.

5.2.1 ROB-Only Checkpointing
 Before considering any of the recently proposed checkpoint

enhancement techniques, we validate that ROB-only
checkpointing is not a viable alternative for wide-window
processors. Figure 4 reports the average and the maximum
performance degradation of ROB-only with respect to PERF as a
function of scheduler window size (32-entry to 1K-entry windows)
and over all benchmarks we studied. While this is not shown on
the graph, a few programs (swim, mgrid, applu, and lucas)
performed well even with ROB-only checkpointing. We do not

Table 1. Base processor configuration
 Branch Predictor Fetch Unit

8K-entry GShare and 8K-entry bi-modal
16K selector

2 branches per cycle

Up to 8 instr. per cycle
64-entry Fetch Buffer
Non-blocking I-Cache

Issue/Decode/Commit Scheduler
any 8 instr./cycle 512- or 1K-entry/half size LSQ

FU Latencies Main Memory
Default simplescalar values Infinite, 200 cycles

L1D/L1I Geometry UL2 Geometry
64KBytes, 4-way set-associative with 64-

byte blocks
1Mbyte, 8-way set-associative with

64-byte blocks
L1D/L1I/L2 Latencies Cache Replacement

3/3/16 cycles LRU
Fetch/Decode/Commit Latencies
4 cycles + cache latency for fetch

Figure 4: Average and maximum performance degradation as
a function of the scheduler window size for ROB_Only

recovery.

Figure 5: Average performance deterioration for three
checkpoint allocation policies as a function of the number of

available GCs and for instruction window sizes of 512 (left) and
1024 (right).

 Scheduler Entries

Pe

rf
or

m
an

ce
 D

et
er

io
ra

tio
n

ov

er
 P

E
R

F

0%

5%

10%

15%

20%

25%

30%

32 64 128 256 512 1024

Average
Maximum

Number of GCs Number of GCs

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

0%

2%

4%

6%

8%

10%

4 8 16 24 32 48 64

Conf_C
Anyw _C
Conv_C

0%

2%

4%

6%

8%

10%

4 8 16 24 32 48 64

Conf_C
Anyw _C
Conv_C

512 Instruction
Window

1024 Instruction
Window

omit these programs from the rest of this evaluation. However,
none of the techniques we discuss can improve performance for
these programs.

5.2.2 Checkpoint Prediction

For the time being, we assume that the GCs are allocated in-
order and released at commit, and we compare the performance of
conventional checkpointing (Conv_C), anyweak-based GC
allocation (Anyw_C), and confidence-based GC allocation
(Conf_C). The Conv_C policy is a variation of the policy
implemented in MIPS R10000 in that it does not stall a branch at
decode when no GC is available.

Figure 5 reports average performance deterioration for the three
policies as a function of the number of GCs (X-axis) for two
processors with instruction window sizes of 512 and 1K. With a
high number of GCs, Conf_C and Conv_C outperform Anyw_C,
and Conv_C approaches the performance possible with an infinite
number of checkpoints. This is because Conv_C is able to allocate
GCs to all branches. Conf_C and Anyw_C allocate GCs only to
weak branches.

With eight or less GCs, Conf_C and Anyw_C outperform
Conv_C. This corroborates the results of previous work that
proposed using checkpoint prediction to improve performance
when there are few checkpoints. When there are just four GCs,
Anyw_C performs the same (512-entry window) or slightly better
than Conf_C (1K-entry window).

 Average performance can be misleading. Accordingly, Figure 6
shows the per-benchmark performance for the three policies
(Conv_C, Conf_C, and Anyw_C from left to right in that order) as
a function of the number of GCs and for a 1K-entry window
processor. Behavior varies significantly across benchmarks. In
swim, mgrid, applu, and lucas, branch mispeculation recoveries
are infrequent and do not impact performance noticeably. For most
programs, Conf_C and Anyw_C outperform Conv_C when there
are few checkpoints. In some cases, however, Conv_C performs
slightly better (e.g, bzip2). For some benchmarks, Anyw_C
performs better than Conf_C (e.g., mcf) while for others the
opposite is true (e.g., fma3d). Ultimately, this result illustrates that
the underlying performance trade-offs are complex and minor
changes in policy can impact overall performance significantly.
We can also observe that some benchmarks suffer from significant
performance loss even with eight checkpoints (e.g., 7.8% for twolf
and Conf_C). In the rest of the paper, due to space limitations, we
restrict our attention primarily to policies that use the confidence
estimator of [11]. However, the confidence estimator requires a lot
more resources than the anyweak estimator.

5.2.3 Checkpoint Management
In this section, we compare in-order at commit (Conf_C), in-

order at writeback (Conf_I), out-of-order at writeback (Conf_O)
GC release, and lazy checkpoint allocation with out-of-order
release at writeback and GC stealing (Conf_L). Figure 7 shows
average performance deterioration with these four policies as a
function of the number of GCs and for processors with 512- (left)
and 1K-entry (right) window sizes.

Releasing GCs in-order at writeback (Conf_I) is much better
than releasing them at commit time (Conf_C) when there are few
GCs. This result is expected as releasing a GC early allows us to
reutilize it for another low confidence branch. Releasing GCs out-
of-order (Conf_O) further improves performance albeit not
significantly. The tradeoff between Conf_I and Conf_O is between
temporarily keeping the checkpoint until it is certain that earlier
branches do no longer need it for recovery (Conf_I), and releasing
the checkpoint as early as possible so that it is allocated to newly
decoded branches (Conf_O). Performance improves further with
Conf_L. This method differs in that it initially allocates free GCs
to all branches including non-weak branches. Such branches can
never be checkpointed by the other methods. This is why Conf_L
is the only policy whose performance approaches that of PERF as
the number of checkpoints increases.

Figure 8 presents the per-benchmark performance deterioration
for a 1K-entry window processor. The graphs indicate that even
with Conf_L, some benchmarks still perform poorly with few
checkpoints. Twolf, for example, suffers from 11.7% and 7.7%
performance deterioration with four and eight checkpoints
respectively. This result motivates the need for further
improvement. In the rest of this study we restrict our attention to
Conf_I due to space limitations and because this policy avoids the
complexities of out-of-order checkpoint management (except for

Figure 6: Per-benchmark performance deterioration with Conv_C, Conf_C and Anyw_C (left to right respectively) as a function of
the number of GCs for a 1K-entry window processor.

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

gz
ip

wupwise
sw

im
mgr

id
ap

plu vp
r

gc
c

mesa
ga

lge
l ar
t

mcf
eq

uak
e

cra
fty

fac
ere

c
am

mp
luca

s
fm

a3
d

par
ser eo
n

ga
p

vo
rte

x
bzip

2
tw

olf ap
si

0 %

2 %

4 %

6 %

8 %

1 0 %

1 2 %

1 4 % 6 4 3 2 1 6 8 4 C o n v _ C C o n f _ C A n y w _ C

N u m b e r o f G C s

Figure 7: Average performance deterioration with various
checkpoint management policies as a function of the number

GCs for a 512 (left) and 1024 (right) instruction window
processor. See text for a description of the four policies.

Number of GCs Number of GCs

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

0%

1%

2%

3%

4%

5%

6%

7%

8%

4 8 16 24 32 48 64

Conf_C
Conf_I
Conf_O
Conf_L

0%

1%

2%

3%

4%

5%

6%

7%

8%

4 8 16 24 32 48 64

Conf_C
Conf_I
Conf_O
Conf_L

1024 Instruction
Window

512 Instruction
Window

Section 5.2.5 where we model the latency effect of finding the next
GC on a mispeculation). However, we note that we observed
similar trends with Conf_L which is a viable, slightly better
alternative when there are very few checkpoints.
5.2.4 Front-End Stalling Alternatives

 In this section, we analyze the effect of decoupling the fetch
stalling mechanism from the decode/rename stalling mechanism
during recovery. Figure 9 shows performance deterioration for
Conf_I when both fetch and decode are stalled (Conf_I bars) or
when only the decode stage is stalled (Conf_I-F bars). In the latter
case, fetch is stalled for a single cycle. Conf_I-F reduces
performance deterioration by about 40% on average. When only
the decode stage is stalled during recovery, the fetch stage can
proceed in parallel to fetch the instructions down the right control
path. As a result, the overall penalty is reduced. In the rest of the
paper we restrict our attention to policies that only stall the decode
stage.

5.2.5 Modeling the Latency of Finding the Nearest GC
Thus far we assumed that finding the nearest checkpoint under

out-of-order checkpoint management is possible in a single cycle.
As we explained in Section 2.4, this may be reasonable when there
are just four checkpoints. For a larger number of checkpoints a
search mechanism will probably be needed. As per the discussion
of Section 2.4, we modeled the delay of a search mechanism that
uses a tree-like structure with a fan-in/fan-out of four. In this
model it takes log4(N) cycles to find the nearest subsequent branch
with a checkpoint, where N is the number of instructions in-
between the mispeculated branch and the branch with the GC.
When in-order checkpoint allocation and release are used, it is
straight-forward to locate the next GC in a single cycle as follows:
as instructions are decoded, they locate the nearest preceding GC.

On a mispeculation we use that checkpoint to locate the one after it
in the GC queue. This is the next nearest GC we should be using.

Figure 10 compares the average performance deterioration for
Conf_I (the best performing in-order policy) and two variations of
Conf_L for various number of GCs (X-axis) and for a 512-entry
window processor. In the first variation (Conf_L) we assume that
it takes a single cycle to locate the next GC, while in the second
(Conf_L_L4) we use the aforementioned log4(N) model. With
four checkpoints Conf_L_L4 performs worse than Conf_I,
however, as we explained Conf_L should be feasible in this case.
With more checkpoints, Conf_L_L4 performs slightly better than
Conf_I. However, the performance improvements are not
necessarily significant enough to justify the complexity of out-of-
order checkpoint management with more than four checkpoints.

5.2.6 Impact of the Confidence Estimator
Performance could improve if a better confidence estimator is

used. In the previous experiments, we used a confidence table
consisting of 1K, 4-bit resetting counters (e.g., the equivalent of 16
bits of history depth [11]).

Figure 11 shows the relative to perfect checkpointing average
performance deterioration as the number of the confidence table
entries is varied under Conf_I-F. We restrict our attention to
processors with either four or 16 GCs (different curves). As
expected, with a smaller number of checkpoints, performance is
more sensitive to table size. Performance generally improves with
large confidence tables. However, performance improvements are
minor for tables with more than 4K entries for both the 512-entry
and 1K-entry window processors. Obtaining a significant gain in
performance requires a significantly larger table whose
implementation and integration in the pipeline might hurt overall

Figure 8: Per-benchmark performance deterioration as a function of the number of Checkpoints and checkpoint management (left
to right: Conf_C, Conf_I, Conf_O, Conf_L) for a 512-entry window processor.

gz
ip

wup
wise

sw
im

mgri
d

ap
plu vp

r
gc

c
mesa

ga
lge

l
art mcf

eq
ua

ke
cra

fty

fac
ere

c
am

mp
luc

as
fm

a3
d

pa
rse

r
eo

n
ga

p
vo

rte
x

bz
ip2 tw

olf ap
siPe

rf
or

m
an

ce
 D

et
er

io
ra

tio
n

ov
er

 P
E

R
F

0 %

2 %

4 %

6 %

8 %

1 0 %

1 2 %

1 4 %
6 4 3 2 1 6 8 4 C o n f _ C C o n f _ I C o n f _ O

N u m b e r o f G C s

C o n f _ L

Figure 9: Per-benchmark performance deterioration when
both the fetch and decode stages are stalled for the duration of
the recovery (Conf_I) or when only the decode stage is stalled

(Conf_I-F) for a 1K-entry window processor with 4 GCs.

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

0%

2%

4%

6%

8%

10%

12%

14%

gz
ip

wup
wisesw

im
mgri

d
ap

plu vp
r

gc
c
mes

a
ga

lge
l art mcf

eq
ua

ke
cra

fty

fac
ere

c
am

mp
luc

as
fm

a3
d
pa

rse
r

eo
n

ga
p
vo

rte
x
bz

ip2tw
olf ap

si

Conf_I Conf_I-F

Figure 10: Average performance deterioration when it takes
multiple cycles to locate the next GC under out-of-order

checkpoint management (Conf_L_L4) as a function of the
number of GCs for a 512-entry and 1K-entry instruction

window processor. See text for a description.

Number of GCs

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

Number of GCs

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

4 8 16 24 32 48 64

Conf_I

Conf_L

Conf_L_L4

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

4 8 16 24 32 48 64

Conf_I

Conf_L

Conf_L_L4

512 Instruction
Window

1024 Instruction
Window

performance. In Section 5.5 we show that using BranchTap with a
1K-entry confidence table results in better average performance
than using a 4K-entry confidence table alone. The latter confidence
table requires an additional 12Kbits compared to the 1K-entry
confidence table.

5.3 Where is Performance Lost
To motivate BranchTap we demonstrate first that with a

checkpoint prediction mechanism in place most mispeculations
occur on branches that have a GC but most of the performance loss
is caused by branches that do not have a GC. In the experiments
that follow and due to space limitations we focus on Conf_I-F, the
best in-order checkpoint management policy we studied thus far
and on a 1K-entry window processor with four checkpoints. Very
similar results were obtained for a 512-entry window processor.

Figure 12 shows the percentage of mispredictions that lead to
indirect recoveries (left bar), as well as the percentage of the total
recovery cycles that are the result of an indirect recovery (right
bar). An indirect recovery is a recovery on a branch that does not
have a GC and hence uses the ROB and the nearest subsequent GC
if any exists. Focusing on the left bar, we observe that for most
benchmarks, most mispeculated branches do have a GC as the
percentage of indirect recoveries is small. Focusing on the right
bar, we observe that many and often most of the cycles lost on
recovering from a mispeculation are caused by indirect recoveries.
This result demonstrates that there is significant potential for
reducing recovery cost and thus for improving performance with
BranchTap.

5.4 Fixed-Threshold Speculation Control
In this section, we demonstrate that a fixed threshold

speculation control policy is suboptimal across programs. To do
so, we implemented a fixed threshold speculation control policy
and ran each benchmark with all possible fixed threshold values
(WT) from zero up to 16 in steps of two, for WT of 32, and finally
with no threshold (i.e., 11 runs per benchmark). We refer to the
method that uses no threshold as “full speculation” as it never
stalls the fetch stage intentionally. All methods we studied up to
this point used full speculation. The underlying full speculation
method we used in these experiments is Conf_I-F. Speculation
control is added on top of this method.

For each run we took measurements at intervals of one million
committed, consecutive instructions (thus we obtained 1000
measurements per run of one billion instructions). At each
measurement, we counted the number of cycles required to commit
the corresponding one million instructions. Thus, each
measurement if divided by 1M corresponds to the observed CPI
for that 1M instruction interval. Comparing the corresponding CPI
measurements across all 11 runs per benchmarks allows us to
identify the best fixed threshold for that program interval.
Figure 13 shows a subset of these measurements for mcf and twolf,
and for a 1K-entry window processor with four GCs. Along the X-
axis we report the number of committed instructions since the
beginning of the run and along the Y-axis we report the number of
cycles (in thousands) that were required to commit each 1M
instruction sample. For clarity, we report only a small subset of the
1000 measurements per benchmark and for WT values of zero,
four and full.

Twolf performs best with a threshold of four while mcf performs
best with full speculation. The performance difference between
full-speculation and restricted speculation with a threshold of four
for twolf can be as high as 8% on certain samples. For mcf, full
speculation can perform as much as 11% better than the next best
policy shown. Other benchmarks have different optimal fixed
thresholds, and some benchmarks exhibit intra-benchmark
variation of their optimal threshold. This result demonstrates that a
fixed threshold policy is suboptimal and that depending on the
benchmark significant performance improvements may be
possible if the threshold can be changed at runtime.

Figure 11: Average performance deterioration as a function
of the confidence table number of entries (X-axis) and for

different number of GCs (curves) with Conf_I-F and for 512-
entry (left) and 1K-entry (right) window processors.

Figure 12: Per-benchmark and average percentage of indirect
recoveries and percentage contribution of indirect recovery

latency to total recovery cost for a 1K-entry window processor
with 4 GCs.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

64 256 1K 4K 16K 64K

4 16

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

64 256 1K 4K 16K 64K

4 16

512 Instruction
Window

1024 Instruction
Window

Confidence Table Entries Confidence Table Entries

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

#GCs #GCs

B
ra

nc
h

M
is

pe
cu

la
tio

ns

To
ta

l C
yc

le
s

L
os

t f
or

 R
ec

ov
er

y

0%

20%

40%

60%

80%

100%

gz
ip

wup
wisesw

im
mgri

d
ap

plu vp
r

gc
c
mes

a
ga

lge
l art mcf

eq
ua

ke
cra

fty

fac
ere

c
am

mp
luc

as
fm

a3
d
pa

rse
r
eo

n
ga

p
vo

rte
x
bz

ip2tw
olf ap

si
AVG

Indirect Recoveries Indirect Recovery Cost

Figure 13: Number of cycles required to commit one million
instructions under various fixed threshold speculation control

policies for mcf and twolf. See text for an explanation.

30 00

40 00

50 00

60 00

2 0 25 30 35 4 0 45

F u l l S p W T = 0 W T = 4

10 00

10 50

11 00

11 50

12 00

2 0 25 30 35 4 0 45

m c f

tw o lf

T
ho

us
an

d
C

yc
le

s
T

ho
us

an
d

C
yc

le
s

Instructions Committed (Millions)

5.5 BranchTap Performance
Figure 14 reports the per-benchmark performance with full

speculation (Full Sp — which uses the Conf_I-F checkpoint
management and recovery scheme described previously), fixed
speculation control with a threshold of four (FixedSC-4 — a policy
that was on average better than all other fixed-threshold policies)
and BranchTap for processors with 512-entry and 1K-entry
windows. The fixed threshold policy can be thought as
representative of existing methods for power reduction through
speculation control [9].

Focusing on the 1K-entry window results, all three policies
perform well and close to each other for wupwise, swim, mgrid,
applu, galgel, and lucas. This is because these benchmarks exhibit
relatively accurate branch prediction or because they execute few
branches. FixedSC-4 performs much better than full speculation
for some (e.g., gzip and parser) but not all (e.g., mcf) benchmarks.
In some cases FixedSC-4 deteriorates performance significantly
compared to full speculation. Specifically, in mcf and bzip2
FixedSC-4 results in slowdowns of 9.18% and 5.76% respectively,
while full speculation results in slowdowns of only 1.56% and
2.77%. Overall, we observe that while FixedSC-4 offers relatively
low performance loss on the average, its behavior varies
significantly across benchmarks.

Contrary to full speculation and FixedSC-4, performance with
BranchTap varies less across programs. Specifically, for most
programs, BranchTap improves performance over full speculation.
For equake, performance with BranchTap exceeds that of PERF
(not shown in the figure) by 4.43%. This could be caused by
decreased contention in the memory system due to less aggressive
speculation. BranchTap does not always improve performance
over full speculation. This is because BranchTap has to
dynamically discover that these benchmarks prefer full
speculation. However, even in these cases, the performance
deterioration is not as dramatic as it is with FixedSC-4 (e.g. mcf
and bzip2). Overall, BranchTap either improves over full

speculation or performs slightly worse. On average, BranchTap
improves performance deterioration by 28.35% compared to full
speculation. Average performance deterioration drops from 2.08%
to 1.49% and worst case deterioration drops from 8.99% to 5.64%
for the 1K-entry window processor. Similar observations apply to
the 512-entry window processor where the absolute differences are
smaller but the trends remain the same.

We also report performance when two, one, or no GCs are
available in Figure 15. When no GCs are available, BranchTap
simply keeps track of the number of unresolved branches in flight.
Shown is the per-benchmark performance deterioration with full
speculation (left bar), BranchTap, and FixedSC-4 (right bar) for a
1K-entry window processor. The same trends observed with a
processor with four GCs are also observed here, but the absolute
performance benefits become higher as less GCs are available.

Although processors with BranchTap and FixedSC-4 performed
almost equally on the average, BranchTap was able to avoid the
dramatic performance deterioration of FixedSC-4 observed in
certain benchmarks.

We also studied BranchTap in combination with the Anyweak
confidence estimator. Due to space limitations, we only show the
results for a 1K-entry window processor with 4 GCs in Figure 16.
While its overall performance loss is higher, BranchTap-A still
improves performance over full speculation and offers less
variability compared to FixedSC-4.

An added benefit of BranchTap is that, similar to previous work
on speculation control, it reduces the work lost to squashed

Figure 14: Per-benchmark performance deterioration with
four GCs under: (1) full speculation, (2) BranchTap, and (3)

fixed speculation control with a threshold of four.

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F
 P

er
fo

rm
an

ce
 D

et
er

io
ra

tio
n

 o
ve

r P
E

R
F

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

gz
ip

wupw
isesw

im
mgrid

ap
plu vp

r
gcc

mes
a
galg

el art mcf

eq
uak

e
cra

fty

face
rec

am
mp

luca
s
fm

a3
d
pars

er eo
n

gap
vo

rte
x
bzip

2
tw

olf
ap

si
AVG

Full Sp BranchTap FixedSC-4

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

gz
ip

wupw
isesw

im
mgrid

ap
plu vp

r
gc

c
mes

a
ga

lge
l art mcf

eq
uak

e
cra

fty

fac
ere

c
am

mp
luca

s
fm

a3
d
pars

er eo
n

gap
vo

rte
x
bzip

2
tw

olf
ap

si
AVG

1024 Instruction Window

512 Instruction Window

Figure 15: Per-benchmark performance deterioration with
full speculation (left bar), BranchTap, and FixedSC-4 (right
bar), with two, one, or no GCs and for a 1024-entry window

processor.

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F
Pe

rf
or

m
an

ce
 D

et
er

io
ra

tio
n

ov
er

 P
E

R
F

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F
0%

2%

4%

6%

8%

10%

12%

gzip

wupwisesw
im

mgrid
ap

plu vp
r

gcc
mes

a
galg

el art mcf

eq
uak

e
cra

fty

face
rec

am
mp

luca
s
fm

a3
d
pars

er eo
n

gap
vo

rte
x
bzip

2
tw

olf
ap

si
AVG

Full Sp BranchTap FixedSC-4

0%

2%

4%

6%

8%

10%

12%

14%

16%

gzip

wupwisesw
im

mgrid
ap

plu vp
r

gcc
mes

a
galg

el art mcf

eq
uak

e
cra

fty

face
rec

am
mp

luca
s
fm

a3
d
pars

er eo
n

gap
vo

rte
x
bzip

2
tw

olf
ap

si
AVG

0%

4%

8%

12%

16%

20%

24%

28%

gzip

wupwisesw
im

mgrid
ap

plu vp
r

gcc
mes

a
galg

el art mcf

eq
uak

e
cra

fty

face
rec

am
mp

luca
s
fm

a3
d
pars

er eo
n

gap
vo

rte
x
bzip

2
tw

olf
ap

si
AVG

1 Checkpoint

No Checkpoint

2 Checkpoints

instructions. We observed a 10% decrease in the number of fetched
instructions on average for a 1K-entry window processor with four
GCs. Thus we expect that BranchTap reduces overall power
dissipation. Further investigation of this aspect is beyond the scope
of this paper.

6 Conclusion
We have presented BranchTap, a technique that combines

adaptive speculation control and checkpoint-prediction to improve
performance when very few global checkpoints are available.
Prediction-based methods improve performance by trying to locate
those branches that are likely to cause a mispeculation and thus use
a checkpoint in the future. However, we observed that this task
becomes increasingly harder as the window increases and as the
number of available GCs is kept low. We have shown that there is
significant potential for improvement over checkpoint-prediction
methods by trying to instead reduce the number of instructions that
would have to be squashed. We have seen that for a 1K-entry
window processor and with just four checkpoints BranchTap
reduces average and worst case performance degradation by 28.3%
and 37.2% respectively. Since BranchTap requires little additional
resources and is relatively straightforward to implement, it is
preferable over improving the accuracy of checkpoint-prediction
by increasing the size of the underlying confidence estimator. We
have observed that BranchTap is better than fixed threshold
policies in that it offers lower variability in the performance loss
Finally, we compared previous prediction-based checkpoint
allocation methods and investigated several design choices.

Acknowledgments
The authors would like to thank Ioana Burcea, Jason Zebchuk, and
the anonymous reviewers for their valuable comments. This
research was supported by a CFI equipment grant, an Intel
equipment donation, funds from the University of Toronto and an
NSERC Discovery Grant.

References
[1] H. Akkary, R. Rajwar, and S. Srinivasan, An Analysis of Resource

Efficient Checkpoint Architecture, ACM Transactions on Architecture and
Code Optimization (TACO) Volume 1, Issue 4, Dec. 2004.

[2] H. Akkary, R. Rajwar, and S. Srinivasan, Checkpoint Processing and
Recovery: Towards Scalable Instruction Window Processors, Proceedings
of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, Nov. 2003.

[3] D. I. August, W. Hwu, and S. Mahkle, A Framework for Balancing
Control Flow and Predication, Proceedings of the 30th International
Symposium on Microarchitecture. Nov. 1997.

[4] A. Cristal, D. Ortega, J. Llosa and M. Valero. Kilo-Instruction Processors.
Proceedings The 5th International Symposium on High Performance
Computing (ISHPC-V), Oct., 2003.

[5] C. Y. Cher and T. N. Vijaykumar, Skipper: A Microarchitecture for
Exploiting Control-Flow Independence, Proceedings of the 34th
International Symposium on Microarchitecture, Nov. 2001.

[6] Y. Chou, J. Fung, and J. P. Shen, Reducing Branch Misprediction
Penalties via Dynamic Control Independence Detection, Proceedings of
the 13th International Conference on Supercomputing, June 1999.

[7] D. Burger and T. Austin. The Simplescalar Tool Set v2.0, Technical
Report UW-CS-97-1342. Computer Sciences Department, University of
Wisconsin-Madison, June 1997.

[8] A. Gandhi, H. Akkary, and S. T. Srinivasan, Reducing Branch
Misprediction Penalty via Selective Branch Recovery, Proceedings of the
10th International Symposium on High Performance Computer
Architecture (HPCA’04), Feb. 2004.

[9] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence
Estimation for Speculation Control, in Proceedings of the 25th Annual
International Symposium on Computer Architecture, June 1998.

[10] W. W. Hwu and Y. N. Patt, Checkpoint Repair for Out-of-Order
Execution Machines, Proceedings of the 14th Annual Symposium on
Computer Architecture, June 1987.

[11] E. Jacobsen, E. Rotenberg, and J. E. Smith, Assigning Confidence to
Conditional Branch Predictions, Proceedings of the 29th Annual
International Symposium on Microarchitecture, Dec. 1996.

[12] D. A. Jimenez and C. Lin, Composite Confidence Estimators for
Enhanced Speculation Control, Technical Report TR-02-14, Department
of Computer Sciences, The University of Texas at Austin, Jan. 2002.

[13] S. Manne, A. Klauser, and D. Grunwald, Pipeline Gating: Speculation
Control for Energy Reduction, Proceedings of the 25th Annual
International Symposium on Computer Architecture, June 1998.

[14] J. F. Martínez, J. Renau, M. C. Huang, M. Prvulovic and J. Torrellas,
Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors, Proceedings of the 35th International Symposium on
Microarchitecture, Nov. 2002.

[15] A. Moshovos and G. Sohi, Microarchitectural Innovations: Boosting
Microprocessor Performance Beyond Semiconductor Technology
Scaling, Proceedings of the IEEE, 89(11):1560-1575, Jan. 2001.

[16] A. Moshovos, Checkpointing Alternatives for High Performance, Power-
Aware Processors, Proceedings of the IEEE International Symposium
Low Power Electronic Devices and Design (ISLPED), Aug. 2003.

[17] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective
Superscalar Processors, Proceedings of the 24th International
Symposium on Computer Architecture, June 1997.

[18] E. Rotenberg, Q. Jacobsen, and J. E. Smith, A Study of Control
Independence in Superscalar Processors, Proceedings of the 5th
International Symposium on High Performance Computer Architecture,
Feb. 1999.

[19] J. Smith and A. Pleszkun. Implementing Precise Interrupts in Pipelined
Processors, IEEE Transactions on Computers, 37(5), May 1988.

[20] J. E. Smith and G. Sohi, The Microarchitecture of Superscalar
Processors, Proceedings of the IEEE, vol. 83, Dec. 1995.

[21] A. Sodani and G. S. Sohi, Dynamic Instruction Reuse, Proceedings of the
24th Annual International Symposium on Computer Architecture, June
1997.

[22] G. S. Sohi. Instruction Issue Logic for High-Performance, Interruptible,
Multiple Functional Unit, Pipelined Computers. IEEE Transactions on
Computers, March 1990.

[23] G. Tyson, K. Lick, and M. Farrens, Limited Dual Path Execution, CSE-
TR 346-97, University of Michigan, 1997.

[24] K. C. Yeager, The MIPS R10000 Superscalar Microprocessor, IEEE
MICRO, 1996.

[25] P. Zhou, S. Onder, S. Carr, Fast Branch Misprediction Recovery in Out-
of-Order Superscalar Processors, Proceedings of the International
Conference on Supercomputing, June 2005.

Figure 16: Per-benchmark performance deterioration with
full speculation (left bar), BranchTap with the Anyweak
estimator, and BranchTap with the explicit confidence

estimator (right bar), for a 1K-entry window processor with
four GCs.

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

gz
ip

wup
wisesw

im
mgri

d
ap

plu vp
r

gc
c
mes

a
ga

lge
l art mcf

eq
ua

ke
cra

fty

fac
ere

c
am

mp
luc

as
fm

a3
d
pa

rse
r
eo

n
ga

p
vo

rte
x
bz

ip2tw
olf ap

si
AVG

Full Sp BranchTap-A BranchTap

Pe
rf

or
m

an
ce

 D
et

er
io

ra
tio

n
ov

er
 P

E
R

F

	BranchTap: Improving Performance with Very Few Checkpoints Through Adaptive Speculation Control
	Abstract
	1 Introduction
	2 Checkpoint/Recovery Background
	2.1 RAT Checkpoint/Recovery
	2.2 ROB and GC Checkpoint/Restore
	2.3 GC Prediction
	2.4 Performance Trade-offs with GC Prediction

	3 BranchTap
	4 Related Work
	5 Evaluation
	5.1 Methodology
	Table 1. Base processor configuration

	5.2 Existing Checkpointing Alternatives
	5.2.1 ROB-Only Checkpointing
	5.2.2 Checkpoint Prediction
	5.2.3 Checkpoint Management
	5.2.4 Front-End Stalling Alternatives
	5.2.5 Modeling the Latency of Finding the Nearest GC
	5.2.6 Impact of the Confidence Estimator

	5.3 Where is Performance Lost
	5.4 Fixed-Threshold Speculation Control
	5.5 BranchTap Performance

	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

