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Abstract 

One glaring weakness of Java for numerical programming 
is its lack of support for complex numbers. Simply creating 
a Complex number class leads to poor performance rela- 
tive to Fortran. We show in this paper, however, that the 
combination of stich a Complex class and a compiler that 
understands its semantics does indeed lead to Fortran-like 
performance. This performance gain is achieved while leav- 
ing the Java language completely unchanged and maintain- 
ing full compatibility with existing Java Virtual Machines. 
We quantify the effectiveness of our approach through ex- 
periments with linear algebra, electromagnetics, and com- 
putational fluid-dynamics kernels. 

1 Introduction 

The Java Grande Forum has identified several critical issues 
related to the role of JavacTM)’ in numerical computing [ 141. 
One of the key requirements is that Java must support effi- 
cient operations on complex numbers. Complex arithmetic 
and access to elements of complex arrays must be as effi- 
cient as the manipulation of primitive types like float and 
double. Whereas Fortran and PL/I directly support com- 
plex numbers as a primitive type, complex numbers are typ- 
ically implemented in Java as objects of a Complex class. 
In fact, there is a proposal for a standard Java Complex 
class that would facilitate the development of numerical ap- 
plications with complex arithmetic [14]. We will show in 
Section 2 that implementing complex numbers as objects re- 
sults in a significant performance penalty in current Java en- 
vironments. In one of our benchmarks, MICROSTRIP, Java 
performance is 120 times slower than the equivalent Fortran 
code. 
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This paper shows how the right compiler technology can 
deliver efficient execution of complex arithmetic codes in 
Java. We rely on a technique called semantic expansion2 to 
optimize the performance of Java applications that use stan- 
dard classes for complex numbers and complex arrays. Se- ’ 
mantic expansion treats selected Java classes and methods 
as language primitives. The compiler recognizes the method 
invocations in the class file (i.e., at the bytecode level) and 
directly translates them into an intermediate language rep- 
resentation of their semantics. The crux of this technique 
is that it allows knowledge about standard classes to be em- 
bedded within the compiler. When applied to the Complex 
class, the net effect of the semantic expansion technique is to 
create a virtual machine that supports complex numbers as 
primitive types, with no change to the Java source or class 
files. That is, complex numbers continue to appear as objects 
when viewed by a regular Java Virtual Machine (JVM). 

The performance benefits of our approach can be enor- 
mous. When optimized with our semantic expansion tech- 
niques, the MICROSTRIP benchmark shows a 76-fold speed 
improvement, achieving 63% of the performance of equiva- 
lent Fortran code. In some other benchmarks, Java achieves 
90% of the best Fortran performance. Semantic expansion 
transforms Java into a real contender for the development 
of scientific and engineering codes that manipulate complex 
numbers. 

This paper is organized as follows. Section 2 describes 
the performance problems associated with complex num- 
bers in Java, using the MICROSTRIP benchmark as a work- 
ing example. Section 3 presents the details of our seman- 
tic expansion implementation for complex arithmetic and 
multidimensional arrays of complex numbers. Our experi- 
mental work and benchmarking results are reported in Sec- 
tion 4. Section 5 is a discussion of more genera1 aspects of 
semantic expansion, in particular as a mechanism for trans- 
parently implementing lightweight objects. Related work is 
discussed in Section 6 and conclusions are presented in Sec- 
tion 7. 

‘Senzuntic expansion is called semantic inlining in our earlier work. 
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- - 
public final class Complex { 

public double :re, im; 

public Complex(double r, double i) 1 re = r; im = i; 1 
public Complex assign(Complex z) { re = z.re; im = z.im; return this; 1 
public Complex plus(Comp.Lex z) { return new Complex(re+z.re,im+z.imL; 1 
public Complex minus(Complex z) { return new Complextre-z.re,im-z.im); 1 
public Complex times(Compl.ex z) { 

return new Complex(re*z.re-im*z.im,im*z.re+re*z.im); 
I 
public Complex times(dou1~l.e x) ( return new Complex(re*x,im*x); ) 
public Complex plusAssign(Complex z) { re += z.re; im += z.im; return this; 1 

I 

(a) code for Complex class 

a = new Complex(O,O); 

aA-1 

(b) Complex object creation and representation 

Figure 1: A standard Java class for complex numbers. 

2 Complex numbers in Java 

The Java programming language and the Java Virtual Ma- 
chine do not support complex numbers as primitive data 
types. Therefore, the typical mechanism for implementing 
complex numbers in Java is through a Complex class. A 
subset of the code for such class is shown in Figure l(a). 
With this approach, each complex number is represented 
as a Complex object. In most Java implementations, a 
Complex object would require 32 bytes for representation: 
16 bytes for the standard object descriptor (present in all ob- 
jects) and 16 bytes for the real and imaginary fields. This 
representation is shown in Figure l(b). 

With the Complex class, arithmetic operations are per- 
formed through method invocations and intermediate com- 
putation results are represented by temporary Complex ob- 
jects. Let a, b, and c be Complex objects. The expression 
a = a * (b + c) can be computed by the code: 

a.assign(a.times(b.plus(c))); 

Note that three method invocations and two temporary ob- 
ject creations occur while evaluating this simple expression. 
Even though the standard inlining performed by Java com- 
pilers eliminates the method overhead, we will see that the 
numerous object creation and subsequent object destruction 
operations place a heavy toll on program performance. 

Java arrays of Complex objects can be easily created 
with conventional language constructs such as 

Complex[] c = new Complex[n]; 
for(int i=O; i-32; i++) 

c[i] = new Complex(O,O); 

Note that c is an array of references to Complex ob- 
jects. The second line in the code above allocates the actual 

Complex objects. The resulting structure is shown in Fig- 
ure 2. This organization is very inefficient when compared 
to arrays of primitive types in Java, or to arrays of complex 
numbers in Fortran. First, there is an extra level of indirec- 
tion to get to any complex number in the array. Second, at 
least 50% of the storage is used for object descriptors. That 
is, this organization uses at least twice as much memory as a 
Fortran array of complex numbers. 

Figure 2: Structure of a Java array of Complex objects. 

We quantify the performance impact of supporting com- 
plex numbers in Java through a working example. The 
MICROSTRIP benchmark [ 161 computes the value of the po- 
tential field @(z, y) in a two-dimensional microstrip struc- 
ture [8]. The structure is discretized by an (w + 1) x (h + 1) 
mesh and the potential is calculated through the iterative so- 
lution of a partial differential equation. (For benchmarking 
we set w = h = 999 and we use a structure with 4 mi- 
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Complex[l[l b; 

b[i][j].assign(a[i+llIjl.plus(a[i-1 

ComplexArray2D a; 
ComplexArrayZD b; 

?omplex[l [I a; 

b.set(i,j,a.get(i+i,j~.plus~a.get(i-l,j~~.plus(a.get~i,j+l)).plus(a.get(i,j-l)).times(O.25~~; 

(b) 

Figure 3: Java code for the relaxation operation, using (a) Java arrays of Complex objects and (b) ComplexArray2D. 
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Figure 4: Memory utilization in MICROSTRIP. 

crostrips, as described in [16].) At each step of the solver, 
two Jacobi relaxation operations and an error reduction are 
performed. The key computation in the relaxation is the 
evaluation of 

q,j = +i+1,j + Q'i-1,j + @if+1 + @i,+1) (1) 

for each point (i, j) of the mesh. MICROSTRIP has two modes 
of operation: DC and AC. 

In the DC mode of operation, @ is a real-valued field and 
the computation of Equation (1) can be performed with real 
arithmetic. It can be coded as 

b(i,j) = 0.25*(a(i+l,j)+a(i-l,j)+ 
a(i,j+l)+a(i,j-1)) (2) 

in Fortran and 

blil [jl = 0.25*(a[i+ll [jl+a[i-11 [jl+ (3) 
a[i] [j+ll+a[il [j-11) 

in Java. Bothconstructs operate on primitive types (real * 8 
for Fortran and double for Java) and can be executed quite 
efficiently, as shown by the results of the benchmark in 
DC mode. Java achieves 49 Mflops and Fortran achieves 
97 Mflops on an RW6000 model 590. 

In the AC mode, 9 is a complex valued function 
and Equation (1) must be evaluated using complex arith- 
metic. Since Fortran supports complex primitive types 
(complex*16 in particular), the Fortran code for Qua- 

tion (1) in AC mode is the same as shown in (2). Using 
the Complex class, Equation (1) in Java for AC mode can 
typically be coded as shown in Figure 3(a), where a and b 
areoftypeComplex[l [I. 

Each complex arithmetic operation in Java creates a new 
complex object to represent the result of the operation. This 
newly created object is immediately used in the next op- 
eration and then discarded. This voracious rate of object 
creation and destruction can be visualized by plotting the 
Java MICROSTRIP memory utilization, as done in Figure 4(a) 
(for DC mode) and Figure 4(b) (for AC mode). The memory 
utilization in DC mode grows slowly, and does not require 
any garbage collection during the lifetime of the benchmark. 
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In comparison, the memory utilization grows rapidly in AC 

mode, exhausting the total memory allocated for the appli- 
cation in a few iterations, thus forcing garbage collection to 
occur. Thus, the execution time of the Java AC mode is dom- 
inated by the cost of object creation and destruction. (Be- 
cause of limitations in our monitoring tool, the plots shown 
in Figure 4 are for a smaller problem size, with w = h = 
99.) In AC mode, running on the same RS/6000 model 590, 
the Fortran version of the benchmark achieves 120 Mflops, 
while the Java version achieves only 1 Mflop. 

An alternative to representing a and b as Java arrays 
of Complex objects is to use one of the standard multi- 
dimensional array classes also being proposed by the Java 
Grande Forum. Figure 5 shows some components of class 
Complefirray2D, which implements two-dimensional 
arrays of complex numbers. Inside the array, values are 
stored in a packed form, with (real,imuginary) pairs in ad- 
jacent locations of the data array. (,This is similar to the 
Fortran style for storing arrays of complex numbers.) The 
get operation returns a Complex object with the value of 
an array element, and the set operation assigns the value of 
a Complex object to an array element. It is easy to create 
arrays usingthe ComplexArray2D class: 

ComplexArray2D a = 
new ComplexArray2D(w+l,h+l) 

creates and initializes to zero a (w f 1) x (h + 1) array of 
complex values (not complex objects). Equation (1) can be 
coded as show in Figure 3(b). 

public final class ComplexArraylD ( 

private doublei] data; 

public ComplexArray2D(int m, int n) ( 
data = new double[2*m*nl; 

I 

public Complex get(int i, int j) { 
return new Complex(dataL2*(i*n+j)I, 

data[2*(i*n+j)+ll); 

public void set(int i, int j, Complex z) { 
data[2*(i*n+j)l = z.re; 
data[2*(i*n+j)+ll = z.im; 

I 

Figure 5: A (proposed) standard Java class for two- 
dimensional complex array. 

The ComplexArray2D class offers a significant stor- 
agebenefitcomparedto Complex[] [],sinceitonlystores 
complex values and not Complex objects (a 50% reduc- 
tion in storage, and associated improvements in memory 
bandwidth and cache behavior). The performance of nu- 
merical codes that use ComplexArray2D, however, is 
just as bad as codes that use Java arrays of Complex ob- 
jects. Execution continues to be dominated by object cre- 

ation and destruction. In fact, every get operation on a 
ComplexArray2Dresults in anewtemporary object. The 
performance of MICROSTRIP using ComplexArray2D is 
also approximately 1 Mflop. 

3 Semantic expansion of complex numbers and 
multidimensional arrays 

Java performance on numerical codes with complex num- 
bers is severely hampered by the overhead of object manipu- 
lation. New techniques for stack allocation of temporary ob- 
jects and more sophisticated garbage collection can alleviate 
some of these costs [6, 181. However, to achieve Fortran-like 
performance on complex arithmetic we must move beyond 
treating complex numbers as objects. We need to somehow 
directly manipulate complex values in registers, avoiding as 
much additional processing as possible. Machine code that 
directly manipulates complex values can be generated from 
Java using a technique called semantic expansion. 

3.1 Overview of semantic expansion 

Semantic expansion is a compilation strategy whereby se- 
lected classes are treated as language primitives by the com- 
piler - their semantics are hard-wired into the compiler and 
optimizations based on the expanded semantics are designed 
accordingly. We have applied semantic expansion to the 
Complex and ComplexArray classes to effectively en- 
hance our Java compiler with the knowledge of complex 
numbers. We are not changing the Java language at all. 
Complex numbers continue to be represented through ob- 
jects at the Java source and bytecode levels and continue to 
be portable across Java implementations. When a program 
(class file) with complex numbers is submitted for transla- 
tion into executable code, the compiler simply takes advan- 
tage of its knowledge of the semantics of the Complex and 
ComplexArray classes to optimize the code aggressively. 

This approach of enhancing a compiler with knowledge 
about the classes that implement complex numbers and mul- 
tidimensional complex arrays is feasible and beneficial for 
several reasons. First, complex numbers are essential in 
many areas of science and engineering. Therefore it is rea- 
sonable to extend a compiler to treat them as primitive types 
(as Fortran and PL/I compilers do). Second, the semantics 
of complex numbers are simple and well-defined. Adding 
treatment for complex numbers in a compiler is inexpensive. 
Third, the Complex and Complexkrayclasses are de- 
clared final. This makes it very easy for the compiler to 
identify the exact method that is being invoked in each use. 
Finally, because of their mathematical nature, treating com- 
plex numbers as primitives offers the compiler opportunities 
to perform very aggressive optimizations. We will quantify 
the enormous benefits from these optimizations in Section 4, 
but we discuss them qualitatively next. We describe our ac- 
tual implementation of semantic expansion in Section 3.2. 
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The first optimization provided by semantic expansion is 
the elimination of method invocation overhead. The com- 
piler replaces method invocations by code that directly im- 
plements the semantics of the method. Method invocation 
overhead can also be eliminated through standard inlining 
techniques, but semantic expansion can do more because it 
does not depend on the actual implementation in the class 
file. The compiler is free to generate any code that conforms 
to the specified semantics. We can keep the reference im- 
plementation simple, while the compiler uses a highly opti- 
mized implementation. 

The single most important optimization provided by se- 
mantic expansion in support of complex numbers in Java is 
what we call lightweight object substitution. The basic idea 
is to replace Complex objects by more lightweight repre- 
sentations. These lightweight representations are semanti- 
cally rich enough to serve as the object in certain program 
contexts, but are overall cheaper to create and manipulate. 
In particular, we want to use complex values (a pair of real 
and imaginary values) as much as possible. The evaluation 
of arithmetic expressions with complex numbers, as in Fig- 
ure 3, can be performed entirely with complex values, with- 
out creating any new Complex objects. 

Lightweight object substitution in turn makes an array 
class like ComplexArray2D very attractive. In many situ- 
ations the get method only needs to return a complex value, 
thus eliminating the need to create a new object. We can then 
benefit from the improved layout offered by that class, which 
saves us at least 50% in storage and eliminates extra levels 
of dereferencing. Note that the array class by itself does not 
help much, as discussed in Section 2, because the execution 
time continues to be dominated by object creation and de- 
struction. It is only when that cost is eliminated that we are 
able to get additional leverage from the Completirray 
class. 

3.2 The implementation 

Our prototype implementation is based on the IBM High 
Performance Compiler for Java (HPCJ) [22], which gener- 
ates native code for different IBM platforms. HPCJ compiles 
Java class files (bytecodes) into an intermediate stack lan- 
guage called W-code. W-code supports a rich variety of data 
types, including complex and decimal numbers. W-code 
and W-code based optimizers provide a comprehensive op- 
timization and analysis infrastructure. We implemented se- 
mantic expansion in the Toronto Portable Optimizer (TPO), 
which is used by the IBM XL family of compilers for lan- 
guage-independent optimizations. TPO is a W-code to W- 
code restructurer that sits in between the HPCJ front-end 
and the architecture specific code generation back-end. We 
want to emphasize that semantic expansion occurs after the 
bytecode phase of Java compilation, before machine exe- 
cutable code is generated. Therefore, Java source ( . j ava) 
and bytecode ( . class) files continue to be portable across 

all Java implementations. 
In performing lightweight object substitution, we make 

use of the W-code complex data type (denoted as 
wcomple$) to serve as the lightweight representation of 
Complex objects. The wcomplex data type is cheaper to 
create, faster to access, and, as a primitive W-code data type, 
is subject to a wide range of optimizations already existing 
in TPO. During the substitution, the compiler attempts to 
minimize the number of temporary Complex objects cre- 
ated. This is achieved by substituting the use or creation of 
Complex objects with those of wcomplex data elements in 
accordance with the definitions of the semantically expanded 
methods, discussed below. 

In the Complex class (Figure l), the plus, minus, and 
times methods are semantically expanded to directly oper- 
ate on two wcomplex arguments and return a wcomplex el- 
ement as its result. The plusAssign and assign meth- 
ods are semantically expanded to take one Complex argu- 
ment (the this) and one wcomplex argument, and return 
a Complex reference. Similarly, the get method of class 
ComplexArray2D (Figure 5) returns a wcomplex element 
and the set method accepts a wcomplex as input. With these 
substitutions, expressions like those in Figure 3(a) and Fig- 
ure 3(b) can be evaluated without any Complex object cre- 
ation. 

Conversion between wcomplex elements and Complex 
objects is performed as required by the types of the for- 
mal and actual arguments of operations. If an arithmetic 
operation is performed on a Complex object, it is neces- 
sary to extract the corresponding wcomplex value from it. 
This operation is typically free, since every Complex ob- 
ject effectively contains a wcomplex element inside it. Cor- 
respondingly, if an object-oriented operation is performed on 
a wcomplex element, it has to be converted into a Complex 
object. This is a more expensive operation, since it involves 
object creation, but is not very frequent in numerical codes. 
Conversion points can be conservatively identified through a 
simple inspection of the abstract syntax tree (AST) represen- 
tation of an expression. Figure 6(a) shows the original AST 
for the expression f oo (a. times (b . plus (c ) ) ), where 
f oo is some user function that expects a Complex object 
as its parameter. The * and + internal W-code operations 
expect wcomplex operands, which need to be extracted from 
the Complex objects a, b, and c. The transformed AST 
of Figure 6(b) shows the value operations that perform this 
conversion. The foo method expects an actual Complex 
object, and therefore the wcomplex result of the multiplica- 
tion has to be converted with an object operation. This is 
also shown in Figure 6(b). 

The simplicity of the current implementation can in some 
cases limit the achieved performance. The current imple- 
mentation always uses a full Complex object wherever the 
formal argument of an operation is Complex. Thus the “=” 
(reference assignment) operation always causes an object to 

3wcomplex is a W-code primitive, represented by real and imaginary parts. 
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foo 

I 
object 

foo 
I 

times value 

aA 
I A 

plus a value value 

4 
I I 

b b C 

(4 (b) 

Figure 6: The AST for a complex arithmetic expression. 

be created, even if each use of the object being assigned re- 
quires only a wcomplex value. For example, 

a = b.plus(c) 

requires an object creation in our current implementation, 
regardless of how a is used later. (Note that 

a.assign(b.plus(c)) 

does not require an ob.ject creation.) The current imple- 
mentation also uses the full object representation for any 
Complex object passed to a (non-semantically expanded) 
method (e.g., f oo), without checking interprocedurally if all 
uses of that argument to f oo require only a wcomplex value. 
Clearly, a simple data-flow analysis, examining each use of 
an object, can be performed intraprocedurally or interproce- 
durally to reduce the number of complex numbers requiring 
a full object representation. We stress that our experimen- 
tal results to date have shown very good results without this 
more general analysis, and that it does not appear necessary 
to gain the majority of the benefits of semantic expansion of 
the Complex class. 

Although the constraint that classes be final is accept- 
able for our current goal of efficiently implementing new 
primitive data types, future applications may require easing 
this. For semantic expansion of method calls, it is neces- 
sary to have an analysis that can determine that the call is 
to a method in the original recognized class, and not some 
derived class. This is also sufficient to allow data rearrange- 
ment by semantic expansion, since all accesses of the rear- 
ranged data will be via methods of the original recognized 
class. 

4 Experimental results 

In this section we analyze in more detail the behavior of 
MICROSTRIP and other benchmarks. We measure the per- 
formance of Java, C++, and Fortran versions for each of 
the benchmarks. We perform all our experiments on an 
IBM RS/6000 model 590 workstation. This machine has 

a 67 MHz POWER2 processor with a 256 kB single-level 
data cache and 512 MB of main memory. The peak com- 
putational speed of this machine is 266 Mflops. Fortran 
programs are compiled using version 4.1 of the IBM XLF 
compiler with the highest level of optimization (-03 -qhot, 
which performs high-order loop transformations [21]). C++ 
programs are compiled using version 3.6 of the IBM XLC 
compiler with its highest level of optimization (-03 - i.e., 
no high-order transformations). Java programs are stati- 
cally compiled with a development version of the IBM HPCJ 
compiler and array bounds checking is optimized using the 
methods described in [ 171. (With this optimization, the cost 
of bounds checking is effectively zero.) The optimization 
level for Java is -0, which is the highest level available for 
this language (in other IBM compilers, -03 uses associa- 
tivity to optimize expressions). In accordance with current 
Java floating-point semantics, the fma (fused multiply-add) 
instruction of the POWER architecture is disabled for Java 
programs but enabled for Fortran and C++ programs. Loop 
nests are arranged in each of the Java and Fortran versions 
of a benchmark to favor the data layout of the corresponding 
language. 

The results for MICROSTRIP AC are summarized in Fig- 
ure 7. The numbers at the top of the bars indicate ac- 
tual Mflops for each case. The bar labeled plain shows 
the performance of the standard Java implementation of 
this benchmark using Complex [ I [ I arrays (i.e., code as 
shown in Figure 3(a)). We remind the reader that a ver- 
sion with ComplexArray2D arrays (i.e., code as shown 
in Figure 3(b)) performed no better. The C++ bar shows the 
results for a C++ implementation of this benchmark. Com- 
plex numbers in C++ are implemented through a class with 
a (reaLimaginary) pair of doubles. Arithmetic operations 
with complex numbers in C++ do not incur any object cre- 
ation, and complex arrays have an efficient dense storage, 
but the compiler is not aware of the semantics of complex 
numbers. The complex bar shows the result after seman- 
tic expansion ofthe Complex class (withComplex[] [] 
arrays). The array bar shows the result from using the ar- 
ray class ComplexArray2D with semantic expansion of 
both the Complex and ComplexArray2D classes. Fi- 
nally, Fortran is the result for the Fortran version of this 
benchmark, with the highest level of optimization. 

We complete the experimental evaluation of our tech- 
niques by applying semantic expansion to four additional 
benchmarks. All of the benchmarks are numerical codes 
with complex arithmetic. The benchmarks are: MATMUL, LU, 

FFT, and CFD. MATMUL computes C = C + A x B, where 
C, A, and B are complex matrices of size 500 x 500. We 
use a dot-product version of matrix multiplication, with an 
i, j, L-loop nest. The i, j, and k loops are blocked and the 
i and j loops are unrolled, in all versions, to improve per- 
formance [21]. LU is a straightforward implementation of 
Crout’s algorithm [ 10, 201 for performing the LU decompo- 
sition of a square matrix A, with partial pivoting. The factor- 
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Figure 7: Summary of results for MICROSTRIP AC. 

ization is performed in place and, in the benchmark, A is of 
size 500 x 500. FFT computes the discrete Fourier trans- 
form of a two-dimensional complex function, represented 
by an n x m complex array. We use the Daniel-Lanczos 
method described in [20] to compute the one-dimensional 
FITS in the two-dimensional FIT. For our experiments we 
use n = m = 256. CFD is a kernel from a computational 
fluid dynamics application. It performs three convolutions 
between pairs of two-dimensional complex functions. Each 
function is represented by an n x m complex array. The 
computation performed in this benchmark is similar to a 
two-dimensional version of the NAS parallel benchmark FT. 
Again, for our experiments we use n = m = 256. 

Results for these four benchmarks are summarized in 
Figure 8. The labels for the bars are the same as with 
MICROSTRIP. In all cases we observe significant perfor- 
mance improvements when the Complex class is semanti- 
cally expanded. Improvements range from a factor of 13 (1.1 
to 14.6 Mflops for LU) to a factor of 50 (1 .l to 55.5 Mflops 
for MATMUL). Further improvements can be obtained us- 
ing a semantically expanded multidimensional array class. 
In that case we achieve Java performance that ranges from 
65% (MATMUL and LU) to 90% (FFT and CFD) of fully opti- 
mized Fortran code. The gain with array classes is particu- 
larly significant in the LU benchmark. The implementation 
of Crout’s algorithm performs accesses both along rows and 
columns of matrix A in the computation of the dot-products. 
Accesses along columns, in Java, can be performed much 
more efficiently with a dense storage layout, as provided 
by the multidimensional array class ComplexArray2D. 
Part of the greater performance advantage of Fortran in the 
LU and MATMUL benchmarks comes from its ability to use 
the fma instruction. Disabling it for Fortran causes perfor- 
mance drops of at least 13% in those two benchmarks. (It 
does not affect MICROSTRIP, FFT, or CFD significantly.) A 
proposal for extending the floating-point semantics of Java, 

that would allow it to use the fma instruction, is currently 
under consideration [ 141. Another substantial advantage of 
the Fortran compiler is its ability to perform high-order loop 
transformations. 

5 Discussion 

Our methodology derives its performance benefits from 
treating objects of Complex class as simple variables hold- 
ing complex values rather than true objects, when it is safe 
to do so. The term lightweight object is often used to re- 
fer to such a representation which is more efficient. Sev- 
eral authors [ 11, 91 have advocated the explicit introduction 
of lightweight objects (also called value objects) into Java. 
Other researchers have proposed techniques like object in- 
lining [7] and unboxing [ 121, which use interprocedural data 
flow analysis to detect situations where objects may be re- 
placed by lightweight objects that carry just the data values. 
We argue that our approach provides the performance bene- 
fits of the other approaches without altering the language or 
requiring extensive new compile time analyses. 

The addition of lightweight objects to the language com- 
plicates its semantics considerably. Lightweight classes do 
not fit into the Java class hierarchy, where each class is de- 
rived from the Ob j ec t class. It becomes necessary to en- 
force awkward restrictions [14] like: (i) a lightweight ob- 
ject cannot be assigned or compared with a null value, (ii) 
it cannot be cast to Obj ect or any other reference type, 
(iii) f inalizer methods are not allowed in a lightweight 
class, (iv) a lightweight class constructor must not explic- 
itly invoke super, (v) the instanceof operator cannot 
be applied to an expression having the type of a lightweight 
class. In contrast, it is much cleaner to simply make the 
compiler recognize important class libraries which are de- 
clared as final. The semantic knowledge of methods in 
such a class makes it trivial for a compiler to infer which 
methods may operate on the lightweight object instead. Us- 
ing straightforward local analysis, a compiler can greedily 
use lightweight objects, converting to a true object represen- 
tation only on demand, when a method requiring the gener- 
ality of a true object is encountered. Hence, no additional 
semantic restrictions need to be imposed on objects of these 
standard classes, and performance gains are obtained if these 
objects are manipulated mainly via the methods declared di- 
rectly in these classes. 

Furthermore, our approach ensures complete backward 
compatibility with existing JVMs. The reference implemen- 
tation of the class will allow older JVMs (or any JVM that 
does not support semantic expansion of the particular class) 
to execute the user application correctly. There is merely a 
possible performance loss if the JVM chooses not to take 
advantage of the semantics of the class. As a consequence 
of this backwards compatibility, a JVM or static compiler 
can pick and choose which classes to semantically expand. 
It is reasonable to expect compilers for embedded systems, 
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Figure 8: Summary of experimental results for MATMUL, LU, FR, and CFD. 

numerical applications or business applications to target dif- 
ferent classes for semantic expansion. Furthermore, JVM 
developers can introduce new classes and semantically ex- 
pand those classes, providing portability via the reference 
implementation and performance via semantic expansion of 
the new class. The standard naming conventions will prevent 
confusion between classes from different vendors. 

The approaches relying exclusively on compiler analy- 
sis to inline [7] and unbox [12] objects have a potential ad- 
vantage in that they can work with classes that are not se- 
mantically understood by the compiler. However, seman- 
tic expansion provides several important advantages over 
these approaches. First, large benefits are gained even with 
very local, simple analysis, making the technique appropri- 
ate for dynamic compilers. Second, because large benefits 
are gained through local knowledge, semantic expansion is 
not hampered by incomplete or conservative analysis. In a 
language with late bindings like Java, this is an important 
feature for static compilers. Finally, because the compiler 

can be endowed with a deep semantic understanding of the 
expanded class and its methods, transformations that are dif- 
ficult (if not impossible) to infer from the Java code for the 
class can be performed. C++ effectively uses lightweight 
objects to represent complex numbers. Nevertheless, as we 
have seen in Section 4, a Java compiler with specific under- 
standing of the Complex class semantics performs signifi- 
cantly better than C++. 

The main cost of our approach is that additional work, 
in terms of compiler implementation, must be done for each 
class to be semantically expanded. We do not view this as 
a major impediment, for several reasons. First, the classes 
whose semantic expansion offer the most performance gains 
are those corresponding to often used primitive types in 
domain specific languages. Examples include (i) complex 
numbers and true multidimensional arrays in Fortran, and 
(ii) fixed decimal types and strings in Cobol and other com- 
mercially oriented languages. Many of these types are al- 
ready present (in the form of classes) in the standard Java 
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class libraries and just waiting for optimization. Second, 
the amount of work necessary to semantically expand one 
of these classes is small - on the order of the amount of time 
necessary to implement the corresponding language primi- 
tive. Third, more sophisticated analyses can co-exist with 
semantic expansion if unboxing of objects which are not se- 
mantically expanded is desired. 

6 Related work 

Our semantic expansion technique is similar to techniques 
used by Fortran compilers and compilers for functional lan- 
guages such as Lisp [ 151 or ML [23]. In Fortran, some op- 
erators (intrinsic functions) are syntactically represented as 
function calls [l]. In the functional languages, typified by 
Lisp, all operators are function calls. Compilers for these 
languages often implement these functions using code gen- 
erated inline, thus reducing the overhead of the function call. 
Our approach differs from that taken by these systems in that 
we not only generate inlined code for the operator, but may 
also alter the data structure that is the operand. Thus for the 
Array classes, a dense region of storage with greater than 231 
elements may be formed. For Complex, values rather than 
objects are created. In the case of Arrays, the data restructur- 
ing has global implications, but only very simple local anal- 
ysis is needed to perform it. In the case of Complex, the 
data structure layout can change for what appears to be the 
same object at the source program level. This restructuring 
of the data is responsible for much of the performance im- 
provement we see, while the ability to use only local analysis 
allows the technique to be used by both static and dynamic 
compilation systems. 

Work by Peng and Padua [24] targets standard container 
classes for semantic expansion. In their paper, the container 
semantics are not used for local optimizations or transforma- 
tions inside the container. Instead, the semantics are used to 
help data flow analysis and detect parallelizable loops. Their 
work illustrates how semantic information about standard 
classes exposes new optimization and parallelization oppor- 
tunities. 

The work of Dolby [7] (targeting C++) and the work of 
Hall et.al. [ 121 (targeting Haskell) are related to ours in that 
they appear to duplicate our results with complex numbers, 
albeit in a different environment. In [7], aggressive interpro- 
cedural analysis identifies all uses of the fields of an object, 
and cloning creates specialized methods for each possible 
type of a field. This in turn allows the objects themselves to 
be inlined. Savings accrue from reducing the number of vir- 
tual function dispatches and from reducing the dereferencing 
overhead necessary to access objects fields. The techniques 
in [ 121 allows programmers to specify a base data type (con- 
sisting only of the primitive fields of a declared object), and 
propagate this new type through the methods operating on 
the declared object. We have compared the relative merits of 
these approaches and our work in Section 6. 

In [5], Cierniak and Li describe a global analysis tech- 
nique for determining that the shape of a Java array of arrays 
(e.g., double [ I [ ] ) is indeed rectangular and not modi- 
fied. The array representation is then transformed to a dense 
storage and element access is performed through index arith- 
metic. We differ in that we do not need global analysis and in 
our integration of complex and true multidimensional array 
optimizations. 

Philippsen and Giinthner [ 191 have also identified the ma- 
jor problem related to supporting complex numbers as Java 
objects: the voracious rate of object creation and destruction. 
Their solution is to extend the Java language with a primi- 
tive complex data type. Their cj compiler translates opera- 
tions on complex numbers to explicit operations on real and 
imaginary parts, which are represented as doubles. We 
note that they produce a conventional class file as result of 
their translation, which can be executed by any NM. This 
approach should result in large performance improvements 
over straightforward object approaches. The disadvantage, 
as compared to our approach, is that all the semantics as- 
sociated with complex numbers have been lost by the time 
the generated bytecode reaches an optimizer. Only explicit 
operations on the real and imaginary parts are visible. 

7 Conclusions and future work 

We have demonstrated in this paper that high performance 
numerical codes using complex numbers can be developed 
in Java. We have achieved with Java 60 to 90% of Fortran 
performance complex arithmetic codes. Earlier work by our 
group and others [2,3,4, 131 has demonstrated that high per- 
formance can be obtained for codes written using the Java 
primitive floating point types. Our present results, combined 
with those earlier results, show that the answer to the ques- 
tion of whether Java is a suitable language for developing 
high performance numerical codes is an unequivocal yes. 

Semantic expansion is simple to implement, has very low 
compile time overhead, and is compatible with existing Java 
compilers and Java Virtual Machines. This means that se- 
mantic expansion is usable by dynamic compilers and that 
Java programs developed in an environment which imple- 
ments semantic expansion can be run on any Java Virtual 
Machine. We are currently investigating the use of seman- 
tic expansion for fixed decimal types and the Java String 
class, as well as more complex container classes, to get a 
better feel for the broad applicability of this technique. 
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