
Efficient Support for Complex Numbers in Java

Peng Wu Sam Midkiff JosC Moreira Manish Gupta

pengwu @ uiuc.edu {smidki~jmoreira,mgupta} @us.ibm.com
Department of Computer Science IBM T. J. Watson Research Center

University of Illinois at Urbana-Champaign F? 0. Box 218

Urbana, IL 61801 Yorktown Heights, NY 10598-0218

Abstract

One glaring weakness of Java for numerical programming
is its lack of support for complex numbers. Simply creating
a Complex number class leads to poor performance rela-
tive to Fortran. We show in this paper, however, that the
combination of stich a Complex class and a compiler that
understands its semantics does indeed lead to Fortran-like
performance. This performance gain is achieved while leav-
ing the Java language completely unchanged and maintain-
ing full compatibility with existing Java Virtual Machines.
We quantify the effectiveness of our approach through ex-
periments with linear algebra, electromagnetics, and com-
putational fluid-dynamics kernels.

1 Introduction

The Java Grande Forum has identified several critical issues
related to the role of JavacTM)’ in numerical computing [141.
One of the key requirements is that Java must support effi-
cient operations on complex numbers. Complex arithmetic
and access to elements of complex arrays must be as effi-
cient as the manipulation of primitive types like float and
double. Whereas Fortran and PL/I directly support com-
plex numbers as a primitive type, complex numbers are typ-
ically implemented in Java as objects of a Complex class.
In fact, there is a proposal for a standard Java Complex
class that would facilitate the development of numerical ap-
plications with complex arithmetic [14]. We will show in
Section 2 that implementing complex numbers as objects re-
sults in a significant performance penalty in current Java en-
vironments. In one of our benchmarks, MICROSTRIP, Java
performance is 120 times slower than the equivalent Fortran
code.

‘Java is a trademarkof Sun Microsystems, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom USC is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the first paye. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission andior a fee.
JAVA’99 San Francisco California USA
Copyright ACM 1999 I-581 13-161~5/99/06...$5.00

This paper shows how the right compiler technology can
deliver efficient execution of complex arithmetic codes in
Java. We rely on a technique called semantic expansion2 to
optimize the performance of Java applications that use stan-
dard classes for complex numbers and complex arrays. Se- ’
mantic expansion treats selected Java classes and methods
as language primitives. The compiler recognizes the method
invocations in the class file (i.e., at the bytecode level) and
directly translates them into an intermediate language rep-
resentation of their semantics. The crux of this technique
is that it allows knowledge about standard classes to be em-
bedded within the compiler. When applied to the Complex
class, the net effect of the semantic expansion technique is to
create a virtual machine that supports complex numbers as
primitive types, with no change to the Java source or class
files. That is, complex numbers continue to appear as objects
when viewed by a regular Java Virtual Machine (JVM).

The performance benefits of our approach can be enor-
mous. When optimized with our semantic expansion tech-
niques, the MICROSTRIP benchmark shows a 76-fold speed
improvement, achieving 63% of the performance of equiva-
lent Fortran code. In some other benchmarks, Java achieves
90% of the best Fortran performance. Semantic expansion
transforms Java into a real contender for the development
of scientific and engineering codes that manipulate complex
numbers.

This paper is organized as follows. Section 2 describes
the performance problems associated with complex num-
bers in Java, using the MICROSTRIP benchmark as a work-
ing example. Section 3 presents the details of our seman-
tic expansion implementation for complex arithmetic and
multidimensional arrays of complex numbers. Our experi-
mental work and benchmarking results are reported in Sec-
tion 4. Section 5 is a discussion of more genera1 aspects of
semantic expansion, in particular as a mechanism for trans-
parently implementing lightweight objects. Related work is
discussed in Section 6 and conclusions are presented in Sec-
tion 7.

‘Senzuntic expansion is called semantic inlining in our earlier work.

109

- -
public final class Complex {

public double :re, im;

public Complex(double r, double i) 1 re = r; im = i; 1
public Complex assign(Complex z) { re = z.re; im = z.im; return this; 1
public Complex plus(Comp.Lex z) { return new Complex(re+z.re,im+z.imL; 1
public Complex minus(Complex z) { return new Complextre-z.re,im-z.im); 1
public Complex times(Compl.ex z) {

return new Complex(re*z.re-im*z.im,im*z.re+re*z.im);
I
public Complex times(dou1~l.e x) (return new Complex(re*x,im*x);)
public Complex plusAssign(Complex z) { re += z.re; im += z.im; return this; 1

I

(a) code for Complex class

a = new Complex(O,O);

aA-1

(b) Complex object creation and representation

Figure 1: A standard Java class for complex numbers.

2 Complex numbers in Java

The Java programming language and the Java Virtual Ma-
chine do not support complex numbers as primitive data
types. Therefore, the typical mechanism for implementing
complex numbers in Java is through a Complex class. A
subset of the code for such class is shown in Figure l(a).
With this approach, each complex number is represented
as a Complex object. In most Java implementations, a
Complex object would require 32 bytes for representation:
16 bytes for the standard object descriptor (present in all ob-
jects) and 16 bytes for the real and imaginary fields. This
representation is shown in Figure l(b).

With the Complex class, arithmetic operations are per-
formed through method invocations and intermediate com-
putation results are represented by temporary Complex ob-
jects. Let a, b, and c be Complex objects. The expression
a = a * (b + c) can be computed by the code:

a.assign(a.times(b.plus(c)));

Note that three method invocations and two temporary ob-
ject creations occur while evaluating this simple expression.
Even though the standard inlining performed by Java com-
pilers eliminates the method overhead, we will see that the
numerous object creation and subsequent object destruction
operations place a heavy toll on program performance.

Java arrays of Complex objects can be easily created
with conventional language constructs such as

Complex[] c = new Complex[n];
for(int i=O; i-32; i++)

c[i] = new Complex(O,O);

Note that c is an array of references to Complex ob-
jects. The second line in the code above allocates the actual

Complex objects. The resulting structure is shown in Fig-
ure 2. This organization is very inefficient when compared
to arrays of primitive types in Java, or to arrays of complex
numbers in Fortran. First, there is an extra level of indirec-
tion to get to any complex number in the array. Second, at
least 50% of the storage is used for object descriptors. That
is, this organization uses at least twice as much memory as a
Fortran array of complex numbers.

Figure 2: Structure of a Java array of Complex objects.

We quantify the performance impact of supporting com-
plex numbers in Java through a working example. The
MICROSTRIP benchmark [161 computes the value of the po-
tential field @(z, y) in a two-dimensional microstrip struc-
ture [8]. The structure is discretized by an (w + 1) x (h + 1)
mesh and the potential is calculated through the iterative so-
lution of a partial differential equation. (For benchmarking
we set w = h = 999 and we use a structure with 4 mi-

110

Complex[l[l b;

b[i][j].assign(a[i+llIjl.plus(a[i-1

ComplexArray2D a;
ComplexArrayZD b;

?omplex[l [I a;

b.set(i,j,a.get(i+i,j~.plus~a.get(i-l,j~~.plus(a.get~i,j+l)).plus(a.get(i,j-l)).times(O.25~~;

(b)

Figure 3: Java code for the relaxation operation, using (a) Java arrays of Complex objects and (b) ComplexArray2D.

Memorv behavior of MICROSTRIP DC Memory behavior of MICROSTRIP AC

I

L
OO

I
10 20 30 40 50

Execution time

(a) Memory usage in DC mode

8000
5T
!!i
2 6000

Ei

3
i? 4000

E

2
2000

0’
0

I
100 200 300 400 500 600

Execution time

(a) Memory usage in AC mode

Figure 4: Memory utilization in MICROSTRIP.

crostrips, as described in [16].) At each step of the solver,
two Jacobi relaxation operations and an error reduction are
performed. The key computation in the relaxation is the
evaluation of

q,j = +i+1,j + Q'i-1,j + @if+1 + @i,+1) (1)

for each point (i, j) of the mesh. MICROSTRIP has two modes
of operation: DC and AC.

In the DC mode of operation, @ is a real-valued field and
the computation of Equation (1) can be performed with real
arithmetic. It can be coded as

b(i,j) = 0.25*(a(i+l,j)+a(i-l,j)+
a(i,j+l)+a(i,j-1)) (2)

in Fortran and

blil [jl = 0.25*(a[i+ll [jl+a[i-11 [jl+ (3)
a[i] [j+ll+a[il [j-11)

in Java. Bothconstructs operate on primitive types (real * 8
for Fortran and double for Java) and can be executed quite
efficiently, as shown by the results of the benchmark in
DC mode. Java achieves 49 Mflops and Fortran achieves
97 Mflops on an RW6000 model 590.

In the AC mode, 9 is a complex valued function
and Equation (1) must be evaluated using complex arith-
metic. Since Fortran supports complex primitive types
(complex*16 in particular), the Fortran code for Qua-

tion (1) in AC mode is the same as shown in (2). Using
the Complex class, Equation (1) in Java for AC mode can
typically be coded as shown in Figure 3(a), where a and b
areoftypeComplex[l [I.

Each complex arithmetic operation in Java creates a new
complex object to represent the result of the operation. This
newly created object is immediately used in the next op-
eration and then discarded. This voracious rate of object
creation and destruction can be visualized by plotting the
Java MICROSTRIP memory utilization, as done in Figure 4(a)
(for DC mode) and Figure 4(b) (for AC mode). The memory
utilization in DC mode grows slowly, and does not require
any garbage collection during the lifetime of the benchmark.

111

In comparison, the memory utilization grows rapidly in AC

mode, exhausting the total memory allocated for the appli-
cation in a few iterations, thus forcing garbage collection to
occur. Thus, the execution time of the Java AC mode is dom-
inated by the cost of object creation and destruction. (Be-
cause of limitations in our monitoring tool, the plots shown
in Figure 4 are for a smaller problem size, with w = h =
99.) In AC mode, running on the same RS/6000 model 590,
the Fortran version of the benchmark achieves 120 Mflops,
while the Java version achieves only 1 Mflop.

An alternative to representing a and b as Java arrays
of Complex objects is to use one of the standard multi-
dimensional array classes also being proposed by the Java
Grande Forum. Figure 5 shows some components of class
Complefirray2D, which implements two-dimensional
arrays of complex numbers. Inside the array, values are
stored in a packed form, with (real,imuginary) pairs in ad-
jacent locations of the data array. (,This is similar to the
Fortran style for storing arrays of complex numbers.) The
get operation returns a Complex object with the value of
an array element, and the set operation assigns the value of
a Complex object to an array element. It is easy to create
arrays usingthe ComplexArray2D class:

ComplexArray2D a =
new ComplexArray2D(w+l,h+l)

creates and initializes to zero a (w f 1) x (h + 1) array of
complex values (not complex objects). Equation (1) can be
coded as show in Figure 3(b).

public final class ComplexArraylD (

private doublei] data;

public ComplexArray2D(int m, int n) (
data = new double[2*m*nl;

I

public Complex get(int i, int j) {
return new Complex(dataL2*(i*n+j)I,

data[2*(i*n+j)+ll);

public void set(int i, int j, Complex z) {
data[2*(i*n+j)l = z.re;
data[2*(i*n+j)+ll = z.im;

I

Figure 5: A (proposed) standard Java class for two-
dimensional complex array.

The ComplexArray2D class offers a significant stor-
agebenefitcomparedto Complex[] [],sinceitonlystores
complex values and not Complex objects (a 50% reduc-
tion in storage, and associated improvements in memory
bandwidth and cache behavior). The performance of nu-
merical codes that use ComplexArray2D, however, is
just as bad as codes that use Java arrays of Complex ob-
jects. Execution continues to be dominated by object cre-

ation and destruction. In fact, every get operation on a
ComplexArray2Dresults in anewtemporary object. The
performance of MICROSTRIP using ComplexArray2D is
also approximately 1 Mflop.

3 Semantic expansion of complex numbers and
multidimensional arrays

Java performance on numerical codes with complex num-
bers is severely hampered by the overhead of object manipu-
lation. New techniques for stack allocation of temporary ob-
jects and more sophisticated garbage collection can alleviate
some of these costs [6, 181. However, to achieve Fortran-like
performance on complex arithmetic we must move beyond
treating complex numbers as objects. We need to somehow
directly manipulate complex values in registers, avoiding as
much additional processing as possible. Machine code that
directly manipulates complex values can be generated from
Java using a technique called semantic expansion.

3.1 Overview of semantic expansion

Semantic expansion is a compilation strategy whereby se-
lected classes are treated as language primitives by the com-
piler - their semantics are hard-wired into the compiler and
optimizations based on the expanded semantics are designed
accordingly. We have applied semantic expansion to the
Complex and ComplexArray classes to effectively en-
hance our Java compiler with the knowledge of complex
numbers. We are not changing the Java language at all.
Complex numbers continue to be represented through ob-
jects at the Java source and bytecode levels and continue to
be portable across Java implementations. When a program
(class file) with complex numbers is submitted for transla-
tion into executable code, the compiler simply takes advan-
tage of its knowledge of the semantics of the Complex and
ComplexArray classes to optimize the code aggressively.

This approach of enhancing a compiler with knowledge
about the classes that implement complex numbers and mul-
tidimensional complex arrays is feasible and beneficial for
several reasons. First, complex numbers are essential in
many areas of science and engineering. Therefore it is rea-
sonable to extend a compiler to treat them as primitive types
(as Fortran and PL/I compilers do). Second, the semantics
of complex numbers are simple and well-defined. Adding
treatment for complex numbers in a compiler is inexpensive.
Third, the Complex and Complexkrayclasses are de-
clared final. This makes it very easy for the compiler to
identify the exact method that is being invoked in each use.
Finally, because of their mathematical nature, treating com-
plex numbers as primitives offers the compiler opportunities
to perform very aggressive optimizations. We will quantify
the enormous benefits from these optimizations in Section 4,
but we discuss them qualitatively next. We describe our ac-
tual implementation of semantic expansion in Section 3.2.

112

The first optimization provided by semantic expansion is
the elimination of method invocation overhead. The com-
piler replaces method invocations by code that directly im-
plements the semantics of the method. Method invocation
overhead can also be eliminated through standard inlining
techniques, but semantic expansion can do more because it
does not depend on the actual implementation in the class
file. The compiler is free to generate any code that conforms
to the specified semantics. We can keep the reference im-
plementation simple, while the compiler uses a highly opti-
mized implementation.

The single most important optimization provided by se-
mantic expansion in support of complex numbers in Java is
what we call lightweight object substitution. The basic idea
is to replace Complex objects by more lightweight repre-
sentations. These lightweight representations are semanti-
cally rich enough to serve as the object in certain program
contexts, but are overall cheaper to create and manipulate.
In particular, we want to use complex values (a pair of real
and imaginary values) as much as possible. The evaluation
of arithmetic expressions with complex numbers, as in Fig-
ure 3, can be performed entirely with complex values, with-
out creating any new Complex objects.

Lightweight object substitution in turn makes an array
class like ComplexArray2D very attractive. In many situ-
ations the get method only needs to return a complex value,
thus eliminating the need to create a new object. We can then
benefit from the improved layout offered by that class, which
saves us at least 50% in storage and eliminates extra levels
of dereferencing. Note that the array class by itself does not
help much, as discussed in Section 2, because the execution
time continues to be dominated by object creation and de-
struction. It is only when that cost is eliminated that we are
able to get additional leverage from the Completirray
class.

3.2 The implementation

Our prototype implementation is based on the IBM High
Performance Compiler for Java (HPCJ) [22], which gener-
ates native code for different IBM platforms. HPCJ compiles
Java class files (bytecodes) into an intermediate stack lan-
guage called W-code. W-code supports a rich variety of data
types, including complex and decimal numbers. W-code
and W-code based optimizers provide a comprehensive op-
timization and analysis infrastructure. We implemented se-
mantic expansion in the Toronto Portable Optimizer (TPO),
which is used by the IBM XL family of compilers for lan-
guage-independent optimizations. TPO is a W-code to W-
code restructurer that sits in between the HPCJ front-end
and the architecture specific code generation back-end. We
want to emphasize that semantic expansion occurs after the
bytecode phase of Java compilation, before machine exe-
cutable code is generated. Therefore, Java source (. j ava)
and bytecode (. class) files continue to be portable across

all Java implementations.
In performing lightweight object substitution, we make

use of the W-code complex data type (denoted as
wcomple$) to serve as the lightweight representation of
Complex objects. The wcomplex data type is cheaper to
create, faster to access, and, as a primitive W-code data type,
is subject to a wide range of optimizations already existing
in TPO. During the substitution, the compiler attempts to
minimize the number of temporary Complex objects cre-
ated. This is achieved by substituting the use or creation of
Complex objects with those of wcomplex data elements in
accordance with the definitions of the semantically expanded
methods, discussed below.

In the Complex class (Figure l), the plus, minus, and
times methods are semantically expanded to directly oper-
ate on two wcomplex arguments and return a wcomplex el-
ement as its result. The plusAssign and assign meth-
ods are semantically expanded to take one Complex argu-
ment (the this) and one wcomplex argument, and return
a Complex reference. Similarly, the get method of class
ComplexArray2D (Figure 5) returns a wcomplex element
and the set method accepts a wcomplex as input. With these
substitutions, expressions like those in Figure 3(a) and Fig-
ure 3(b) can be evaluated without any Complex object cre-
ation.

Conversion between wcomplex elements and Complex
objects is performed as required by the types of the for-
mal and actual arguments of operations. If an arithmetic
operation is performed on a Complex object, it is neces-
sary to extract the corresponding wcomplex value from it.
This operation is typically free, since every Complex ob-
ject effectively contains a wcomplex element inside it. Cor-
respondingly, if an object-oriented operation is performed on
a wcomplex element, it has to be converted into a Complex
object. This is a more expensive operation, since it involves
object creation, but is not very frequent in numerical codes.
Conversion points can be conservatively identified through a
simple inspection of the abstract syntax tree (AST) represen-
tation of an expression. Figure 6(a) shows the original AST
for the expression f oo (a. times (b . plus (c))), where
f oo is some user function that expects a Complex object
as its parameter. The * and + internal W-code operations
expect wcomplex operands, which need to be extracted from
the Complex objects a, b, and c. The transformed AST
of Figure 6(b) shows the value operations that perform this
conversion. The foo method expects an actual Complex
object, and therefore the wcomplex result of the multiplica-
tion has to be converted with an object operation. This is
also shown in Figure 6(b).

The simplicity of the current implementation can in some
cases limit the achieved performance. The current imple-
mentation always uses a full Complex object wherever the
formal argument of an operation is Complex. Thus the “=”
(reference assignment) operation always causes an object to

3wcomplex is a W-code primitive, represented by real and imaginary parts.

113

foo

I
object

foo
I

times value

aA
I A

plus a value value

4
I I

b b C

(4 (b)

Figure 6: The AST for a complex arithmetic expression.

be created, even if each use of the object being assigned re-
quires only a wcomplex value. For example,

a = b.plus(c)

requires an object creation in our current implementation,
regardless of how a is used later. (Note that

a.assign(b.plus(c))

does not require an ob.ject creation.) The current imple-
mentation also uses the full object representation for any
Complex object passed to a (non-semantically expanded)
method (e.g., f oo), without checking interprocedurally if all
uses of that argument to f oo require only a wcomplex value.
Clearly, a simple data-flow analysis, examining each use of
an object, can be performed intraprocedurally or interproce-
durally to reduce the number of complex numbers requiring
a full object representation. We stress that our experimen-
tal results to date have shown very good results without this
more general analysis, and that it does not appear necessary
to gain the majority of the benefits of semantic expansion of
the Complex class.

Although the constraint that classes be final is accept-
able for our current goal of efficiently implementing new
primitive data types, future applications may require easing
this. For semantic expansion of method calls, it is neces-
sary to have an analysis that can determine that the call is
to a method in the original recognized class, and not some
derived class. This is also sufficient to allow data rearrange-
ment by semantic expansion, since all accesses of the rear-
ranged data will be via methods of the original recognized
class.

4 Experimental results

In this section we analyze in more detail the behavior of
MICROSTRIP and other benchmarks. We measure the per-
formance of Java, C++, and Fortran versions for each of
the benchmarks. We perform all our experiments on an
IBM RS/6000 model 590 workstation. This machine has

a 67 MHz POWER2 processor with a 256 kB single-level
data cache and 512 MB of main memory. The peak com-
putational speed of this machine is 266 Mflops. Fortran
programs are compiled using version 4.1 of the IBM XLF
compiler with the highest level of optimization (-03 -qhot,
which performs high-order loop transformations [21]). C++
programs are compiled using version 3.6 of the IBM XLC
compiler with its highest level of optimization (-03 - i.e.,
no high-order transformations). Java programs are stati-
cally compiled with a development version of the IBM HPCJ
compiler and array bounds checking is optimized using the
methods described in [171. (With this optimization, the cost
of bounds checking is effectively zero.) The optimization
level for Java is -0, which is the highest level available for
this language (in other IBM compilers, -03 uses associa-
tivity to optimize expressions). In accordance with current
Java floating-point semantics, the fma (fused multiply-add)
instruction of the POWER architecture is disabled for Java
programs but enabled for Fortran and C++ programs. Loop
nests are arranged in each of the Java and Fortran versions
of a benchmark to favor the data layout of the corresponding
language.

The results for MICROSTRIP AC are summarized in Fig-
ure 7. The numbers at the top of the bars indicate ac-
tual Mflops for each case. The bar labeled plain shows
the performance of the standard Java implementation of
this benchmark using Complex [I [I arrays (i.e., code as
shown in Figure 3(a)). We remind the reader that a ver-
sion with ComplexArray2D arrays (i.e., code as shown
in Figure 3(b)) performed no better. The C++ bar shows the
results for a C++ implementation of this benchmark. Com-
plex numbers in C++ are implemented through a class with
a (reaLimaginary) pair of doubles. Arithmetic operations
with complex numbers in C++ do not incur any object cre-
ation, and complex arrays have an efficient dense storage,
but the compiler is not aware of the semantics of complex
numbers. The complex bar shows the result after seman-
tic expansion ofthe Complex class (withComplex[] []
arrays). The array bar shows the result from using the ar-
ray class ComplexArray2D with semantic expansion of
both the Complex and ComplexArray2D classes. Fi-
nally, Fortran is the result for the Fortran version of this
benchmark, with the highest level of optimization.

We complete the experimental evaluation of our tech-
niques by applying semantic expansion to four additional
benchmarks. All of the benchmarks are numerical codes
with complex arithmetic. The benchmarks are: MATMUL, LU,

FFT, and CFD. MATMUL computes C = C + A x B, where
C, A, and B are complex matrices of size 500 x 500. We
use a dot-product version of matrix multiplication, with an
i, j, L-loop nest. The i, j, and k loops are blocked and the
i and j loops are unrolled, in all versions, to improve per-
formance [21]. LU is a straightforward implementation of
Crout’s algorithm [10, 201 for performing the LU decompo-
sition of a square matrix A, with partial pivoting. The factor-

114

Performance of MICROSTRIP on FE/6000 590 (Mflops)
(

1

0.9

SO.8
s
20.7

iO.6
-5 0.5’

.go.4

$0.3

0.2;

0.1

I

ii l-l

1 .o

plain c++ complex array Fortran
Code version

Figure 7: Summary of results for MICROSTRIP AC.

ization is performed in place and, in the benchmark, A is of
size 500 x 500. FFT computes the discrete Fourier trans-
form of a two-dimensional complex function, represented
by an n x m complex array. We use the Daniel-Lanczos
method described in [20] to compute the one-dimensional
FITS in the two-dimensional FIT. For our experiments we
use n = m = 256. CFD is a kernel from a computational
fluid dynamics application. It performs three convolutions
between pairs of two-dimensional complex functions. Each
function is represented by an n x m complex array. The
computation performed in this benchmark is similar to a
two-dimensional version of the NAS parallel benchmark FT.
Again, for our experiments we use n = m = 256.

Results for these four benchmarks are summarized in
Figure 8. The labels for the bars are the same as with
MICROSTRIP. In all cases we observe significant perfor-
mance improvements when the Complex class is semanti-
cally expanded. Improvements range from a factor of 13 (1.1
to 14.6 Mflops for LU) to a factor of 50 (1 .l to 55.5 Mflops
for MATMUL). Further improvements can be obtained us-
ing a semantically expanded multidimensional array class.
In that case we achieve Java performance that ranges from
65% (MATMUL and LU) to 90% (FFT and CFD) of fully opti-
mized Fortran code. The gain with array classes is particu-
larly significant in the LU benchmark. The implementation
of Crout’s algorithm performs accesses both along rows and
columns of matrix A in the computation of the dot-products.
Accesses along columns, in Java, can be performed much
more efficiently with a dense storage layout, as provided
by the multidimensional array class ComplexArray2D.
Part of the greater performance advantage of Fortran in the
LU and MATMUL benchmarks comes from its ability to use
the fma instruction. Disabling it for Fortran causes perfor-
mance drops of at least 13% in those two benchmarks. (It
does not affect MICROSTRIP, FFT, or CFD significantly.) A
proposal for extending the floating-point semantics of Java,

that would allow it to use the fma instruction, is currently
under consideration [141. Another substantial advantage of
the Fortran compiler is its ability to perform high-order loop
transformations.

5 Discussion

Our methodology derives its performance benefits from
treating objects of Complex class as simple variables hold-
ing complex values rather than true objects, when it is safe
to do so. The term lightweight object is often used to re-
fer to such a representation which is more efficient. Sev-
eral authors [11, 91 have advocated the explicit introduction
of lightweight objects (also called value objects) into Java.
Other researchers have proposed techniques like object in-
lining [7] and unboxing [121, which use interprocedural data
flow analysis to detect situations where objects may be re-
placed by lightweight objects that carry just the data values.
We argue that our approach provides the performance bene-
fits of the other approaches without altering the language or
requiring extensive new compile time analyses.

The addition of lightweight objects to the language com-
plicates its semantics considerably. Lightweight classes do
not fit into the Java class hierarchy, where each class is de-
rived from the Ob j ec t class. It becomes necessary to en-
force awkward restrictions [14] like: (i) a lightweight ob-
ject cannot be assigned or compared with a null value, (ii)
it cannot be cast to Obj ect or any other reference type,
(iii) f inalizer methods are not allowed in a lightweight
class, (iv) a lightweight class constructor must not explic-
itly invoke super, (v) the instanceof operator cannot
be applied to an expression having the type of a lightweight
class. In contrast, it is much cleaner to simply make the
compiler recognize important class libraries which are de-
clared as final. The semantic knowledge of methods in
such a class makes it trivial for a compiler to infer which
methods may operate on the lightweight object instead. Us-
ing straightforward local analysis, a compiler can greedily
use lightweight objects, converting to a true object represen-
tation only on demand, when a method requiring the gener-
ality of a true object is encountered. Hence, no additional
semantic restrictions need to be imposed on objects of these
standard classes, and performance gains are obtained if these
objects are manipulated mainly via the methods declared di-
rectly in these classes.

Furthermore, our approach ensures complete backward
compatibility with existing JVMs. The reference implemen-
tation of the class will allow older JVMs (or any JVM that
does not support semantic expansion of the particular class)
to execute the user application correctly. There is merely a
possible performance loss if the JVM chooses not to take
advantage of the semantics of the class. As a consequence
of this backwards compatibility, a JVM or static compiler
can pick and choose which classes to semantically expand.
It is reasonable to expect compilers for embedded systems,

115

Performance of MATMUL on R&6000 590 (Mflops) Performance of LU on fW6000 590 (Mflops)

1
136.4

0.9

s
e

0.8

2 0.7

$0.6

B 0.5

.g 0.4

z 0.3

0.2

0.1

plain c++ complex array Fortran
Code version

1

0.9

:
z

0.8

2 0.7

IO.6

zo.5

.E 5 0.4

2 0.3

0.2

0.11
L 1.1

plain c++ complex array Fortran
Code version

Performance of FFT on FEY6000 590 (Mflops) Performance of CFD on FW6000 590 (Mflops)
I I I

1
67.8

1
66.5

0.9 ’ 0.9

: 5 0.8 $0.8

2 0.7 20.7

IO.6 v a 0.6
.n

6 0.5 z 0.5

.E ‘, 0.4 .g 5 0.4

G 0.3 2 0.3

0.2 0.2

0.1 0.1
1.5 1.7

plain c++ complex array Fortran plain c++ complex array Fortran
Code version Code version

Figure 8: Summary of experimental results for MATMUL, LU, FR, and CFD.

numerical applications or business applications to target dif-
ferent classes for semantic expansion. Furthermore, JVM
developers can introduce new classes and semantically ex-
pand those classes, providing portability via the reference
implementation and performance via semantic expansion of
the new class. The standard naming conventions will prevent
confusion between classes from different vendors.

The approaches relying exclusively on compiler analy-
sis to inline [7] and unbox [12] objects have a potential ad-
vantage in that they can work with classes that are not se-
mantically understood by the compiler. However, seman-
tic expansion provides several important advantages over
these approaches. First, large benefits are gained even with
very local, simple analysis, making the technique appropri-
ate for dynamic compilers. Second, because large benefits
are gained through local knowledge, semantic expansion is
not hampered by incomplete or conservative analysis. In a
language with late bindings like Java, this is an important
feature for static compilers. Finally, because the compiler

can be endowed with a deep semantic understanding of the
expanded class and its methods, transformations that are dif-
ficult (if not impossible) to infer from the Java code for the
class can be performed. C++ effectively uses lightweight
objects to represent complex numbers. Nevertheless, as we
have seen in Section 4, a Java compiler with specific under-
standing of the Complex class semantics performs signifi-
cantly better than C++.

The main cost of our approach is that additional work,
in terms of compiler implementation, must be done for each
class to be semantically expanded. We do not view this as
a major impediment, for several reasons. First, the classes
whose semantic expansion offer the most performance gains
are those corresponding to often used primitive types in
domain specific languages. Examples include (i) complex
numbers and true multidimensional arrays in Fortran, and
(ii) fixed decimal types and strings in Cobol and other com-
mercially oriented languages. Many of these types are al-
ready present (in the form of classes) in the standard Java

116

class libraries and just waiting for optimization. Second,
the amount of work necessary to semantically expand one
of these classes is small - on the order of the amount of time
necessary to implement the corresponding language primi-
tive. Third, more sophisticated analyses can co-exist with
semantic expansion if unboxing of objects which are not se-
mantically expanded is desired.

6 Related work

Our semantic expansion technique is similar to techniques
used by Fortran compilers and compilers for functional lan-
guages such as Lisp [151 or ML [23]. In Fortran, some op-
erators (intrinsic functions) are syntactically represented as
function calls [l]. In the functional languages, typified by
Lisp, all operators are function calls. Compilers for these
languages often implement these functions using code gen-
erated inline, thus reducing the overhead of the function call.
Our approach differs from that taken by these systems in that
we not only generate inlined code for the operator, but may
also alter the data structure that is the operand. Thus for the
Array classes, a dense region of storage with greater than 231
elements may be formed. For Complex, values rather than
objects are created. In the case of Arrays, the data restructur-
ing has global implications, but only very simple local anal-
ysis is needed to perform it. In the case of Complex, the
data structure layout can change for what appears to be the
same object at the source program level. This restructuring
of the data is responsible for much of the performance im-
provement we see, while the ability to use only local analysis
allows the technique to be used by both static and dynamic
compilation systems.

Work by Peng and Padua [24] targets standard container
classes for semantic expansion. In their paper, the container
semantics are not used for local optimizations or transforma-
tions inside the container. Instead, the semantics are used to
help data flow analysis and detect parallelizable loops. Their
work illustrates how semantic information about standard
classes exposes new optimization and parallelization oppor-
tunities.

The work of Dolby [7] (targeting C++) and the work of
Hall et.al. [121 (targeting Haskell) are related to ours in that
they appear to duplicate our results with complex numbers,
albeit in a different environment. In [7], aggressive interpro-
cedural analysis identifies all uses of the fields of an object,
and cloning creates specialized methods for each possible
type of a field. This in turn allows the objects themselves to
be inlined. Savings accrue from reducing the number of vir-
tual function dispatches and from reducing the dereferencing
overhead necessary to access objects fields. The techniques
in [121 allows programmers to specify a base data type (con-
sisting only of the primitive fields of a declared object), and
propagate this new type through the methods operating on
the declared object. We have compared the relative merits of
these approaches and our work in Section 6.

In [5], Cierniak and Li describe a global analysis tech-
nique for determining that the shape of a Java array of arrays
(e.g., double [I []) is indeed rectangular and not modi-
fied. The array representation is then transformed to a dense
storage and element access is performed through index arith-
metic. We differ in that we do not need global analysis and in
our integration of complex and true multidimensional array
optimizations.

Philippsen and Giinthner [191 have also identified the ma-
jor problem related to supporting complex numbers as Java
objects: the voracious rate of object creation and destruction.
Their solution is to extend the Java language with a primi-
tive complex data type. Their cj compiler translates opera-
tions on complex numbers to explicit operations on real and
imaginary parts, which are represented as doubles. We
note that they produce a conventional class file as result of
their translation, which can be executed by any NM. This
approach should result in large performance improvements
over straightforward object approaches. The disadvantage,
as compared to our approach, is that all the semantics as-
sociated with complex numbers have been lost by the time
the generated bytecode reaches an optimizer. Only explicit
operations on the real and imaginary parts are visible.

7 Conclusions and future work

We have demonstrated in this paper that high performance
numerical codes using complex numbers can be developed
in Java. We have achieved with Java 60 to 90% of Fortran
performance complex arithmetic codes. Earlier work by our
group and others [2,3,4, 131 has demonstrated that high per-
formance can be obtained for codes written using the Java
primitive floating point types. Our present results, combined
with those earlier results, show that the answer to the ques-
tion of whether Java is a suitable language for developing
high performance numerical codes is an unequivocal yes.

Semantic expansion is simple to implement, has very low
compile time overhead, and is compatible with existing Java
compilers and Java Virtual Machines. This means that se-
mantic expansion is usable by dynamic compilers and that
Java programs developed in an environment which imple-
ments semantic expansion can be run on any Java Virtual
Machine. We are currently investigating the use of seman-
tic expansion for fixed decimal types and the Java String
class, as well as more complex container classes, to get a
better feel for the broad applicability of this technique.

Acknowledgments: We would like to thank Marc Snir,
Vivek Sarkar, and Rick Lawrence for fruitful technical dis-
cussions, and for strongly supporting our research. We also
wish to thank Ven Seshadri of IBM Canada for helping and
supporting our experiments with HPCJ, and George Almasi
and Albert Lee for their measurements of memory usage in
the MICROSTRIP benchmark.

117

References

l-11

PI

13:1

r41

[I

[61

r71

PI

191

[lOI

[llI

[W

J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith,
and J. L. Wagener. Fortran 90 Handbook: Complete
ANSI/IS0 Reference. McGraw-Hill, 1992.

B. Blount and S. Chatterjee. An evaluation of Java for
numerical computing. In Proceedings of ISCOPE’98,
volume 1505 of Lecture Notes in Computer Science,
pages 35-46. Springer Verlag, 1998.

R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Reming-
ton, and G. W. Stewart. Developing numerical libraries
in Java. In AChI 1998 Workshop on Java for High-
Performance Network Computing. ACM SIGPLAN,
1998. Available at http : / /www . CS. ucsb . edu/
conferences/java98.

H. Casanova, J. Dongarra, and D. M. Doolin. Java ac-
cess to numerical libraries. Concurrency, Pratt. Exp.
(UK), 9(11): 1279-9 1, November 1997. Java for Com-
putational Science and Engineering - Simulation and
Modeling II Las Vegas, NV, USA 21 June 1997.

M. Cierniak and W. Li. Just-in-time optimization for
high-performance Java programs. Concurrency, Pratt.
Exp. (UK), 9(11): 1063-73, November 1997. Java for
Computational Science and Engineering - Simulation
and Modeling II, Las Vegas, NV, June 2 1,1997.

A. Deutsch. On the comp1exit.y of escape analysis. In
Proc. 24th Annual ACM Symposium on Principles of
Programming Languages, pages 358-37 1, San Diego,
CA, January 1997.

J. Dolby. Automatic inline allocation of objects. In
Proc. ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation, pages 7-17,
1997.

T. C. Edwards. Foundations for Microstrip Circuit De-
sign. John Wiley & Sons, Chichester, NY, 1992.

Java Grande Forum. Issues in numerical comput-
ing with Java. URL http://math.nist.gov/
javanumerics/issues.html, March1998.

G. H. Golub and C. F. van Loan. Matrix Computations.
Johns Hopkins Series in Mathematical Sciences. The
Johns Hopkins University Press, 1989.

James Gosling. The evolution of numerical computing
inJava. URLhttp://java.sun.com/people/
j ag/FP. html. Sun Microsystems.

C. Hall, S. Peyton-Jones, and P Sansom. Unboxing us-
ing specialization. In Functional Programming: Work-
shops in Computing, 1996.

[I31

iI41

1151

[I61

[I71

iI81

Ll91

1201

Pll

WI

1231

[241

M. Jacob, M. Philippsen, and M. Karrenbach. Large-
scale parallel geophysical algorithms in Java: A feasi-
bility study. Concurrency: Pratt. Exp. (UK), 10(ll-
13):1143-l 153,1998.

Java Grande Forum. Report: Making Java work
for high-end computing. Java Grande Forum Panel,
SC98, Orlando, FL, November 1998. Document avail-
able at URL: http: //www.javagrande.org/
reports.htm.

Robert A. MacLachlan. CMU Common Lisp User’s
Manual. Technical Report CMU-CS-92- 161, School of
Computer Science, Carnegie Mellon University, 1992.

J. E. Moreira and S. P. Midkiff. Fortran 90 in CSE: A
case study. IEEE Computational Science & Engineer-
ing, 5(2):3949, April-June 1998.

J. E. Moreira, S. P. Midkiff, and M. Gupta. From
flop to Megaflops: Java for technical computing. In
Proceedings of the 11th International Workshop on
Languages and Compilers for Parallel Computing,
LCPC’98,1998. IBM Research Report 2 1166.

Y. G. Park and B. Goldberg. Escape analysis on lists.
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 117-l 27,
July 1992.

M. Philippsen and E. Gtinthner. cj: A new approach
for the efficient use of complex numbers in Java. URL:
http://wwwipd.ira.uka.de/"gunthner/.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P
Flannery. Numerical Recipes in FORTRAN: The Art
of ScientiJc Computing. Cambridge University Press,
1992.

V. Sarkar. Automatic selection of high-order trans-
formations in the IBM XL Fortran compilers. IBM
Journal of Research and Development, 41(3):233-264,
May 1997.

V. Seshadri. IBM High Performance Compiler for
Java. AIXpeti Magazine, September 1997. Available
at URL http://www.developer.ibm.com/
library/aixpert.

Jeffrey D. Ullman. Elements of ML Programming, ML
97 Edition. Prentice-Hall, 1998.

Peng Wu and David Padua. Beyond arrays - a con-
tainer-centric approach for parallelization of real-world
symbolic applications. In Proceedings of the 11th In-
ternational Workshop on Languages and Compilers for
Parallel Computing, LCPC’98, 1998.

118

