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Abstract

A new structure for implementing data cache pre-
fetching is proposed and analyzed via simulation. The
structure is based on a Global History Buffer that
holds the most recent miss addresses in FIFO order.
Linked lists within this global history buffer connect
addresses that have some common property, e.g. they
were all generated by the same load instruction. The
Global History Buffer can be used for implementing a
number of previously proposed prefetch methods, as
well as new ones.

Prefetching with the Global History Buffer has two
significant advantages over conventional table pre-
fetching methods. First, the use of a FIFO history
buffer can improve the accuracy of correlation pre-
fetching by eliminating stale data from the table. Sec-
ond, the Global History Buffer contains a more com-
plete (and intact) picture of cache miss history, creat-
ing opportunities to design more effective prefetching
methods. Global History Buffer prefetching can in-
crease correlation prefetching performance by 20%
and cut its memory traffic by 90%. Furthermore, the
Global History Buffer can make correlations within a
load’s address stream, which can increase stride pre-
fetching performance by 6%. Collectively, the Global
History Buffer prefetching methods perform as well or
better than the conventional prefetching methods stud-
ied on 14 of 15 benchmarks.

1. Introduction

Throughout the development of microprocessors,
trends in both underlying semiconductor technology
and in microarchitecture have significantly reduced
processor clock periods. Meanwhile, the major trend
in main memory technology has been in the direction
of higher densities with memory access times decreas-
ing much less than processor cycle times. These trends
have significantly increased main memory latencies
when measured in processor clock cycles.

To avoid large performance losses due to long
memory access delays, microprocessors rely on a hier-

archy of cache memories.  Unfortunately, cache
memories are not always effective due to limited cache
capacity (and to a lesser extent, limited associativity).
To at least partially overcome the limitations of cache
memories, data can be prefetched into the cache.

The simplest prefetch methods are sequential, that
is they access cache lines that immediately follow the
current cache line [8,12,13,15]. Early sequential
methods always prefetch after each cache miss [13],
while more recent sequential methods [15] wait to is-
sue prefetches until a sequential access pattern is de-
tected. Once sequential prefetches are issued and turn
out to be correct, the degree of the prefetching is in-
creased until the prefetch can completely hide the la-
tency of a miss to main memory. Prefetch degree is
the maximum number of cache lines prefetched in re-
sponse to a single prefetch request. For longer mem-
ory latencies, a higher degree is required in order for
prefetched data to be returned in time to avoid a cache
miss.

More advanced prefetch methods use tables to re-
cord history information related to data accesses (Fig-
ure la). A prefetch table may contain stride informa-
tion, or information describing more complex access
patterns, e.g. as in Markov prefetching [6] (specifics
are described below). The table is accessed with a key,
e.g. the program counter of a load instruction or a miss
address. Then, history information read from the table
is used for predicting memory lines to be prefetched.

Although they are simple, conventional table-based
methods [4,6,7,9,10,11,12,14] are relatively inefficient,
in that they reserve a fixed amount of history space per
prefetch key. In some cases, data in some entries may
sit in the table for a very long time and become stale
(i.e. it represents history in the distant past which no
longer reflects current conditions). This leads to inef-
fective prefetches when the table entry is eventually
accessed.

We propose an alternative structure for holding pre-
fetch history (Figure 1b). All address history is held in
a FIFO table, the Global History Buffer (GHB), with
all global miss addresses being placed in the table at



the bottom and removed from the top. GHB history
information is maintained in linked lists, which are
accessed indirectly via a hash table. This method not
only reduces stale history data, but it also allows a
more accurate re-construction of the history of access
patterns, and therefore leads to more effective pre-
fetching algorithms. As we will show, the proposed
indirect method supports improved stride and correla-
tion prefetching algorithms.
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As with most recent research on data prefetching
[6,7,10,11,12], we focus on the lowest level data cache
(in our case the L2) because modern out-of-order
processors can tolerate most L1 data cache misses with
relatively little performance degradation. The GHB
methods can be extended to an L3 cache, if present.

2. Table-Based Prefetching

As mentioned above, we are interested in data pre-
fetch methods that prefetch based on history informa-
tion recorded in a table. The conventional implementa-
tions of these methods fit the general structure of Fig-
ure la.

2.1. Stride Prefetching

Conventional Stride Prefetching [5] uses a table
(Figure 2) to store stride-related local history informa-
tion. The program counter (PC) of a load instruction
indexes the table. Each table entry holds the load’s
most recent stride (the difference between the two
most recently preceding load addresses), last address
(to allow computation of the next local stride), and
state information describing the stability of the load’s
recent stride behavior. When a prefetch is triggered,
addresses a+s, a+2s, . . ., a+tds are prefetched -- where
a is the load’s current target address, s is the detected
stride and d is the prefetch degree, an implementation
dependent prefetch look-ahead distance; more aggres-
sive prefetch implementations will use a higher value
for d. Originally, Chen and Baer [5] used a look-ahead
PC (LA-PC) to prefetch ahead, although we found that

using a prefetch look-ahead distance reduces complex-
ity and is more effective.

When originally proposed, this method was applied
to a single L1 cache, and all load PCs were applied to
the Stride Prefetching table. In a hierarchical cache
scheme, using all load PCs results in relatively high
demand on L1 and L2 cache ports. Moreover, as noted
earlier, L1 prefetching provides relatively little benefit
beyond L2 prefetching. Hence, we implement Stride
Prefetching into the L2 cache only, i.e. by using only
the PCs and addresses of the loads that miss in the L2
cache.

Stride Prefetching Table

Tag Last Address  Stride  State
i
Target
Address
Prefetch
Address

Figure 2: Arbitrary Stride Prefetching Table

2.2. Markov Prefetching

Markov Prefetching [6] is an example of a correla-
tion prefetching method. Correlation prefetching uses
a history table to record consecutive address pairs.
When a cache miss occurs, the miss address indexes
the correlation table, Figure 3. Each entry in the
Markov correlation table holds a list of addresses that
have immediately followed the current miss address in
the past. When a table entry is accessed, the member(s)
of its address list are prefetched, with the most recent
miss address first. The left side of Figure 3 illustrates
the state of the correlation table after processing the
miss address stream shown at the top of the figure.

Miss Address Stream
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Markov Graph
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Figure 3: Markov Prefetching

Markov prefetching models the miss address stream
as a Markov graph — informally, a probabilistic state
machine. Each node in the Markov graph is an address
and the arcs between nodes are labeled with the prob-
abilities that the arc’s source node address will be im-
mediately followed by the target node address. Each
entry in the correlation table represents a node in an
associated Markov graph, and its list of memory ad-
dresses represents arcs with the highest probabilities.



Hence, the table maintains only a very crude approxi-
mation to the actual Markov probabilities. The right
side of Figure 3 is the Markov transition graph that
corresponds to the example miss address stream.

2.3. Distance Prefetching

Distance Prefetching [9] is a generalization of
Markov Prefetching. Originally, Distance Prefetching
was proposed for prefetching TLB entries, but the
method is easily adapted to prefetching cache lines. In
this adaptation, Distance Prefetching uses the distance
between two consecutive global miss addresses, an
address delta, to index the correlation table. Each cor-
relation table entry holds a list of deltas that have fol-
lowed the entry’s delta in the past. Figure 4 illustrates
the address delta stream for the miss address stream in
the previous example (Figure 3), and the state of the
correlation table after processing the delta stream.
Distance Prefetching is considered a generalization of
Markov Prefetching because one delta correlation can
represent many miss address correlations. By general-
izing Markov Prefetching, Distance Prefetching is ca-
pable of prefetching most of the reference patterns that
Markov Prefetching can. Plus, with the data it has
available, it can also detect and prefetch delta access
patterns that occur in the global miss address stream.

Address Delta Stream
1,1,1,-1,-2,2,1,-2,1,-2
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Delta 145 1st 2nd
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Figure 4: Distance Prefetching.

Like all correlation prefetching methods, Distance
Prefetching can be modeled with a Markov graph (as
shown in Figure 4). However, unlike Markov
Prefetching, Distance Prefetching’s state predictions
are not prefetch addresses. To calculate prefetch ad-
dresses, the predicted deltas are added to the current
miss address.

3. Global History Buffer Prefetching

In general, prefetch tables store prefetch history in-
efficiently. First, table data can become stale, and con-
sequently reduce prefetch accuracy (the percent of
prefetches that are actually used by the program before
being evicted). Second, tables suffer from conflicts
that occur when multiple access keys map to the same
table entry. The most common solution for reducing
table conflicts is to increase the number of table en-
tries. However, this approach increases the table’s

memory requirements, and increases the percentage of

stale data held in the table. Third, tables have a fixed

(and usually a small) amount of history per entry.

Adding more prefetch history per entry creates new

opportunities for effective prefetching, but the addi-

tional prefetch history also increases the table’s mem-
ory requirements and its percentage of stale data,
which together can negate the advantages.

To provide more efficient prefetchers we propose
an alternative prefetching structure that decouples table
key matching from the storage of prefetch-related his-
tory information. The overall prefetching structure
has two levels (Figure 1b).

*  An Index Table (IT) that is accessed with a key as
in conventional prefetch tables. The key may be a
load instruction’s PC, a cache miss address, or
some combination. The entries in the Index Table
contain pointers into the Global History Buffer.

e The Global History Buffer (GHB) is an n-entry
FIFO table (implemented as a circular buffer) that
holds the n most recent L2 miss addresses. Each
GHB entry stores a global miss address and a link
pointer. The link pointers are used to chain the
GHB entries into address lists. Each address list is
the time-ordered sequence of addresses that have
the same Index Table key.

Depending on the key that is used for indexing the
Index Table, any of a number of history-based prefetch
methods can be implemented. In the following subsec-
tions we illustrate how the GHB can be used to imple-
ment correlation and stride prefetching. In addition,
we illustrate more general forms of each (a total of
eight prefetching methods).

To simplify the discussion and illustrate the rela-
tionship between methods, the names given to pre-
fetching methods follow a consistent taxonomy. Each
method is denoted as a pair: X/Y, where X is the key
used for localizing the miss address stream and Y is
the mechanism used for detecting addressing patterns.
We consider two localizing methods: Program Counter
(PC) and Global (G), and three detection mechanisms:
Constant Stride (CS), Delta Correlation (DC), and Ad-
dress Correlation (AC). Note that existing table-based
methods fit into this taxonomy (i.e. Stride Prefetching
is PC/CS, Distance Prefetching is G/DC, and Markov
Prefetching G/AC).

3.1. Example: Markov Prefetching

We first use Markov Prefetching (G/AC) to illus-
trate a GHB prefetcher. See Figure 5. When an L2
cache miss occurs, the miss address indexes the Index
Table. If there is a hit in the Index Table, the Index
Table entry will point to the most recent occurrence of



the same miss address in the GHB. This GHB entry is
also at the head of the linked list of other entries with
the same miss address. For each entry in this linked
list, the next entry in the FIFO ordered GHB is the
miss address that immediately followed the current
miss address when it occurred in the past. These
“next” global miss addresses are prefetch candidates.
With the bottom-to-top orientation of the GHB in Fig-
ure 5, the “next” GHB entry is immediately below the
current entry. To better illustrate the method, the cur-
rent memory address is shaded with a darker gray and
the prefetch memory addresses are shaded with a
lighter gray. In the example, prefetch candidates gen-
erated by walking the address list are C and B, the
same addresses held in the conventional Markov corre-
lation table in Figure 3.
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Figure 5: GHB Global / Address Correlation

3.2. Example: Stride Prefetching

To implement Stride Prefetching (PC/CS), the GHB
structure detects load instructions with a constant
stride. Using the PC of a load instruction as the index
into the Index Table, the address list created is the se-
quence of addresses for the given PC. The load’s
strides can be calculated by computing the differences
between consecutive entries in the address list. If a
constant stride is detected, e.g. if the first x computed
strides are the same, then addresses a+s, a+2s, . . .
a+ds are prefetched -- where a is the current miss ad-
dress, s is the detected stride and d is the prefetch de-
gree. For this paper we use an x value of 2, which is
consistent with conventional stride prefetchers.

3.3. Implementation

A simple state machine maintains the GHB address
lists and coordinates GHB accesses to walk the address
lists. For each new miss, the GHB is updated in FIFO
fashion. The miss address is placed into the GHB en-
try pointed to by the head pointer (See Figure 5), and
its link entry is given the current value in the Index

Table. The Index Table link entry is then updated with
the head pointer, which points to the newly added en-
try. Finally, the head pointer is incremented to point to
the next GHB entry.

A GHB prefetch error can occur when a pointer into
the GHB (either a pointer stored in the Index Table or
one stored in the GHB) no longer points to the correct
address sequence in the GHB. This is possible because
the GHB is a circular buffer, and when an entry is
overwritten, any pointers to the entry become invalid.
One way to detect invalid GHB pointers is to increase
the width of the GHB pointers, but only use the low-
order bits of the pointers to actually index the GHB.
Then, if the difference between the head pointer and
another pointer is greater than the size of the GHB, the
pointer is invalid. This method is not perfect, how-
ever; it is still possible for the head pointer to wrap
around and cause an incorrect match. We have found
that increasing the width of the pointers by four-bits
(the number of bits used in our simulations) makes the
probability of incorrect matches very low.

As a circular buffer, the GHB prefetching structure
eliminates many of the problems associated with con-
ventional tables (as described above). First, the GHB
FIFO naturally gives table space priority to the most
recent global history, thus eliminating the stale data
problem. Furthermore, the GHB naturally allocates
more chip-area to events that have occurred more re-
cently and more often.

Second, the Index Table and GHB are sized sepa-
rately. The Index Table only needs to be large enough
to hold the working set of prefetch keys. Moreover,
Index Table entries are relatively small; they contain a
tag (for matching) and a single pointer into the GHB
(on the order of 1-2 bytes). The GHB has greater
memory requirements, but is sized independently (in
the absence of table conflicts) to hold a representative
portion of the miss address stream.

Last, and perhaps most importantly, as we shall see
in the next two subsections, the ordered global history
can be used to create more sophisticated prefetching
methods.

A possible drawback to using the GHB is that col-
lecting prefetch information requires multiple table
accesses (to follow the linked lists), however, this de-
lay is relatively small in comparison with the L2 miss
delay. The table access delay is accounted for in our
simulator.

3.4. Generalized Correlation Prefetching

The Markov model can serve as a basis for a num-
ber of global correlation prefetching methods.  As
noted earlier, the nodes are addresses and an arc con-
necting two nodes indicates the probability that one



address is followed by the other in the global miss ad-
dress stream. Prefetch algorithms can use this informa-
tion in a number of ways to predict future addresses.

In terms of the Markov graph, existing Markov
(G/AC) and Distance Prefetching (G/DC) methods
essentially start at a node and prefetch using one or
more adjacent nodes — but only the immediately adja-
cent nodes. We refer to this as width prefetching, and
it is “wired in” to the table structures that implement
Markov and Distance Prefetching. In terms of the
original Markov graph, however, one can also consider
depth prefetching; i.e. beginning with the current miss
address, the sequence of the most likely arcs is fol-
lowed, with prefetching initiated at each node along
the path. Of course, one can also consider hybrid
methods that use a combination of width and depth, i.e.
the sequence of the most likely arcs are prefetched,
then the second most likely, and so on.

For most workloads, a problem with relying only on
width is that the effective look-ahead distance is rela-
tively short and prefetches have poor timeliness
(whether prefetches are issued early enough to prevent
processor stalls). On the other hand, depth prefetching
allows the prefetcher to run farther ahead of the actual
address stream [14].

The GHB method can be used for either width or
depth prefetching as well as hybrid combinations.
Following the address linked list alone gives width
prefetching; using the sequential GHB entries begin-
ning at a member in the address list adds depth.

Figure 6 illustrates how the GHB can prefetch depth
in the global miss address stream using delta correla-
tions, Global / Delta Correlation depth (G/DC depth)
prefetching. The lighter “Deltas” box shown in the
figure does not exist in GHB hardware, but is extracted
by finding the difference between miss addresses in the
GHB. As shown in the figure, prefetch addresses are
generated by taking the miss address and accumula-
tively adding deltas; a valid prefetch address is created
from each addition.

With the GHB approach, one can often get a better
estimate of the actual Markov graph transition prob-
abilities than with conventional correlation methods.
In fact, the GHB allows a weighting of transition prob-
abilities based on how recently they have occurred.
For example, if the last five Markov transitions from
state 4 were to C, B, B, B, and B, where C is the oldest
transition, a GHB prefetching method (with a width of
two) would examine the first two transitions and pre-
fetch B. In contrast, a correlation table prefetching
method would prefetch B and C, no matter how long
ago the transition to C occurred. In practice, the
GHB’s width prefetching method results in improved
prefetch accuracy (as will be shown in Section 4.4.1).

Global

Index "
Histo
Delta Table Buﬁe?'
Deltas
-2 . A 1
-1 1 B 1
1| c :
2 | D =
C 2
Head A ‘-T
Pointer g 3 Miss
B . -12 Address
C = L]
A | ] == —l
o
(1
o Prefetch
Address

Figure 6: GHB Global / Delta Correlation

3.5. Local Delta Correlation

Localizing address streams with the PC, like Stride
Prefetching does, is a very effective method for divid-
ing the global miss address stream into separate access
patterns. However, Stride Prefetching (PC/CS) is lim-
ited by the history held in its prefetching table, the
previous miss address and previous stride. As a result,
its most sophisticated mechanism for detecting patterns
is to simply compare the current stride with the previ-
ous stride. This approach is good for most loads, but
there are many loads with predictable access patterns
that are not constant strides, particularly loads that use
pointer arithmetic to access a data structure. For ex-
ample, consider the address and delta stream below.

Addresses 0 1 2 64 65 66 128 129
Deltas 11 62 I 1 62 1

This access pattern is representative of a load that
accesses the first three words of each column in a two-
dimensional array. Such a pattern can trick constant
stride prefetching mechanisms into generating super-
fluous prefetches. In this example, the short bursts of
unit strides will cause a constant stride method to pre-
fetch down an incorrect unit stride address stream.

In contrast, the GHB contains the actual sequence
of a load’s miss addresses (up to the limit of the GHB
size). This information can be used for detecting delta
access patterns within a load’s address stream, and
prefetching down the non-stride, but regular, delta ac-
cess pattern, like the one shown above.

This new GHB method, Program Counter / Delta
Correlation (PC/DC), uses delta pairs (two consecu-
tive deltas) as the correlation key. With delta-pairs, the
method can accurately describe the entire access pat-
tern above with three correlations. See Table 1. In the
example, the two most recent deltas are 62 and 1. If
the address sequence is searched in reverse order for
the same delta pattern, it is first found at (2, 64, 65).



When the delta pair (62, 1) appeared previously, the
next deltas were 1, 62, 1, and 1, therefore, if the pre-
fetch degree is four, addresses 130, 192, 193, and 184
would be prefetched.

Table 1: Example Address Stream Correlations

Local Correlation Key Prefetch Prediction
(most recent delta pair) | (4 subsequent deltas)
(1, 1) 62 1 1 62
(1,62) 1 1 62 1
(62, 1) 1 62 1 1

4. Performance Evaluation

4.1. Simulation Methodology

To evaluate GHB prefetch methods we use a subset
of the SPEC CPU2000 benchmark suite. Tables 2 and
3 contain the benchmarks and their IPC improvements
with an ideal L2 cache, reflecting the maximum pre-
fetch potential. The subset includes all the SPEC
benchmarks with a maximum prefetch potential of at
least 5%, except for the floating point benchmark six-
track. We had to exclude sixtrack because it intermit-
tently generated unsupported system calls, which were
very difficult to consistently reproduce and debug. For
simulations, the first billion instructions are skipped,
and data is collected for the next billion instructions.

Table 2: SPEC FP Sub-
set with Ideal L2 IPC

Table 3: SPEC INT Sub-
set with Ideal L2 IPC

Improvement. Improvement.
Benchmark | IPC (%) Benchmark | IPC (%)
ammp 815% Mcf 319%
art 238% twolf 104%
wupwise 204% vpr 78%
swim 136% parser 40%
lucas 135% gap 22%
mgrid 56% bzip2 19%
applu 36%
galgel 30%
apsi 20%

SimpleScalar 3.0 [1] was used for collecting per-
formance data. The simulator configuration is detailed
in Table 4.

To eliminate the need for additional prefetch struc-
tures, prefetched lines are placed directly into the L2
cache. Before a prefetch is issued to the memory sub-
system the L2’s tag array is probed to ensure the pre-
fetch address is not already in the cache. To keep pre-
fetched (but not yet accessed) lines from modifying the
“natural” L2 miss address stream, one bit prefetch tags
are added to the L2 cache lines. When a prefetched
line is written into the L2 cache, its prefetch tag is set;

when a cache access hits a prefetched line with a set
prefetch tag, the prefetch tag is cleared, and the ac-
cess’s memory address is sent to update the prefetch
structures as if it were an L2 cache miss.

For timing simulations, each access to the Index
Table and GHB memory arrays is assumed to have a
one cycle read latency, which is reasonable for rela-
tively small tables. If an L2 miss occurs while a previ-
ous prefetch query is being serviced by the GHB state
machine, the previous query is aborted and the new L2
miss is handled.

Table 4: Simulator Configuration

Issue Width

Load Store Queue
RUU Size

Level 1 D-Cache
Level 1 I-Cache
Level 2 Cache
Memory Latency

4 instructions

64 entries

128 entries

16KB, 2-way set associative
16KB, 2-way set associative
512KB, 2-way set associative
140 Cycles

For performance evaluation, we focus on the Global
/ Delta Correlation methods (Distance Prefetching and
GHB G/DC) and PC local methods (conventional
Stride Prefetching, GHB PC/CS, and GHB PC/DC).
We do not give Markov Prefetching (G/AC) results.
Although Markov Prefetching is one of the basic ap-
proaches, G/AC performance is generally worse than
G/DC and requires much more storage (on the order of
megabytes).

4.2. Table Configurations

An initial set of simulations (not shown) was used
for determining table sizes for each prefetching
method. For these simulations, the prefetch degree for
each method was held constant at four. For conven-
tional Distance Prefetching (G/DC), this meant the
number of correlation pairs held in each table entry
was also fixed at four. Then the number of table entries
was varied to find the optimal (or near optimal) table
size. For the GHB methods, the numbers of Index
Table and GHB entries were varied independently. An
optimal number of GHB entries was first found by
using an overly large Index Table size (128K entries)
and varying the GHB size. Then using this optimal
GHB size, an optimal number of Index Table entries
was determined. To compare the performance of dif-
ferent sized tables we use the IPC Improvement (with
respect to no prefetching) harmonic mean of the
benchmarks.

Although we study performance for a number of
GHB methods we found that one table configuration
was optimal (or nearly so) for all the GHB G/DC
methods and one table configuration was optimal for



all GHB PC local methods (i.e. PC/CS and PC/DC).
Table 6 summarizes the table configurations chosen for
each method. When calculating table size the 32-bit
tags in the conventional tables and in the Index Table
are included. The size is rounded up to the nearest
kilobyte.

Table 6: Table Configurations

Prefetching Method Table Configuration Size

Conventional Distance

Prefetching (G/DC) 512 table entries 18KB

512 IT entries x

GHB G/DC 512 GHB entries 8KB
Conventional Stride .

Prefetching (PC/CS) 256 table entries 6KB
GHB PC/CS and PC/DC | 226 IT entries x 4KB

256 GHB entries

In general, the size for the GHB methods is smaller
then their conventional counterparts with a similar
configuration.

4.3. GHB Prefetch Performance

The GHB-based prefetchers are evaluated and com-
pared with their conventional table-based counterparts.
The first set of graphs (Figures 7 and 11) in Subsec-
tions 4.3.1 and 4.3.2 compare the performance (IPC
Improvement) of conventional table methods with their
GHB counterparts (each with a prefetch degree of
four) on a per benchmark basis. A second set of
graphs (Figures 8 and 12) illustrate performance (IPC
Improvement harmonic mean) of a range of different
prefetch degrees from 1 to 16. A third set of graphs
(Figures 9 and 13) show the arithmetic mean increase
in memory traffic per instruction (with respect to no
prefetching).

4.3.1. Global / Delta Correlation

This subsection compares conventional Distance
Prefetching (Table G/DC (width)), with three GHB
G/DC implementations described in subsection 3.4:
depth prefetching (GHB G/DC (depth)), width pre-
fetching (GHB G/DC (width)) and a combination of
width and depth prefetching (GHB G/DC (hybrid)).
See Figures 7, 8, and 9.

The hybrid prefetching method in effect has two
prefetch degree components, a width and depth com-
ponent. For this study we make them equal and state
the single width/depth number as the overall degree of
the method. Note that this terminology abuses our
definition of prefetch degree, however, e.g. a hybrid
method with a prefetch degree of four can actually
generate sixteen prefetch requests at a time.

For the hybrid method with a large prefetch degree,
the width component or the product of the width and
depth components are only weakly related to the
amount of data actually prefetched. Consider the 16
depth x 16 width hybrid method, in theory, this method
performs 256 prefetches, but very often the actual
number of prefetches will be much less for a number
of reasons. First, before 256 memory addresses are
prefetched the method will likely be preempted by
another L2 miss. Second, because the method is pre-
fetching 16 nodes (depth) of the 16 most recent
Markov chains (width), most prefetches in subsequent
Markov chains will overlap. Third, the method will
likely run out of GHB history before all the prefetches
are done. For these reasons, the stated prefetch degree
is more closely related to prefetch depth than prefetch
width.

For a prefetch degree of four (Figure 7), GHB
G/DC hybrid prefetching outperforms conventional
Distance Prefetching on all benchmarks except twolf
and vpr. Overall, GHB G/DC hybrid prefetching out-
performs conventional Distance Prefetching by 13%.
The majority of GHB G/DC hybrid’s overall IPC Im-
provement is a result of a few benchmarks (i.e. ammp,
swim, lucas, mgrid, and mcf), where the hybrid’s addi-
tional look-ahead and coverage (the percent of mem-
ory references prefetched rather than demand fetched)
pay off. In the case of twolf and vpr, all prefetching
methods degrade performance, and GHB G/DC hybrid
degrades performance the most.

Global / Delta Correlation (Performance)

0 Table G/DC (width)
0 GHB G/DC (width)

@ GHB G/DC (depth)
m GHB G/DC (hybrid)

110% -
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70%

50% +
30% +

IPC Improvement

10% -
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Figure 7: Global / Delta Correlation (prefetch degree
four) IPC Improvement per benchmark.

Turning to the results for prefetch degrees 1 through
16 (Figures 8 and 9), conventional Distance Prefetch-
ing outperforms the GHB G/DC width by less than
4%, but has 90% more memory traffic. These results
tend to support our claim that conventional correlation
tables suffer from stale data, and consequently, poor
prefetch accuracy. For our simulator configuration,
the additional prefetches enhance prefetch coverage
enough to improve overall performance by a small
amount, however, on a system with constrained mem-



ory bandwidth, the additional memory traffic would
likely degrade performance.
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Figure 8: Global / Delta Correlation IPC Improvement
for prefetch degrees 1 through 16.

To better illustrate the behavior of stale table data,
we tracked the age of each entry in the Distance Pre-
fetching correlation table. The age of an entry is the
number of cycles since the entry was last touched. A
logarithmic scale is used to form age groups, e.g. the
first age group is less than 16 cycles, the second age
group is between 16 and 256 cycles, etc. The simula-
tor used the age of the correlations to monitor the
number of prefetches generated from each age group.
When a prefetch was generated, the age of the correla-
tion was included with the prefetch request, allowing
the simulator to monitor how many prefetches from
each age group result in a cache hit. With this data the
accuracy of prefetches from each age group was calcu-
lated.

Global / Delta Correlation (Memory Traffic)
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Figure 9: Global / Delta Correlation Increase in Mem-
ory Traffic for prefetch degrees 1 through 16.

Prefetches generated by entries less than 4K cycles
old are 10 times more accurate than prefetches gener-
ated by entries older than 16M cycles. See Figure 10.
Furthermore, most prefetches are from entries that are
between 64K and 1M cycles old, and their prefetch
accuracy is less than half the accuracy of prefetches
generated by entries less than 4K cycles old.
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Figure 10: Age distribution of Table History that gen-
erates a prefetch and prefetch accuracy per age group.

Also illustrated by Figure 8, the G/DC width pre-
fetching methods (both conventional Distance Pre-
fetching and GHB G/DC width) do not have the look-
ahead to capture the full potential of G/DC prefetch-
ing. Depth prefetching outperforms width prefetching
by 13% (at a degree of 16), while using the same size
tables and has approximately the same amount of
memory traffic. Hybrid prefetching outperforms depth
prefetching by an additional 10% (outperforms width
prefetching by 23%).

Depth prefetching does not perform as well as hy-
brid prefetching for two reasons. First, correlations
often occur close to the head of the GHB, and second,
depth prefetching cannot achieve the same coverage as
hybrid prefetching. When a correlation is close to the
head of the GHB, the depth method runs out of history
and terminates before prefetching its entire prefetch
degree. Hybrid prefetching resolves this issue by pre-
fetching depth until it reaches the head of the GHB,
then prefetches the next Markov chain, which is farther
from the head. It is possible to modify the depth
method to search the GHB for a Markov chain long
enough or delay updating the Index Table so there will
always be enough history to prefetch, however it is just
as easy to use the hybrid method and get the additional
advantage of better prefetch coverage.

A drawback to hybrid prefetching is increased
memory traffic. See Figure 9. The hybrid method
consumes 30% more memory traffic than the depth
method, however, when compared to conventional
Distance Prefetching, which has 90% more memory
traffic than GHB G/DC width prefetching, the hybrid
prefetching method’s memory traffic is relatively low.

4.3.2. PC Local Prefetching

In this subsection we compare conventional Stride
Prefetching (Table PC/CS) with GHB PC/CS and GHB
PC/DC prefetching . See Figures 11, 12, and 13.

For a prefetch degree of four, GHB PC/DC consis-
tently performs better than constant stride prefetching,
approximately 3% overall; the only exceptions are



benchmarks galgel and apsi. In the case of galgel and
apsi, GHB PC/DC is outperformed by 1% and 5%
respectively.
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Figure 11: PC Local methods (PC/CS and PC/DC)
(prefetch degree four) IPC Improvement per bench-
mark.

Comparing Figures 7 and 11, GHB PC/DC and
G/DC (hybrid) have similar overall performance, but
each excels on different benchmarks, i.e. GHB G/DC
(hybrid) outperforms PC/DC by over 10% on swim,
mgrid, applu, and mcf, and of the remaining bench-
marks PC/DC tends to perform as well or better.
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Figure 12: PC Local methods (PC/CS and PC/DC)
IPC Improvement for prefetch degrees 1 through 16.
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Figure 13: PC Local methods (PC/CS and PC/DC)
Increase in Memory Traffic for prefetch degrees 1
through 16.

At a prefetch degree of sixteen, conventional Stride
Prefetching (PC/CS) performs 1% better and consumes
1% more traffic than GHB PC/CS (Figures 12 and 13).
In effect, the two provide equivalent performance.
Figure 13 shows the PC local methods do not benefit
from the GHB’s ability to reduce stale data as much as
G/DC methods (Figure 9). For conventional Stride
Prefetching, table entries are associated with a specific
load instruction. Even if a table entry has not been ac-
cessed in a long period of time, it is less likely that a
load instruction’s behavior will have changed since it
was last accessed. In general, PC local methods have
lower memory traffic than G/DC (Figures 9 and 13).

On the other hand, the GHB PC/DC prefetching
method outperforms conventional Stride Prefetching
(Table PC/CS) by 6% and has 3% more traffic (for a
prefetch degree of sixteen). These results show that
PC/DC prefetching can prefetch the same access pat-
terns as constant stride prefetching, and gets additional
performance from its ability to prefetch the more com-
plex delta access patterns. Naturally, there is a per-
centage of prefetches for delta patterns that are incor-
rect, resulting in an increase in memory traffic.

5. Conclusions

In this paper we propose a new Global History
Buffer (GHB) prefetching structure built and illustrate
how it can improve existing prefetch algorithms. Col-
lectively, the new GHB prefetching methods are
shown to perform as well or better than their conven-
tional counterparts on 14 of the 15 benchmarks studied
(Figures 7 and 11). The first GHB method, GHB
G/DC hybrid, is shown to have a 20% IPC Improve-
ment over its conventional counterpart, Distance Pre-
fetching, and it can reduce memory traffic by 90%.
The second GHB method, GHB PC/DC, is shown to
have a 6% IPC improvement over its conventional
counterpart Stride Prefetching.

In general, GHB prefetchers have three basic ad-
vantages with respect to conventional table-based pre-
fetchers. First, the global history buffer reduces stale
table data, thus improving prefetch accuracy and re-
ducing prefetch memory traffic. Second, the global
history buffer contains a more complete (and intact)
picture of cache miss history, creating opportunities to
design more effective prefetching methods (i.e. GHB
G/DC hybrid and PC/DC). Third, the new structure’s
size is generally smaller than conventional tables

A potential disadvantage is the need to make multi-
ple table accesses, but for L2 (or L3) caches, the time
required for these accesses is relatively low with re-
spect to the entire miss latency. Furthermore, a single



series of linked list accesses can invoke a number of
prefetch requests.

Another interesting feature of the GHB, which we
have thus far not discussed, is that it provides a way of
implementing a number of prefetch methods with a
single underlying structure. As seen in Subsections
4.3.1 and 4.3.2, there is no single prefetching method
and prefetch degree that result in an optimal perform-
ance to memory traffic ratio for all benchmarks. As a
solution to this problem, the global history buffer can
be used as a unified prefetching structure that can be
dynamically configured to implement a number pre-
fetching methods, depending on the program or pro-
gram phase. We plan to investigate this possibility in
future research.
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