
Abstract
Current-generation microprocessors are designed to

process instructions with one and two source operands at
equal cost. Handling two source operands requires multi-
ple ports for each instruction in structures--such as the
register file and wakeup logic--which are often in the pro-
cessor’s critical timing paths. We argue that these struc-
tures are overdesigned since only a small fraction of
instructions require two source operands to be processed
simultaneously. In this paper, we propose the half-price
architecture that judiciously removes this overdesign by
restricting the processor’s capability to handle two source
operands in certain timing-critical cases. Two techniques
are proposed and evaluated: one for the wakeup logic is
sequential wakeup, which decouples half of the tag match-
ing logic from the wakeup bus to reduce the load capaci-
tance of the bus. The other technique for the register file is
sequential register access, which halves the register read
ports by sequentially accessing two values using a single
port when needed. We show that a pipeline that optimizes
scheduling and register access for a single operand
achieves nearly the same performance as an ideal base
machine that fully handles two operands, with 2.2% (worst
case 4.8%) IPC degradation.

1. Introduction & Motivation
A compelling argument in favor of RISC design was

that simpler instruction sets could be realized more effi-
ciently, giving them an inherent performance advantage
over complex instruction sets. Many current-generation
microprocessors follow a similar philosophy in their hard-
ware designs. Even in processor implementations for com-
plex instruction sets such as IA-32, complex instructions
are broken into micro-ops running on RISC-style cores.
The principles of these designs can be summarized as regu-
larity, orthogonality and composability [15], implying that
a collection of homogeneous and atomic instruction primi-
tives perform complex operations. The regularity in their
hardware and software interface has been regarded as a key
factor to fast and efficient designs with simpler controls
over instruction and data flow. Being faithful to this para-
digm, the user-visible ISA usually adopts two source and
one destination operands as its basic design since a reason-
able amount of useful work can be expressed in this for-
mat. Accordingly, hardware has also been built to handle
this two-to-one operand configuration as a minimal pro-
cessing unit, which many hardware designers have consid-
ered intuitive and reasonable, since execution eventually

occurs at instruction granularity.
In this paper, we argue that current-generation micro-

processors are overdesigned to process instructions with
one and two source operands at equal cost. This design was
originally chosen to avoid structural hazards, by assuming
that the vast majority of instructions have two source oper-
ands. It simplifies the processor’s control logic in a classic
streamlined pipeline since the hardware is guaranteed to
satisfy the worst-case requirements of an instruction.
Hence, arbitrating resources to handle source operands is
unnecessary. This decision was made when building extra
hardware (such as a dual-ported register file that deals with
two source operands) was feasible.

As the machine width increases in modern superscalar,
out-of-order processor designs, the complexity of the pro-
cessor grows exponentially to process multiple instructions
in parallel. This requires heavily multi-ported structures in
many pipeline stages; such structures can limit the proces-
sor’s cycle time. However, they are still designed based on
the premise of two source operands per instruction, hence
requiring twice the machine bandwidth for processing
source operands. Figure 1 shows the base machine model
used in this paper, and pipeline stages built to handle two
source operands (illustrated as shadowed boxes).

Although the static and dynamic count of these two-
source instructions still accounts for a significant portion
of total instructions, in fact, it is infrequent that such over-
designed structures are fully utilized since only a small
fraction of instructions require two source operands to be
processed simultaneously in the out-of-order execution
window. In later sections, we will show that less than 3%
of instructions have their two source operands awakened in
the same clock cycle, and that less than 4% of instructions
require two register read port accesses for source values.
Hence, handling two-source instructions is no longer the
common case, and the benefit of simplified control over
instructions is not likely to justify the cost for the overde-
signed hardware. Rather, changing the design of at least a
portion of the pipeline structures from instruction granular-
ity to operand granularity would be desirable so that the
processor optimizes the common case: zero or one-source
instructions.

We propose the half-price architecture to reduce hard-
ware complexity by restricting the processor’s capability to
handle two source operands. In this architecture, structures
such as wakeup logic and the register file are configured to
handle instructions with zero or one source operand with-
out any restrictions; in contrast, instructions with two
source operands may execute more slowly. Specifically,
this paper proposes and evaluates two solutions for the

Half-Price Architecture

Ilhyun Kim and Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin−Madison
{ikim,mikko}@ece.wisc.edu

Appears in proceedings of 30th International Symposium on Computer Architecture (ISCA-30), June 2003.

scheduling and register access stages that are likely in the
processor’s critical path. One targets the wakeup logic:
sequential wakeup decouples half of the tag matching logic
from the wakeup bus to reduce the load capacitance of the
bus. The other technique is for the register file: sequential
register access halves the register read ports by sequen-
tially accessing two values using a single port when
needed.

The rest of the paper is organized as follows: Section 2
describes the simulation methodology and identifies
instructions with two source operands that the half-price
architecture targets. Section 3 and 4 characterize dynamic
instruction behaviors in the out-of-order execution core,
and propose techniques that reduce wakeup logic and reg-
ister file complexity. Section 5 provides a detailed perfor-
mance evaluation of those techniques and shows that the
half-price architecture can reap most of the performance of
a conventional pipeline that fully handles two source oper-
ands.

2. Simulation Methodology

2.1. Processor model
Our execution-driven simulator used in this study is

derived from the SimpleScalar / Alpha 3.0 tool set [1], a
suite of functional and timing simulation tools for the
Alpha AXP ISA. Specifically, we extended sim-outorder to
perform speculative scheduling with non-selective recov-
ery, similarly to Alpha 21264 [2]. In this pipeline, instruc-
tions are scheduled in the scheduling stage assuming load
instructions have fixed execution latency and any latency
changes due to e.g. cache misses, cause all subsequently
issued instructions to be rescheduled. We modeled a 12-
stage out-of-order pipeline with 4- and 8-instruction
machine width. The pipeline structure is illustrated in
Figure 1. The detailed configurations of each machine
model are shown in Table 1.

Since our techniques focus on instruction scheduling, it
is worth noting that our scheduler employs an oldest-
instruction-first selection policy with load and branch
instructions having higher priorities than other types. Older
instructions in program order have higher priority in each
priority group. This selection policy is similar to the one
employed by the base SimpleScalar model.

2.2. Benchmarks
The SPEC CINT2000 integer benchmark suite is used

for all results presented in this paper. All benchmarks were
compiled with the DEC C and Fortran compilers under the
OSF/1 V4.0 operating system using -O4 optimization.

Table 2 shows the benchmarks, input sets, the number of
instructions committed, and IPC on 4 and 8-wide base
machines. The large reduced input sets from [16] were
used for all benchmarks except for crafty, eon and gap.
These three benchmarks were simulated with the reference
input sets up to 3 billion instructions since the reduced
inputs are not yet available.

2.3. Identifying 2-source instructions
Our base architecture is the Alpha ISA, which is a load /

store RISC architecture. There are four major instruction
format classes that contain 0, 1, 2 or 3 register fields, sup-
porting up to 2 source register operands and 1 destination
register operand. Since the goal of this study is to reduce
complexity of structures that handle multiple source oper-
ands, we present how many instructions require two valid

Figure 1. The base machine model and pipeline stages that handle two source operands. Instructions with two
source operands complicate many stages in the pipeline, which are illustrated as shadowed boxes. This paper dis-
cusses possible solutions for the scheduling (Sched) and register file access (RF) stages.

Fetch Decode Rename Queue Sched Disp Disp RF RF Exe Retire Commit

two
map table reads &
dependence checks

two ready
state checks

two operand
wakeups

two RF read port
accesses

bypass to FU’s
two input ports

Fetch Decode Rename Queue Sched Disp Disp RF RF Exe Retire Commit

two
map table reads &
dependence checks

two ready
state checks

two operand
wakeups

two RF read port
accesses

bypass to FU’s
two input ports

Table 1: Machine Configurations

4-wide 8-wide

Out-of-
order
Execution

4-wide fetch/issue/com-
mit, 64 RUU, 32 LSQ,
speculative scheduling w/
non-selective recovery

8-wide fetch/issue/com-
mit, 128 RUU, 64 LSQ,
speculative scheduling w/
non-selective recovery

Functional
Units
(latency)

4 integer ALUs (1), 2
floating ALUs (2), 2 inte-
ger MULT/DIV (3/20), 2
floating MULT/DIV
(4/12), 2 memory ports

8 integer ALUs (1), 4
floating ALUs (2), 4 inte-
ger MULT/DIV (3/20), 4
floating MULT/DIV
(4/12), 4 memory ports

Branch
Prediction

Combined bimodal (4k entry) / gshare (4k entry)
with a selector (4k entry), 16 RAS, 1k-entry 4-way
BTB, at least 11 cycles for misprediction recovery,
fetch stops at first taken branch in a cycle

Memory
System
(latency)

64KB 2-way 32B line IL1 (2), 64KB 4-way 16B line
DL1 (2), 512KB 4-way 64B line unified L2 (8), main
memory (50)

Table 2: Benchmarks

Benchmarks input sets inst count Base IPC
(4 / 8-wide)

bzip lgred.graphic 2.64B 1.74 / 2.16

crafty crafty.in 3B 1.92 / 2.65

eon chari.control.cook 3B 2.00 / 2.41

gap ref.in 3B 1.99 / 2.43

gcc lgred.cp-decl.i 5.12B 1.52 / 1.95

gzip lgred.graphic 1.79B 1.84 / 2.11

mcf lgred.in 0.79B 0.71 / 0.93

parser lgred.in 4.52B 1.24 / 1.42

perl lgred.markerand 2.06B 1.36 / 1.58

twolf lgred.in 0.97B 1.45 / 1.65

vortex lgred.raw 1.15B 2.02 / 2.95

vpr lgred.raw 1.57B 1.64 / 1.88

source registers across the benchmarks with given input
sets. The data in this section shows program characteristics
and does not depend on machine configuration. Character-
ization of dynamic behavior within the processor core
which is dependant on machine configuration will appear
in later sections.

Figure 2 indicates the percentage of dynamic instruc-
tions with two source operands (referred to as 2-source for-
mat). The figure shows that 18~36% of dynamic
instructions use 2-source format, indicating that this is by
far not the common case. We present stores in their own
category in the figure because even though store instruc-
tions have two source operands, they do not behave as 2-
source-format instructions for the following reasons: first,
the actual store operation that accesses the cache is usually
scheduled separately and performed in the commit stage
where dynamic instruction scheduling is not involved. Sec-
ond, stores can be handled as two operations, such as an
address generation and a move that copies the register
value into the store scheduler. Since the Alpha ISA does
not support a MEM[reg + reg] indexing mode for memory
operations, neither address generation nor this move opera-
tion requires two source operands.

Figure 3 shows a breakdown of 2-source format instruc-
tions as a function of the number of unique source oper-
ands. 2-source-format instructions may require less than
two source registers for their inputs since many instruc-
tions have one or two zero-registers (r31 and f31 in
Alpha ISA) that do not create register dependences (e.g.
add r1 r2, r31), or two identical source operands
(e.g. add r1 r2, r2). We note that Alpha binaries
have a measurable number of 2-source-format nops that
write to zero-registers in order to satisfy instruction align-
ment restrictions; they are eliminated from the instruction
stream by the decoder without execution [2], and are
shown separately in the figure. Across the benchmarks
tested, 6~23% of dynamic instructions in the bottom-most
bars are measured to have two unique, non-zero source
operands (referred to as 2-source instructions).

2-source instructions will be the basis of further analy-
sis in later sections. Section 3 and 4 will present that only a
few of them require two operands to be processed simulta-
neously in the out-of-order execution core despite the fact

that 2-source instructions are still a significant portion of
all dynamic instructions.

3. Reducing scheduling logic complexity
The wakeup logic is responsible for waking up instruc-

tions in the instruction window when all of their source
operands become available. The select logic selects
instructions to be issued among a pool of ready instruc-
tions; the selected instructions then broadcast their destina-
tion tags to all instructions in the window in the next
wakeup cycle. From the physical design perspective,
broadcasting tags is quite expensive because all wakeup
buses should be connected to all source tag comparators in
all issue queue entries, which significantly increases the
load capacitance of the bus the wakeup logic drives. More-
over, wakeup and select operations in conventional sched-
ulers should be atomic (i.e. they cannot be easily pipelined
[17]) in order to achieve consecutive instruction schedul-
ing in back-to-back cycles. For these reasons, the instruc-
tion scheduling logic is likely to be a bottleneck in both
current and future microprocessors running at a high oper-
ating frequency.

Each issue queue entry is usually equipped with two tag
comparators because the scheduler needs to handle 2-
source instructions. However, this design is not fully uti-
lized even by 2-source instructions because some of the
input operands may be ready when the instruction is
inserted into the scheduler, and therefore no “wake-up”
operation is required for these operands. Figure 4 presents
the number of ready operands of 2-source instructions
when they are inserted into the scheduler. Many instruc-
tions already have one or two ready operands, and only
4~16% of instructions (shown in the bottom-most bars as 0
ready) have 2-pending-source operands that require two
tag comparators.

Even though tag comparisons for all pending-source
operands are required for correct instruction scheduling, it
is only the last-arriving operand that initiates instruction
issue. Our half-price technique, sequential wakeup exploits
this observation and eliminates half of the load capacitance
incurred by tag comparators from the wakeup bus by con-
necting only one critical operand per instruction directly to
the wakeup bus, while other operands are decoupled from

Figure 2. Percentage of 2-source-format instruc-
tions. 18~36% of instructions have two source oper-
ands in their format. Stores are presented in their own
category since they are handled differently inside the
processor core.

0%

10%

20%

30%

40%

50%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

others
stores
2-source-format insts

←
←

Figure 3. Breakdown of 2-source-format instruc-
tions. Only instructions in the bottom-most bars have 2
unique source operands that create dependences. They
will be referred to as 2-source instructions in the later
sections.

0%

10%

20%

30%

40%

50%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

stores + others
nop
2 zero-reg
1 zero-reg
same sources
2-source insts

the wakeup bus. It enables the wakeup logic to operate at a
higher frequency with minimal performance impact.

3.1. Related work
Palacharla et. al. [12] proposed the clustered microar-

chitecture where a collection of small windows work as a
wider and deeper instruction window. Michaud and Seznec
[3] proposed the data-flow based instruction window that
reorders instructions before they enter the issue queue
according to data dependences. Lebeck et. al. [13] studied
the effect of cache misses on the instruction window and
explored scheduler designs that re-insert the load and
dependent instructions after the cache miss is resolved.
Hrishikesh et. al. [14] proposed to pipeline the instruction
wakeup logic that manages segmented instruction win-
dows. Most of these studies focus on making the instruc-
tion window look bigger, by either giving different
priorities to different instruction groups, or keeping long-
latency instructions in a separate structure before they
enter the small window. On the other hand, our technique
tries to reduce the cost of tag matching for multiple source
operands and therefore is orthogonal to those techniques.

Most recently, Ernst and Austin [10] proposed tag elim-
ination, a combined scheme that uses specialized windows
and last-tag speculation to achieve wakeup logic cycle
time improvement by reducing load capacitance on the
wakeup bus; this is similar in spirit to our sequential
wakeup scheme. Specifically, their last-tag speculation per-
forms tag comparisons only for operands predicted to be
last-arriving, and removes tag comparators for other oper-
ands, leaving a single tag matching logic per issue queue
entry. This approach does not guarantee correctness of
instruction scheduling and instructions may be incorrectly
issued before all operands become ready (due to last-arriv-
ing operand mispredictions). Therefore, a scoreboard must
check the readiness of operands that were not connected to
the wakeup bus and flag a misprediction to the scheduler,
causing instructions to be re-issued. For scheduling recov-
ery, their technique relies on an Alpha 21264-style, non-
selective recovery mechanism that invalidates all depen-
dent and independent instructions issued following the
mispredicted instruction.

Tag elimination differs fundamentally from sequential
wakeup due to its speculative nature. That is, our sequen-

tial wakeup approach does not require any scheduling
recovery from mispredictions since no instruction is issued
speculatively with regard to readiness of source operands.
On the other hand, mispredictions in their tag elimination
scheme may affect performance severely, especially on a
wider machine where the rescheduling penalty grows as
the number of instructions to be invalidated increases. In
Section 5.1, we will show that the performance of the tag
elimination scheme does not scale well with increasing
misprediction penalty.

Many recent processor designs have adopted a selective
recovery mechanism that significantly reduces the resched-
uling penalty by invalidating and replaying only data-
dependent instructions on a misprediction. Although one
might expect that this selective recovery would also reduce
the rescheduling penalty in the tag elimination scheme,
unfortunately, implementing tag elimination on a machine
with selective recovery is impractical. This can be easily
explained by showing how the selective recovery mecha-
nism keeps track of data dependences among instructions.
Figure 5 shows a possible implementation of selective
recovery logic, where the wakeup bus is used not only to
wake up dependent instructions, but also to propagate the
dependence information to child instructions in matrix
form. In these matrices, rows and columns imply pipeline
stages and issue slots, where current locations of issued
parent instructions are marked. When a child instruction
receives matrices from parent instructions, it merges matri-
ces from both source operands, and marks its own location
on the matrix before it forwards the matrix to its dependent
instructions. During this propagation, all instructions get
the list of all parent instructions that they depend on. Bits
in the matrix are shifted down every clock cycle to be in
sync with the pipeline flow until all bits are phased out, as
all parent instructions in the pipeline reach functional units

Figure 4. Breakdown of 2-source instructions, as a
function of the number of ready operands when
they are inserted into the scheduler. Only 4~16% of
instructions have 2 unresolved operands at insert time.

0%

10%

20%

30%

40%

bz
ip

cr
a

fty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

To
ta

l d
yn

am
ic

 in
st

ru
ct

io
ns

non 2-source insts
2 ready
1 ready
0 ready

4-
w

id
e

8-
w

id
e

Figure 5. A possible implementation of selective
recovery logic. (a) the list of issued parent instructions
in the pipeline is propagated to dependent instructions
along with tag broadcasts. (b) the source operand with
matching bits in the kill bus is invalidated, indicating
that misscheduling of its parent instruction is detected.

(a)
= =

tagL tagRdep matrix L dep matrix R

ta
gdependence

info

wakeup
bus

kill
bus

==

= =

tagL tagRdep matrix L dep matrix R

ta
gdependence

info

wakeup
bus

kill
bus

==

(b)

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

shifted down
every clk cycle

inst

0 0 0 1
1 0 0 0
0 0 0 0
0 1 1 0

dep
matrix L

dep
matrix R

kill bus

merge matrices
& mark myself
before sent to

children

invalidated if
kill bus bits match

bits in the bottom row

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

shifted down
every clk cycle

inst

0 0 0 1
1 0 0 0
0 0 0 0
0 1 1 0

dep
matrix L

dep
matrix R

kill bus

merge matrices
& mark myself
before sent to

children

invalidated if
kill bus bits match

bits in the bottom row

and execute. If a mis-scheduling is detected in the execute
stage due to e.g. a cache miss, it is signaled through the kill
bus that invalidates all operands with the corresponding bit
(the bit in the same column as the faulty issue slot in the
last row) in their matrices.

In the tag elimination scheme, removing tag matching
logic prevents early-arriving operands from participating
in this dependence propagation, and therefore the instruc-
tion cannot correctly determine if it is dependent on
rescheduling events. In contrast, our approach is fully com-
patible with selective recovery since both operands
observe dependence information, while the wakeup logic
can still benefit from the reduced bus capacitance.

3.2. Characterization of operand wakeups
Although 2-pending-source instructions need two

wakeups inside the scheduler before they are issued, it is
relatively infrequent that two source operands are awak-
ened in the same clock cycle. Figure 6 shows the break-
down of 2-pending-source instructions as a function of
wakeup slack (the number of clock cycles between two
source operand wakeups). The data shows that the vast
majority of 2-pending-source instructions have at least one
clock cycle slack between wakeups, and that two source
operands are awakened simultaneously for less than 3% of
instructions. This wakeup slack can be exploited to reduce
the wakeup bus capacitance by prioritizing operand wake-
ups and hiding the delay of tag comparisons for operands
with a lower priority.

To achieve these benefits, our wakeup logic needs a

prediction scheme to determine the operand that matches
the last-arriving tag to initiate instruction issue. Table 3
shows the predictability of last-arriving operands of 2-
pending-source instructions measured on the base 4 and 8-
wide machines. The second and fourth columns present the
percentage of same / different operand wakeup orders of 2-
source instructions, compared with the last history at the
same PC. The third and fifth columns in the table present
the percentage of left / right last-arriving operands. The
numbers do not include simultaneous wakeup cases where
both operands become ready in the same clock cycle.
Although last-arriving operands are randomly distributed
between operands on both sides, the order of operand
wakeups is stable, showing that around 90% of the time a
static instruction has the same last-arriving operand as its
previous execution. This implies that a history-based pre-
dictor can easily determine which operand would arrive
last.

There are several studies on the design of last-arriving
operand predictors [10][17] for various purposes in differ-
ent contexts. We examined several predictors and deter-
mined that a simple PC-based, direct-mapped bimodal
predictor with 2-bit saturating counters achieves similar
prediction accuracy with a relatively small table size, com-
pared with other more sophisticated designs. Figure 7

Figure 6. Slack between two operand wakeups. Less
than 3% of instructions have two operands that become
ready in the same clock cycle.

0%

10%

20%

30%

40%

bz
ip

cr
af

ty

eo
n

ga
p

g
cc

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

T
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

n
s

non 2-pending-source insts
wakeup slack 3+
wakeup slack 2
wakeup slack 1
simultaneous wakeup

4-
w

id
e

8-
w

id
e

0%

10%

20%

30%

40%

bz
ip

cr
af

ty

eo
n

ga
p

g
cc

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

T
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

n
s

non 2-pending-source insts
wakeup slack 3+
wakeup slack 2
wakeup slack 1
simultaneous wakeup

4-
w

id
e

8-
w

id
e

Table 3: Characterization of operand wakeup order
and last-arriving operand

Bench-
marks

4-wide 8-wide

% wakeup
order

(same / diff)

%
last-arriving

operand
(left / right)

% wakeup
order

(same / diff)

%
last-arriving

operand
(left / right)

bzip 86.9 / 13.1 51.3 / 48.7 82.5 / 17.5 50.0 / 50.0
crafty 88.4 / 11.6 49.0 / 51.0 82.4 / 17.6 53.9 / 46.1
eon 91.3 / 8.7 49.2 / 50.8 86.1 / 13.9 53.1 / 46.9
gap 88.3 / 11.7 49.7 / 50.3 84.9 / 15.1 49.4 / 50.6
gcc 86.8 / 13.2 43.8 / 56.2 90.0 / 10.0 50.3 / 49.7
gzip 90.1 / 9.9 43.4 / 56.6 92.0 / 8.0 49.0 / 51.0
mcf 81.4 / 18.6 44.4 / 55.6 91.6 / 8.4 61.5 / 38.5

parser 93.0 / 7.0 44.2 / 55.8 93.4 / 6.6 48.5 / 51.5
perl 98.1 / 1.9 72.9 / 27.1 98.9 / 1.1 80.3 / 19.7

twolf 87.6 / 12.4 46.4 / 53.6 88.5 / 11.5 50.7 / 49.3
vortex 93.4 / 6.6 28.5 / 71.5 88.8 / 11.2 30.4 / 69.6

vpr 92.5 / 7.5 62.7 / 37.3 92.5 / 7.5 65.5 / 34.5

(a) 4-wide (b) 8-wide
Figure 7. Last-arriving operand prediction accuracy on 4 and 8-wide machines

0%

20%

40%

60%

80%

100%

simultaneous wakeup
prediction miss
prediction correct

0%

20%

40%

60%

80%

100%

To
ta

l d
yn

a
m

ic
 2

-p
en

di
ng

-s
ou

rc
e

in
st

ru
ct

io
ns

12
8

51
2 1k 4k

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

12
8

51
2 1k 4k

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

shows the accuracy of the bimodal predictor on 4 and 8-
wide machines, varying the number of the table entries
from 128 to 4096. Simultaneous wakeups of both operands
are shown in top-most bars, which can be interpreted as
either mispredictions or correct predictions, depending on
the wakeup logic that we present in the later sections.

3.3. Sequential wakeup
Figure 8 illustrates the structure of our proposed

sequential wakeup logic. Unlike the conventional design
shown in (a), only one side of operands are directly wired
to the fast wakeup bus that broadcasts tags of issued
instructions in the same clock cycle. Then, the tags on fast
wakeup buses are latched and re-broadcast in the next
clock cycle using the slow wakeup bus, sequentially wak-
ing up operands on the other side. The size of the wakeup
logic is important because the wire delay of the wakeup
bus increases as the logic size grows. Although sequential
wakeup requires two wakeup buses, it would not increase
the size of the fast-side wakeup logic since broadcasting
tags using the slow wakeup bus can extend over the selec-
tion logic delay as shown in Figure 8c, and therefore the
slow-side wakeup logic can be located far from the fast
side.

Based on the last-arriving operand predictions per-
formed in the instruction fetch stage, the scheduler puts the
last-arriving operand in the fast side and the other operand
in the slow side when instructions are inserted into the
issue queue entries. Since the actual physical register spec-
ifiers are acquired from the payload RAM [18] in later
stages (Disp in Figure 1) in our base machine, scheduling
instructions with swapped tags does not affect correctness.
The operands in the slow side always see the tags one
clock cycle later than those in the fast-side wakeup logic. If
the prediction is correct, the broadcast delay through the
slow wakeup bus is hidden by the wakeup slack and does
not affect performance; however, if the prediction is incor-
rect, i.e. the last-arriving operand is placed in the slow side,
the instruction issue will be delayed by one clock cycle
since the slow bus wakes up the instruction one clock cycle
later than the base case. This delay can be also hidden by
issuing another ready instruction in the best case. An
example of sequential wakeup is illustrated in Figure 9,
where all instruction are issued without penalty.

One disadvantage of sequential wakeup is that simulta-
neous wakeups, in which both operands become ready in
the same clock cycle, always incur one clock cycle penalty
because the broadcast delay in the slow-side wakeup logic
cannot be hidden behind the wakeup slack. However, less
than 3% of dynamic instructions fall into this category, as
shown in Figure 6. In Section 5, we will illustrate that the
performance degradation incurred by simultaneous wake-
ups is negligible.

The biggest advantage of this approach over previous
work [10] is that our approach requires neither a detection
mechanism nor scheduling recovery for mispredictions.
Furthermore, it can be easily integrated into a pipeline with
selective recovery because early-arriving operands still
observe dependence information propagated through the
wakeup bus. In contrast, we discussed in Section 3.1 that
combining tag elimination with selective recovery is
impractical. In addition, sequential wakeup logic maintains
the benefits of reduced wakeup bus load capacitance by
decoupling half of the tag matching logic from the fast
wakeup bus, enabling a higher clock frequency in the
scheduling logic. Consistent with the circuit analysis pre-
sented by Ernst and Austin [10], we believe the total delay
of a 4-wide, 64-entry scheduler with sequential wakeup
can be reduced from 466ps to 374ps1, which is a 24.6%
speedup over a conventional scheduler that fully handles
two source operands.

4. Reducing register file complexity
A multiple-issue, high performance microprocessor

requires a register file with many read and write ports. This
highly multiported structure becomes challenging to
design because the area of a register file increases quadrat-
ically and the latency increases approximately linearly as
the number of ports grows [6][7][8].

Conventional register files in RISC-style microproces-
sors have two register read ports and one write port per
issue slot. Even though this 2X read port configuration
guarantees register accesses for all types of instructions, it

(a) (b) (c)
Figure 8. Reducing the fanout of wakeup buses. (a) conventional wakeup logic, (b) sequential wakeup logic, and (c)
broadcast timings of fast / slow wakeup buses.

== == OROR

readyL tagL readyRtagR

== == OROR

readyL tagL readyRtagR

tag W tag 1…
… …

== == OROR

readyL tagL readyRtagRreadyL tagL readyRtagR

== == OROR

readyL tagL readyRtagRreadyL tagL readyRtagR

tag W tag 1…
… …

==OR

readyL tagL

==OR

readyL tagL

tag W tag 1
…

…

==OR

readyR tagR

==OR

readyR tagR

…

…

Fast-side Slow-side

Fast
wakeup

bus

Slow
wakeup

bus

==OR

readyL tagL

==OR

readyL tagL

tag W tag 1
…

…

==OR

readyR tagR

==OR

readyR tagR

…

==OR

readyR tagR

==OR

readyR tagR

…

…

Fast-side Slow-side

Fast
wakeup

bus

Slow
wakeup

bus

fast wakeup
bus timing

slow wakeup
bus timing

select delay

broadcast t

select delay

broadcast t+1

select delay

broadcast
t-1

broadcast
t

broadcast
t+1

clock
t

clock
t+1

clock
t+2

latch

latch

latch

broadcast t+2

fast wakeup
bus timing

slow wakeup
bus timing

select delay

broadcast t

select delay

broadcast t+1

select delay

broadcast
t-1

broadcast
t

broadcast
t+1

clock
t

clock
t+1

clock
t+2

latch

latch

latch

broadcast t+2

1. The wakeup bus length and the number of tag comparators of the
sequential wake logic on the given machine parameters is equiva-
lent to 16/32/16 configuration in [10].

is wasteful because many of 0 or 1-source instructions do
not need two register read accesses. The only reason each
issue slot has two register read ports is to handle 2-source
instructions that require two source values from the regis-
ter file without stalling the pipeline. However, many 2-
source instructions do not fully utilize two read ports since
they frequently get source values from the bypass logic,
and only 4% of instructions require two read port accesses
to the register file, which is far from the common case.
Sequential register access eliminates half of the register
read ports with a minimal impact on performance by mak-
ing instructions sequentially access a single port when two
source values are needed from the register file, which
enables a more compact and faster register file design.
Using a register access model derived from CACTI 3.0
[19], we found that the access time for a 160-entry register
file at 0.18 technology is reduced from 1.71ns to 1.36ns,
which is a 20.5% drop when the number of register ports
decreases from 24 to 16 on an 8-wide machine.

4.1. Related work
To tackle the problem of the large multi-ported register

file, several researchers have studied hierarchical or clus-
tered register file structures. Cruz et. al. [5] and Balasubra-
monian et. al. [4] studied two-level hierarchical
organizations with different caching policies for the
smaller register file so that it can be accessed in a single
clock cycle. Balasubramonian [4] and Park [23] proposed
techniques to reduce the number of register read ports.
Although their schemes also exploit the fact that many
instructions do not require two register accesses and many
values are read from the bypass, they still service two input
ports for all functional units by placing a fully-connected
crossbar into the register file. Moreover, arbitration for reg-
ister file ports is performed globally. On the other hand,
our approach does not require such a crossbar with global
arbitration logic. Hoogerbrugge and Corporaal [9] studied
a compiler-controlled register file with a smaller number of
ports in the context of VLIW processors. As a real proces-
sor implementation, Alpha 21264 [2] uses dual-banked
register files to reduce the number of read ports. Our
approach is orthogonal to such a replicated register file and
can be applied in conjunction with other complexity-effec-
tive register file techniques.

It is important to note that incomplete bypass on the
clustered architecture would reduce the efficiency of the
sequential register access scheme if a result value of one

cluster is passed to others only through the register file,
because more instructions require two read port accesses
from the register file as the bypass opportunity decreases.
We did not study sequential register access on a clustered
microarchitecture and leave it as future work because per-
formance is highly dependent on the cluster steering pol-
icy. However, many researchers [12][21][22] have studied
steering policies for reducing inter-cluster communication
and hiding its delay on such microarchitectures; the same
policies can be used in favor of sequential register access
to minimize performance impact.

4.2. Characterization of register read port
accesses

Bypass logic is responsible for broadcasting result val-
ues to input ports for all functional units so dependent
instructions can execute in the very next clock cycle before
the result value is written back to the register file. Since
many result values can be read off the bypass, and many
instructions do not require two source values, the average
port utilization is much lower than the peak register file
port utilization [4][5].

If an issue slot is restricted to only one register read
port, 2-source instructions can still be handled by accessing
a single port twice to satisfy both source operands. This
sequential register access increases the instruction latency
by one clock cycle but reduces the number of physical reg-
ister ports required. However, interfacing sequential regis-
ter access with scheduling logic is not straight-forward:
speculative scheduling does not allow variable-latency
execution of instructions because dependent instructions
cannot react to dynamic changes once they are scheduled
[11]. To avoid this problem, the scheduling logic should be
able to detect if a 2-source instruction will require one
extra clock cycle for sequential register access, and to
reflect it in the schedule for the following clock cycle.

The key observation is that where the instruction reads
its source values is determined by when it is issued [4]. If
the parent and dependent instructions are scheduled in
back-to-back clock cycles, the dependent instruction is
guaranteed to read the result value of the parent instruction
off the bypass without accessing the register file; if the
dependent instruction is not issued in the very next clock
cycle, the value is no longer available from the bypass net-
work and should be read from the register file. We conser-
vatively assume only one clock cycle of “bypass window”
(i.e. the result of a parent instruction is available on a

Figure 9. An example of sequential wakeup

issue

r1, r4

r1 1 r2 1 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

r2

Cycle
2

issue

r3

r1 1 r2 1 r3ADD

r3 1 r4 1 r5SUB

r5 0 - 1 r6XOR

r1, r4

Cycle
3

issue

r5

r1 1 r2 1 r3ADD

r3 1 r4 1 r5SUB

r5 1 - 1 r6XOR

r3

Cycle
4

r1@cycle2 r2@cycle1

r3
r4@cycle2

r5

ADD

SUB

XOR

ADD r1, r2, r3
SUB r3, r4, r5
XOR r5, 1, r6

r2

r1 0 r2 0 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

-

Cycle
1

Fast bus Slow bus

OP destrdyrdy

issue

r1, r4

r1 1 r2 1 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

r2

Cycle
2

issue

r1, r4

r1 1 r2 1 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

r2r1, r4

r1 1 r2 1 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

r1 1 r2 1 r3ADD r1 1r1 1 r2 1r2 1 r3ADD

r3 0 r4 0 r5SUB r3 0r3 0 r4 0r4 0 r5SUB

r5 0 - 1 r6XOR r5 0r5 0 - 1- 1 r6XOR

r2

Cycle
2

issue

r3

r1 1 r2 1 r3ADD

r3 1 r4 1 r5SUB

r5 0 - 1 r6XOR

r1, r4

Cycle
3 issue

r3

r1 1 r2 1 r3ADD r1 1r1 1 r2 1r2 1 r3ADD

r3 1 r4 1 r5SUB r3 1r3 1 r4 1r4 1 r5SUB

r5 0 - 1 r6XOR r5 0r5 0 - 1- 1 r6XOR

r1, r4

Cycle
3

issue

r5

r1 1 r2 1 r3ADD

r3 1 r4 1 r5SUB

r5 1 - 1 r6XOR

r3

Cycle
4

issue

r5

r1 1 r2 1 r3ADD r1 1r1 1 r2 1r2 1 r3ADD

r3 1 r4 1 r5SUB r3 1r3 1 r4 1r4 1 r5SUB

r5 1 - 1 r6XOR r5 1r5 1 - 1- 1 r6XOR

r3

Cycle
4

r1@cycle2 r2@cycle1

r3
r4@cycle2

r5

ADD

SUB

XOR

r1@cycle2 r2@cycle1

r3
r4@cycle2

r5

ADD

SUB

XOR

ADD r1, r2, r3
SUB r3, r4, r5
XOR r5, 1, r6

r2

r1 0 r2 0 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

-

Cycle
1

Fast bus Slow bus

OP destrdyrdy
r2

r1 0 r2 0 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

-

Cycle
1

r2

r1 0 r2 0 r3ADD

r3 0 r4 0 r5SUB

r5 0 - 1 r6XOR

r1 0 r2 0 r3ADD r1 0r1 0 r2 0r2 0 r3ADD

r3 0 r4 0 r5SUB r3 0r3 0 r4 0r4 0 r5SUB

r5 0 - 1 r6XOR r5 0r5 0 - 1- 1 r6XOR

-

Cycle
1

Fast bus Slow bus

OP destrdyrdy

µ

bypass path for only a single cycle). This assumption could
be relaxed to give a larger bypass window on machines
with multi-cycle register file access, which requires addi-
tional bypass paths.

Figure 10 characterizes the register accesses of 2-source
instructions. Most 2-source instructions are issued as soon
as both operands become ready (shown as back-to-back
issue). These instructions do not need two register ports
since at least one source value is available off the bypass.
Otherwise, instructions require two register reads when
both source operands are ready at insert time (shown as 2
ready), or they are not issued immediately due to structural
hazards (shown as non back-to-back issue). The bottom
two stacked bars show that less than 4% of dynamic
instructions require two register file ports across all bench-
marks.

4.3. Sequential register access
In Figure 11, we show wakeup and select logic that

detects and schedules sequential register access. Back-to-
back instruction issue is determined by simply looking at
whether an instruction is awakened and selected in the
same clock cycle. An issue queue entry shown in
Figure 11a has single-bit nowL/R fields that are identical to
readyL/R except that readyL/R are sticky bits while
nowL/R fields stay set only during the cycle when tags
match. If any of nowL/R fields is set, which implies that the
value will be available off the bypass, the seq_reg_access
signal is cleared, indicating that the instruction does not
need two register ports. If the seq_reg_access signal is set
when the instruction is selected and issued, it adds one
extra clock cycle to the instruction latency (delay field) for
sequential register access. Since a sequential register

access is a non-pipelined operation, the pipeline must be
stalled so that the instruction accesses the register file
twice. The select logic shown in Figure 11b creates a bub-
ble to prevent other instructions from issuing through this
issue slot by disabling itself for one clock cycle when an
instruction with a seq_reg_access bit is selected. Since
each issue slot has its own select logic, only the issue slot
that requires sequential register access is blocked. There-
fore, the penalty of sequential register access is 1 clock
cycle latency + 1 issue slot, which can be interpreted as
issuing an extra register read operation implicitly.

Figure 12 shows an example of sequential register
access. Suppose the ADD instruction sequentially accesses
the register file because both source operands are ready at
insert time. At cycle 1, ADD is issued and the select logic
is disabled for the next clock cycle. ADD will wake up the
dependent instruction (SUB) one clock cycle later than the
base case. At cycle 2, no instruction is issued following
ADD instruction. At cycle 3, SUB is awakened and
selected in the same clock cycle. Since ADD and SUB are
scheduled in back-to-back cycles, the result value r3 of
ADD is guaranteed to be read off the bypass and hence
SUB does not require two register ports. At cycle 4, XOR
with single source operand is issued and it reads r5 off the
bypass at cycle 6.

Figure 13 illustrates the changes in the pipeline for
sequential register access compared with a conventional
pipeline. In this configuration, a single register read port is
directly connected to both functional unit input ports. An
issued instruction gets its opcode and physical register
specifiers from the payload RAM in the base pipeline. In

Figure 10. Characterization of register accesses.
Two stacked bars from the bottom (non back-to-back
issue + 2 ready) show that less than 4% of instructions
require two port accesses to the register file in most
benchmarks.

0%

10%

20%

30%

40%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

To
ta

l d
yn

am
ic

 in
st

ru
ct

io
ns

non 2-source insts
back-to-back issue
2 ready
non back-to-back issue

4-
w

id
e

8-
w

id
e

0%

10%

20%

30%

40%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

To
ta

l d
yn

am
ic

 in
st

ru
ct

io
ns

non 2-source insts
back-to-back issue
2 ready
non back-to-back issue

4-
w

id
e

8-
w

id
e

Figure 11. (a) the wakeup logic and (b) the select
logic for sequential register access

tag

granted

request

==

seq_reg_access

+1

wakeup bus

OROR

readyL readyRtagR 2-inp delaynowR
(not sticky)

nowL
(not sticky)

dest tagtagL

tag

granted

request

==

seq_reg_access

+1

wakeup bus

OROR

readyL readyRtagR 2-inp delaynowR
(not sticky)

nowL
(not sticky)

dest tagtagL(a)

Select
Logic

G
S
R…
G
S
R

granted
seq_reg_access

request
selected

seq_reg_access

Disable Select
for 1 CLK

Bubble

Select
Logic

G
S
R…
G
S
R

granted
seq_reg_access

request
selected

seq_reg_access

Disable Select
for 1 CLK

Bubble

(b)

Figure 12. An example of sequential register access. Only three stages (Sched, RF and EXE) are shown for the sim-
plicity of presentation.

ADD r1, r2, r3
SUB r3, r4, r5
XOR r5, 1, r6

Select
only

ADD
Seq read
r1

Seq read
r2

Wait Bubble Wakeup/
Select

Reg Read
r4

Execute/
Bypass

Execute/
Bypass

Wait Bubble Wait Wakeup/
Select

Reg
no Read

Execute/
Bypass

SUB

XOR

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
r1 r2

r3

r4

r5

ADD

SUB

XOR

ADD r1, r2, r3
SUB r3, r4, r5
XOR r5, 1, r6

Select
only

ADD
Seq read
r1

Seq read
r2

Wait Bubble Wakeup/
Select

Reg Read
r4

Execute/
Bypass

Execute/
Bypass

Wait Bubble Wait Wakeup/
Select

Reg
no Read

Execute/
Bypass

SUB

XOR

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Select
only

ADD
Seq read
r1

Seq read
r2

Wait Bubble Wakeup/
Select

Reg Read
r4

Execute/
Bypass

Execute/
Bypass

Wait Bubble Wait Wakeup/
Select

Reg
no Read

Execute/
Bypass

SUB

XOR

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
r1 r2

r3

r4

r5

ADD

SUB

XOR

r1 r2

r3

r4

r5

ADD

SUB

XOR

addition, our technique requires the payload RAM to
sequence register accesses when an instruction with
seq_reg_access signal is issued. In order for both source
values to arrive at the functional unit simultaneously when
the register file is accessed twice, the pipeline needs stor-
age for the first source value until the other source value is
accessed. This can be accomplished by either adding
latches to the input ports of the functional unit, or forward-
ing a source value accessed earlier through the bypass to
the functional unit input port again, as if a move instruction
is executed. Since the functional unit is idle when the first
source value arrives, the functional unit can easily put the
value on the bypass. In the next clock cycle, the instruction
starts execution when both source values, from the register
file and the bypass logic, arrive at the functional unit.

Performance evaluation of sequential register access
which eliminates half of register-read ports will be pre-
sented in Section 5.2 and also combined with sequential
wakeup in Section 5.3.

5. Performance Evaluation

5.1. Evaluation of sequential wakeup
Figure 14 presents IPCs of the sequential wakeup and

tag elimination schemes discussed in Section 3, normalized
to the base performance. The base IPCs on 4 and 8-wide
machines are presented in Table 1. For the last-arriving
operand predictor, a 1k-entry, direct-mapped bimodal pre-
dictor is used for both sequential wakeup and tag elimina-
tion schemes.

The performance degradation due to sequential wakeup
with a last-arriving operand predictor, shown in the left
bars, is measured to be on average 0.4% and 0.6% on 4 and

8-wide machines respectively. These slight IPC drops
come from at most 4% of dynamic instructions that experi-
ence the issue penalty from operand mispredictions and
simultaneous wakeups across all benchmarks. Since
mispredicted instructions do not consume issue bandwidth,
mispredictions can be overlapped by other ready instruc-
tions that take the issue slot instead.

As a point of reference, the performance of the tag elim-
ination scheme [10] is shown in the middle bars. We use
the same last-arriving operand predictor as the one used for
sequential wakeup, and assume that the scoreboard is
located right next to the schedule stage in order to mini-
mize the detection delay. Although the performance degra-
dation is not drastic, it is measured to be worse than
sequential wakeup in most benchmarks, and does not scale
well with increasing misprediction penalty, especially on
an 8-wide machine (worst case 10.6% in crafty). Although
the tag elimination scheme is not restricted by simulta-
neous wakeups, the misprediction penalty in non-selective
recovery is so severe that it significantly affects perfor-
mance.

Interestingly, sequential wakeup without a last-arriving
predictor, as shown in the right bars, outperforms the tag
elimination scheme with a predictor in many benchmarks.
In this configuration, the right-hand side source operands
are statically assumed to be last-arriving, which has less
than a 50% chance to be correct on average (as shown in
Table 3), causing up to 10% of dynamic instructions to
experience issue penalties. However, the average perfor-
mance degradation is still measured to be 1.6% and 2.6%
on 4 and 8-wide machines. This result clearly shows that
the performance of sequential wakeup is relatively insensi-
tive to the predictor accuracy because the misprediction

Figure 13. The changes in the pipeline for sequential register access. Unlike an conventional pipeline with 2 register
read ports per issue slot, the register file has only one register port per issue slot.

Queue Wakeup Payload
Ram

single-read
ported
Reg File Rd

Wr

FU

M
U

X
M

U
X

Scheduling Loop

first value
forwarded through

bypass network

Sequential
Reg Access

Select

Disable select
for 1 CLK

sequencing
register accesses

Queue Wakeup Payload
Ram

single-read
ported
Reg File Rd

Wr

FU

M
U

X
M

U
X

Scheduling Loop

first value
forwarded through

bypass network

Sequential
Reg Access

Select

Disable select
for 1 CLK

sequencing
register accesses

(a) 4-wide (b) 8-wide
Figure 14. Performance of sequential wakeup. Note that sequential wakeup without a predictor outperforms the tag
elimination scheme with a predictor in many benchmarks, showing that the misprediction penalty in sequential wakeup
is slight.

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

no
rm

al
iz

ed
 IP

C
 A

seq wakeup tag elimination seq wakeup w/o pred

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

no
rm

al
iz

ed
 IP

C
 A

seq wakeup tag elimination seq wakeup w/o pred

penalty is very small.
In summary, the sequential wakeup scheme enables

reducing the wakeup bus load capacitance with a minimal
performance impact.

5.2. Evaluation of sequential register access
The characterization of register file accesses and the

structure of the sequential register access logic are dis-
cussed in Section 4. Figure 15 presents IPCs from various
register file configurations normalized to those on the 4
and 8-wide base machines. Instructions that require
sequential register accesses are presented in Figure 10.

Performance of sequential register access is presented
in the left bars in Figure 15 (seq RF access). Overall, deg-
radation on a 4-wide machine is slightly greater than on an
8-wide machine because the narrower issue bandwidth
leads to more structural hazards that prevent 2-source
instructions from issuing in consecutive clock cycles. The
degree of slowdown is in general correlated to the number
of sequential register accesses, and bzip, crafy, eon, gzip,
twolf and vpr exhibit noticeable performance drops on a 4-
wide machine, as up to 4% of instructions experience the
penalty of 1 clock cycle + 1 issue slot for two register port
accesses. However, the worst performance degradation is
observed to be only 2.2% in eon. On average, 1.1% and
0.7% IPC drops on 4 and 8-wide machines are measured.

The middle bars in Figure 15 (1 extra RF stage) show
performance of a conventional pipelined register file with
two read ports per issue slot when one extra pipeline stage
is added for a shorter access latency. Although it does not
show drastic performance drops compared to the base
machine performance, this design may not be attractive
since an extra register access stage requires another level
of internal bypass paths within the register file.

The right bars (reg + crossbar) show performance from
the same half-read-ported register file used in sequential
register access with a fully-connected crossbar to all func-
tional unit inputs, which is similar to a single-bank config-
uration with limited register read ports proposed in [4].
Although this scheme achieves most of base performance
since the actual port requirement rarely exceeds the issue
bandwidth, it incurs mux delays for the crossbar, and com-
plexity in the select logic to arbitrate contention in register
ports across all issued instructions. A common optimiza-

tion in conventional schedulers to ease implementation is
having separate select logic for each execution pipeline or
cluster [2][12][20]. We emphasize that this arbitration for
register file ports cannot be carried out locally (within a
single scheduler) but must be across all issued instructions.
Sequential register access, on the other hand, does not
require such a crossbar or global arbitration logic (arbitra-
tion for the single physical register port is a local scheduler
decision, as described in Section 4.3) while it shows com-
parable performance in many benchmarks.

In conclusion, we see that sequential register access
enables reducing the number of register read ports with a
minimal impact on performance.

5.3. Evaluation of combined techniques
In this section, we discuss the performance impact of

combining both sequential wakeup and sequential register
access. The combined techniques require a minor change
in the wakeup logic: the wakeup logic does not require the
nowR field in Figure 11a, and only nowL is able to clear the
seq_reg_access signal. Although these techniques are
orthogonal and no substantial complication is involved,
negative interference may occur when both techniques are
performed together because the issue penalty from simulta-
neous wakeups and last-arriving operand mispredictions
always forces 2-source instructions to sequentially access
the register file. The combined penalty is 2 clock cycles of
delay + 1 issue slot.

Figure 16 shows the performance of the combined tech-
niques on 4 and 8-wide machines with a 1k-entry, direct-
mapped last-arriving operand predictor as used in Section
5.1. As expected, the performance degradation from the
combination of sequential register access and sequential
wakeup is slightly worse than the direct sum of perfor-
mance drops from the techniques applied individually.
However, the overall performance degradation of the com-
bined techniques is not drastic, and the worst case (bzip on
an 8-wide machine) performs within 4.8% of the baseline.
On average, 2.2% performance degradation is observed.

In summary, our proposed half-price architecture
reduces complexity in the wakeup logic and the register
file by using narrower structures and restricting the pipe-
line’s capability to handle 2-source instructions, resulting
in a minimal impact compared to a conventional pipeline

(a) 4-wide (b) 8-wide
Figure 15. Performance of sequential register access. From left to right, sequential register access with one read port
per issue slot (seq RF access), a conventional register file with one extra pipeline stage (1 extra RF stage), and a register
file with half the number of read ports + a fully connected crossbar to all functional units (reg + crossbar).

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

no
rm

al
iz

ed
 IP

C
 A

seq RF access 1 extra RF stage reg+crossbar

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

no
rm

al
iz

ed
 IP

C
 A

seq RF access 1 extra RF stage reg+crossbar

that fully handles two source operands. At the same time, it
enables higher-frequency implementations of both the
wakeup logic and register file by reducing the size and eas-
ing the physical design of these structures.

6. Conclusion & Future work
We make four main contributions in this work. First, we

described the pipeline stages that introduce overdesigned
hardware structures due to instructions with multiple
source operands. Second, we characterize the dynamic
behavior of instructions with two source operands and
present that only a small fraction of instructions require
their two source operands to be processed in the wakeup
logic and the register file. Third, we introduce the half-
price architecture that reduces hardware complexity by
limiting the processor’s capability of handling instructions
with two source operands. Fourth, we propose two com-
plexity-effective techniques: sequential wakeup and
sequential register access, and demonstrate that these tech-
niques can significantly reduce the complexity in the
wakeup logic and the register file with a minimal IPC deg-
radation.

Although we discuss only two major components of the
processor in this work, the basic concept of half-price
architecture can extend to all pipeline stages that handle
two source operands. We are developing half-price tech-
niques for register renaming, ready information check and
bypass logic. The final goal of half-price architecture is to
achieve an operand-centric processor design that enables a
higher clock frequency with a minimal performance
impact by eliminating redundancy incurred by instruction-
centric design.

7. Acknowledgements
This work was supported in part by the National Sci-

ence Foundation with grants CCR-0073440, CCR-
0083126, EIA-0103670 and CCR-0133437, and generous
financial support and equipment donations from IBM and
Intel. We especially thank Kevin Lepak for his insights and
comments on this work. We would also like to thank the
anonymous reviewers for their many valuable comments.

8. References
[1] D. C. Burger and T. M. Austin, The Simplescalar tool set, ver-

sion 2.0, Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[2] Compaq Computer Corporation, Alpha 21264 microprocessor
hardware reference manual, July 1999.

[3] P. Michaud and A. Seznec, Data-flow prescheduling for large
instruction windows in out-of-order processors, in Proc. of 7th
International Symposium on High Performance Computer Ar-
chitecture, 2001.

[4] R. Balasubramonian et. al, Reducing the complexity of the reg-
ister file in dynamic superscalar processors, in Proc. of 34th
International Symposium on Microarchitecture, 2001.

[5] J. L. Cruz, A. Gonzalez, M. Valero and N. P. Topham, Multiple-
banked register file architecture, in Proc. of 27th International
Symposium on Computer Architecture, 2000.

[6] B. Black and J. P. Shen, Scalable register renaming via the
Quack register file, Tech report, CMuART-2000-01, Carnegie
Mellon University, Pittsburgh, 2000.

[7] M. Tremblay, B. Joy and K. Shin, A three dimensional register
file for superscalar processors, in Proc. of 28th Hawaii Inter-
national Conference on System Sciences, pp. 191-201, 1995.

[8] K. I. Farkas, N. P. Jouppi and P. Chow, Register file design con-
siderations in dynamically scheduled processors, WRL Re-
search Report 95/10, 1995.

[9] J. Hoogerbrugge and H. Corporaal, Register file port require-
ments of transport triggered architectures, in Proc. of 27th In-
ternational Symposium on Microarchitecture, 1994.

[10] D. Ernst and T. M. Austin, Efficient dynamic scheduling
through tag elimination, in Proc. of 29th International Sympo-
sium on Computer Architecture, 2002.

[11] I. Kim and M. H. Lipasti, Implementing optimizations at de-
code time, in Proc. of 29th International Symposium on Com-
puter Architecture, 2002.

[12] S. Palacharla, N. P. Jouppi and J. E. Smith, Complexity-effec-
tive superscalar processors, in Proc. of 24th International
Symposium on Computer Architecture, 1997.

[13] A. R. Lebeck et. al, A large, fast instruction window for toler-
ating cache misses, in Proc. of 29th International Symposium
on Computer Architecture, 2002.

[14] M. S. Hrishikesh et. al, The optimal useful logic depth per
pipeline stages is 6-8 FO4, in Proc. of 29th International Sym-
posium on Computer Architecture, 2002.

[15] W. A. Wulf, Compilers and computer architecture, IEEE
Computer, 14 (8):41-47, 1981.

[16] A. KleinOsowski, J. Flynn, N. Meares and D. J. Lilja, Adapt-
ing the SPEC2000 benchmarks suite for simulation-based
computer architecture research, Workshop on Workload Char-
acterization in International Conference on Computer Design,
2000.

[17] J. Stark, M. Brown and Y. Patt, On pipelining dynamic in-
struction scheduling logic, in Proc. of 33rd International Sym-
posium on Microarchitecture, 2000,

[18] M. Brown, J. Stark and Y. Patt, Select-free instruction sched-
uling logic, in Proc. of 34th International Symposium on Mi-
croarchitecture, 2001.

[19] P. Shivakumar and N. P. Jouppi, CACTI 3.0: an integrated
cache timing, power, and area model, WRL Research Report
2001/2, 2001.

[20] J. M. Tendler, S. Dodson, S. Fields, H. Le and B. Sinharoy,
POWER4 system microarchitecture, IBM Server Group Tech-
nical White Paper, 2001.

[21] B. Fields, S. Rubin and R. Bodik, Focusing processor policies
via critical-path prediction, in Proc. of 28th International
Symposium on Microarchitecture, 2001.

[22] E. Tune, D. Liang, D. M. Tullsen and B. Calder, Dynamic pre-
diction of critical path instructions, in Proc. of 7th Internation-
al Symposium on High-performance Computer Architecture,
2001.

[23] I. Park, M. Powell and T. Vijaykumar, Reducing Register
Ports for Higher Speed and Lower Energy, in Proc. of 35th In-
ternational Symposium on Microarchitecture, 2002.

Figure 16. Performance of sequential register access
combined with sequential wakeup

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

no
rm

al
iz

ed
 IP

C
 A

4-wide 8-wide

