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Abstract

This paper analyzes an Intel Pentium 4 hyper-threading
processor. The focus is to understand its performance and
the underlying reasons behind that performance. Partic-
ular attention is paid to putting the processor in context
with prior published research in simultaneous multithread-
ing – validating and re-evaluating, where appropriate, how
this processor performs relative to expectations. Results in-
clude multiprogrammed speedup, parallel speedup, as well
as synchronization and communication throughput.

The processor is also evaluated in the context of prior
work on the interaction of multithreading with the operating
system and compilation.

1 Introduction

The Intel� Pentium� 4 Hyper-Threading processor [13]
is the first general-purpose microprocessor to ship with fea-
tures of simultaneous multithreading (SMT). Simultane-
ous multithreading appeared in research publications in the
early to middle 1990s [8, 6, 17, 9, 29, 31, 28] and a large
body of work has followed in the years since. It remains an
extremely active area of research. And yet, the introduction
of the Pentium 4 processor represents the first opportunity to
validate and compare any of those results against real hard-
ware targeting the high performance, general purpose com-
puting market. Simultaneous multithreading is a specific in-
stance of hardware multithreading, which encompasses an
even larger body of work, but has likewise not previously
appeared in a mainstream general-purpose microprocessor.

This paper seeks to measure various aspects of the per-
formance of the simultaneous multithreaded Pentium 4 and
to understand the reasons behind the performance. Par-
ticular emphasis is placed on putting this implementation
into context with respect to the SMT research. We want to
know how well it meets expectations raised by the research,
where it differs, where it doesn’t differ. We will examine

where it diverges quantitatively from the research models,
and whether it diverges qualitatively with the expected per-
formance characteristics.

This work uses a mixture of single-threaded, multipro-
grammed, and parallel workloads, as well as component
benchmarks to evaluate this processor architecture. We
report multithreaded speedups and low-level performance
counters to attempt to better understand the machine. We
examine multiprogrammed speedup, parallel speedup, syn-
chronization and communication latencies, compiler inter-
action, and the potential for operating system interaction.

This paper is organized as follows. Section 2 discusses
related work. Section 3 describes the Intel Pentium 4 hyper-
threading architecture, and Section 4 describes our mea-
surement and reporting methodology. Section 5 presents
a wide variety of performance results, and Section 6 con-
cludes.

2 Related Work

The focus of this paper is the Pentium 4 Hyper-
Threading processor architecture [7], and particularly the
implementation and effectiveness of simultaneous multi-
threading, or hyper-threading, described in some detail in
Marr, et al. [13].

The concept of hardware multithreading has been around
since the 1960’s, starting with the I/O controller of the CDC
6600 [24]. Other important machines include the Denel-
cor HEP [21] and the Cray/Tera MTA [3], both projects led
by Burton Smith. Other early publications include Flynn,
et al.’s [5] description in 1970 of a multithreaded processor
with distinct front ends but a time shared execution unit, and
Shar and Davidson’s [19] analysis in 1974 of a pipelined
processor that allowed each stage to be executing in a differ-
ent context. Other important work includes Laudon, et al.’s
pipelined multithreaded model [10], and the coarse-grain
multithreaded processor for Alewife [2]. All but the last
describe implementations of the fine-grain (context switch
every cycle) multithreaded execution model.



Simultaneous multithreading is a natural extension to the
earlier multithreading models. It differs from those models
in the following way. On a superscalar processor, the SMT
execution model assumes the ability of the architecture to
issue instructions from multiple threads to the functional
units each cycle. All previous models of multithreading in-
corporate the notion of a low-level context switch, even if
it happens every cycle. SMT loses the notion of a context
switch, as all hardware contexts are active simultaneously,
competing actively for all processor resources. This compe-
tition maximizes the utilization of the processor resources.

Early work incorporating at least some aspects of what
became known as simultaneous multithreading include [8,
6, 17, 9, 29, 31, 28, 20]. The focus of this research will be
to compare the Pentium 4 implementation in particular with
the SMT execution model proposed by Tullsen, et al. [29],
and the architecture first fully described in [28]. That ex-
ecution model and architecture has since re-appeared in a
plethora of papers from many research groups.

The Pentium 4 architecture is the first general-purpose
processor delivered with simultaneous multithreading, but
other implementations include the announced, but never de-
livered Alpha 21464 [4] and a network processor intended
for routing applications from Clearwater Networks. Sun’s
MAJC processor [25] is a fine-grain multithreaded architec-
ture which also features support for speculative multithread-
ing.

This paper compares the Intel Pentium 4 architecture and
performance with the published SMT research architecture
model. It also examines quantitative and qualitative results
from research examining parallel performance [11], syn-
chronization and communication performance [30], com-
piler interaction [12], and operating system interaction [22,
18, 23].

3 Pentium 4 Hyper-threading Architecture

The Intel Pentium 4 processor [7] is the first commer-
cially available general-purpose processor to implement a
simultaneously multithreading core.

The Pentium 4 microarchitecture is that of a deeply
pipelined out-of-order processor. It has a 20 cycle branch
misprediction penalty. The core can retrieve 3 micro-
operations (�ops) per cycle from the trace cache, execute
up to six per cycle and graduate up to three per cycle. There
is a 128-entry renamed register file and up to 126 instruc-
tions can be in flight at a time. Of those instructions, 48
can be loads and 24 can be stores. It has an 8KB 4-way
set associative direct mapped L1 data cache with a 2 cycle
load-use latency and a 256 KB 8-way set associative uni-
fied L2 cache. The L1 instruction cache is a 12K entry trace
cache with a 6 �op line size.

The Pentium 4 supports a dual-threaded implementation
of simultaneous multithreading called Hyper-Threading
Technology. The Linux operating system treats the system
as a dual-processor system, each processor maintaining a
separate run queue. This approach to multithreading min-
imizes the changes to a conventional multiprocessor-aware
operating system necessary to manage the SMT hardware.

The primary difference between the Hyper-Threading
implementation and the architecture proposed in the SMT
research [28] is the mode of sharing of hardware structures.
While the SMT research indicates that virtually all struc-
tures are more efficient when shared dynamically rather
than partitioned statically, some structures in the Hyper-
Threading implementation such as the ROB entries and load
and store buffers are statically divided in half when both
threads are active. The reasons for this difference are at
least two-fold. First of all, static partitioning isolates a
thread from a poorly behaving co-scheduled thread more
effectively – see [27] for an example of two-thread thrash-
ing in a shared instruction queue, as well as alternative so-
lutions to static partitioning. Second, any negative effects
of the partitioned approach are minimized with only two
hardware contexts. The technique employed in the Pentium
4 does not scale well to a larger number of hardware con-
texts, such as the eight threads that were typically modelled
in the SMT research. However, with two threads, a scheme
that uses the entire instruction queue in single-thread mode,
and divides it in half for dual-thread mode provides a rea-
sonable approximation of the performance of a dynamically
shared queue. With more threads, the static partitioning
would likely hamper performance excessively.

Accesses to several non-duplicated, non-partitioned
parts of the Pentium 4 pipeline, such as the trace cache and
main instruction decoder are handled in a round-robin man-
ner. Similarly, Tullsen, et al. [28] proposed an architecture
that time-shares the front end of the processor (i.e., the front
end is fine-grain multithreaded), but mixes instructions (si-
multaneous multithreading) beginning with the queue stage.
That paper also examines architectures with limited multi-
threading (e.g., two threads rather than eight) in the front
end.

Using the tool LMbench [15] we measure the L1, L2,
and main memory latencies of the processor as 0.794ns,
7.296ns and 143.9ns. This corresponds to 2, 18 and 361
cycles of latency, which in the case of the caches corre-
lates well with Intel’s claims about the microarchitecture.
We were able to measure main memory bandwidth for our
setup as between 1.24 GB/s and 1.43 GB/s using the Stream
benchmark [14]. Neither aggregate memory bandwidth nor
latency were observed to degrade measurably when two
threads ran simultaneous copies of LMbench or Stream.



4 Methodology

All experiments were run on a single processor Hyper-
Threading 2.5 GHz Pentium 4 processor with 512 MB
of DRDRAM running RedHat 7.3 Linux kernel version
2.4.18smp.

For these experiments, we use the SPEC CPU2000
benchmarks, a subset of version 3.0 of the NAS paral-
lel benchmarks, and expanded versions of the Stanford
SPLASH2 benchmarks. The SPEC 2000 and NAS bench-
marks were compiled with Intel’s 6.0 Linux compilers. All
optimizations for SPEC were as close as possible to the base
optimization level in Intel’s SPEC submissions with the ex-
ception that no profiling data was used. The SPLASH2
benchmarks are compiled with gcc version 3.2 with full op-
timization enabled.

For the SPLASH benchmarks, we did not use the de-
fault inputs, rather we first sized up the inputs so as to in-
crease the amount of execution time and working set size.
Each benchmark was sized up so that total runtime was be-
tween 30 seconds and 2 minutes. This was necessary to
get accurate timing measurements. Actual parameters for
each benchmark are given in Table 1. Every component
was run in three different configurations. First we ran a sin-
gle threaded version of the benchmark so as to determine a
baseline expected time for benchmark completion. Then we
ran a dual threaded version of the benchmark so as to deter-
mine parallel speedup. Then we ran a single threaded ver-
sion of each benchmark against every other benchmark (in-
cluding itself) to obtain a heterogenous workload speedup.

For SPEC we first ran a fully instrumented SPEC run to
be sure that the binaries we were generating for benchmarks
were close to the baseline SPEC submission. We then ran
every SPEC benchmark against every other SPEC bench-
mark with the full inputs in order to determine heteroge-
neous speedups.

For heterogeneous workloads in both SPLASH and
SPEC, we used the following methodology for runs so as
to avoid overmeasuring simultaneous job startup and early
completion artifacts. We launched both jobs simultaneously
from a parent process which then waited for either job to
complete. When either job completed, it would be imme-
diately relaunched by the parent, until at least 12 total jobs
had been launched and completed. The time required for
the last job to complete was thrown away so as to eliminate
any jobs that were not run completely in parallel with an-
other thread. We ensured that we always had at least three
instances of even the longest benchmarks that completed
before the other threads finished. The completion times
for each of the remaining jobs was then averaged. This
methodology has several advantages. It eliminates end ef-
fects (which otherwise potentially insert significant single-
thread execution into our multithreaded results) and it takes

Benchmark Altered Parameters
barnes nbody=65536 tstop=0.3
fmm 65536 particles
ocean - contiguous ���� � ���� grid
ocean - noncontiguous ���� � ���� grid
radiosity large room dataset
raytrace -a32 -m64
water - nsquared 5832 molecules
water-spatial 5832 molecules

Table 1. Splash Application Expanded Run
Parameters

the average of several staggered relative starting times. We
found that in general staggered relative starting times was
not an important factor in measurement – the average vari-
ance in program run times for all SPEC benchmarks as a
factor of start time was less than 0.5% and the average max-
imum variance in run times was 1%.

For parallel benchmarks we report the speedup used in
the reporting methodology of the benchmark. In the case
of SPLASH this can exclude some sequential parts of the
code. For the heterogeneous workloads, we report the sum
of the two speedups. That is, if A and B run together, and
A runs at 85% of its single-thread execution time, and B
runs at 75%, the reported speedup is 1.6. This gives the
expected average response time improvement over a work-
load where the same combination of the two jobs time-share
a single-threaded processor, assuming approximately equal
run times, and no context-switch overhead.

We attempted to determine the performance of synchro-
nization on the hyper-threading Pentium 4, with particular
attention to whether hyper-threading makes synchroniza-
tion profitable at a finer granularity than a traditional SMP.
In order to do this, we modified the code used in [30] to im-
plement x86 spin locks with the pause instruction in them
as is recommended by Intel [1]. The pause instruction will
de-pipeline a thread’s execution, causing it to not contend
for resources such as the trace cache until the pause has
committed. However, unlike halt, pause does not release
statically partitioned resources in the pipeline. Further de-
tails of that benchmark are presented in Section 5.4.

5 Results

This section examines a variety of aspects of the perfor-
mance of the multithreaded Pentium 4 processor. It covers
multiprogrammed speedups, parallel program speedups, the
performance of synchronization and communication, the ef-
fects of workload scheduling, architecture-compiler interac-
tions, and simulation results.



5.1 Impact of Static Partitioning of the Pipeline

The Pentium 4 implementation dynamically shares very
few resources. The functional units are shared, as are the
caches and branch prediction logic. However, when mul-
tiple threads are active, the following structures are stat-
ically split in half, each half being made available to a
single thread: the reorder buffer, instruction queues, and
load/store queues. Thus, in multithreading mode, there are
now two effects that prevent the workload from achieving
ideal speedup (i.e., two times the single-thread throughput).
One is the effect of competition for statically partitioned re-
sources, and the second is the effect of competition for the
dynamically shared resources.

We discern between these two effects by measuring the
impact of static partitioning on a single thread, when there
is no dynamic sharing. Because the Pentium 4 only parti-
tions these structures when there are actually two threads in
execution, we use a dummy thread that uses virtually no re-
sources (it makes repeated calls to the pause instruction) to
force the processor into partitioned mode.

We found that on average, the SPECINT benchmarks
achieve 83% of their non-partitioned single-thread perfor-
mance, and the SPECFP benchmarks achieve 85% of their
single-thread performance. Those benchmarks hit worst are
eon, which is limited to 71% of peak, and wupwise, which
is limited to 72% of peak. The benchmarks that perform
best in this environment are mcf, art and swim at 93%, 97%
and 98% of peak respectively. eon and wupwise have rela-
tively high instruction throughput of 0.9 and 1.2 IPC respec-
tively, while mcf and swim have relatively low IPCs of .08,
.2 and .4 (all IPCs measured in �ops). Not unexpectedly,
then, those applications with low instruction throughput de-
mands due to poor memory performance are less affected by
the statically partitioned execution resources. See Figure 1
for a summary of results from these runs.

5.2 Multiprogrammed Multithreaded Speedup

In an SMT processor with only two threads, there are
exactly two ways to achieve multithreaded speedup — run-
ning two independent threads, or running two cooperating
threads. We examine the former case in this section, the
latter in the following section. The multiprogrammed (in-
dependent threads) performance, in some ways, gives the
clearest picture of the multithreaded pipeline implementa-
tion, because performance is unaffected by synchronization,
load-balance, and inefficient parallelization issues.

We ran the cross-product of all 26 SPEC benchmarks, as
well as the cross-product of all single-threaded SPLASH2
benchmarks. Those results are too voluminous to present
here, so we show a box and whisker plot of the SPEC data
which illustrates the median, middle 50% and outliers in
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Figure 1. Performance of SPEC benchmarks
run against the pause thread relative to their
peak performance.

speedups for each test in Figure 2. For each benchmark,
this figure shows the range of combined speedups for that
benchmark paired with all other benchmarks.

The way to read these plots is that for each datapoint,
the box outlines the middle 50% of the data (also known
as the inter-quartile range or IQR), the line inside the box
is the median datapoint, and the “whiskers” or dotted lines
extend to the most extreme datapoint within 1.5*IQR of the
box. Points which fall outside of 1.5*IQR are classified
as outliers and appear as crosses on the plot. We do not
attempt to claim any statistical significance to presenting the
data in this manner, but we feel that it provides a quicker
understanding of its nature than a scatter plot or averaged
bar graph. This data is also summarized in numerical form
in Table 2.

The average multithreaded speedup (Table 2) for SPEC
is 1.20, and ranges from 0.90 to 1.58, with a sample stan-
dard deviation of 0.11.

From the data, we can see several things. First of all,
we can pick out particular tests that seem to have more
or less dynamic conflicts with other threads. For instance,
sixtrack and eon seem to have fairly little impact on most
other tests, achieving high combined speedups regardless
of which threads they are paired with. In fact, the high out-
liers in Figure 2 are all caused by runs of benchmarks with
sixtrack. However, swim and art conflict severely with most
other threads. What isn’t clear from these graphs (because
we report combined speedup) is whether the low speedups
for swim and art are due to them running slowly when com-
peting for dynamically allocated resources, or whether they



Benchmark Best Speedup Worst Speedup Avg Speedup
gzip 1.48 1.14 1.24
vpr 1.43 1.04 1.17
gcc 1.44 1.00 1.11
mcf 1.57 1.01 1.21
crafty 1.40 0.99 1.17
parser 1.44 1.09 1.18
eon 1.42 1.07 1.25
perlbmk 1.40 1.07 1.20
gap 1.43 1.17 1.25
vortex 1.41 1.01 1.13
bzip2 1.47 1.15 1.24
twolf 1.48 1.02 1.16
wupwise 1.33 1.12 1.24
swim 1.58 0.90 1.13
mgrid 1.28 0.94 1.10
applu 1.37 1.02 1.16
mesa 1.39 1.11 1.22
galgel 1.47 1.05 1.25
art 1.55 0.90 1.13
equake 1.48 1.02 1.21
facerec 1.39 1.16 1.25
ammp 1.40 1.09 1.21
lucas 1.36 0.97 1.13
fma3d 1.34 1.13 1.20
sixtrack 1.58 1.28 1.42
apsi 1.40 1.14 1.23
Overall 1.58 0.90 1.20

Table 2. Multiprogrammed SPEC Speedups

tend to cause their partner to run slowly. In fact, it is the
latter. We see that swim on average sees 63% of its origi-
nal throughput, while the coscheduled thread achieves only
49% of it’s original throughput. Likewise, art on average
achieves 71% of its original throughput, whereas cosched-
uled threads achieve only 42%.

The worst speedup is achieved by swim running with
art. The best speedup is achieved by swim running with
sixtrack (although art also has the third highest speedup in
conjunction with sixtrack). Thus, swim is part of both the
best and worst pairs! Analysis of these cases with VTune
reveal that swim and art both have low IPCs due to rela-
tively high cache miss rate. When run with swim, art’s poor
cache behavior increases the L2 miss rate of swim by a fac-
tor of almost 40. In the other case, swim and art’s low IPCs
interfere only minimally with sixtrack.

The lowest speedup is below 1.0. However, the slow-
downs are uncommon, and no lower than a 0.9 speedup. In
all, only 8 of the 351 combinations experience slowdowns.
None of the slowdowns approach the worst case results pre-
dicted by Tullsen and Brown [27]. That paper identifies
scenarios, particularly with two threads, where a shared in-
struction queue could result in speedups significantly below
one for certain combinations of threads if the queue is not
designed carefully. That work also shows that a partitioned
queue, while limiting performance in the best case, miti-
gates the problem. These results for the Pentium 4 parti-
tioned queue seem to confirm that result. This architecture
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Figure 2. Multiprogrammed speedup of all
SPEC benchmarks

usually achieves its stated goal [13] of providing high isola-
tion between threads.

5.3 Parallel Multithreaded Speedup

Parallel applications exercise aspects of the multi-
threaded implementation that the multiprogrammed work-
load does not. Parallel speedup will be sensitive to the
speed and efficiency of synchronization and communica-
tion mechanisms. In addition, parallel applications have
the potential to compete more heavily for shared resources
than a multiprogrammed workload – if the threads of the
parallel program each have similar characteristics, they will
likely each put pressure on the same resources in the same
way, and a single resource will become a bottleneck more
quickly [11].

Parallel speedups for the SPLASH2 benchmarks are
shown in Figure 3. For the sake of comparison, that graph
also shows the speedup when two single-threaded copies of
that benchmark are run. The multithreaded speedup ranges
from 1.02 to 1.67, and thus is a positive speedup in all cases,
although the speedups for ocean contiguous and water spa-
tial are not significant. The multiprogrammed speedups
range from 1.06 to 1.49, with no slowdowns. It is interest-
ing to note that in three out of the eight cases, the speedup
from the parallel version is actually greater than the average
speedup from running two copies.

Figure 4 shows the results of running the NAS parallel
benchmarks compiled with OpenMP directives for the class



ba
rn

es

fm
m

oc
ea

n 
co

nt
ig

oc
ea

n 
no

nc
on

tig

ra
di

os
ity

ra
yt

ra
ce

w
at

er
 n

sq

w
at

er
 s

pa
t0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
ul

tit
hr

ea
de

d 
S

pe
ed

up

multithreaded
two self-copies

Figure 3. SPLASH2 Multithreaded and Dual-
Copy Speedups

A problem size (using the Intel compiler). The parallel
speedups for these benchmarks were more modest, rang-
ing from 0.96 to 1.16. Multiprogrammed speedups were
higher in three out of five cases than the corresponding mul-
tithreaded speedups.

5.4 Synchronization and Communication Speed

While the parallel applications indirectly measure syn-
chronization and communication speed, this section mea-
sures those quantities more directly. To measure commu-
nication speed, we construct a loop that does nothing but
alternate between threads reading a value that is protected
by a lock. We can pass the value between threads 37 mil-
lion times per second, implying that this lock and read takes
approximately 68 cycles.

A second communication component test creates two
threads that update (increment) a value repeatedly, again
protected by synchronization. On this benchmark, the com-
bined threads can update the value 14.6 million times per
second, or an update every 171 cycles. This is significantly
more than the latency of either of the caches, but less than
main memory latency.

A third test of communication is taken from Tullsen, et
al. [30], in which a loop is parallelized in interleaved fash-
ion among the threads. This loop contains a loop-carried
dependence, as well as a variable amount of independent
work. The independent work is a sequence of� serial float-
ing point computations. The metric of communication and
synchronization speed is the value of � at which the paral-
lelism of the floating point computation allows the parallel
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Figure 4. NAS Multithreaded and Dual-Copy
Speedups

version of the benchmark to outperform the single-thread
version. In that paper, it is shown that an SMT proces-
sor with the proposed synchronization mechanism (not the
same as that used for the Pentium 4) can effectively paral-
lelize a loop with more than an order of magnitude less par-
allelism than necessary for a traditional parallel machine.
A similar graph is shown in Figure 5, with different syn-
chronization mechanisms. We coded a test-and-test-and-set
spin lock with a pause instruction inside the loop. Using
this locking mechanism to synchronize between two threads
running the same code as [30], we found a break-even point
of approximately 20000 independent computations for a
hyper-threaded processor and 200000 independent compu-
tations for a traditional SMP machine. Though the SMT
processor breaks even with orders of magnitude less paral-
lel computation than the multiprocessor (as research would
lead us to expect), the actual break-even points are far differ-
ent (much higher) than those shown in [30]. We also tried
this experiment with standard pthreads based mutex locks
and unlocks, but found that the performance was much
lower that our custom coded locking routine.

5.5 Heterogeneous vs. Homogeneous Workloads

Several papers have demonstrated that an SMT proces-
sor benefits from diversity. Speedups are not as high with
traditional loop-level parallelism, because all threads put
pressure on the same resources [11, 12]. Even in a multi-
programmed workload, threads with similar resource needs
tend to achieve lower combined speedups [22].

In running the cross-product of all SPEC benchmarks,
we also run each benchmark against a version of itself (with
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Figure 5. Parallel Execution Profitability

the exact same inputs). In that configuration, the threads do
benefit from some constructive interference, in the branch
predictor and the page cache, but we still expect the low-
level conflicts to dominate those effects. In fact, the aver-
age speedup of that case was 1.11, lower than the average
speedup for all combinations of 1.20.

This phenomenon even persists for a more general def-
inition of “similar” threads. We found that the average
speedup when integer benchmarks are run with other integer
benchmarks was 1.17, the average speedup for two floating
point threads was 1.20, while the average speedup when an
integer and floating point thread are run together was 1.21.
This is a slight advantage for heterogeneity, but not nearly
as much as has been suggested by prior research. It is likely
that static resource partitioning ameliorates the effect.

5.6 Symbiosis

The term symbiosis was used to describe the range
of behaviors different groups of threads experience, some
threads cooperating well and others not [22, 23]. This phe-
nomenon was exploited to demonstrate speedups of 17%
with a symbiosis-aware OS scheduler, by creating a sched-
ule that pairs together threads that have high symbiosis
when coscheduled, in the case where more threads than
hardware contexts are time-sharing the available contexts.

We achieved speedups on SPEC ranging from 0.90 to
1.58, but it is not enough for speedups to vary for symbiotic
job scheduling to work – speedups must vary with charac-
teristics of the pair of scheduled jobs rather than the charac-
teristics of the individual threads. The expected speedup
from a random schedule of the 26 SPEC threads is just
1.20, the average speedup of all pairs. However, we can

manually create a “best” schedule, using the assumptions
of [22], where each job will be coscheduled with two others
as the system moves through a fair circular schedule, each
timeslice swapping out one of the two jobs. The expected
speedup of our best schedule, using the measurements we
already have, is 1.27, or about a 6% improvement. Thus
there is still some potential for symbiotic scheduling on this
architecture, even though there is less dynamic sharing of
low-level resources than the research SMT processor.

Despite this validation that the OS can benefit from mak-
ing a coordinated decision about job schedules, the Linux
kernel is currently not well positioned to exploit symbio-
sis. On the hyper-threading CPU it employs two instantia-
tions of the kernel scheduler, each hardware context making
its own scheduling decisions without coordination with the
other. In this configuration, exploiting symbiosis requires
communication between the two schedulers. However, if it
used a single version of the scheduler that made a single de-
cision about which two jobs to run each time slice, it would
be able to exploit symbiosis more naturally.

5.7 Compiler Interaction

Expected SMT performance has been shown to vary with
the optimizations performed by the compiler, and the ef-
fectiveness of particular compiler optimizations are affected
by the level of multithreading [16, 12]. The general trend,
however, is that multithreading makes the processor some-
what tolerant of the quality of the compiler – the expected
speedup from simultaneous multithreading is highest when
the compiler is least effective at exploiting ILP. In this sec-
tion we examine this thesis as follows. We selected a sub-
set of the SPEC benchmarks (gcc, mcf, crafty, eon, gap,
swim, mgrid, art, lucas, and sixtrack), to use as a represen-
tative subset of SPEC. Our subset has a slightly lower over-
all speedup than our original subset (1.18 vs 1.20) but it in-
cludes all the cases of highest and lowest speedups from our
original exhaustive results. We then ran the crossproduct of
these benchmarks compiled with the following optimization
levels: -O3, -O1 -xW -O1, and -O0 and compare the results
against the same subset of our baseline run, which was com-
piled with -O3 -xW -ipo. The meaning of these compiler
switches is as follows:

� -O0 Disable all compiler optimizations

� -O1 Enable global register allocation, instruction
scheduling, register variable detection, common
subexpression elimination, dead-code elimination,
variable renaming, copy propagation, constant prop-
agation, strength reduction-induction, tail recursion
elimination and software pipelining.
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Figure 6. Average multithreaded speedup for
given optimization levels, relative to single-
thread performance for the same optimization
level.

� -O3 Performs the same optimizations as -O1 and adds
prefetching, scalar replacement, and loop tranforma-
tions such as unrolling.

� -xW Enables generation of all instructions that are
available on the Pentium 4 that are not core x86 in-
structions. These include MMX, SSE and SSE2.

� -ipo Enables interprocedural optimizations within and
across multiple files.

In general, we find (Figure 6) that decreasing amounts of
optimization improves multithreaded speedup slightly rela-
tive to the degraded baseline. However, this is not enough to
make up for the performance lost. For example, -O0 has an
average multithreaded speedup of 1.24, or 3.3% better than
our fully optimized multithreaded speedup, however the av-
erage speedup relative to the fully optimized version of the
code is only 0.67. As might be expected, floating point pro-
grams suffer more in absolute terms at reduced optimiza-
tion levels, but their normalized multithreaded speedup is
only slightly lower than that of the integer programs. These
results are in line with previous research results.

5.8 Simulation Validation

Prior SMT research demonstrated a potential speedup of
about 2.5 on a dynamically scheduled superscalar proces-
sor [28]. However, that speedup was predicted for a very

different implementation than the Pentium 4. That proces-
sor had eight hardware contexts and was an 8-issue pro-
cessor with a shorter pipeline. We reconfigured the SMT-
SIM simulator [26] to model a configuation more like the
Pentium 4 hyper-threading implementation. Then we ran it
on the same reduced subset of SPEC benchmarks that were
used in the previous section.

Changes to the simulator include modifications to the
cache subsystem, accurate modeling of cache and memory
latencies, changes to fetch and commit policies, etc. The
SMTSIM simulator, however, is still emulating the Alpha
ISA, so validation is very approximate, at best.

Our results showed ranges in performance that were sim-
ilar to those we show here, and if anything predict lower
overall performance gains. Those results indicate that while
the measured overall speedup for this processor is low rela-
tive to previously published expectations, that difference is
primarily a function of the issue width of the processor and
the number of threads. When those things are taken into ac-
count, the Hyper-Threading Pentium 4 is indeed achieving
a level of performance that meets or even exceeds expected
results from the research.

6 Conclusions

This paper presents performance results for a simulta-
neous multithreaded architecture, the hyper-threading Pen-
tium 4 processor. This architecture achieves an aver-
age multithreaded speedup of 1.20 on a multiprogrammed
workload and 1.24 on a parallel workload. This processor
delivers on the promise of the published SMT research, in
light of the limitations of a dual-thread 3-wide superscalar
processor.

We find that although the processor has been designed to
minimize conflicts between threads, it still shows symbiotic
behavior due to cache and other resource conflicts. The pro-
cessor delivers an order of magnitude faster synchronization
and communication than traditional SMP systems, however
this implementation of the architecture seems to fall short
of the potential to exploit the very tight coupling of an SMT
processor to provide very fast synchronization and enable
new opportunities for parallelism.
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