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Abstract

Application-specific instruction set processors (ASIPs)
have the potential to meet the challenging cost, perfor-
mance, and power goals of future embedded processors by
customizing the hardware to suit an application. A central
problem is creating compilers that are capable of dealing
with the heterogeneous and non-uniform hardware created
by the customization process. The processor datapath pro-
vides an effective area to customize, but specialized datap-
aths often have non-uniform connectivity between the func-
tion units, making the effective latency of a function unit
dependent on the consuming operation. Traditional instruc-
tion schedulers break down in this environment due to their
locally greedy nature of binding the best choice for a sin-
gle operation even though that choice may be poor due to
a lack of communication paths. To effectively schedule with
non-uniform connectivity, we propose a foresighted latency-
aware scheduling heuristic (FLASH) that performs looka-
head across future scheduling steps to estimate the effects
of a potential binding. FLASH combines a set of lookahead
heuristics to achieve effective foresight with low compile-
time overhead.

1. Introduction

The next generation of embedded processors will need
to perform computationally demanding processing of im-
ages, sound, video, and network packets while achieving
both low cost and minimal power dissipation. Application-
specific instruction set processors (ASIPs) provide an ef-
fective strategy to meet these challenging demands. With
ASIPs, the hardware design is customized to specifically
suit the computation needs of the application. All aspects of
the processor architecture and microarchitecture can poten-

tially be customized, including the memory system, fetch
and issue logic, datapath, and control path. Through spe-
cialization, large design wins are achievable.

One area of work that has been overlooked by many re-
searchers is compilation support for ASIPs. Compiler sup-
port is critical so that these devices do not require hand-
coded assembly code. The central challenge is that the hard-
ware customization process often creates heterogeneous
ASIPs with non-standard hardware structures and irregular
connectivity. Traditional compiler techniques break down
in this heterogeneous environment. In the worst case, they
fail to produce legal code. More commonly, they yield poor
quality code that fails to take maximum advantage of the
customizations.

For this paper, we focus on one area of customization,
non-uniform function unit (FU) connectivity arising when
a processor datapath is customized. Non-uniform intercon-
nect can arise in both FU to FU as well as FU to regis-
ter file connectivity. The latter issue has been investigated
by other researchers in the context of multicluster proces-
sors [4, 11, 13, 17, 23] and DSPs [19, 20, 21]. This paper
focuses on compilation with non-uniform FU-FU connec-
tivity. FUs in a pipelined architecture are generally inter-
connected through a register bypass network. Register by-
passes, or data forwarding paths, eliminate data hazards in
pipelined processors. With bypassing, datapaths and con-
trol logic are provided so that an operation’s result is avail-
able for subsequent operations before it has been written to
an architectural register, thereby reducing the effective la-
tency of operations. Bypassing was first introduced in the
IBM Stretch and is considered a standard part of all mod-
ern pipelined processors [8].

A fully bypassed processor allows an FU to read its in-
puts from the outputs of any FU from any of the pipeline
stages subsequent to execution. The cost of implementing a
full bypass network is significant, both in terms of area and



wire delay [24]. For instance, the Alpha 21064 has 45 sep-
arate bypass paths [22]. As the number of FUs increases
or as pipeline depth grows, bypass cost increases substan-
tially. Furthermore, architectural mechanisms such as pred-
icated execution increase bypass complexity [15]. The cost
of the bypass network is contrasted with the observation that
many of the bypass paths are underutilized or not used at
all for any specific application. Therefore, there is opportu-
nity to construct an ASIP with a small fraction of the by-
pass paths that will have substantial cost savings and com-
parable performance to a processor with full bypass [3, 14].

The difficulty with a partial versus full bypass network
is that operation latencies are no longer fixed. Rather, they
are a function of the specific placement of the producing
and consuming operations. With full bypass, the latency of
a flow dependence edge (read after write) is the latency of
the FU on which the producer is placed as the bypass net-
work is equally capable of transferring the result to any con-
sumer. With partial bypass, the latency varies based on the
specific FU placement of both the producer and consumer
operations. The maximum latency (which occurs when no
bypass path is available) is the FU latency plus the time to
transfer the result to the architectural register file. Note that
the latency is not simply a choice of two values, i.e. the
end points of this range. Rather, any value in the range may
be possible since bypasses can be selectively removed from
any pipeline stage following execution back to the FU in-
puts.

Variable dependence edge latencies cause difficulties
with the instruction scheduler. These difficulties arise be-
cause instruction schedulers make locally greedy decisions
for assigning operations to FUs. Each operation is sched-
uled on the first available FU such that its start time is mini-
mized. With full bypass, greedy scheduling has proved quite
effective. However with partial bypass, the greedy choice
for the current operation may result in poor assignment
choices for dependent operations as there may be no by-
pass paths available for those operations to communicate
values. As a result, schedules are lengthened as communi-
cation is forced to go through the register file.

To deal with the variable latency problem, we propose a
foresighted latency-aware scheduling heuristic, or FLASH.
FLASH performs a lookahead across future scheduling
steps to estimate how the current placement of an operation
onto an FU×time-slot affects future decisions. A full looka-
head across the entire dataflow graph could be done, consid-
ering every possible operation×FU×time placement, how-
ever this is infeasible in terms of compile time for any non-
trivial application. Thus, the scheduling foresight must be
carried out judiciously. FLASH combines several effective
heuristics for achieving foresight with low overhead. First,
lookahead distance is constrained to a small amount. Sec-
ond, the combinatorics are reduced by considering depen-

dence paths independently and in isolation. Third, the aver-
age slack of a dependence path is used to weight the rela-
tive importance of one path over another. With FLASH, the
scheduler is able to make more intelligent placement deci-
sions to effectively reduce schedule lengths on processors
with partial bypass while incurring only a modest compile-
time overhead.

2. Background and Motivation

2.1. Hardware Overview

The architectural model used throughout this work is
that of a statically-scheduled, pipelined VLIW processor,
as shown in Figure 1(a). In such a hardware model, the la-
tency of a given type of operation is typically fixed and does
not depend on the specific resources used to execute it. For
example, a simple arithmetic operation generally takes one
cycle regardless of which ALU executes the operation. The
scheduler for such an ideal architecture does not need to
worry about which ALU an arithmetic operation is placed
on, and only needs to find a time to execute it that would
minimize the total schedule length (in itself a difficult prob-
lem).

However, real machines, especially those customized for
specific application domains, may have effective latencies
that vary depending on the specific resources used by an
operation. These variable latencies can arise for several rea-
sons. A partially-connected register bypass network, for ex-
ample, will cause latencies between producer and consumer
operations to depend on whether or not data bypasses exist
between the FUs executing the operations. Another exam-
ple is the use of variable-speed FUs – for example, a proces-
sor could have a fast multiplier as well as a slow multiplier
in order to provide flexibility for performance and power
considerations during scheduling. Yet another example of
variable latency is in the use of narrow bitwidth FUs to per-
form both narrow and wide computations [27]. In this case,
wide computations can either be broken up by the compiler
or by the hardware; in the latter case, the effective FU la-
tency is variable. In the above cases, scheduling operations
now becomes a much more difficult problem, as a poor FU
choice for an operation can have ramifications later in the
schedule.

In this work, we focus on VLIW machines that have vari-
able latency due to a partial bypass network. The bypass
network logic has previously been shown to be a major fac-
tor in the delay in modern processors [24]. In addition, as is-
sue width in current processors increases and pipelines be-
come deeper, the cost of a full bypass network significantly
increases. Given an issue width i and n pipeline stages af-
ter execution to bypass from, the full-bypass model on two-
input FUs would require (2 × i2 × n) bypass paths, result-
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Figure 1. (a) A VLIW processor pipeline with full bypass (b) A pipeline with partial bypass.

ing in a significant cost on very wide machines. Figure 1(a)
shows an example of a datapath with a full bypass network.
Each stage has the ability to forward computed results back
to the execute stage for other operations. Limiting the num-
ber of bypass paths between FUs has been shown to have
good results in cutting cost while minimizing the effect on
performance. In Figure 1(b), the same datapath is shown
with some low-utilized bypass paths removed. In this ex-
ample, each FU can forward data to itself after the execute
stage and only one of the two FUs can forward data after
the memory stage.

2.2. Motivation

Given a machine with several bypass paths removed, in-
telligent compilation support becomes much more critical.
With a full bypass machine, the choice of which specific
FU to execute an operation on has no bearing on the laten-
cies of future operations. In the case of a partial bypass ma-
chine, poor FU choices can have dramatic effects on the
schedule length; the scheduler must consider the different
delays involved with routing operands between two depen-
dent operations through the network depending on the FUs
they are placed on. A poor choice for an FU to execute on
can keep dependent operations from executing sooner be-
cause of a lack of bypass paths, and can also preclude other
dependent chains, which would prefer to use the scheduled
operation’s bypass path, from executing.

An intelligent scheduler not only must decide on when
to execute each operation, it must decide which FU to ex-
ecute it on and consider the effects of using that bypass
path. Scheduling two dependent operations on FUs with-
out a bypass path between them can dramatically change the
schedule length. By the same token, placing operations that
have significant slack or no consumers on the FUs with the
most important bypass paths can unnecessarily constrain
the schedule.

Consider the dataflow graph (DFG) in Figure 2(a), which
we will use as an example throughout the rest of the pa-
per. The datapath shown in Figure 2(b), where arrows in-
dicate bypass paths between FUs, is an example of a ma-
chine with partial bypass. For the purposes of the example,
assume each FU is universal with unit latency. A 3-cycle
latency is assumed for the data to be written to the regis-
ter file after execution. If the bypass path is used, the con-
sumer can be scheduled in the cycle immediately following
the producer; if not, then the consumer must wait 3 cycles
for the result to be written back to the register file.

A traditional list scheduler considers operations in a pri-
oritized manner. The scheduler checks the resources avail-
able (FUs are the only resource considered in this discus-
sion) to find the earliest available cycle for the operation to
execute and schedules it at that time. Thus, using the exam-
ple from Figure 2(a), assume operations are numbered with
their priority, so operation 1 would be the first one sched-
uled. The traditional scheduler has no notion of the bypass
limitations of the processor. Its only objective is to select
the FU that allows the current operation to be scheduled at
the earliest cycle. In the case of a tie, an FU is selected ar-
bitrarily. For this example, let us assume that the scheduler
simply picks the FUs in alphabetical order when ties oc-
cur. Such an arbitrary selection is typical with most sched-
ulers.

Using this strategy, operation 1 is assigned to FU A. The
process continues for each operation creating the 16-cycle
schedule as shown in Figure 2(c). It is easy to see that the
uninformed decisions made by the scheduler can result in
poor schedules. A better scheduler could have made dif-
ferent placement decisions resulting in the schedule shown
in Figure 2(d) which is half the length. The more compact
schedule was achieved by making effective use of the avail-
able bypass paths to reduce critical inter-operation commu-
nication latency. The central challenge of the scheduler is
to place operations so that producer-consumer communica-
tion can be carried out across the available bypass paths.
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Figure 2. (a) Example DFG, (b) Machine with partial bypass, Schedules generated by (c) naı̈ve scheduler and (d) scheduler
using FLASH.

However, not all communication requires the use of by-
pass paths. The key is that producer-consumer operations
on the critical path are placed to enable low-latency com-
munication through the bypass paths, such as operations 1-2
and 1-3. Conversely, non-critical operations often do not re-
quire the bypass paths (e.g., operations 2-10 and 4-11), so
the scheduler needs to ensure they do not unnecessarily uti-
lize the bypass paths, thereby precluding critical operations.

2.3. Related Work

Previous work has studied the positive effects of limit-
ing bypass connections, but failed to resolve the scheduling
issues that arise with varying latencies between operations.
Ahuja et al. [3] performed the initial study on the impact
of partial bypass, which focused on detailing the amount
of performance lost due to interlock stalls from missing by-
passes on a scalar processor. Other work [1, 9, 12] has found
that limiting the connections of the bypass network can re-
sult in little impact on performance while greatly decreas-
ing cost.

In our previous work [14], we started with a fully con-
nected bypass network and systematically removed unnec-
essary bypass paths based on utilization statistics. Given
a machine with partial bypass, code was sent through an
FU prioritization phase which first annotated each opera-
tion with a list of preferred FU alternatives for assignment.
This list was created by examining possible FU assignments
and available bypass paths to forward results between them.
Assignments were ranked in a way which best makes use of
the resources. The annotated list was then used as a hint
to help the scheduler decide which FU to execute the oper-
ation on. Two methods were used, one using a bottom-up
greedy approach and the other using a linear programming
technique.

Past work has studied the effects of scheduling in a
lookahead manner In the realtime domain, where each op-
eration has a set range of time in which it must execute
in order to generate a valid schedule. Allan et al. [5] in-
troduced the concept of foresighted instruction scheduling,
which places operations only if their placement does not
constrain the schedules of future operations into forcing an
invalid schedule. This greatly increases the likelihood of
generating valid schedules, but breaks down when a more
constraining operation is scheduled after an unconstrained
one, due to factors such as having a higher priority. Beaty
introduced a technique called Lookahead Scheduling [6, 7],
which not only looked at whether the placement of an op-
eration would constrain future placements, but also placed
those future operations so other unconstrained operations
would not prevent a valid schedule from forming. Both the
foresighted and lookahead techniques differ from our study
in that they have a notion of valid and invalid schedules;
their focus is mainly to place operations in any way possi-
ble to find a valid schedule.

Lookahead based scheduling schemes have also been
studied in the context of job scheduling [26] to minimize
average job waiting time and in the area of artificial intelli-
gence for reducing the search space in solving constraint
satisfaction problems [16]. Backtracking schedulers have
the potential to generate better schedules at the expense
of compile-time by unscheduling operations that have been
scheduled to make room for the current operation. They
have been evaluated for effectively filling branch delay slots
in [2]. Also, Iterative Modulo Scheduling [25], an algorithm
for software pipelining innermost loops, is based on back-
tracking.

Previous work in multi-cluster compilation has similari-
ties to our work, as a scheduler for such architectures must
consider the added latencies required for scheduling depen-



dent operations on different clusters. Buss et al. [10] investi-
gated a similar problem but was more focused on minimiz-
ing the amount of inter-cluster moves necessary in a clus-
tered microarchitecture. Although the topic of their study
was similar, they approached the problem from another an-
gle. They first scheduled the code in a way where depen-
dent operations had a preference to be scheduled to the same
FU. Then, after scheduling, they decided on a grouping into
clusters and removed unnecessary bypass paths. Our work
approaches the problem from the standpoint of scheduling
for an already fixed partial bypass network. Another related
work is that of Özer et al. [23], whose Unified Assign and
Schedule algorithm dealt with multiple latencies resulting
from operations assigned to different clusters in a multi-
cluster VLIW datapath. They used a modified list sched-
uler, which implicitly adjusted flow-dependency latencies
if multiple predecessors were preassigned to different clus-
ters, thus requiring an inter-cluster move to be inserted.

3. FLASH Technique

The FLASH technique is described in this section. Sec-
tion 3.1 describes the naı̈ve list scheduler, which is our base-
line, and point out its shortcomings when scheduling for
a machine with partial bypass. A scheduling technique us-
ing exhaustive search is described in Section 3.2 in order
to provide some insights into the complexity of the prob-
lem of scheduling for a machine with partial bypass. In Sec-
tion 3.3, some key observations are made that drove the de-
sign of the FLASH algorithm. The algorithm is described in
Section 3.4.

3.1. Naı̈ve List Scheduler

Algorithm 1 shows the operation of a regular list
scheduling algorithm. The algorithm maintains an or-
dered list of operations that have yet to be scheduled,
called the ready list. Typically, a height based prioritiza-
tion is used to order the list, i.e. the higher an operation is in
the data dependence graph, the higher its priority. This en-
sures that producers are scheduled before consumers,
which is essential for one-pass scheduling. The algo-
rithm picks an operation from the list and tries to sched-
ule it at the earliest possible time (stime). Of course, there
may be no free resource available to execute the operation
at stime. As shown in Line 1, the algorithm checks for re-
source availability at a later time, looping until a time slot
is found when a free resource is available to execute the op-
eration. The operation is scheduled on that resource at that
time slot.

The main drawback of Algorithm 1 when applied to a
machine with partial bypass concerns Line 2 in the pseudo
code. The scheduler greedily schedules an operation on a

while (ReadyList is non-empty)
do

op← Next unscheduled operation in priority order ;
stime← Earliest time when op can be scheduled ;

1 while (no free resource available to execute op at stime)
do

stime← stime + 1 ;
end

2 res← Free resource capable of executing op ;
3 schedule(op, res, stime);

end

Algorithm 1. List scheduling algorithm.

resource that is available at the earliest time. Furthermore,
when more than one resource is available to execute the op-
eration, the scheduler picks one arbitrarily. These choices
can result in good schedule quality on a machine with uni-
form/complete bypass, however, intelligent choices of re-
sources and times for operations becomes crucial on a ma-
chine with partial bypass. As described in Section 2, the
naı̈ve scheduler achieves a 16 cycle schedule for the DFG
shown in Figure 2(a) on a machine shown in Figure 2(b),
which is 50% longer than necessary..

3.2. Exhaustive Scheduler

One way to improve the scheduling decision of an FU for
an operation is to consider the effects of the current decision
on all future decisions, accounting for all of the interactions
between dependent operations, resources, and bypass paths.
In other words, for each possible resource and time assign-
ment for a given operation, the scheduler could look at pos-
sible resource and time assignments for future operations,
taking into account bypass path availability, and choose the
assignment that gives the shortest overall schedule length.
Figure 3 shows a portion of the DFG shown earlier. As-
sume that operation 6 (shaded) has already been scheduled
on FU C at time 0, and operation 7 (in bold) is currently be-
ing scheduled. The table in Figure 3 shows some of the pos-
sible resource and time assignments that can be given to op-
erations 7 through 9, taking into account resource and by-
pass path availability. The goal is to minimize the start time
of operation 9, which can be achieved by performing any
of the assignments in the shaded rows. Therefore, the best
choice would be to schedule operation 7 on FU B at time 0.

Note that there are quite a lot of scheduling possibili-
ties. Each of the three operations can be assigned on any of
FUs A, B, or C. Furthermore, for each of these operation-to-
FU assignments, the operation can be scheduled in various
time slots. Notice in Figure 3, for example, that when con-
sidering operation 7 on FU C, the overall schedule length
is shorter when operation 7 is scheduled at time 2 rather
than time 1. This is because operation 8 is constrained by
the availability of bypasses from both operations 6 and 7.
Thus, it is insufficient to simply try the earliest time that re-
sources are available.
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op 7 op 8 op 9
FU start FU start FU start
A 0 A 3 A 6
A 0 A 3 B 6
A 0 A 3 C 6
A 0 B 3 A 4
A 0 B 3 B 4
A 0 B 3 C 4
A 0 C 3 A 6
A 0 C 3 B 4
A 0 C 3 C 4
B 0 A 3 A 6
B 0 A 3 B 6
B 0 A 3 C 6
B 0 B 1 A 2
B 0 B 1 B 2
B 0 B 1 C 2
B 0 C 1 A 4
B 0 C 1 B 2
B 0 C 1 C 2

op 7 op 8 op 9
FU start FU start FU start
C 1 A 4 A 7
C 1 A 4 B 7
C 1 A 4 C 7
C 1 B 4 A 5
C 1 B 4 B 5
C 1 B 4 C 5
C 1 C 4 A 7
C 1 C 4 B 5
C 1 C 4 C 5
C 2 A 5 A 8
C 2 A 5 B 8
C 2 A 5 C 8
C 2 B 3 A 4
C 2 B 3 B 4
C 2 B 3 C 4
C 2 C 3 A 6
C 2 C 3 B 4
C 2 C 3 C 4

Figure 3. In the DFG, assume that operation 6 is scheduled at time 0 on FU C. Tables show some possible combinations of
valid FU and start time assignments for operations 7, 8, 9. The shaded rows show assignments that give the earliest start time
for operation 9.

In general, for a simple machine where all FUs can exe-
cute any operation, the number of possibilities that an ex-
haustive foresighted scheduler would need to consider is
(r × t)n, where r is the number of FUs, t is the number of
time slots that must be considered for each operation-to-FU
assignment, and n is the number of operations from the cur-
rent operation to the end of the scheduling region. Assum-
ing that three time slots need to be checked for each possi-
ble operation-to-FU assignment in our mini-example1, this
yields (3× 3)3 = 729 possibilities. Clearly, for a larger ex-
ample the number of possibilities would grow out of hand.

3.3. FLASH Overview

In this section we describe FLASH, which enhances a
regular list scheduler when scheduling for a machine with
non-uniform resource latencies arising due to partial bypass
interconnect. As seen in Section 3.2, the scheduler could
resort to performing an exhaustive search, and decide on an
FU and time slot for an operation depending on the best out-
come from all possibilities. However, an exhaustive search
is infeasible for real programs. We can intuitively see that
a limited search can still be useful for deciding on an FU
for an operation, though. This intuition is formalized in the
foresighted latency-aware scheduling heuristic (FLASH).
Concisely, FLASH performs a limited search of possibil-
ities and evaluates these possibilities to decide on an FU
for the current operation under consideration. We first pro-
vide an informal description of how FLASH tries to limit
the search and provide a formal description of the heuris-
tic in the next section. FLASH manages the search in four

1 Due to the maximum bypass latency being three cycles.

ways: limiting search depth, considering dependence chains
independently, weighting chains by slack, and ignoring fu-
ture resource constraints.

Limiting Search Depth. As seen in Section 3.2, the
number of possibilities is dependent on the depth of the
dependence chain of the DFG. Instead of considering all
possibilities up to the last operation in a dependence chain,
we can consider all possibilities for operations that are at
a a certain depth of the chain. We parameterize FLASH by
the depth in the dependence chain to which we perform the
search. Intuitively, this is a good approximation as the place-
ment decision of an operation has the largest effect on its
immediate consumers. The next layer of consuming opera-
tions are affected, but indirectly by placement limitations on
their producers caused by the placement of the original op-
eration. Each layer adds another level of indirection, result-
ing in diluted effects further down the dependence chain.
Therefore, most of the lookahead benefits can be extracted
by examining a small window of future operations.

Considering Dependence Chains Independently.
Even with a limited depth, the number of possibili-
ties could be still large. In programs with high ILP, there
can be a large number of dependence chains originat-
ing from a given operation. Suppose we are considering de-
pendence chains of length l and there are n dependence
chains originating from a given operation in the DFG. As-
suming that all operations are uniform and there are r

FUs in the machine to which these operations can be as-
signed, then there are rn×l+1 possible assignments of
operations to FUs. However, FLASH considers each de-
pendence chain independently, which gives only n × rl+1

possibilities.
The intuition behind this assumption is that latency-



aware placement is critical in dependence height con-
strained code regions. Critical dependence chains need to
be carefully placed onto FUs so that communication la-
tency is minimized. The placement decision concerns
a single operation, thus its effect on subsequent opera-
tions is the most important consideration. The interac-
tion with other dependence paths is less important and
will be accounted for when other operations are evalu-
ated.

Weighting Dependence Chains. Dependence chains are
considered independently, but intuitively each is not equally
important. Delaying critical paths is generally much more
costly than non-critical paths and optimizing the critical
paths generally leads to a better schedule. To account for the
differential importance, FLASH weights the dependence
chains based on their criticality (inverse of slack), so that
the choice of FU for the current operation is better with re-
spect to the more critical dependence chains.

Ignoring Resource Constraints. To accurately evalu-
ate the effect of an assignment of operations to FUs on the
schedule time, we need to lookup the resource reservation
table to see if an FU is free at various times depending on
the assignment we are evaluating. This will mean n × rl+1

lookups to the reservation table are needed when an oper-
ation has n dependence chains originating from it and all
l-deep dependence chains are evaluated. When evaluating a
possible assignment in FLASH, however, we make the sim-
plifying assumption that FUs are free to execute the opera-
tions. Thereby, we avoid the costly lookups into the reser-
vation table.

The intuition behind this assumption is that latency-
aware placement is less important in resource limited code
regions. When the code is resource limited, increases in
producer-consumer latencies due to poor FU placement will
have a small affect. Conversely, in dependence limited code
regions, efficient use of bypasses is critical to achieving a
compact schedule. In these regions, sufficient resources are
generally available. Thus, FLASH assumes sufficient re-
sources are available and optimizes placement exclusively
for latency. For resource constrained code regions these de-
cisions will not be very effective, but they will not hurt per-
formance. Conversely, in dependence constrained regions,
good decisions will be made.

3.4. FLASH Algorithm

The pseudo code of the list scheduler using FLASH is
shown in Algorithm 2. The main addition to the naı̈ve list
scheduling algorithm is in Line 1 of Algorithm 2. For ev-
ery possible resource rop that the current operation op can
be scheduled on, we compute the FLASH RANK, which
is an estimate of the earliest schedule time of all the k-th
successors of op. We then choose the resource res which

Data : k, the evaluation depth
begin

while (ReadyList is non-empty)
do

op← Next unscheduled operation in priority order ;
stime← Earliest time when op can be scheduled ;
while (no free resource available to execute

op at stime)
do

stime← stime + 1 ;
end
res set← Set of all resources that can execute op ;

1 res← rop ∈ res set such that
FLASH RANK(op, rop, k) is minimum;

2 while (res is not free at stime)
do

3 stime← stime + 1;
end
schedule(op, res, stime);

end
end

Algorithm 2. List scheduling algorithm using
FLASH.

has the minimum FLASH RANK, i.e. the resource which
makes the schedule time of k-th successor of op as early as
possible. Lines 2-3 of Algorithm 2 ensure that the sched-
uler schedules op on res, even if it is not available early.
This is markedly different from the naı̈ve scheduler which
greedily picks whichever resource is available at the earli-
est time.

Algorithm: FLASH RANK
Data : a, the operation to be scheduled, ra, the resource on

which it can be scheduled, k, the evaluation depth.
RANK = -MAXINT ;
for (Si ∈ {S

k
1 , Sk

2 , ...Sk
p}, all dependence chains

originating from a)
do

(ai1 , ai2, ...aik)← Si ;
1 best sched time←MAXINT ;
2 for ((r2 ∈ R2, r3 ∈ R3,... , rk ∈ Rk),

Rj is the set of FUs that can execute aij )
do

3 sched time← CST (ai1 , ...aik, ra, r2, ... rk) ;
4 if sched time < best sched time then
5 best sched time← sched time ;

end
end

6 rank of S← 1
slack(aik)+1

× best sched time;
7 if rank of S > RANK then
8 RANK← rank of S ;

end
end
return RANK;

Algorithm 3. Function to compute FLASH RANK
of an operation.

Algorithm 3 shows the pseudo code for the
FLASH RANK function. Given an operation a and a re-
source ra that the operation can be scheduled on, this
function estimates the schedule length of all k-deep depen-



dence chains originating from a. Note that we parameter-
ize FLASH RANK by k, the depth to which we limit our
evaluation in the data flow graph. Assume the k-deep de-
pendence chains of operation a are named {Sk

1 , Sk
2 , ...Sk

p}.
Note that each dependence chain has k operations and
there are p dependence chains. Each of Sk

i is an ordered
list of operations, Sk

i = {ai1, ai2, ...aik}, and the first el-
ement of each of these ordered lists is the operation a,
i.e. aij = a for j = 1 and i = 1, ..., p. For each depen-
dence chain Sk

i , Lines 1-5 calculate the best schedule length
possible, by considering all possible assignments of the op-
erations ai1, ai2, ...aik to FUs. Note that the best sched-
ule length of Sk

i is the earliest schedule time of operation
aik. Let R1, R2, ... , Rk be the sets of FUs which can ex-
ecute operations ai1, ai2, ... , aik respectively. Note that
some of these sets could be equal if they correspond to sim-
ilar operations. The number of possible ways of schedul-
ing these k operations is |R1| × |R2| × ... × |Rk|. Given
the operations ai1, ai2, ... , aik and the FUs r1 ∈ R1,
r2 ∈ R2, ... , rk ∈ Rk, Algorithm 4 calculates the sched-
ule time of aik on rk. As mentioned before, this function
does not consider whether the resources are free, thus avoid-
ing lookups to the reservation table. Thus, we get only an
estimate of the schedule time of aik.

The rank of the current dependence chain is calcu-
lated in Line 6 of Algorithm 3 which is the schedule length
of the dependence chain weighted by 1

slack(aik)+1 . This
multiplicative factor ensures that we give less weight to de-
pendence chains which are not on the critical path. Lines
7-8 make sure we return the rank which is maximum
of the ranks of the dependence chains {Sk

1 , Sk
2 , ...Sk

p}.
Thus, the function FLASH RANK essentially com-
putes:
MAX(weighted-min-sched-length(Sk

1), weighted-min-
sched-length(Sk

2 ), ..., weighted-min-sched-length(Sk
p)),

given that the operation a is scheduled on FU ra. The
MAX function ensures that we get the (best) sched-
ule length of the dependence chain that is most con-
strained by latency. Also, since we are weighting these
schedule lengths by the criticality of the dependence
chains, we see that FLASH RANK is a very good es-
timate of how early a critical operation dependent on
the current operation a can start executing, if we sched-
ule it on ra. By choosing an FU for a with the minimum
FLASH RANK, we ensure that a critical operation depen-
dent on a can start early.

3.5. FLASH Example

To illustrate the application of the FLASH algorithm,
we return to the example in Figure 2(a) and walk through
the scheduling steps for some operations in the DFG. Con-
sider operation 1. Let us limit our lookahead depth to 1 for

Algorithm: CST
Data : (a1 , a2, ..., ak, r1, r2, ...rk)
stime← earliest time a1 can be scheduled on r1
for (i← 2 to k)
do

etime←MAX(stime + latency of operation ai−1,
earliest start time of ai);

while (no bypass path exists between ri and ri−1
at cycle (etime - stime))

do
etime← etime + 1;

end
stime← etime ;

end
return stime ;

Algorithm 4. CST : (COMPUTE SCHED TIME) :
Function to find schedule length of a dependence
chain, given an assignment of FUs to all opera-
tions in the chain.

Operation 1 Operation 2
FU stime FU stime
A 0 A 3
A 0 B 3
A 0 C 3
B 0 A 1
B 0 B 1
B 0 C 1
C 0 A 3
C 0 B 1
C 0 C 1

Table 1. Estimating schedule time for operation 1.

simplicity. There are three first successors for operation 1,
namely operations 2, 3, and 4. Each of these operations can
be executed on any of the FUs A, B, or C. Also, since all
the operations are on the longest path to the exit operation
9, their slack is 0. Table 1 lists the possible schedule times
for operations 1 and 2. Note that operation 1 can be sched-
uled at a later cycle, but these choices will only increase the
schedule time of operation 2, and are not shown in the ta-
ble. The best schedule time for operation 2 is cycle 1 and
can be achieved by scheduling operation 1 on either FU B
or FU C. The possible schedule times for the operation pairs
1–3 and 1–4 look similar to Table 1, and the best schedule
times for operations 3 and 4 is achieved by scheduling oper-
ation 1 on either FU B or FU C. Thus, Algorithm 3 will re-
turn the FLASH RANK of 1 for both FUs B and C, and the
scheduler can assign operation 1 to either FU B or C. As-
sume the scheduler chooses function units in alphabetical
order and assigns operation 1 to FU B.

Now, let us consider operation 4. The scheduler has al-
ready scheduled operations 1 and 2 on FU B and operation
3 on FU C. One of the first successors of operation 4 is oper-
ation 5 and both operations have slack 0. Table 2 shows the
possible schedule times for operations 4 and 5. The earliest
time that operation 4 could be scheduled is 1 and only FU A



Operation 4 Operation 5
FU stime FU stime
A 1 A 4
A 1 B 4
A 1 C 4
A 2 A 5
A 2 B 5
A 2 C 5
B 2 A 5
B 2 B 5
B 2 C 5
C 2 A 5
C 2 B 5
C 2 C 5

Table 2. Estimating schedule time for operation 4.

is free at cycle 1. If operation 4 is scheduled on FU A at cy-
cle 1, then the earliest time operation 5 can be scheduled is
cycle 4, because FU A does not have any bypass paths from
its outputs. Note that operation 4 can also be scheduled at
cycle 2 in any of the FUs. When operation 4 is scheduled
at cycle 2, the best schedule time for operation 5 is cycle 5.
Operation 4 also has another first successor, namely opera-
tion 11, which has a slack of 3. The weighting factor in line
6 of the Algorithm 3 for operation 11 is 1

3+1 = 0.25. Con-
sequently, the values of rank of S corresponding to oper-
ation 5 will dominate those of operation 11 and eventually
Algorithm 3 will return the FLASH RANK of 4 for oper-
ation 4. Therefore, the scheduler schedules operation 4 on
FU A at cycle 1.

The schedule that follows is shown in Figure 2(d). Note
that the length of this schedule is only 8 cycles as compared
to the length of the schedule generated by a naı̈ve scheduler,
which is 16 cycles. Also, we see that there is better utiliza-
tion of the bypass paths in the schedule generated by sched-
uler using FLASH. The next section shows the performance
of FLASH on some real benchmarks.

4. Experimental Results

The proposed system was implemented using the Tri-
maran toolset [28], a retargetable compiler framework for
VLIW/EPIC processors. Experiments were run on a sub-
set2 of the SPECint2000 and MediaBench [18] benchmark
suites. The machine model used was a VLIW machine ca-
pable of issuing 4 integer, 2 floating point, 2 memory and
1 branch instructions per cycle. The FU latencies are simi-
lar to those of the Intel Itanium. A perfect memory system
with 2-cycle load latency is assumed.

Two configurations of the bypass network were used for
the experiments. The first configuration is specific to in-
dividual benchmarks and is the machine which can sus-

2 Benchmarks were omitted from the results because they could not be
successfully compiled with Trimaran.

Register File

F M I I MI FBI

Figure 4. Bypass configuration of the two-cluster-like
machine.

tain 95% of the performance of a fully bypassed configu-
ration. This is termed the application-specific bypass con-
figuration. In our previous work [14], we found that on
average, only 40% of the cost of nonzero-utilized bypass
paths is required to sustain 95% of the performance, so
these machines represent designs that might reasonably be
obtained with application-specific customization. Detailed
discussion on how this bypass configuration is determined
is given in our previous work. In the second configuration,
FUs are divided into two groups, each group having 2 in-
teger, 1 floating point and 1 memory unit. The FUs in a
group bypass data among themselves without any extra la-
tency. One integer unit from each of the groups can by-
pass to the branch unit as well. A pictorial representation
of the machine is shown in Figure 4. In the experiments,
we compare FLASH with the naı̈ve list scheduling algo-
rithm and also with another scheduling heuristic [14] which
assigns resource preferences to operations during a pre-
scheduling phase. This heuristic is referred to as Greedy
Resource Preference (GRP) and is based on the Bottom-Up
Greedy method proposed in [13].

Figure 5 shows the speedup achieved by FLASH over
the naı̈ve list scheduler on a machine with application spe-
cific bypass configuration. Speedups achieved by the GRP
scheduling heuristic are also shown. The labels in the fig-
ure refer to the depth FLASH was limited to for evaluation
of all possibilities. For example, LA1 refers to a lookahead
depth of 1, where only the next operation in the dependence
chain is considered for deciding FU assignment.

Figure 5 shows that on average, LA1 performs 24% bet-
ter than the naı̈ve scheduler, with a maximum speedup of
55% for the rawdaudio benchmark. The scheduler using
FLASH achieves an average of 4% more speedup than a
scheduler using GRP. Increasing the lookahead depth of
FLASH from 1 to 2, yields 1% more speedup. Speedup
does not improve for lookaheads beyond 3, however. As
explained in Section 3.3, the placement decisions for an
operation has maximum effect mostly on its immediate
consumers. Thus, considering operations further down the
dependence chain has little effect on placement decisions
for many benchmarks. For some benchmarks, the speedup
achieved using a smaller lookahead is actually better than
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Figure 6. Speedup with GRP and FLASH compared to
the traditional list scheduler on a machine with a two-
cluster-like configuration.

the speedups when using a larger lookahead. This is mostly
due to the simplifying assumptions in the heuristic deal-
ing with evaluation of FU assignments. Dependence chains
are evaluated independently in the heuristic and no reser-
vation table lookups are performed to check whether the
FUs are free. This sometimes leads to imperfections in the
FLASH RANK for an operation.

Note that, even though FLASH performs better than
GRP on average, GRP performs better than FLASH in
some benchmarks like 253.perlbmk, 300.twolf,
unepic, and mpeg2dec, as seen in Figure 5. As de-

scribed in [14], GRP takes a global view of the schedul-
ing region when assigning resource preferences. The global
view enables better decisions and hence better schedules
in some cases compared to the local decisions made by
FLASH. However, since GRP is done as a pre-scheduling
phase, it is not adaptive when the actual scheduler decisions
differ from the suggested resource preferences. This behav-
ior can occur because of the greedy nature of the sched-
uler or the cross-interaction of dependence paths that the
GRP heuristic ignores. In fact, the resource preferences for
later operations tend to be noticeably less useful than for
earlier operations due to this behavior. On the other hand,
since FLASH is applied during scheduling, it is able to bet-
ter adapt to each successive scheduler decision. An adaptive
GRP algorithm that changes resource preferences dynami-
cally can potentially yield better schedules, and could be the
subject of future research.

Figure 6 shows the speedup achieved by FLASH sched-
uler on a machine with two-cluster like configuration. The
FLASH scheduler achieves a speedup of 11%, which is
4% more than the speedup achieved by the GRP scheduler.
Since this machine has more bypass paths than the previ-
ous configuration, the naı̈ve scheduler itself achieves a good
schedule. Therefore, the headroom available for the FLASH
scheduler is much less compared to the previous configura-
tion. This explains why the average speedup in these exper-
iments is 11% as compared to 24% for the previous config-
uration.

Figure 7 compares the schedule lengths achieved by the
FLASH scheduler on a machine with two-cluster like con-
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Figure 7. Slowdown with FLASH on a two-cluster-like
machine compared to the traditional list scheduler on a
machine with full bypass.

figuration to the schedule lengths achieved by the naı̈ve
scheduler on a machine with complete bypass. Lookahead
depth of 2 was used for this experiment. The schedule
lengths achieved on a machine with full bypass is almost
like an upper-bound on the performance of the FLASH
scheduler, because schedule length on a machine with par-
tial bypass cannot be shorter than the schedule length on
a machine with complete bypass. The average slowdown
across the MediaBench and SPECint2000 benchmarks is
21%. In other words, the FLASH scheduler is able to
achieve performance within 21% of the upperbound on an
average. pegwitenc and pegwitdec have more than
30% slowdown. Since the configuration is similar to a 2-
cluster machine latency-wise, a global partitioning-based
approach is better suited than FLASH in this case. How-
ever, FLASH performs well on configurations that have ir-
regular latencies at a fine grain level.

Figure 8 shows the utilizations of the bypass paths on
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Figure 8. Number of bypass paths utilized per cycle
when scheduled with naı̈ve and FLASH schedulers.

the machines with application-specific bypass paths when
the application was scheduled with the naı̈ve scheduler and
FLASH scheduler. The y-axis shows the average number
of bypass paths used per cycle. The figure shows that by-
pass utilization is 1.5 paths per cycle when the application
is scheduled using FLASH as compared to 1.1 paths per cy-
cle when the naı̈ve scheduler is used. This demonstrates that
the FLASH scheduler chooses FUs that make use of bypass
paths more often than the naı̈ve scheduler. Thus, the intel-
ligent choice of FUs for operations increases the utilization
of the bypass network, consequently improving the perfor-
mance of the application.

Table 3 shows the average slowdown in scheduling times
with the FLASH scheduler. The first row shows the average
slowdown over all benchmarks. For some benchmarks the
compilation time was very small, so even though the ab-
solute slowdown was only a couple of seconds, the slow-
down ratio was more than 100%. These outliers were ig-
nored when computing the average slowdowns. The table
shows that LA1 has a modest slowdown of 26%, whereas
LA4 has 59% slowdown, once the outliers are accounted
for. However, since scheduling is only one phase in the en-
tire compilation run, we expect that the overall slowdown
will be only modest. Thus, FLASH can be practically in-
cluded in compiler software.

5. Conclusion

In this paper, we have developed a foresighted latency-
aware scheduling heuristic (FLASH) to intelligently sched-
ule operations on application-specific processor datapaths.
Customized datapaths often result in non-uniform latency
between the function units. Traditional instruction sched-
ulers break down in this environment due to their locally
greedy nature of binding the best choice for a single op-
eration even though that choice may lead to poor choices
for dependent operations. FLASH combines a set of simple
lookahead heuristics to achieve effective foresight with low
compile-time overhead. For a set of application-specific dat-
apaths, FLASH achieves an average performance improve-
ment of 23% to 25% as the lookahead depth is varied from
one to four operations over a traditional scheduler. This per-
formance gain is achieved by putting bypass paths to more
effective use. FLASH increases bypass utilization by 41%.
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GRP LA1 LA2 LA3 LA4
Average 22% 30% 58% 58% 103%
Average w/o outliers 22% 26% 52% 52% 59%

Table 3. Average slowdown in scheduling times.
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