
Organizing the Last Line of Defense before Hitting the Memory Wall for CMPs

Chun Liu Anand Sivasubramaniam Mahmut Kandemir

Dept. of Computer Science and Eng.,
The Pennsylvania State University,

University Park, PA 16802.
{chliu,anand,kandemir}@cse.psu.edu

Abstract

The last line of defense in the cache hierarchy before
going to off-chip memory is very critical in chip multi-
processors (CMPs) from both the performance and power
perspectives. This paper investigates different organiza-
tions for this last line of defense (assumed to be L2 in
this paper) towards reducing off-chip memory accesses. We
evaluate the trade-offs between private L2 and address-
interleaved shared L2 designs, noting their individual ben-
efits and drawbacks. The possible imbalance between the
L2 demands across the CPUs favors a shared L2 organiza-
tion, while the interference between these demands can fa-
vor a private L2 organization. We propose a new architec-
ture, calledShared Processor-Based Split L2, that cap-
tures the benefits of these two organizations, while avoid-
ing many of their drawbacks. Using several applications
from the SPEC OMP suite and a commercial benchmark,
Specjbb, on a complete system simulator, we demonstrate
the benefits of this shared processor-based L2 organization.
Our results show as much as 42.50% improvement in IPC
over the private organization (with 11.52% on the average),
and as much as 42.22% improvement over the shared inter-
leaved organization (with 9.76% on the average).

1. Introduction

The ability to pack billions of transistors on-chip
has opened the doors to an important trend in build-
ing high-performance computer systems. Rather than
throwing all these resources into a single processing core
and making this core very complex to design and ver-
ify, chip-multiprocessors (CMPs) consisting of several sim-
pler processor cores can offer a more cost-effective and
simpler way of exploiting these higher levels of integra-
tion. CMPs also offer a higher granularity (thread/process
level) at which parallelism in programs can be ex-
ploited by compiler/runtime support, rather than leaving
it to the hardware to extract the parallelism at the instruc-
tion level on a single (larger) multiple-issue core. All these
compelling reasons motivate the trends toward CMP ar-
chitectures, and there is clear evidence of this trend in the
several commercial offerings and research projects address-
ing CMP designs [16, 10, 13, 14, 15, 3].

The advantage of moving to multiple cores within one
die reduces off-chip communication costs (both time and
power) between the processor cores that are incurred in tra-
ditional SMPs (symmetric multiprocessors). At the same

time, this tighter integration exerts an even higher pressure
on off-chip accesses to the memory system — there are
several cores that need to access the memory system, and
they may have to possibly contend for the same buses/pins
to get there. With inter-processor communication/sharing
costs going down in CMPs (compared to SMPs), the laten-
cies and contention for off-chip accesses to the memory sys-
tem become even more significant.

As always, caches are an elegant solution to this prob-
lem and one needs to use larger and smarter caches to con-
trol off-chip costs. A considerable space and power bud-
get in CMPs is consequently devoted to the cache hierar-
chy. Closest to the processing datapaths are the L1 caches
that serve the most frequent case of the requests, and where
access times are extremely critical. Rather than making L1
caches very large, or providing numerous ports for concur-
rent access by all cores, it is more important to not increase
their access times by doing so. Consequently, L1 caches are
kept private to a datapath, and may not be as large. We use
the termprivateto imply that a datapath does not have to go
across a shared interconnect to get to its assigned unit. Fur-
ther, data in one of these units can get replicated in unit(s)
assigned to others as will be detailed later. Note that L1
caches assigned to each datapath to service its requests, that
also service/snoop coherence traffic coming from an inter-
connect (without loss of generality, we will use a bus as the
shared interconnect), are still classified as private in our ter-
minology.

We can keep adding further levels of caches to exploit
program locality, until we get to the “last line of defense”
before we have to go off-chip. At this level, it is more im-
portant to reduce the probability of going off-chip than op-
timizing its access times. Consequently, we have to provide
large capacities for this level of the hierarchy, which raises
the following question —How should we organize this level
of the cache hierarchy to provide good performance in a
fairly power-efficient manner?— that this paper sets out to
explore. Note that this last line of defense has not only got
to reduce the off-chip accesses to memory, but also serves a
vital role in facilitating sharing and inter-processor commu-
nication.

Without loss of generality, in this paper, we use L2 as the
last line of defense, i.e., the last level of the cache hierarchy,
before a request needs to go off-chip. We assume that any
additional levels of the cache hierarchy between L1 and this
last level to be subsumed by the reference stream coming to
L2. L2 is the last line of defense in several CMPs [16, 3].

There are two obvious alternatives for organizing the L2
structure for CMPs:

• The first approach is to use aPrivate L2organization



[8]. Here, the L2 cache space is partitioned between
the processor cores equally, and each core can access
its L2 space without going across the shared bus. Typi-
cally, upon an L2 miss, you also consult other L2 units
(they snoop on the bus) to find out if they have data
and go off-chip otherwise.

• The second approach, which is also the organization
in current chip multiprocessors such as the Piranha [3]
and Hydra [16], is to use aShared L2,wherein the L2
cache is placed on the other side (not on the proces-
sor side) of the bus, i.e., the shared bus is between L1s
and L2, and the coherence actions take place between
the L1s. Upon missing in the L1s, L2 is looked up and
only upon a miss is an off-chip access needed.

There are pros and cons for each approach. In the private
L2 case, the cache units are closer to a processor, not re-
quiring bus accesses in the common case, reducing both ac-
cess latency and bus contention. The downside is that data
blocks can get duplicated across the different L2 units, de-
pending on how prevalent data sharing is. This can lessen
the overall effectiveness of how many blocks can be main-
tained on-chip. The other drawback is that physically parti-
tioning these L2s and pre-assigning them to each core can
introduce load balancing problems, i.e., one L2 unit may be
over-utilized while another is grossly under-utilized. These
drawbacks are not a problem in the case of the shared L2,
since the L2 structure can be viewed as one big shared unit,
where there is no duplication of blocks, and load balanc-
ing can be addressed with possible non-uniform distribution
of L2 space. The downside for the shared L2 organization
is the possible interference between the CPUs in evicting
each other’s blocks, together with the higher latency (and
contention) in getting to the L2 over the shared intercon-
nect upon an L1 miss.

The other organization issue with shared L2 is that it
is not very desirable to maintain this structure as one big
monolithic unit (note that private L2 automatically keeps
this as several equally-sized chunks). The dynamic power
consumption per access for a cache structure [18, 5] is
largely dependent on its size amongst other factors, and for
reasons of thermal cooling and reliability considerations we
want to keep the power consumption low for this on-chip
structure. The common solution for handling this is tosplit
the L2 cache into multiple banks that are individually ad-
dressed so that the dynamic power expended for an access
becomes much smaller. The addresses can be interleaved
between these banks, causing successive blocks to fall in
different banks, and we refer to this structure asShared In-
terleaved (SI) L2.

To our knowledge, there is no prior in-depth investiga-
tion of how to organize this last line of defense from the
memory wall for CMPs by evaluating the trade-offs be-
tween these different approaches. In addition to evaluating
these trade-offs using several applications from the SPEC
OMP [2] suite and the Specjbb [23] commercial benchmark,
on the Simics [21] full system simulator, this paper makes
the following contributions:

• We present a new L2 cache organization calledShared
Processor-Based SplitL2 cache as the last line of de-
fense. This structure is similar to a shared interleaved
L2 in that there are multiple (smaller) L2 units on the
other (opposite side of the processor cores) side of the
bus, but is different in that the units for lookup are
selected based on the processor cores (henceforth re-
ferred to as CPUs) that issued the requests. This allows
better utilization of the L2 space to balance the load be-
tween CPUs, while still relatively insulating such us-
age between the CPUs.

• We detail the architectural issues that are important for
implementing this new L2 cache organization. Our so-
lution can be implemented using a simple table struc-
ture, can work with existing buses, and can easily inte-
grate with existing cache coherence protocols.

• This new solution provides a flexible way of configur-
ing L2 caches based on application workload charac-
teristics, without extensive hardware support. In partic-
ular, L2 demands vary (i) across applications, (ii) tem-
porally within an application, and (iii) spatially across
the CPUs running an application. Consequently, we
may want to allocate different fractions of the L2 stor-
age to different CPUs at different times. In this study,
we use a simple profile-driven approach for such allo-
cations, though our mechanisms are general enough to
be exploited by a more viable/better allocation strat-
egy. At the same time, one can always resort to equally
splitting up the L2 storage between the cores when-
ever needed.

We demonstrate the benefits of this shared processor-
based L2 organization detailing when our mechanisms give
the most savings. Our results show as much as 42.50%
improvement in IPC over the private organization (with
11.52% on the average), and as much as 42.22% improve-
ment over the traditional shared organization (with 9.76%
on the average).

The rest of this paper is organized as follows. The next
section presents the CMP architecture under consideration,
the existing L2 cache organizations, and the mechanisms
needed to implement our shared processor-based split orga-
nization. The details of the workloads, our simulation plat-
form, the methodology for the evaluation, and our experi-
mental results are given in Section 3. A discussion of related
work is presented in Section 4. Finally, Section 5 summa-
rizes the contributions of this paper and outlines directions
for future work.

2. L2 Organizations and Proposed Architec-
ture

2.1. CMP Hardware and L2 Organizations

The CMP under consideration in this paper is of the
shared multiprocessor kind, where a certain number of
CPUs (of the order of 4-16) share the memory address
space. As mentioned earlier, we assume L2 to be the last line
of defense before going off-chip, and consequently each
CPU has its own private L1 that it can access without go-
ing across a shared interconnect. It is also possible that a
data block can get duplicated across these private L1s. Sev-
eral proposed CMP designs from industry and academia al-
ready use such private L1-based configurations. We keep
the subsequent discussion simple by using a shared bus as
the interconnect (though one could use fancier/higher band-
width interconnects as well). We also use the MOESI [20]
protocol (the choice is orthogonal to the focus of this pa-
per) to keep the caches coherent across the CPUs.

For the L2 organization, as mentioned earlier, there are
two possibilities. The first option is to place the L2 units on
the CPU side of the interconnect (the L2 is also private) as
is shown in Figure 1(a). These private L2 units are of equal
size, and can directly serve the misses coming from L1 in
case it can be satisfied from its local storage. If not, it needs
to arbitrate for the bus and place the request on the bus to
get back a reply either from another cache or from off-chip
memory. The other L2 caches need to snoop on the bus to
check if any transaction pertains to them so that they can



Off−Chip

(b)(a)

Off−Chip

L2L2 L2L2

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

Figure 1. (a) Private L2 Organization. (b)
Shared L2 Organization.

take appropriate actions (responses for read/write requests
or invalidates for upgrade requests). In this case, the coher-
ence actions take place between the L2 caches, and not all
bus transactions may need to permeate to L1 because of fil-
tering effects by L2 (as noted in [20]). The private nature
of L2 units can cause a data block to come into multiple
L2 units based on the application access/sharing patterns,
thereby reducing the aggregate L2 size.

The other option is to move the L2 to the opposite side of
the bus, i.e., it becomes a shared unit that is equally accessi-
ble across the shared interconnect to all the CPUs with equal
cost (see Figure 1(b)). Note that while logically in this case
the L2 appears as one big monolithic unit (from the view-
point of the CPUs), it is typically banked (divided into sub-
units/splits) to reduce the per-access dynamic power. The
data blocks are placed in these banks based on their ad-
dresses, e.g., one could either interleave consecutive blocks
on successive banks, or one could fill one bank first with
consecutive addresses before going to another bank (in our
study it does not matter which of these two options is cho-
sen and we simply use the first option in the experimental
evaluation). With this shared L2 organization (SI), there is at
most one copy of a block within this structure, thereby uti-
lizing the space more effectively (note that banking the L2
into multiple units has the same hit/miss behavior as a sin-
gle monolithic non-banked structure). The downside of this
approach is that upon an L1 miss, the requests need to go
on the shared bus to get the data either from another L1, or
from L2, or from off-chip memory. In SI, the coherence pro-
tocol is performed between the L1 caches.

2.2. Proposed Architecture

As observed, the advantages of private L2 are in reducing
on-chip interconnect traffic (latency and contention). The
downside is the possible increase in off-chip memory ac-
cesses because of reduced aggregate L2 capacity (due to
duplication). The other problem may be due to the fact that
the load induced on the L2 units may be different across the
CPUs (i.e., one may have higher locality while another may
exhibit poor locality). Consequently, we expect private L2
to perform better when (i) the sharing is not high across the
CPUs (so that fewer duplicates reside across the L2 units)
and (ii) the locality behavior is balanced across the CPUs.

The shared L2 organization described above does not
have these two drawbacks. Despite the level of sharing
across the CPUs, there is at most one copy of a data block
that can reside in L2. Further, since all of L2 (and all its
banks) are equally usable by any of the CPUs (the banking
is done by addresses rather than by the CPUs using them),
the imbalance of the locality behavior across the CPUs can
be addressed by letting one CPU use up more space com-
pared to another. The downside of the shared L2 organiza-
tion is that (i) the load on the on-chip interconnect may be-

come higher and (ii) there could be interference between the
CPUs when utilizing L2 (one could evict the blocks used by
another).

Having looked at the pros and cons of both these ap-
proaches, we next present ourShared Processor-Based Split
L2 cache organization. The main goal here is to try to reduce
off-chip accesses since we are at the last line of defense. It
may be easier to provision additional hardware for on-chip
components, e.g., wider buses, multiple buses, or fancier in-
terconnects, and the more serious issue is to avoid the mem-
ory wall, i.e.avoid going off-chip as much as possible. This
cost is eventually going to be the limiting factor on perfor-
mance (and perhaps even power) with the ever-growing ap-
plication datasets, and the widening gap between processor
and memory speeds.

Consequently, our solution strategy is to:

• Try to approach the behavior of private L2s when the
sharing is not very significant and when the load is
more evenly balanced. On the other hand, we would
like to approach the behavior of shared L2 for higher
sharing behavior and when the load is less balanced,
while still insulating one CPU from another.

• Possibly pay a few extra cycles on-chip (perhaps not in
the common case) if doing so will reduce the off-chip
accesses.

Our shared processor-based split L2 uses the underly-
ing organization of the Shared L2 described above, i.e.,
the L2 is on the other side of the bus, so that we can ac-
commodate high data sharing whenever needed. However,
in order to reduce the interference between the CPUs on
this shared structure, our splits are based on theCPU ids
rather than memory addresses, i.e., each CPUs is assigned
one or more units/splits of the L2 structure. A request com-
ing from an L1 miss goes across the shared bus, and checks
the split(s) assigned to the corresponding CPU (note that
the other L1s may snoop as usual). If the request can be
satisfied by the split(s) being accessed — it is to be noted
that as in the shared L2 case, there are no duplicates for
a block in L2 — then the data is returned and the execu-
tion proceeds as usual. However, when the data does not re-
side in any of these split(s), instead of immediately going
off-chip, the other (i.e., the ones that are not assigned to this
CPU) splits are consulted to see if the requested block re-
sides on any of those splits. If it does, then the data block
is returned to the requesting L1 to continue with the execu-
tion. Only when the block is not found in any of the splits is
an off-chip memory access needed.

Note that there are three scenarios for an L2 lookup in
our proposal:

• Local Hit: When the lookup finds the data block in the
L2 split(s) assigned to the CPU issuing the request, all
the splits assigned to that CPU are accessed in parallel
and the performance cost is the cost of looking up any
one split (taking saya cycles).

• Remote Hit:In this case, the lookup amongst its as-
signed split(s) fails, but the data block is found in an-
other split that is not assigned to it. Consequently, the
cost of servicing the request becomes2a cycles.

• L2 Miss: In this case, the data block is not in any of
the splits, and requires an off-chip access. The cost in
this case will involve the cost of the off-chip access, in
addition to the2a cycles.

One may have opted to remove theRemote Hitcase by
looking up all the L2 splits (ignoring the CPU id) in par-
allel. Though performance efficient, the reason we refrain
from doing this is due to the dynamic power issue, i.e., the
dynamic power in this case is not going to be any lower than



an unbanked monolithic L2 structure, which we discarded
in the first place for this reason.

Having looked at the costs of lookup and servicing the
requests, we next need to examine how the data blocks get
placed in the different splits. Since we perform placement at
the time of a miss, we need to consider the following cases:

• Local Miss + Remote Miss: Since the block is not in
L2 (any of its splits), we assume that the CPU issuing
the request is the one that will really need it. We ran-
domly pick one of the splits assigned to the requesting
CPU, and then place the block within that split based
on its address (as is usually the case).

• Local Miss + Remote Hit: In this case, we assume that
the CPU issuing the latest request needs the block more
than the CPU currently associated with the split where
the block resides (i.e., we expect temporal locality).
Consequently, we move the block over from the re-
mote split to one of the splits (chosen randomly) for
the requesting processor.

2.3. Hardware Support

Figure 2. (a) The table structure that shows
the processor-L2 split associations. (b) Ad-
dressing L2 splits in our proposal.

We present a simple table-based mechanism for imple-
menting the shared processor-based split L2 proposal. We
propose to maintain a table in the L2 controller as shown in
Figure 2(a) for an architecture with 4 processors and 8 L2
splits. The columns denote the splits of the L2 and the rows
denote the CPUs, and an ”X” in the table indicates that the
corresponding split is assigned to the specified CPU. When
an L1 miss is incurred, the bus carries not just the address
of the block being referenced, but also the id (which is usu-
ally the case, e.g., [22]) of the CPU initiating the request.
The L2 controller (see Figure 2(b)) has already been given
(downloaded to it in software) this table a priori, and it sim-
ply needs to lookup the table based on this CPU id, and
can generate the chip selects (CS) for the corresponding L2
splits that need to be looked up. If these lookups fail (which
will be sensed by the Hit Line in the figure), then the chip
select is sent to the other splits (that were not looked up in
the previous try). Only when this lookup fails as well do we
need to go off-chip.

We would like to point out that this mechanism can eas-
ily fit into many asynchronous bus designs, since the inter-
face to L2 is not very different from the external viewpoint
(for the bus or the CPUs). Further, the coherence mecha-
nism that takes place between L1s is not affected with this

enhancement (it is not any different from a monolithic or an
address-banked L2).

We propose the following simple extensions to the oper-
ating system (OS) to work with this hardware: (i) a system
call that specifies how the ”X”s for the CPUs should be allo-
cated to the application, which can be invoked at any point
during its execution, (ii) the operating system updating the
table on the L2 controller appropriately during this system
call, as well as updating its (shadow) software copy of this
table that it maintains for each application, and (iii) the con-
text switch mechanism at each CPU looking up the corre-
sponding row of the OS shadow copy and updating the L2
hardware table accordingly. Note that protection is not re-
ally compromised, and if ever the OS wants to disallow a
process from being allocated too many splits (or a specific
split) the access control can be performed at the time of the
system call. In addition, there could be OS issues in figur-
ing out how to partition the L2 space between applications
over the course of execution, which is beyond the scope of
this paper.

2.4. Exploiting the Proposed Mechanism

There are several benefits that we would like to point out
with this implementation:

• There could be more than one ”X” in each column of
the table, meaning that a split could be shared by differ-
ent CPUs. Consequently, if we know that some CPUs
have a high degree of data sharing, then we could as-
sign them the same splits so that the local hit case is
optimized.

• There could be more than one ”X” in each row, and
we do not necessarily have to assign an equal number
of ”X”s across the rows. This allows assigning more
than one split to a processor, based on its L2 space de-
mand, and also optimizing for a non-uniform (hetero-
geneous) assignment (i.e., giving different number of
splits to different processors) if the L2 locality behav-
ior is different across the behaviors at any one time.

• We can disallow two CPUs interfering with each other,
i.e., one evicting the blocks of another, by not giving
them an ”X” on the same column.

• This table can bedynamically loadedto the L2 con-
troller (possibly by memory mapping in some reg-
isters) using an operating system call, during the
course of execution. This allows the ability to con-
vey application-level information dynamically to
the L2 hardware for the best performance-power
trade-offs at any instant.

One can always opt for filling in the table to provision
an equal allocation of splits to the CPUs — we refer to
this as theShared Split Uniform (SSU)case. This is the
simplest of the options, where one may not want to ana-
lyze high-level workload behavior to further refine the table
settings. However, our table-based implementation of the
shared processor-based split L2 mechanism allows scope
for non-uniform allocation of splits to the CPUs, i.e., dif-
ferent CPUs can get different number of L2 splits, and we
refer to this as theShared Split Non-Uniform (SSN)case in
this paper. In general, this software controlled table-based
mechanism allows us to exploit the following workload
characteristics:

• Intra-Application Heterogeneity:This is the L2 load
imbalance within an application, and can be further
classified as:



– Spatial Heterogeneity:If the L2 localities of dif-
ferent CPUs are different within a single applica-
tion, we can opt to allocate non-uniform splits to
better meet those needs.

– Temporal Heterogeneity:During the course of
execution of an application, we can dynamically
change the number of splits allocated to a CPU at
different points of time, depending on how its dy-
namic locality behavior changes.

• Inter-Application Heterogeneity:Applications can
have entirely different L2 behaviors. Whether they
are running one after another, or even if they are run-
ning at the same time (on different CPUs or when
they are time-sliced on the same CPUs), our mech-
anism provides a way of controlling the L2 split
allocation according to their specific demands.

There are several techniques/algorithms that one can em-
ploy to fill the table values at possibly every instant of time.
Such a detailed evaluation of all possible techniques is be-
yond the scope of this work. Rather, our objective here is
to show the flexibility of our mechanisms, and we illus-
trate/use a simpleprofile-driven approachto set the table
values to benefit from the uniformity/heterogeneity of the
L2 locality/sharing behavior.

3. Experiments

3.1. Methodology and Experimental Setup

The design space of L2 configurations for comparison
is rather extensive to do full justice in terms of evaluation
within this paper. Consequently, in our experiments where
we compare the four approaches — Private (P), Shared In-
terleaved (SI), Shared Split Uniform (SSU) and Shared Split
Non-uniform (SSN) — we set some of the parameters as
follows. In the Private case, the number of L2 units has to
obviously match the number of CPUs, sayp. In the experi-
ments for SI, we usep banks as well, with the address based
interleaving of blocks. In the SSU case, we usep splits each
with the same size as the private case. Note that in the case
of SI and SSU, we are not restricted byp, i.e. we could have
more (of smaller size) or less (of larger size) banks/splits,
while keeping the overall L2 capacity the same as the pri-
vate case. In our experiments, we simply set the number of
splits/banks top, since it is closest to the private case (in
terms of access times). In the SSN case, the splits are them-
selves all of the same size. The way that we provide differ-
ent cache capacities for different CPUs is by giving differ-
ent number of splits to the different CPUs. In order to ex-
amine the benefits of such heterogeneous allocations, our
experiments use more thanp splits. More specifically, our
default experiments use a 8 processor configuration with 2
MB overall L2 capacity as in shown in Table 2, and we use
16 splits of 128K each in the SSN case.

There are several techniques/algorithms that one can
employ to fill the table values at possibly every instant
of time to accommodate the different kinds of applica-
tion/spatial/temporal heterogeneity explained in the previ-
ous section for SSN. Such a detailed evaluation of all possi-
ble techniques is beyond the scope of this work. Rather, our
objective here is to show the flexibility of our mechanisms,
and we use a rather simple scheme. Specifically, we catego-
rize CPUs into three groups based on the load that they im-
pose on L2 — high, medium, and low — and accordingly
give them 512K, 256K, and 128K of L2 cache space, re-
spectively. For instance, if a CPU is categorized at some in-
stant as high L2 load, then it would be allocated 512K, i.e., 4

SSN Configuration Allocation Chunks

SSN-152 1*512K, 5*256K, 2*128K
SSN-224 2*512K, 2*256K, 4*128K
SSN-304 3*512K, 4*128K

Table 1. SSN configurations studied for the
2MB L2. Note that the splits are themselves of
128K each, an integral number of such splits
— called a chunk — are allocated to a CPU.

Parameter Default Value

Number of Processors 8
L1 Size 8KB

L1 Line Size 32 bytes
L1 Associativity 4-way

L1 Latency 1 cycle
L2 Size (Total Capacity) 2MB

L2 Associativity 4-way
L2 Line Size 64 bytes

L2 Latency 10 cycles
No. of L2 Splits in SI, SSU 8

No. of L2 Splits in SSN 16
Memory Access Latency 120 cycles

Bus Arbitration Delay 5 cycles
Replacement Policy Strict LRU

Table 2. Base simulation parameters used in
our experiments.

splits of 128K each. The SSN schemes that we consider (for
the 2MB L2) are given in Table 1. For example, SSN-152
denotes, that the L2 space is divided into one 512K (i.e., 4
splits of 128K) chunk, five 256K chunks (i.e. each of 2 splits
of 128K), and two 128K chunks (i.e., one split each). Note
that the total size of the chunks matches the total L2 capac-
ity, which is 2 MB in this case. A CPU, over the course of
the execution, can move from one chunk to another. How-
ever, we do not vary the number of chunks or the size of the
chunks over the course of execution (though our table-based
mechanism allows that as well).

The allocation of chunks to CPUs is performed using a
profile-based approach in this study. Specifically, we divide
the execution into a certain number of epochs (256 in this
case), and for each epoch we sort the CPUs in decreasing
order of L2 miss rates, and then allocate the largest chunk
to the CPU with the highest miss rate, the second largest
chunk to the CPU with the second highest miss rate, and so
on. This is a rather simple scheme that can use profile in-
formation to make reasonable allocations during the run. It
is conceivable that future research can develop much more
sophisticated (and dynamic) split allocation algorithms, and
our table-based mechanism allows that. To conduct our ex-
periments, we modified Simics [21] (using Solaris 9 as the
operating system) and implemented the different L2 orga-
nizations. The default configuration parameters are given in
Table 2, and these are the values that are used unless explic-
itly stated/varied in the sensitivity experiments.

In this study, we evaluated nine applications (eight from
SPEC OMP [2] and Specjbb [23]). The important character-
istics of these applications are given in Table 3. The second
column in this table gives the number of L1 misses (aver-
aged over all processors) and the third column the L1 miss
rate (averaged over all processors) when the P version is
used. The corresponding L2 statistics are given in columns



Number of L2 Misses

0 40 80 120 160 200 240
0

200000
400000
600000
800000

IPC

0 40 80 120 160 200 240
0

1

2

(a)SpecJBB (the P case)

Number of L2 Misses

0 40 80 120 160 200 240
0

200000
400000
600000
800000

IPC

0 40 80 120 160 200 240
0

1

2

3

(b)SpecJBB (the SSU case)

Figure 3. IPC and the number of L2 misses
for specjbb. Note that the y-axes are on dif-
ferent scales.

four and five. The last column shows the total number of in-
structions simulated. All benchmarks have been simulated
for 4 billion cycles and use all 8 processors in our base con-
figuration, unless stated otherwise.

While many of the experiments use one application run-
ning on Simics where spatial and temporal heterogeneity
during its execution may arise, we also conduct experiments
with running two applications concurrently to stress appli-
cation heterogeneity. We use four processors for running
each application, i.e., we use space sharing rather than time
slicing for multiprogramming.

3.2. Base Results

We first summarize the overall results to illustrate the
benefits of shared processor-based split L2, by comparing
its IPC results with those for the two other organizations (P
and SI) which are the current state-of-the-art (see Table 4).
The last two columns in Table 4 give the best IPC value
for a given workload across all the L2 configurations con-
sidered (and —within the parentheses— the percentage im-
provement it brings over the private L2 case), as well as
the version that gives this best IPC, respectively. These re-
sults are given for each application running individually, as
well as some multiprogrammed workloads with two appli-
cations A and B running concurrently on four different pro-
cessors each (specified as A+B).

We can make several observations from these results.
First, we find that except in two workloads (applu and
swim+apsi), the shared L2 organization based on processor-
based split (our SSU or SSN proposal) does the best. In
workloads such as swim, mgrid and specjbb, with higher
L1 miss rates (which in turn exerts a higher pressure on L2),
we find dramatic improvements in IPC ranging from 30.9%

to 42.5% in some configurations (SSU or SSN). Even if we
consider the average across these fourteen workloads, we
get an average 11.52% IPC improvement over the private
case. Let us examine these results in detail in the follow-
ing discussion.

We first attempt to show why private L2 does better in
the two workloads, and not as well in the rest. There are pri-
marily two factors affecting L2 performance: (i) the degree
of sharing which can result in duplication between the pri-
vate L2 units or cause repeated non-local split references in
SSU or SSN, and (ii) the imbalance of the load that is im-
posed on the L2 units by the different processors. In our ex-
periments, we tracked the number of blocks that were re-
siding in multiple private L2 units at any instant, which is
an indication of the level of data sharing. In the case of ap-
plu, only around 12% of the blocks are shared at any time
and even these are mainly shared between 2 CPUs. Con-
sequently, there is not much duplication for this workload
(applu) to affect the private L2 case. In addition, applu does
not exhibit much spatial or temporal heterogeneity as will
be shown later, making this workload more suitable for pri-
vate L2. In the case of swim+apsi, there is no sharing across
the CPUs running these different applications, and they also
have similar L1 miss behavior (shown in Table 3), which is
an indication of the load on L2.

On the other hand, in most of the other applications,
the data sharing and/or the load imbalance issues make the
shared L2 perform better than the private L2 case. For in-
stance, when we consider specjbb, SSU is over 31% bet-
ter than the private L2, due to both sharing effects (we find
around 35% of the blocks are being shared on the average
when considering entire execution), as well as the imbal-
ance caused by spatial and temporal heterogeneity (to be
shown shortly). While Table 4 summarizes the overall re-
sults, we also collected detailed statistics over the course
of execution, and present some of them (the IPC and L2
misses) for each epoch in the execution for both the P and
SSU cases in Figure 3 for specjbb. One can see that there
is a direct correlation between the L2 misses and the corre-
sponding IPC values, and we find that SSU is able to lower
the L2 misses, thereby improving the overall IPC. Specifi-
cally, while the IPC in the P case never exceeds 2.5, we find
IPCs over 3.0 during several epochs in the execution for the
SSU case. The less frequent accesses to the off-chip mem-
ory with SSU provide this IPC improvement. Although not
explicitly quantified in this study, this can also reduce the
main memory energy consumption. We will get further into
the correlations between application characteristics and L2
behavior later in this section.

Of the two problems — duplication due to sharing and
load imbalance across the CPUs — SI mainly addresses the
sharing issue, i.e., only one copy of a block resides in all
of L2 regardless of how many CPUs access it. While it can
accommodate some amount of imbalance/heterogeneity by
letting one or more CPUs occupy more L2 space than oth-
ers, this can also lead to interference between the CPUs
(eviction of one by another). We find that SI brings some
improvement over the private case in some of the workloads
(e.g., artm, swim, mgrid, swim+mgrid). However, provid-
ing a shared L2 alone is not sufficient in many others, or
is not necessarily the best option even in these cases. Note
that SI represents the current state-of-the-art for the shared
L2 organization. On the other hand, when we go to SSU
and SSN, in addition to data sharing, we also find the insu-
lation of L2 space of one CPU from another, and the pos-
sible spatio-temporal heterogeneity in the workloads can
help these schemes over and beyond what SI can provide.
In nearly all the cases where SI does better than the pri-
vate case, SSU or SSN performs even better, and our two
schemes do better than the private case even when SI is not
a good option.



Benchmark L1 L2 Number of
Number of Misses Miss Rate Number of Misses Miss Rate Instructions (in millions)

ammp 53176353 0.007 2015486 0.062 25,528
art m 66061168 0.009 25712966 0.507 22,967
galgel 111400050 0.014 10683462 0.127 24,051
swim 261622475 0.111 95881598 0.296 7,761
apsi 378868309 0.117 27170810 0.083 15,713

fma3d 18853410 0.002 6199405 0.239 26,189
mgrid 333243418 0.153 68292105 0.185 10,294
applu 111232574 0.009 26477050 0.168 21,519

specjbb 828522034 0.353 22689664 0.083 9,413

Table 3. The benchmark codes used in this study and their important characteristics for the private
L2 case.

Workload P SI SSU SSN-152 SSN-224 SSN-304 Best IPC Best Version

ammp 5.967 6.026 6.049 6.020 6.010 6.006 6.049 (1.4%) SSU
art m 5.368 5.470 5.529 5.261 5.459 5.555 5.555 (3.5%) SSN-304
galgel 5.622 5.583 5.618 5.724 5.731 5.727 5.731 (1.9%) SSN-224
swim 1.821 2.462 2.399 2.488 2.543 2.596 2.596 (42.5%) SSN-304
apsi 3.687 2.680 3.812 3.703 3.587 3.507 3.812 (3.4%) SSU

fma3d 6.122 6.131 6.135 6.181 6.171 6.159 6.181 (1.0%) SSU-152
mgrid 2.406 3.050 3.022 3.086 3.101 3.150 3.150 (30.9%) SSN-304
applu 5.030 4.894 4.937 4.947 4.949 4.944 4.949 (-1.6%) P

specjbb 2.200 2.547 2.890 2.606 2.709 2.810 2.890 (31.3%) SSU
ammp+apsi 4.169 4.104 4.292 5.436 4.803 4.401 5.436 (30.4%) SSN-152

ammp+fma3d 5.897 5.949 5.977 5.936 5.900 5.895 5.977 (1.4%) SSN-152
swim+apsi 2.509 1.776 2.018 2.050 2.007 2.006 2.050 (-18.3%) P

swim+mgrid 2.513 2.851 3.067 2.698 2.470 2.401 3.067 (22.1%) SSU
Average: (11.52%)

Table 4. The IPC results for different workloads and different L2 management strategies.

Our shared processor-based split L2 organizations (both
SSU and SSN) are not only able to address the sharing issue
(perhaps not as effectively as SI since there may be an addi-
tional cost — though not as expensive as going off-chip —
to go to a split not allocated to that processor), but are able
to reduce the interference between the CPUs, and possibly
allocate more/less space to a CPU as needed. This helps re-
duce L2 misses and the associated off-chip memory access
costs. These advantages make these schemes provide much
better IPC characteristics compared to either the P or the SI
cases as can be observed in Table 4.

The previous results largely depend on application char-
acteristics, both in terms of the degree of sharing and in the
heterogeneity of the load that the CPUs exercise on the L2
cache. We found that the latter effect seems to have more
consequence on the results presented above. For instance,
in mgrid, on the average at any instant, less than 3% of the
blocks were shared across the CPUs (i.e., they were present
in more than one L2 at any time in the private case). On the
other hand, when we move to the shared L2 configurations
for this application, we get more than 25% savings com-
pared to the private case. Consequently, in the rest of this
discussion, we examine the issue of heterogeneity of L2
load in greater depth, and look at this heterogeneity at an
intra-application (finer) and an inter-application (coarser)
granularity.

3.2.1. Intra-Application Heterogeneity In order to un-
derstand how the application characteristics impose a het-
erogeneous load on the L2 cache, we next define two im-
portant metrics and track their values over the course of the
execution for each epoch. We call these metrics theSpatial
Heterogeneity Factor (SHF)and theTemporal Heterogene-
ity Factor (THF),and they are defined as follows:

SHFepoch =
σcpu(L1Misses)
L1Accessesepoch

THFcpu =
σepoch(L1Misses)

L1Accessescpu
,

whereSHFepoch and THFcpu correspond to the spatial
heterogeneity factor for a single epoch across the CPUs,
and the temporal heterogeneity factor for a single CPU
across the epochs, respectively. Theσcpu(L1Misses) rep-
resents the standard deviation of the L1 misses across the
CPUs for that epoch, whileσepoch(L1Misses) represents
the standard deviation of the L1 misses across the epochs
for a single CPU.L1Accessesepoch and L1Accessescpu

give the number of L1 accesses within an epoch (across all
the processors) and the number of L1 accesses by a pro-
cessor (across all epochs), respectively. Essentially, these
metrics try to capture the standard deviation (heterogene-
ity) between the CPUs (spatial) or over the epochs (tempo-
ral) of the load imposed on the L2 structure (which is the L1
misses). The reason they are weighted by the L1 accesses is
because we want to more accurately capture the resulting ef-
fect on the overall IPC, i.e., in an application the standard
deviation may be high but if the overall accesses/misses are
low, then there is not going to be a significant impact on the
IPC.

We plot SHFepoch and THFcpu for each epoch and
each processor, respectively, in Figures 4 and 5 for the nine
individual application executions. We find a direct correla-
tion between the cases where our split shared L2 organiza-
tions does better (in Table 3) and the cases where the het-
erogeneity factors are high in these graphs. Specifically, we



0 40 80 120 160 200 240
0

0.02

0.04

0.06

Mean=0.0165

0 40 80 120 160 200 240
0

0.02

Mean=0.0024

ammp applu

0 40 80 120 160 200 240
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

Mean=0.0680

0 40 80 120 160 200 240
0

0.02

0.04

0.06

0.08

0.1

Mean=0.0213

apsi artm

0 40 80 120 160 200 240
0

0.02

0.04

0.06

Mean=0.0044

0 40 80 120 160 200 240
0

0.02

0.04

0.06
Mean=0.0211

fma3d galgel

0 40 80 120 160 200 240
0

0.1

0.2

0.3

0.4
Mean=0.1200

0 40 80 120 160 200 240
0

0.1

0.2

0.3

Mean=0.1296

mgrid specjbb

0 40 80 120 160 200 240
0

0.1

0.2

0.3

0.4

0.5
Mean=0.1002

swim

Figure 4. Spatial Heterogeneity Factor (SHF)
for each epoch. Note that the y-axes are on
different scales.

find the heterogeneity — both spatial and temporal — is
much higher in specjbb, mgrid, swim and to some extent
in apsi, compared to the other five. Note that these are also
the applications where we find significant improvements for
SSU or SSN compared to the P or SI cases.

When we compare SSU and SSN, we find that though
the latter gives slightly better results (in five of our nine in-
dividual application executions), the difference between the
two schemes is not very significant. There are several rea-
sons for this behavior. First, the allocation of L2 units to
the CPUs in SSN is not necessarily the most efficient. For
instance, if we consider SSN-152, only when there is one
CPU that dominates on the L2 load, with five others in-
between the extremes right through the execution, would
this be an ideal choice. If the application characteristic does
not match this static choice of different chunk sizes, then the
performance may not be very good. It should be emphasized
that this is a problem of the specific implementation evalu-

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.01

0.02
Mean=0.0072

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.01
Mean=0.0069

ammp applu

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Mean=0.0673

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Mean=0.0194

apsi artm

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.01

Mean=0.0054

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.01

0.02

0.03

0.04

0.05

0.06
Mean=0.0257

fma3d galgel

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.05

0.1

0.15

Mean=0.1049

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.1

0.2

0.3

0.4

Mean=0.3119

mgrid specjbb

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
0

0.05

0.1

0.15

Mean=0.0844

swim

Figure 5. Temporal Heterogeneity Factor
(THF) for each CPU. Note that the y-axes are
on different scales.

ated here, rather than a problem of our table-based mech-
anism, and future work — using our table-based mecha-
nism — can possibly develop fine-grain dynamic split al-
location strategies based on L2 behavior. Second, in addi-
tion to misses, the other performance advantage that can
come for SSN compared to SSU is in moving more of the
remote hits (of SSU) to the local hit side. Because of non-
uniform allocations, it is possible that a CPU with a higher
L2 load may find more blocks within its allocation rather
than in someone else’s allocation (which is still a hit but in-
curs a higher access latency). However, if we look at Table 5
which shows the local and remote hit (and L2 misses) frac-
tions for SSU, we see that the contribution of remote hits is
not very high, and it is the effect of the misses that is more
important.

3.2.2. Inter-Application Heterogeneity In terms of inter-
application heterogeneity, our four workloads in Table 4



Workload Local Hit Remote Hit Miss

ammp 94.2% 2.9% 2.9%
art m 47.3% 11.1% 41.6%
galgel 80.4% 10.4% 9.2%
swim 69.5% 0.7% 29.8%
apsi 89.7% 4.2% 6.2%

fma3d 76.1% 1.7% 22.2%
mgrid 81.6% 0.3% 18.1%
applu 76.6% 10.0% 13.4%

specjbb 75.1% 17.1% 7.8%
ammp+apsi 91.8% 2.2% 6.0%

ammp+fma3d 90.9% 2.2% 6.9%
swim+apsi 76.8% 8.5% 14.6%

swim+mgrid 79.0% 3.8% 17.2%

Table 5. The breakdown of L2 accesses for
SSU.

Epochs
0 40 80 120 160 200 240

N
um

be
r 

of
 S

pl
its

0

4

8

12

16
ammp
apsi

Figure 6. The L2 space allocation for
ammp+apsi under SSN-152.

— ammp+apsi, ammp+fma3d, swim+apsi, swim+mgrid —
capture different scenarios of L2 load. In ammp+fma3d, the
load introduced on L2 (see the miss rates of these two ap-
plications in Table 3) by both applications is rather low,
thus not showing significant difference across the schemes.
In swim+apsi and swim+mgrid, the L2 load by both ap-
plications is rather high (and balanced), with the balance
being higher in the former (see the heterogeneity graphs
for apsi and mgrid, where the latter shows higher hetero-
geneity) making the private case a fairly good choice. Still,
the load across applications is more or less balanced, thus
making the schemes again comparable. On the other hand,
when we consider ammp+apsi, we have the first with a
rather low load, and the second with a rather high load.
With an unequal allocation to this space-shared multipro-
grammed workload, we can give different amounts of cache
space to these individual applications so that we can get the
best overall IPC. For instance, with SSN-152, we can give
1.25MB (of the total 2MB L2) to apsi and the other 0.75MB
to ammp, though this partitioning can change from epoch
to epoch based on the dynamics of the execution (see Fig-
ure 6 to see how L2 space is allocated to the two applica-
tions for the duration of execution which more or less tracks
this 5:3 proportion). Consequently, this can provide a lower
miss rate for apsi without really affecting the miss rate of
ammp, to provide a better overall IPC value.

3.3. Sensitivity Analysis

We have also studied the impact of L1 and L2 sizes,
memory access cost, and the number of CPUs. The reader
is refered to [11] for detailed results, and the overall bene-
fits of our approach are still quite significant across the dif-
ferent configurations.

4. Related Work

There has been a considerable amount of previous re-
search in designing memory hierarchies and cache coher-
ence protocols for SMP (multi-chip multiprocessors) sys-
tems. It is well beyond the scope of this paper to cover all
such related work, and the reader is referred to [20] for an
in-depth treatment of the different contributions to this area.
At the same time, prior studies have also looked at the ca-
pacity/organization issues for L3 shared caches [7] and the
characteristics of the workloads affecting memory hierar-
chy design [19, 4, 24], again in the context of SMP systems.
On the other hand, our work is targetting single chip mul-
tiprocessors, where an off-chip access to the memory hier-
arachy can incur a much higher cost than exchanging infor-
mation on the shared interconnect between the cores on a
CMP. Consequently, it becomes more important to reduce
off-chip accesses, rather than save a few cycles within the
chip. There has been no prior in-depth comparison of the
pros and cons of private vs. shared organizations for the on-
chip last line of defense to the memory wall for CMPs.

An advantage of our implementation of the Shared
Processor-based Split Cache design, is the adaptabil-
ity/morphability to application characteristics, i.e., one
can possibly give the right core, the right L2 space
at the right time, changing the allocation whenever
needed. Prior work has recognized the importance of
morphable/malleable/adaptive caches for different pur-
poses. One body of work [28, 1] looks at adjusting
cache sizes and/or other parameters, primarily in the con-
text of uniprocessors, in order to save dynamic/leakage
power. The other kinds of work [17] on this topic dy-
namically adjust the cache for performance benefits. In
the design automation area, there have been efforts to de-
sign application-specific memory hierarchies based on
software-managed components [6]. But none of these
have looked at the benefits of malleability of L2 organiza-
tion for CMPs.

Another related work on the topic of adjusting cache
space to application characteristics is that by [26, 25],
wherein they partition the cache space between multiple
processes/activities executing on one processor inorder to
reduce their interference between the time slices. Cache
space usage across multiple threads has also been studied
in the context of SMT processors [27].

The popularity of CMPs is clearly evident from the
different commercial developments and research projects
[?, 16, 10, 9, 13, 14, 15, 3] on this topic. The issues concern
the design of the interconnect, and the design of the dat-
apath for effective on-chip parallelism. To our knowledge,
this is the first work that has examined different L2 organi-
zations, and proposed a new one, in order to reduce off-chip
memory accesses.

5. Concluding Remarks

The low latency of accessing the cache hierarchy and ex-
changing information between the processors is a distinct



advantage with chip multiprocessors. With such deep lev-
els of integration, it becomes extremely critical to reduce
off-chip accesses, that can have important performance and
power ramifications in their deployment. Consequently, this
paper has examined the organization for the last level of the
on-chip cache hierarchy (called the last line of defense) be-
fore an access goes off-chip, where it can incur a high la-
tency and significant dynamic power.

Two well-known principles for organizing this level in-
clude the private and shared organization, but each has its
relative advantages and drawbacks. In the private case, the
CPUs are relatively insulated from the load they impose on
this level, and do not need to traverse a shared intercon-
nect to get to this level in the common case. On the other
hand, the advantage of the shared organization is that it can
allow one CPU to eat into the cache space of another when-
ever needed to allow more heterogeneous allocation of this
cache space. However, such a capability can also become
very detrimental in causing interference between the ad-
dress streams generated by the different CPUs, thereby in-
curring additional misses.

Recognizing these trade-offs, we have proposed a new
last line of defense organization wherein we use the un-
derlying advantages of the shared structure (to balance the
load), and at the same time provide a way of insulating
the diverse requirements across the cores whenever needed.
The basic idea is to have multiple cache units, and have
them allocated on a CPU id basis (rather than on an ad-
dress basis as is done in typically banked caches). Each
lookup from a CPU looks first at its set of units, but can sub-
sequently lookup other units as well before going off-chip
(thus maintaining the shared view). However, upon a miss,
the request can allocate the block only into one of its units,
thereby reducing the interference.

We have proposed a flexible mechanism for implement-
ing this shared processor-based split organization, that al-
lows software to configure the splits spatially (between the
CPUs) and temporally (can vary over time). With CMPs
possibly targeting a diverse range of workloads, from com-
mercial high-end workloads, to scientific and embedded ap-
plications, it becomes important to allow this flexibility for
dynamic adaptation. At the same time, this mechanism can
integrate easily with existing interconnects and coherence
mechanisms. This organization is also fairly power efficient
(though not evaluated quantitatively in this paper), since we
found that the number of units referenced upon each ac-
cess is comparable to that of the private and address-based
shared mechanisms, and in fact reduces off-chip accesses.

Our results found that even when we use a single split
for each CPU we are doing better than the private (P) or the
shared address-based interleaved (SI) organizations, since it
is able to better balance the load, and reduces the interfer-
ence. In this paper, we have not delved into methods for al-
locating the splits to the CPUs at runtime, and this is part of
our future work. Still, preliminary results with non-uniform
allocations between the CPUs shows benefits in multipro-
grammed workloads, where the loads can be quite diverse
as was shown here, and even in a single program execution
sometimes, if the load imbalance is high.

In our ongoing work, we are examining techniques for
allocating the splits to the CPUs temporally over the execu-
tion, compiler support for determining allocation units, and
the power consumption of these organizations.

Acknowledgements:This work has been funded in part by
NSF grants 0103583, 0130143 and Career Award 0093082.

References

[1] D. H. Albonesi. Selective cache ways: On-Demand Cache Resource
Allocation. In International Symposium on Microarchitecture, pages
248–, 1999.

[2] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and
B. Parady. SPEC OMP: A New Benchmark Suite for Measuring Par-
allel Computer Performance. InProc. WOMBAT,July 2001.

[3] L. A. Barroso et. al. Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing. In Proc.International Symposium on
Computer Architecture,Vancouver, Canada, June 12–14 2000.

[4] L. A. Barroso, K. Gharachorloo, A. Nowatzyk, and B. Verghese. Im-
pact of Chip-Level Integration on Performance of OLTP Workloads.
In Proc. the Sixth International Symposium on High-Performance
Computer Architecture,January 2000.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proc.the
27th International Symposium on Computer Architecture,June, 2000.

[6] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle.Custom Memory Management Methodology – Ex-
ploration of Memory Organization for Embedded Multimedia System
Design.Kluwer Academic Publishers, 1998.

[7] M. Dubois, J. Jeong, S. Razeghia, M. Rouhaniz, and A. Nanda. Eval-
uation of Shared Cache Architectures for TPC-H. In Proc.the Fifth
Workshop on Computer Architecture Evaluation using Commercial
Workloads,Cambridge, Massachusetts, Feb 2002.

[8] K. M. Jackson, K. N. Langston. IBM S/390 Storage Hierarchy G5
and G6 Performance Considerations. 43(5/6):847, 1999.

[9] I. Kadayif, M. Kandemir, and U. Sezer. An Integer Linear Program-
ming Based Approach for Parallelizing Applications in On-Chip Mul-
tiprocessors. In Proc.Design Automation Conference,New Orleans,
LA, June 2002.

[10] V. Krishnan and J. Torrellas. A Chip Multiprocessor Architecture
with Speculative Multi-threading.IEEE Transactions on Computers,
Special Issue on Multi-threaded Architecture,September 1999.

[11] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs. Penn
State UniversityTech Report CSE-03-019, 2003.

[12] L. Benini and G. De Micheli. System-level Power Optimization:
Techniques and Tools.TODAES5(2): 115-192 (2000).

[13] MAJC-5200. http://sun.com/microelectronics/MAJC/5200wp.html
[14] MP98: A Mobile Processor. http://www.labs.nec.co.jp/MP98/
[15] B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluating Alter-

natives for a Multiprocessor Microprocessor. In Proc.the 23rd Intl.
Symp. on Computer Architecture,pp. 66–77, Philadelphia, PA, 1996.

[16] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The Case for a Single Chip Multiprocessor. In Proc.the 7th Intl Con-
ference on Architectural Support for Programming Languages and
Operating Systems,ACM Press, New York, 1996, pp. 2–11.

[17] P. Ranganathan, S. V. Adve, and N. P. Jouppi. Reconfigurable Caches
and Their Application to Media Processing. InProc. ISCA, pages
214–224, 2000.

[18] G. Reinman and N. P. Jouppi. CACTI 2.0: An Integrated Cache
Timing and Power Model. Compaq, WRL,Research Report 2000/7,
February 2000.

[19] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.
The Impact of Architectural Trends on Operating System Perfor-
mance. InProc. 15th ACM Symposium on Operating System Prin-
ciples,Colorado, December 1995.

[20] J. P. Singh and D. Culler.Parallel Computer Architecture: A
Hardware-Software Approach,Morgan-Kaufmann, 1998.

[21] Simics. http://www.simics.com/
[22] SPARC UPA System Bus. Sun Microsystems.

http://www.sun.com/oem/products/manuals/802-7835.pdf
[23] Specjbb2000 Java Business Benchmark.

http://www.specbench.org/osg/jbb2000/
[24] R. Stets, K. Gharachorloo, and L. Barroso. A Detailed Comparison

of Two Transaction Processing Workloads. In Proc.the 5th Annual
Workshop on Workload Characterization,November 2002.

[25] G. Suh, S. Devadas, and L. Rudolph. Dynamic Cache Partitioning
for Simultaneous Multithreading Systems. InProc. IASTED PDCS,
August 2001.

[26] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of
Shared Cache Memory.Journal of Supercomputing, 2002.

[27] D.M. Tullsen, S.J. Eggers, and H.M Levy. Simultaneous Multithread-
ing: Maximizing On-Chip Parallelism.Proc. of Intl. Symp. on Comp.
Arch., pages 392-403, 1995.

[28] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar.
An Integrated Circuit/Architecture Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches. InProc. HPCA, pages
147–158, 2001.


