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Basic Principles

One of the important features of a compiler is the ability to 
approximate solutions to NP-hard tasks efficiently.

These solutions are based on heuristics  choices that perform well �
under certain situations but may not be optimal:

Heuristics usually require some experimentation to refine (trial and 
error until adequate performance is achieved).

Algorithms for solving these problems typically use a priority 
function (or cost function) to make informed choices.

These priority functions are based on heuristics.
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Basic Principles (2)

Minor modifications to priority functions can drastically affect the 
performance of the algorithm/optimization since they tend to 
measure non-uniform non-linear quantities in the program itself.

Meta Optimization is an attempt to take a step back and look at � �
the actual structure of compiler optimizations:

In this case, they are attempting to improve optimizations through 
the tweaking of heuristics/choices.

However rather than using standard iterative and binary search 
techniques, genetic programming is going to be applied.

Genetic programming is well-suited to this task due to its ability 
to adaptively search large spaces using parameters whose 
interactions are not completely understood.
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Priority Functions

Assist in directing which choices a compiler optimization will 
make.

Instruction Scheduling with latency-weighted depths:

P(i) represents the instruction's depth in the dependence graph, 
and each time an instruction needs to be scheduled the highest 
priority instruction that is ready is selected from the graph.

Other examples: Clustered scheduling, Hyperblock formation, 
Meld scheduling, Modulo scheduling, Register allocation.

P i �

latency i :if i is independent
max

i depends on j
latency i

�

P j : otherwise
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Genetic Programming

Machine-learning technique with the following characteristics:

Effective when working with parameters that have poorly defined 
interactions (e.g. 'Uncertain tradeoffs').

Can be used to search high-dimensional spaces (e.g. Scalable).

Distributed algorithm, so work can be parallelized if necessary.

Human-readable, so it is possible to obtain a better understanding of 
what decisions have been made (unlike neural networks).
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Genetic Programming (2)

Modeled after Darwinism (Survival of the Fittest).

In this case, the fastest executing compiled code has the fittest 
priority function.

Parse trees of operators and operands describe the potential 
priority functions.

A population is a collection of parse trees for one generation.

After testing, several members of the population are selected for 
reproduction via crossover, which swaps a random node from 
each of 2 parse trees.

Other parse trees are selected for mutation, in which a random 
node is replaced by a random expression.
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Genetic Programming (3)
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Genetic Programming (4)

The system selects the smaller of several expressions that are 
equally fit so that the parse trees do not grow exponentially.

The selection of nodes is done using depth-fair crossover, which 
weights each depth of node in the tree equally or leaves would be 
selected more than 50% of the time.

Tournament selection is used repeatedly to select parse trees for 
crossover.

Choose N expressions at random from the population and select the 
one with the highest fitness.

Dynamic subset selection (DSS) is used to reduce the number of 
priority functions to test for fitness.
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Meta Optimization

What exactly is Meta Optimization?

Tuning compiler optimizations to produce better code.

Scope of paper limits tuning to priority functions, although one 
could apply this technique to the underlying algorithm.

Reduces search space size, hence less time for convergence.

Ensures legality of code transformations.

Initially guess a solution (or use a preexisting priority function).

Create 399 random expressions based on parameters.

Results indicate that initial guess is many times not a factor of the 
final solution, so it is viable to use this approach to construct the 
priority function from scratch (no need for pre-tuning a function).
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Meta Optimization (2)

 Real-Valued Function  Representation

 Real1 + Real2  (add Real1 Real2)

 Real1 - Real2  (sub Real1 Real2)

 Real1 * Real2  (mul Real1 Real2)

 Real1 / Real2 : if Real2 != 0  (div Real1 Real2)

 0 : if Real2 == 0  Parameter  Setting

 Square root (Real 1)  (sqrt Real1)  Population Size  400 expressions

 Real 1 : if Bool1  (tern Bool1 Real1 Real2)  Number of Generations  50 generations

 Real2 : if not Bool1  Generational replacement  22 expressions

 Real1 * Real2 : if Bool1  (cmul Bool1 Real1 Real2)  Mutation rate  5%

 Real2 : if not Bool1  Tournament size  7

 Real constant K  (rconst K)  Elitism  Best expression is guaranteed survival

 Real value of arg from env  (rarg arg)  Fitness  Average speedup over baseline

 Boolean-Valued Function  Representation

 Bool1 and Bool2  (and Bool1 Bool2)

 Bool1 or Bool2  (or Bool1 Bool2)

 Not Bool1  (not Bool1)

 Real1 < Real2  (lt Real1 Real2)

 Real1 > Real2  (gt Real1 Real2)

 Real1 == Real2  (eq Real1 Real2)

 Boolean Constant  (bconst {true, false})

 Boolean value of arg from env  (barg arg)
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Hyperblock Formation

Uses If-Conversion to convert control dependences into data  
dependences.

Single entry multiple exit block with predicated instructions.

There is a limit to the effectiveness of predicating instructions 
and forming large hyperblocks.

Potential criteria involved in forming a hyperblock - (what is 
important for inclusion in the hyperblock?)

Path predictability - unpredictable branches�

Path frequency - frequent paths

Path instruction level parallelism (ILP) - low ILP
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Hyperblock Formation (2)

Number of instructions in path - shorter paths

Number of branches in path - more branches but not too many

Compiler optimization considerations (e.g. exceptions)

Machine-specific considerations (e.g. branch delay penalty)

Most of the above are fairly intuitive, but their interactions are 
difficult to understand, hence the need for tuning.

Experiment performed with Trimaran's IMPACT compiler 
approximating the Intel Itanium architecture (EPIC).

Tested with selections from SpecInt, SpecFP, Mediabench and 
other miscellaneous benchmark programs.
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Hyperblock Formation (3)

Tr imaran's Heur istic

GP-generated Heur istic
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Hyperblock Formation (4)
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Hyperblock Formation (5)

Quantitative Results:

Single benchmark results are very impressive: (1.54/1.23)

Multiple benchmark results: (1.44/1.25)

Results on non-training benchmarks: (1.09)

Important results:

Initial population often has a better performer than starting PF.

Useless expressions (Introns) sometimes remain in the solution.

Used to preserve good building blocks during variation phase.

Solution is easy to read, but hard to understand.
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Register Allocation

Determine which variables should be contained in registers, and 
which registers should be spilled when necessary.

Live ranges are calculated and then ordered based on a priority 
function (Remember priority-based graph coloring).

Most beneficial ranges are then assigned to registers.

Uses same Itanium architecture setup as Hyperblock Formation 
with the IMPACT compiler.

Keep priority(lr) intact (normalization), but change equation for 
savings.



Page 18

Register Allocation (2)
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Register Allocation (3)

Quantitative Results:

Single benchmark results: (1.08/1.06)

Multiple benchmark results: (1.03/1.03)

Results on non-training benchmarks: (1.02)

Important results:

Less difference between training/test results since Hyperblock 
Formation (HF) is much more data-driven.

Harder to optimize than HF (less improvement), but still possible.

Not as susceptible to variations in input data.

Even well-studied optimizations can be improved.
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Data Prefetching

Optimization that attempts to reduce long-latency memory 
operations through the insertion of prefetch instructions.

Dangerous since prefetching too often can evict data from the 
cache before it is used.

Experiments done on actual Itanium I systems using the Open 
Research Compiler (ORC), and code is actually executed and not 
simulated.
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Data Prefetching (2)
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Data Prefetching (3)

Quantitative Results:

Single benchmark results: (1.35/1.40)

Multiple benchmark results: (1.31/1.36)

Results on non-training benchmarks: (1.01)

Important results:

ORC prefetches too much, so turning it off gives a benefit of ~7% to 
start with. Thus the GP solution cuts down on prefetching.

Novel data sets perform better unlike in the other 2 experiments.

GP solution fitness saturates after relatively few populations.
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Related Research

Supervised learning is used by Calder et al. to calculate static 
branch prediction heuristics. Matches inputs with known 
outcomes (labels), and then can classify every new input based 
on these labels.

Cooper et al. use genetic algorithms for solving the phase 
ordering problem (which order of optimizations provides the 
greatest benefit).

COGEN(t) uses GP to map code to irregular DSPs. Although this 
is a long process, it is worth it for compile-once applications on 
embedded systems.
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Conclusions

Older architectures were simple and analyzable, newer 
architectures and compilers are more complex.

Sometimes it is only possible to make decisions based on 
empirical evidence, since problems are NP-hard or not well 
understood.

Heuristics are used by compilers to obtain good, although not 
necessarily optimal results.

Coming up with good heuristics is a very difficult and time-
consuming process. Genetic programming takes care of 
performing this task, obtaining better solutions than trial and 
error.
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Conclusions (2)

One drawback is that GP needs some adjustment in terms of 
population size, mutation rate, tournament size, ...

However results show that this technique does obtain speedups 
over human-generated heuristics (e.g. priority functions).

Compiler-writers can focus on providing algorithms with 
components that may be created or refined using machine 
learning techniques.


