
Page 1

Meta Optimization:
Improving Compiler Heuristics

with Machine Learning
M. Stephenson, S. Amarasinghe, M. Martin, and U. O'Reilly

Presented by Stephen HinesPresented by Stephen Hines
COP 5622: Advanced Topics in CompilationCOP 5622: Advanced Topics in Compilation

October 2003October 2003

Page 2

Presentation Overview

Basic Principles

Priority Functions

Genetic Programming

Meta Optimization

What is it?

Case: Hyperblock Formation

Case: Register Allocation

Case: Data Prefetching

Conclusions

Page 3

Basic Principles

One of the important features of a compiler is the ability to
approximate solutions to NP-hard tasks efficiently.

These solutions are based on heuristics choices that perform well �
under certain situations but may not be optimal:

Heuristics usually require some experimentation to refine (trial and
error until adequate performance is achieved).

Algorithms for solving these problems typically use a priority
function (or cost function) to make informed choices.

These priority functions are based on heuristics.

Page 4

Basic Principles (2)

Minor modifications to priority functions can drastically affect the
performance of the algorithm/optimization since they tend to
measure non-uniform non-linear quantities in the program itself.

Meta Optimization is an attempt to take a step back and look at � �
the actual structure of compiler optimizations:

In this case, they are attempting to improve optimizations through
the tweaking of heuristics/choices.

However rather than using standard iterative and binary search
techniques, genetic programming is going to be applied.

Genetic programming is well-suited to this task due to its ability
to adaptively search large spaces using parameters whose
interactions are not completely understood.

Page 5

Priority Functions

Assist in directing which choices a compiler optimization will
make.

Instruction Scheduling with latency-weighted depths:

P(i) represents the instruction's depth in the dependence graph,
and each time an instruction needs to be scheduled the highest
priority instruction that is ready is selected from the graph.

Other examples: Clustered scheduling, Hyperblock formation,
Meld scheduling, Modulo scheduling, Register allocation.

P i �

latency i :if i is independent
max

i depends on j
latency i

�

P j : otherwise

Page 6

Genetic Programming

Machine-learning technique with the following characteristics:

Effective when working with parameters that have poorly defined
interactions (e.g. 'Uncertain tradeoffs').

Can be used to search high-dimensional spaces (e.g. Scalable).

Distributed algorithm, so work can be parallelized if necessary.

Human-readable, so it is possible to obtain a better understanding of
what decisions have been made (unlike neural networks).

Page 7

Genetic Programming (2)

Modeled after Darwinism (Survival of the Fittest).

In this case, the fastest executing compiled code has the fittest
priority function.

Parse trees of operators and operands describe the potential
priority functions.

A population is a collection of parse trees for one generation.

After testing, several members of the population are selected for
reproduction via crossover, which swaps a random node from
each of 2 parse trees.

Other parse trees are selected for mutation, in which a random
node is replaced by a random expression.

Page 8

Genetic Programming (3)

exec_ratio

+

*

num_ops 4.0

-

* /

Predictabilitytotal_ops 2.3 4.1

-

*

total_ops 2.3

exec_ratio

Crossover

exec_ratio

+

+

num_branches 1.2

Mutatation

Page 9

Genetic Programming (4)

The system selects the smaller of several expressions that are
equally fit so that the parse trees do not grow exponentially.

The selection of nodes is done using depth-fair crossover, which
weights each depth of node in the tree equally or leaves would be
selected more than 50% of the time.

Tournament selection is used repeatedly to select parse trees for
crossover.

Choose N expressions at random from the population and select the
one with the highest fitness.

Dynamic subset selection (DSS) is used to reduce the number of
priority functions to test for fitness.

Page 10

Meta Optimization

What exactly is Meta Optimization?

Tuning compiler optimizations to produce better code.

Scope of paper limits tuning to priority functions, although one
could apply this technique to the underlying algorithm.

Reduces search space size, hence less time for convergence.

Ensures legality of code transformations.

Initially guess a solution (or use a preexisting priority function).

Create 399 random expressions based on parameters.

Results indicate that initial guess is many times not a factor of the
final solution, so it is viable to use this approach to construct the
priority function from scratch (no need for pre-tuning a function).

Page 11

Meta Optimization (2)

 Real-Valued Function Representation

 Real1 + Real2 (add Real1 Real2)

 Real1 - Real2 (sub Real1 Real2)

 Real1 * Real2 (mul Real1 Real2)

 Real1 / Real2 : if Real2 != 0 (div Real1 Real2)

 0 : if Real2 == 0 Parameter Setting

 Square root (Real 1) (sqrt Real1) Population Size 400 expressions

 Real 1 : if Bool1 (tern Bool1 Real1 Real2) Number of Generations 50 generations

 Real2 : if not Bool1 Generational replacement 22 expressions

 Real1 * Real2 : if Bool1 (cmul Bool1 Real1 Real2) Mutation rate 5%

 Real2 : if not Bool1 Tournament size 7

 Real constant K (rconst K) Elitism Best expression is guaranteed survival

 Real value of arg from env (rarg arg) Fitness Average speedup over baseline

 Boolean-Valued Function Representation

 Bool1 and Bool2 (and Bool1 Bool2)

 Bool1 or Bool2 (or Bool1 Bool2)

 Not Bool1 (not Bool1)

 Real1 < Real2 (lt Real1 Real2)

 Real1 > Real2 (gt Real1 Real2)

 Real1 == Real2 (eq Real1 Real2)

 Boolean Constant (bconst {true, false})

 Boolean value of arg from env (barg arg)

Page 12

Hyperblock Formation

Uses If-Conversion to convert control dependences into data
dependences.

Single entry multiple exit block with predicated instructions.

There is a limit to the effectiveness of predicating instructions
and forming large hyperblocks.

Potential criteria involved in forming a hyperblock - (what is
important for inclusion in the hyperblock?)

Path predictability - unpredictable branches�

Path frequency - frequent paths

Path instruction level parallelism (ILP) - low ILP

Page 13

Hyperblock Formation (2)

Number of instructions in path - shorter paths

Number of branches in path - more branches but not too many

Compiler optimization considerations (e.g. exceptions)

Machine-specific considerations (e.g. branch delay penalty)

Most of the above are fairly intuitive, but their interactions are
difficult to understand, hence the need for tuning.

Experiment performed with Trimaran's IMPACT compiler
approximating the Intel Itanium architecture (EPIC).

Tested with selections from SpecInt, SpecFP, Mediabench and
other miscellaneous benchmark programs.

Page 14

Hyperblock Formation (3)

Tr imaran's Heur istic

GP-generated Heur istic

Page 15

Hyperblock Formation (4)

Page 16

Hyperblock Formation (5)

Quantitative Results:

Single benchmark results are very impressive: (1.54/1.23)

Multiple benchmark results: (1.44/1.25)

Results on non-training benchmarks: (1.09)

Important results:

Initial population often has a better performer than starting PF.

Useless expressions (Introns) sometimes remain in the solution.

Used to preserve good building blocks during variation phase.

Solution is easy to read, but hard to understand.

Page 17

Register Allocation

Determine which variables should be contained in registers, and
which registers should be spilled when necessary.

Live ranges are calculated and then ordered based on a priority
function (Remember priority-based graph coloring).

Most beneficial ranges are then assigned to registers.

Uses same Itanium architecture setup as Hyperblock Formation
with the IMPACT compiler.

Keep priority(lr) intact (normalization), but change equation for
savings.

Page 18

Register Allocation (2)

Page 19

Register Allocation (3)

Quantitative Results:

Single benchmark results: (1.08/1.06)

Multiple benchmark results: (1.03/1.03)

Results on non-training benchmarks: (1.02)

Important results:

Less difference between training/test results since Hyperblock
Formation (HF) is much more data-driven.

Harder to optimize than HF (less improvement), but still possible.

Not as susceptible to variations in input data.

Even well-studied optimizations can be improved.

Page 20

Data Prefetching

Optimization that attempts to reduce long-latency memory
operations through the insertion of prefetch instructions.

Dangerous since prefetching too often can evict data from the
cache before it is used.

Experiments done on actual Itanium I systems using the Open
Research Compiler (ORC), and code is actually executed and not
simulated.

Page 21

Data Prefetching (2)

Page 22

Data Prefetching (3)

Quantitative Results:

Single benchmark results: (1.35/1.40)

Multiple benchmark results: (1.31/1.36)

Results on non-training benchmarks: (1.01)

Important results:

ORC prefetches too much, so turning it off gives a benefit of ~7% to
start with. Thus the GP solution cuts down on prefetching.

Novel data sets perform better unlike in the other 2 experiments.

GP solution fitness saturates after relatively few populations.

Page 23

Related Research

Supervised learning is used by Calder et al. to calculate static
branch prediction heuristics. Matches inputs with known
outcomes (labels), and then can classify every new input based
on these labels.

Cooper et al. use genetic algorithms for solving the phase
ordering problem (which order of optimizations provides the
greatest benefit).

COGEN(t) uses GP to map code to irregular DSPs. Although this
is a long process, it is worth it for compile-once applications on
embedded systems.

Page 24

Conclusions

Older architectures were simple and analyzable, newer
architectures and compilers are more complex.

Sometimes it is only possible to make decisions based on
empirical evidence, since problems are NP-hard or not well
understood.

Heuristics are used by compilers to obtain good, although not
necessarily optimal results.

Coming up with good heuristics is a very difficult and time-
consuming process. Genetic programming takes care of
performing this task, obtaining better solutions than trial and
error.

Page 25

Conclusions (2)

One drawback is that GP needs some adjustment in terms of
population size, mutation rate, tournament size, ...

However results show that this technique does obtain speedups
over human-generated heuristics (e.g. priority functions).

Compiler-writers can focus on providing algorithms with
components that may be created or refined using machine
learning techniques.

