Speculating to Reduce Unnecessary
Power Consumption

ENRIC MUSOLL
Tidal Networks, Inc.

The power consumption of current processors keeps increasing in spite of aggressive circuit de-
sign techniques and process shrinks. One of the reasons for this increase is the complexity of the
microarchitecture required to achieve the performance that each processor generation demands.
These techniques, such as branch prediction and on-chip level two caches, increase not only the
power consumption of the committed instructions, but also the useless power associated with those
block accesses that generate results that are not needed for the correct execution and commit of
the instructions.

In this work, the different accesses that a particular block receives are classified into four differ-
ent components, based on whether the accesses are performed by instructions of the correct path
or the wrong (mispredicted) path, and also based on whether the results of the accesses are needed
or not for the correct execution of the instructions. Out of the four components, only one accounts
for the useful accesses to the block, that is, accesses performed to correctly execute instructions
that will be committed. The other three components account for the useless activity on the block.
The simulations performed indicate that, if the useless power dissipation of a high-performance
processor could be totally removed with no performance degradation, the overall processor power
consumption would be reduced by as much as 65% compared to the same processor in which all the
blocks are accessed every cycle.

This work then proposes a microarchitectural technique that targets the reduction of the useless
power dissipation. The technique consists of predicting whether the result of a particular block of
logic will be useful in order to execute the instructions (no matter whether the instructions will be
eventually committed or not). If it is predicted useless, then the block is disabled.

A case example is presented where two blocks are predicted for low power: the on-chip L2 cache
for instruction fetches and the branch target buffer (BTB). The IPC versus power-consumption
design space is explored for a particular microprocessor architecture. Both the average and the
peak power consumption are targeted. High-level estimations are done to show that it is plausible
that the ideas described might produce a significant reduction in useless block accesses. As an
example, 65% accesses to the L2 cache can be eliminated at a 0.2% IPC degradation, and about 5%
accesses to the BTB can be saved at the penalty of 0.7% IPC reduction.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General
General Terms: Design

Additional Key Words and Phrases: Low-power design, low-power microarchitectures

Author’s address: Tidal Networks, Inc., 697 River Oaks Parkway, San Jose, CA 95134; email: enric@
tidalnetworks.com.

Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 1539-9087/03/1100-0509 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003, Pages 509-536.



510 o E. Musoll

1. INTRODUCTION

Until recently, design techniques for reducing the average and peak power
consumption have been applied mainly at the circuit and process levels
[Chandrakasan et al. 1992]. However, the power consumption of current and
future high-performance processors keeps increasing even with aggressive cir-
cuit design techniques and process shrinks [Gwennap 1998a]. The Alpha 21364
processor, for example, is estimated to consume around 100 W [Bannon 1998].
One of the reasons for this continuous power-consumption increase is the com-
plexity of the microarchitecture needed to achieve the performance that each
high-performance processor generation requires.

For high-performance processors, only those low-power techniques that do
not significantly hinder the performance have been regularly applied. At the
architecture level, for example, decreasing the operating frequency of the pro-
cessor is a common technique when no useful work is done.

When the processor is doing useful work, disabling specific units or blocks
of logic (those that will not produce any useful result for the execution) is
a more fine-grained architectural technique for low power. However, if other
than these blocks are disabled, the IPC may potentially be degraded. For some
blocks, perfect knowledge is available to determine when the block must be
enabled or disabled. One example is the functional units. If no operations
are present on the reservation station associated with a functional unit, then
the unit can be disabled until an operation is ready. In this case, the unit
block is not accessed (and thus its “result” is useless) to execute the current
instruction.

For some other blocks it is more difficult to know whether they need to be
accessed or not. For example, the on-chip level-two (L.2) cache. In some high-
performance processors, the on-chip L2 cache may be accessed concurrently to
the level-one (L11) cache to minimize the L2 cache latency in case there is a miss
in the L1 cache.! There is no way to know whether the L2 cache result will be
useful unless the L1 cache hit/miss outcome is known beforehand. The L2 cache
block is, then, accessed (because the L.1 cache may miss) but usually its result
is useless. If a block could be accessed only when its result is useful, then no
useless power would be consumed.

This work is based on the concept that (a) a block is accessed for the execution
of an instruction but its result is sometimes useless and (b) the knowledge of
whether its result is useless or not is not known for sure when the block starts
to be accessed. A high-performance processor would assume that the result of
the block is useful and it would always enable the block; if the result happens to
be useless, the result is simply not used (but at the cost of some useless power
consumption due to the unnecessary access to the block). On the other hand, a
power-consumption conscious processor design would disable the block until it
is known whether the result of the block is useful. Only at this point the block
would be enabled if the result is known to be useful (but at the cost of paying

IThis way of accessing the two-level cache system may be quite expensive in area since the L2
cache needs to have at least the same number of ports (bandwidth) as the L1. An example of a
current processor with simultaneously on-chip L1 and L2 accesses is the AMD K6-III.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 511

some extra cycles of latency, i.e., those used to figure out whether the result is
useful or not).

In this work we present a technique that is based on the concept of prediction
for low power. A hardware predictor is used to predict whether the result for
the next access to a block will be useless or not. If the predictor is that the
result will be useless, the block is then disabled (through clock gating methods,
for example), thus not consuming unnecessary power in the next access. Such
predictor might not be fully accurate: sometimes the result will be predicted
useless when it is really not (henceforth named misprediction when useful);
in this case, the predictor should enable the block and re-initiate the access,
increasing then the latency of the result of the block, which potentially reduces
the IPC; a decrease in IPC may offset the energy savings obtained with the
predictor since more cycles are needed to execute the application. A function
will be presented that can be used to evaluate how good a predictor for low
power is. This function depends on the accuracy of the predictor in predicting
that a result will be useful, and also in predicting that a result will be useless.

The different accesses that a particular block receives are classified into four
different components, based on whether the accesses are performed by instruc-
tions of the correct path or the wrong (mispredicted) path, and also based on
whether the results of the accesses are needed or not for the correct execu-
tion of the instructions. Out of the four components, only one accounts for the
useful accesses to the block, that is, accesses performed to correctly execute
instructions that will be committed. The other three components account for
the useless activity on the blocks. The simulations performed indicate that, if
the useless power dissipation of a high-performance processor could be totally
removed with no performance degradation, the overall processor power con-
sumption would be reduced by as much as 65% compared to the same processor
in which all the blocks are accessed every cycle.

A case example is presented where two blocks are predicted for low power:
the on-chip L2 cache for instruction fetches and the branch target buffer. The
IPC versus power-consumption design space is explored for a particular micro-
processor architecture. Both the average and the peak power consumption are
targeted. Although the power analysis is beyond the scope of this work, high-
level estimations are done to show that it is plausible that the ideas described
might produce a significant reduction in useless block accesses.

2. USEFUL AND USELESS ACCESSES

The total amount of accesses (A) to the blocks of a processor may be classified as
(a) whether the accesses are performed by instructions of the correct path (A.,)
or the wrong path (A,,,); (b) whether the results of the accesses are needed (A")
to execute the instructions (regardless of whether the instructions are finally
committed of not) or not needed (A™*). Thus, A = A, + A, = A" + A",
Moreover, there are block accesses performed by instructions within the cor-
rect path that generate not-needed results and, analogously, block accesses
performed by instructions within the wrong path that generate needed results
for the execution of the instructions (although these instructions will never

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



512 o E. Musoll

commit). Thus, the total amount of block accesses may be broken down as
follows:

_ n nn n nn
A= AL, + AL + AL, + Auy -
~—~
Useful accesses Useless accesses

Out of the four terms of the expression, only the first one represents the total
amount of useful accesses since they are needed to correctly execute instructions
that will be committed. All the accesses within the wrong path only contribute
with useless power dissipation since no instructions will be committed. Note
that the A7} term also contributes with useless power since the results from
the blocks are not used.

2.1 Reducing the Amount of Useless Accesses

The amount of useless accesses can be reduced following two strategies: (a)
by reducing the overall number of instructions executed within a wrong path.
This will reduce the A}, and A}7 terms; and (b) by reducing the amount of
useless accesses generated by any instruction fetched into the processor. This
will reduce the A7} and A7 terms.

The first strategy is well known in the microarchitecture community since the
objective is to improve the branch predictor. The more accurate this predictor
is, the smaller the number of instructions will be executed within a wrong path
and, therefore, the lower the Aj,, and A}, terms will be.

The second strategy is the one tackled in this work. In addition, two
patents [Kennedy and Croxton 1998; Jaggar 1996] and the work in Manne
et al. [1998] have focused on reducing the useless power due to speculative
instructions that are fetched by the processor but they are never committed.
These instructions access different blocks of the processor until they are flushed
out of the pipelines. All the three works are based on a confidence estimation
of the prediction performed by the branch prediction mechanism.

The technique patented in Jaggar [1996] disables the branch predictor based
on some information provided by the branch predictor itself in the previous
access. This information is a prediction of when the next branch instruction
will happen; therefore, between the previous access to the branch predictor
and the time that the next branch instruction is fetched, no accesses to the
branch predictor are needed (provided that the prediction for low power was
correct), thus the branch predictor block may be disabled.

The mechanism patented in Kennedy and Croxton [1998] also disables the
branch predictor based on a prediction. In this case, however, this prediction
(which is made based on a limited history of taken/not-taken outcomes of the
branches) is performed by a different block than the branch predictor itself.

The work in Manne et al. [1998] is a more general technique in the sense
that blocks other than the branch predictor are disabled based on a confidence
estimation [Grunwald et al. 1998; Jacobsen et al. 1996] of the prediction per-
formed by the branch predictor. Thus, when the branch prediction is detected
to have a high probability of mispredicting a branch, potential wrong-path in-
structions are prevented from entering the pipeline. The results show that up

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 513

to a 38% reduction in wrong-path instructions may be achieved with a small
degradation of the processor performance.

The fundamental difference between Manne et al. [1998] and the methodol-
ogy presented in this work is the type of unnecessary block accesses that are
eliminated: in Manne et al. [1998], only those useless accesses performed by
the wrong-path instructions are targeted (i.e., components A}, , Aj") whereas
in this work the goal is to also eliminate these useless accesses performed by
instructions of both the correct and wrong paths (i.e., components A7, A7Y).
Thus, the methodology explained here may be applied along with the technique
in Manne et al. [1998] for even greater power savings.

2.2 Upper-Bound Useless Energy Dissipation

In this section, a case example is presented to provide a first-order estima-
tion of the overall useless energy used by a high-performance microprocessor.
Only those power-hungry blocks common to current high-performance micro-
processors will be taken into account. To simplify the analysis, the following
assumptions are made (which, for the high-level power estimation targeted in
this work, we believe that are reasonable to take):

—An access to a block takes one processor cycle. This assumption is valid for
the purpose of this work even if the block is fully pipelined (in this case,
however, the latches between stages would be assumed to consume no power).
To account for a nonfully-pipelined block, the throughput of that block should
be considered in the analysis.

—The dynamic dissipation component accounts for the total power consumption
of the block.

—The power consumption of a block is proportional to the number of accesses it
receives. This assumption implies that (a) clock gating or other mechanism is
implemented to shut down the block when it is not accessed; (b) if a block is
accessed twice in a given cycle (because the block has two or more ports), its
power consumption will be twice as much as the case in which only one port
is used; and (c) the power consumption of a block can be coarsely estimated
without taking into account the particular value at the inputs of the block.

With these assumptions, the total energy (E 1) of the microprocessor is mod-
eled as
B
Er =Y (Wi x Aly) @
i=1
where B is the number of blocks, W |5, is the power consumption of block j, and
Alp, is the total number of accesses to block j. The expression (1) can be further
broken down as

B
Ep =Y (W5, x (AL ls + AL ls + Apylo, + Ape o). (2)
i=1

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



514 .

E. Musoll

Table I. Access Type: Needed Versus Not-Needed

Block

An

AI’LVL

L1 instruction cache

#code look-ups AND hit, plus line
replacements and invalidations

#code look-ups AND miss

L1 data Cache

#load and store accesses AND hit, plus line
replacements, write-backs and invalidations

#load and store accesses
AND miss

L2 unified cache

#code look-ups and #load and store accesses
AND (L1 miss AND L2 hit), plus line
replacements, write-backs and invalidations

#code look-ups and
#load and store accesses
AND (L1 hit OR L2 miss)

Instruction TLB #code look-ups AND hit, plus replacements #code look-ups AND miss
and invalidations

Data TLB #load and store look-ups AND hit, plus #load and store accesses
replacements and invalidations AND miss

BTB #look-ups AND (hit AND taken), plus updates #look-ups AND (miss OR

not taken)

Register File #register reads and writes except register #register bypasses
bypasses

Simple Int. FU #integer instr. except NOPs, Multiplications #NOPs
and Divisions

Simple FP FU #FP instr. except Multiplications and NA
Divisions

Complex Int. FU #integer Multiplications and Divisions NA

Complex FP FU #FP Multiplications, Divisions and SQRT's NA

If all the blocks are accessed every cycle, the total energy (which will be the
theoretical maximum energy dissipated) is

B

Er|pax = #Cycles x Z(WT x wy,) = #Cycles x Wr

i=1

where wy, is the contribution of block j to the overall power consumption (Wr).
Thus, E7 in Equation (2) may be re-written as

B
Wr x> (we, x (Al Ly, + Al + Al ls, + Al ls,)- (3)

i=1

Table I lists the microarchitecture blocks considered in this case example

and, for each of the blocks, it explains when a needed and not-needed access
is performed (regardless of whether the instruction that generates the access
belongs to within a correct path or not).

2.3 Results

The amount of total accesses to each of the blocks have been obtained by exe-
cuting several applications of the SPEC95 benchmark on the SimpleScalar tool
set [Burger and Austin 1997]. The default microarchitectural parameters of the
SimpleScalar out-of-order simulator have been used in this work. Some of these
very briefly are, 8 KB DM 1-cycle Inst. L1, 8 KB DM 1-cycle data L1, 256 KB
4-way 6-cycle Unif. L2, 64-entry 4-way Inst. TLB, 128-entry 4-way data TLB,
2K-entry 4-way BTB, bimodal branch predictor, 4 simple Int. FUs, 1 complex
Int. FU, 4 simple FP FUs, and 1 complex FP FU.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 515

Table II. Number of Accesses/Number of Cycles Ratios

SPEC95
Block AL, AL AL, AL
I1C 0.47 0.04 0.06 0.00
DC 0.37 0.01 0.03 0.00
UucC 0.07 0.77 0.00 0.08
IT 0.46 0.00 0.05 0.00
DT 0.35 0.01 0.03 0.00
BT 0.29 0.03 0.05 0.00
RF 2.40 0.75 0.22 0.11
SI 0.96 0.04 0.10 0.00
CI 0.01 NA 0.00 NA
SF 0.08 NA 0.01 NA
CF 0.05 NA 0.00 NA
Total 5.51 1.65 0.55 0.19
IC—2-p L1 ICache DC—2-p L1 DCache
IT—2-p ITLB DT—2-p DTLB
RF—6-p Reg. File SI—4 SInt FUs
SF—4 SFP FUs CF—1 CFP FU
UC—2-p L2 UCache BT—2-p BTB

CI—1 CInt FU

Table ITI. Different Sets of Power Ratios

Power Ratios
Block Group | Block Port/Instance A B C D

Clock System 0.20 0.50 0.12 0.12

IC 0.05 0.03 0.08 0.03

DC 0.05 0.03 0.08 0.03

Caches UucC 0.08 0.05 0.10 0.04
IT 0.02 0.01 0.02 0.01

DT 0.02 0.01 0.02 0.01

BT 0.03 0.02 0.04 0.01
RF 0.005 | 0.005 | 0.005 | 0.025
SI 0.005 | 0.005 | 0.005 | 0.015

FUs CI 0.035 | 0.015 | 0.015 | 0.07
SF 0.035 | 0.025 | 0.025 | 0.065

CF 0.075 | 0.035 | 0.035 | 0.10

Table IT shows the values obtained for different terms described in Section 2
(AL, ALy, ALy, Ay, for both benchmarks, for each of the blocks, and for the four
types of accesses. The values are relative to the total number of cycles needed to
execute the applications. These ratios may be larger than 1 (e.g., in the register
file) in case the block is frequently accessed and it has several ports. The L2
unified cache and the register file are the blocks that present a larger number
of useless accesses for both benchmarks.

Table III shows four different sets of the w;,, power ratio values. These values
are shown per basic instance of a block; thus, if block b; is n-ported or there are
n instances of it, the ratio value associated with this block is n x wy,. Each set
stresses different parts of the processor: set B has the highest power consuming
clock system, set C features power hungry caches, set D stresses the functional
units, and set A is an average of the other three sets. The values in the table

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



516 o E. Musoll

have been partially obtained from some published data [Burd and Peters 1994;
Dobberpuhl et al. 1992; Gowan et al. 1998; Meng et al. 1995; Santhanam 1996;
Scott et al. 1998; Tiwari et al. 1998] and from extrapolations when no informa-
tion is available.

In this study, the local clocks of the different blocks are assumed to have the
capability of being disabled when useless accesses are performed to the blocks.
Moreover, the power consumption of the local clock of a block is considered to
be proportional to the power of the block, and the power of the local clocks of
the different blocks adds up to the total power of the clock system.

The conclusion of this study is that, if the useless energy dissipation could be
totally removed at the cost of no IPC degradation, the overall energy consump-
tion would be reduced to about 65%. Note that the elimination of the not-needed
accesses to the blocks performed by instructions within the correct path usu-
ally comes at the cost of increasing the total amount of cycles needed to run the
application. These extra cycles will increase the amount of useless energy dis-
sipated and, therefore, they may offset the energy savings previously obtained.

Other cases with different amount of energy dissipation lie in between the
maximum and minimum energy dissipation scenarios. For example, in the case
where blocks are accessed only when the instruction requires them, by totally
eliminating the useless energy, the overall power consumption of the processor
(again, assuming no IPC degradation) may be reduced to about 30%. Note that
the 30% is obtained when the useless accesses (energy) are eliminated but in
the scenario in which the block is only accessed when the instructions being
executed require the accesses (these instructions may belong to either the cor-
rect or wrong path). 65% is obtained when the useless accesses are eliminated
in the scenario in which the block is accessed in all the cycles, no matter what
instruction, if any, is executed. For more details about this results, please refer
to Musoll [2000].

3. PREDICTING THE USEFULNESS OF A RESULT

The purpose of the technique presented here is to work around the fact that
sometimes the result of the block is not known to be useful before the block is
accessed, and this is done through a hardware predictor. If the predictor pre-
dicts that the result for the next access to the block is useless, the block will be
disabled thus not consuming unnecessary power in the next access. Since the
predictor will not be totally accurate, sometimes the result will be predicted
useless when it is really not (henceforth named misprediction when useful); in
this case, the predictor should enable the block and re-initiate the access, in-
creasing then the latency of the result of the block, which potentially reduces
the IPC; a decrease in IPC may offset the energy savings obtained with the pre-
dictor since more cycles are needed to execute the application. Also, depending
on the complexity of the predictor itself, the power consumption of the predictor
might offset some of the reductions obtained. Throughout this work, there is the
implicit assumption that the predictor consumes an insignificant percentage of
the power saved, and therefore the power consumption of the predictor is not
taken into account in the simulations. Other nondesired consequences of using

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 517

block inputs

e —» X

o (@] enable [

EQ e 5 n

%5 . a BLOCK

[oNe} > w

£ o

o
b|l@—> to requester
predicted result
(a)
block inputs
g Y Y Y
=2 Sub > Sub Sub
238 _2* L LIPredictor|_,|Predictor | ® ® L IPredictor
25 1 2 K
£
o000
Subpredictor Selector >
Logic enable
PREDICTOR

predicted result
(b)

Fig. 1. (a) A generic predictor for low power and its associated block; (b) subpredictors within a
predictor.

prediction for low power is the increase in area, validation time, and circuit
design issues such as propagating the enable/disable signal to the predicted
block. These issues, although important, are out of the scope of this work.

The predictor may also have the functionality of providing a prediction of the
result itself (apart from its usefulness) of the block. If this is the case then two
situations may happen: (a) the predictor predicts that the result of its block is
useless: the block will be disabled, and (b) the prediction is that the result is
useful: the predicted result is used and the block is also disabled.

A predictor for low power may be designed in such a way that if a predicted
result is given, it is the actual result that the block would provide. An example
of a predictor of this kind is a tiny, level-zero (LO) instruction cache. An L0
instruction cache is another level in the memory hierarchy with the purpose
of freeing the unified L1 cache from instruction accesses from the processor so
that the L1 cache ports are available for data load and store accesses. The LO
cache would predict always that the result of the L1 is useless, thus effectively
disabling the L1 cache for instruction accesses unless there is a miss in the L0
cache. Thus, power consumption is saved since the L0 is a less power-hungry
block than the larger L1 cache. A study of the power savings using an L0 cache
was done in Kin et al. [1997].

A schematic of how a generic predictor is connected to its associated block
is shown in Figure 1(a). Potentially, the predictor may have the same inputs

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



518 o E. Musoll

PREDICTORJ. lea— PREDICTORi

I
Y |
R En R En
BLOCK,; 1e+— BLOCK;

Fig. 2. Selection of the block(s) to be disabled.

Predictor
Selector
Logic

as its associated block (plus some other inputs coming from different blocks
of the processor) that will be used to make the prediction. Since the predictor
may provide the (predicted or actual) result of the block to the requester, a
multiplexer is needed as shown in the figure.

3.1 Subpredictors and Multipredictors

A predictor may be composed of several subpredictors as shown in Figure 1(b),
each making its prediction based on different information. In this case, a se-
lection of which of the subpredictors will provide the prediction for the block
is needed if more than one of the subpredictors predicts that the block result
will be useful and at least one of these provides a predicted result of the block.
This selection may be static (there is a fixed priority among the subpredictors)
or dynamic (where the recent past history of decisions for each subpredictor is
kept and used to select the best subpredictor at any time, as done in a combined
branch predictor [McFarling 1993]).

Several different blocks of the processor may have predictors associated with
them (see Figure 2). Each predictor will make the prediction in a different way
since each block functions differently. Some logic (named predictor selection
logic in the figure) may determine what block(s) to be disabled based on the
outcome of the different predictors and possibly on some other inputs from other
blocks of the processor. The purpose of this logic is to select a few blocks to be
disabled: whenever several of the predictors predict the results to be useless,
this logic may disable only a few of the blocks (again those least sensitive to the
IPC or/and most power hungry). This helps not degrading too much the IPC by
preventing too many blocks from being disabled.

On the other hand, the logic may help in reducing the peak power consump-
tion: whenever none of the predictors predicts that the result of its associated
block is useless, this logic may force at least one of the blocks to be disabled
(the least sensitive to the IPC or/and the most power-hungry block). This helps
reducing the peak power consumption but adversely affects the IPC in the case
where all the predictors predict the result to be useful and the predictions where
correct.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 519

Block is Block is
accessed not accessed
Predicted Predicted No prediction
useful useless needed
Resultis  Result is Resultis Result is
Useful Useless Useful Useless
Corrtct Mlspl*edl(‘t ion Mlsprtdmt ion Cojrect
prediction when useless when useful prediction
Amount of Lat
Saved Accesses atency

decreased increased

Fig. 3. Consequences of mispredictions.

Care has to be taken in not increasing the critical path of the processor. As
mentioned earlier, the predictor is not perfect and therefore it will have an im-
pact on the performance of the processor. This performance degradation would
be even greater if the critical path is increased. The predictor logic does not
belong to the critical path of the processor unless the delay of the slowest input
that the predictor uses to make the prediction plus the delay of the predictor
itself is larger than the processor cycle time.

4. PREDICTOR EFFECTIVENESS

The effectiveness of a predictor for low power depends on the accuracy of the
predictor in predicting that a result will be useful, and also in the accuracy
in predicting that a result will be useless. When a predictor is not ideal in
any of these two accuracies, some degradation occurs: as shown in Figure 3, a
misprediction when useless decreases the number of accesses to the block that
could have been saved; moreover, a misprediction when useful increases the
latency of the result of the blocks and this may potentially decrease the IPC of
the processor.

The following function is proposed to have a single measure of the perfor-
mance degradation of a predictor for low power, with respect to the case of
perfect prediction:

(UsefulAccesses x MispredUseful) + a(UselessAccesses x MispredUseless)

D =
Total Accesses
= (1 - M) x MispredUseful + a« x M x MispredUseless

where MispredUseful (MispredUseless) is the fraction of useful (useless) ac-
cesses that are mispredicted, M is the fraction of useless accesses, and « is a
factor that relates the penalty of both types of mispredictions.

Thus, M and o are parameters that depend on the block targeted by the
predictor and the application being run on the processor.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



520 o E. Musoll

4.1 Example

To illustrate how the previous function can be used, several different predictors
targeting the same block will be compared for several values of « and M. The
block in this example is the L1 data cache.

An L1 data cache hit/miss predictor can save power in the on-chip L2 data
cache. Integrating the L2 cache on-chip has been one of the latest techniques to
increase the performance of the microprocessor [Gwennap 1998b]. With the L2
cache on chip, two alternatives exist for the time when the L2 cache is accessed:

—access the L2 cache simultaneously with the L1 cache, irrespectively of
whether there will be a miss in L1. This reduces the effective access time
of L2 when there is a miss in the L1 cache. However, this approach has the
following disadvantages:

¢ It is quite expensive in area since the L2 cache needs to have at least the
same number of ports (bandwidth) as the L1 cache. Part of this bandwidth
is wasted when one or more of the accesses is a hit in L1.

¢ It results in a high, useless power consumption in the L2 cache when the
result is provided by the L1 cache since an access to the L2 is already
in progress when the hit/miss outcome from the L1 cache is determined.
At this point, the useless access in progress in the L2 could be squashed
(some logic needs to be implemented to perform this task) or just allowed
to finish and the L2 result is then discarded (this is the worst scenario in
terms of power consumption). In any case, the L2 consumes power for at
least as many cycles as the L1 takes to compute the hit/miss outcome.

—access the L2 cache only when there is a miss in the L1 cache (thus disabling
the L2 cache while determining the L1 hit/miss outcome). This results in a
larger effective access time of the L2 cache, but reduces the L2 bandwidth to
only the actual number of L1 misses and has no useless power consumption.

An L1 hit/miss predictor provides a trade-off between the two alternatives
by accessing the L2 cache only if a miss is predicted in the L1. Mispredictions
have different consequences. If the L1 access was predicted to be a

—miss, but it turns out to be a hit, an unnecessary access is performed to the
L2, thus consuming both power and an L2 port.

—hit, but it really is a miss, the effective latency of the data (assuming an L2
cache hit) is increased by the L1 latency of the hit/miss determination.

Correct predictions provide the smallest L2 cache latency when the L2 is
really needed to be accessed, the lowest L2 energy consumption by preventing
an L2 access when its result is useless, and the most efficient use of the L2
bandwidth.

Note that for the L1 data cache, M (i.e., the cache miss rate) is small; there-
fore, the misprediction when useful (i.e., the misprediction of the access to the
cache resulting in a hit) has a larger effect on the degradation, unless this is
counterbalanced by a large value of «. Consequently, for this particular block, it
is more important to have a very good prediction of hits rather than of misses.
On the other hand, because of the larger number of hits, it is simpler to predict

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 521

them, and as it will be seen, the predictors vary mostly on the quality of pre-
diction of misses.

A total of six families of L1 predictors are compared. The first three families
are either trivial predictors or have already been proposed:

—Trivial: either predict always hit or always miss.

—Saturated Counter [Kessler et al. 1998]: this predictor consists of a satu-
rated 4-bit counter that tracks the hit/miss behavior of recent data reads.
The counter decrements by two on cycles where there is a read miss, and
increments by one when there is a hit. The mostsignificant bit of the counter
is used to do the prediction.

1,2 and 4-bit counter widths will be evaluated.

—Per-address Two-level [Yoaz et al. 1998]: this predictor is based on the con-
cept widely applied in branch predictor theory, in which the address of the
load instruction is used to perform the prediction.

The predictors evaluated here store, in an N -entry tagless table, the past
H hit/miss outcomes per instruction address. The least-significant bits of
the instruction address are used to index this table (first level) to obtain the
history vector, which is used (second level) to access a global table of 27 2-bit
saturated counters that perform the prediction.

The rest of the predictor families evaluated (see Musoll and Lang [2002] for
the details) are based on the number of consecutive cache accesses that resulted
in a hit since the last miss, and this number is called distance:?

—Static Window-based: this predictor does not keep specific per-distance in-
formation and predicts a miss if the distance is less or equal to a threshold.
That is, a window is defined and the threshold corresponds to the window
size.

Different window sizes will be evaluated.

—Per-distance Two-level: it combines the per-distance approach with the
two-level mechanism of storing hit/miss outcomes and performing the pre-
diction based on saturated counters. In other words, this family of predictors
is the per-distance version of the Per-address Two-level family previously
described.

—Per-distance Relaxed Stride: a dynamic local stride (s) is kept per dis-
tance. The stride at distance d is changed whenever a miss happens at that
distance. A miss is predicted for an access at distance d if the number of
accesses at that distance from the last miss (i.e., the current stride at dis-
tance d) is between s — O and s + O, where O is a global (i.e., the same for
every distance within the table) fixed offset.

The results are shown in Table IV. For each family of predictors, and for each
value of «, the predictor with the lowest degradation is shown in italics. The

2This concept of distance has been used in a different context in Grunwald et al. [1998] where it is
shown that the branch mispredictions occur in clusters, and it is proposed to use the distance from
the last mispredict branch as a confidence estimation mechanism [Jacobsen et al. 1996].

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



522 o E. Musoll

Table IV. Degradation Values for Several Instances of «

Percentage of

Predictor Misprediction a
Family Predictor H] M 005J01]05] 1] 210720
Trivial Always Hit 0 100 1.0 10 | 1.6 | 1.8 |1 19| 2.1 | 2.9
Always Miss 100 0 909 | 455 | 142 | 81 | 43 | 9.7 | 6.7
Saturated 1 bit 2.1 95 20 11 | 44 | 34| 27|22 |29
Counter 2 bits 2.3 89 22 11 | 46 [ 3427|2128
4 bits 0.06 99 15 | 13 | 16 [ 1.8 19|21 ] 29

N=4 0.25 70 30 |19 | 15 | 15|14 |15 ] 21
H=6 N=32 | 0.22 56 25 |15 |12 (1212|1217
N =256 | 0.26 51 29 (17112 |11 (11|11 |15
Per-address N=4 0.26 68 31 |19 | 14 |14 |14 |15 ]| 20

Two-level H=8 N=32 | 0.23 54 26 (16 |12 |11 (11|12 |16
N =256 | 0.26 48 28 |16 | 1.1 |11 |10 |11 | 14

N=4 0.27 67 32 119 |14 | 14|14 |15 |20
H=10 N=32 | 021 53 256 |15 |11 (1111|1216
N =256 | 0.24 47 27 (16 | 1.1 | 1.0 | 1.0 | 1.0 | 1.4

Window of 1 2.1 95 20 11 | 44 | 34 |27 |22 |29
Simple Static Window of 4 6.8 53 63 32 10 [ 64| 40| 18] 20
Window-based Window of 32 24 17 220 [ 110 | 35 | 20 | 11 | 2.7 | 2.1

Window of 256 55 3.0 502 | 261 | 78 | 45 | 24 | 5.4 | 3.8

N=4 0.11 66 1.7 | 1.2 | 12 | 13|13 |14 | 20
H=6 N=32 | 0.19 51 2.2 14 | 1.1 (11|11 |11 15
N =256 | 0.35 49 36 [ 21|12 1111|1115
Per-distance N=4 0.11 66 1.7 1.2 | 1.2 {13 (13| 14|19

Two-level H=8 N=32 | 0.17 49 2.0 1.3 {10 (10| 1.0 [ 1.1 | 15
N =256 | 0.32 46 3.4 19 (1211|1010 | 14

N=4 0.12 66 1.7 [ 1.2 | 12 | 13|13 |14 | 1.9
H=10 N=32 | 0.17 49 2.1 13 (10 |10 |10 | 11| 14
N =256 | 0.32 45 3.4 19 |12 11|10 1.0 | 1.4

0=0 0.43 56 45 | 256 | 1.5 | 1.3 |13 |12 | 17

N=32 0=4 3.0 35 27 14 | 47 {3019 (10| 12

Per-distance 0=64 10 19 93 47 15 | 86 |48 |14 | 13
Relaxed 0=0 0.6 53 55 |1 30|16 | 14| 12|12 16
Strides N =256 0=4 4.0 29 36 18 | 6.1 [3.7]23 (10|11
0=64 12 7.4 106 | 53 16 [ 95|52 |13 | 1.0

lowest degradation across all the families is shown in bold. The misprediction
rate (for both hits and misses) is given for each of the predictors. From these
results we conclude that the best scheme depends on the value of «. For very
low «, the best scheme is Always Hit, since the correct prediction of hits is most
important. For medium values of «, the best are the Per-distance Two-level
and Per-address Two-level families. Finally, for high « values the best is the
Per-distance Relaxed Stride family, because of its high correct prediction of
misses without large misprediction of hits.

5. OVERALL PROCESSOR POWER REDUCTION

As mentioned earlier, the overall power consumption of a processor with pre-
dictors for low power is a function of three factors:

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 523

WRatio(j) [BIkAcc(j) = 0.25] WRatio(j) [BlkAcc(j) = 1.0]

AN
XX R

R
R

oo

o

LSRR

LA,

R

LA

R 05

i ' ,
R > w(j)

legtogtegts
.05 N ' .05

"y
oy
Il bsseres
IPCRed(j)

IPCRed())

SavAcc(j) SavAcc(j)

Fig. 4. Design space (WRatio/ |p yeq) When using a predictor for low power for block j.

—How accurate each of the predictors is. The accuracy of a predictor is better
analyzed when divided into accuracy when predicting useless (i.e., the pre-
dictor predicts useful but the result is actually useless) and when predicting
useful (i.e., the predictor predicts useless but the result is actually useful)
since the predictor performance in each of these two cases has different con-
sequences. Let SavAcc/ be the percentage of accesses to block j saved by its
predictor®) and IPCRed’ the percentage of IPC reduction due to results of
block; that were mispredicted when useful).

—The percentage of the total processor power consumption that corresponds to
the blocks being predicted. Let WRatio’ be this percentage for block ;.

—Houw sensitive to the IPC the different blocks are. This sensitiveness is implicit
in IPCRed”, and it is also a function of the percentage of times that block; is
accessed (henceforth named BlkAcc/) during the execution of the application.

The relationship among the parameters described above is shown in Figure 4
for a particular block j. To derive the curves plotted in the figure, the following
terms are defined:

— E: the energy required to execute a given application without any prediction
for low power,

—E}: energy required when applying the prediction for block j,

— W/ the average power consumption of block j per cycle,

—Wrest: the average power consumption of the processor per cycle excluding
block j,

—Cop: the total number of cycles needed to execute an application when no
prediction is made,

—C{,: the total amount of cycles needed when predictions are made for block j,

—AJ: total number of accesses to block j, and

—S7: total number of accesses to block j saved by the predictor.

3Note that a 100% of saved accesses implies that the predictor predicts correctly all the useless
accesses to the block and that there were no useful accesses to the block. If there are useful accesses,
it is impossible to achieve 100% of saved accesses since these useful accesses eventually have to be
done.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



524

o E. Musoll

In the following, four assumptions are made for the sake of the simplicity of

the
1)

(2)

3

(4)

analysis:

An access to a block takes one processor cycle. This assumption is valid
for the purpose of this work even if the block is fully pipelined (in this
case, however, the latches between stages would be assumed to consume no
power). To account for not fully pipelined blocks, an additional factor (i.e.,
the throughput of the block) should be considered in the analysis.

The total number of accesses to a block, that is, A/, is independent of
whether the predictor exists or not. This may not be true since the presence
of a predictor may increase the total amount of cycles needed to execute the
application and, therefore, the number of accesses to the block can poten-
tially be larger. Thus, for the analytical study to be accurate enough, the
IPC degradation due to the predictor should be small.

The power consumption of the predictor itself is negligible when compared
to the power consumption of the block being predicted. This is true when
simple predictors are used for power-hungry blocks, which is the case con-
sidered in this work. If the predictor for low power were complex, its power
consumption should be considered in the following equations.

When block j is disabled in a given cycle the power consumption of the
processor per cycle is W™t independently of what the processor is doing
in that cycle. Similarly, then the block is enabled, the power per cycle is
w Jj + Wrestf .

Since the goal of a predictor is to reduce the energy required to execute a
given application, it is needed that E}/Eo < 1, Eg and E} may be expressed

as
Eo=Cox W + A/ x W/
E} =Ch x Wt 1 (A7 - 87) x WY,
Let
Wrestf
Then
E} Ch+8 x (A -8
Eo Co+68/ x AJ ’
When E{J /Eo = 1 no overall energy reduction is obtained. For this case,
: Ch —Co
8/ |no red = PT
Since
- cd-c .8 A
IPCRedd = 2% : SavAccd = = ; BlkAccd = —
G Al G

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 525

then 87 |no req can be rewritten as

8 o red = e
SavAcc/ x BlkAcc/
Moreover,
. W Wi
WRatio’/ =

T Wall = Wi+ Wrestj ’
Therefore, WRatio |y, req is equal to

Sj |no red _ IPCRedJ
8/ |lnored +1  IPCRed) + SavAccd x BlkAccl'

Thus, the predictor of block j will save energy if

E} o IPCRed’
—— < 1= WRatio’/ > A . -
Eo IPCRedJ + SavAccd x BlkAcc)

Figure 4 plots WRatio’ |n, req @s a function of SavAcc, IPCRed, and BlkAcc.
Given a fixed value of WRatio/ (in the Figure 4 shown as w”), the design space
that presents overall processor power consumption savings is shown below the
plane with equation WRatio/ = w/. Figure 4 also serves the purpose of answer-
ing the question: given a predictor that renders SavAcc accesses saved with a
penalty in performance of IPCRed on a particular block that is accessed in av-
erage BlkAcc times per cycle, how much power that block should account for
the total processor power consumption for the technique to render a positive
overall processor energy reduction.

Note that larger the BlkAcc/, larger the design space with energy savings
because more times the block will be disabled. In Figure 4, this design space
corresponds to the curve comprised between the triangle shown on the base
of each of the plots and the horizontal plane. As expected, the lower the IPC
reduction, the smaller the SavAcc ratio can be and still be able to reduce the
energy consumption of the design.

5.1 Extension to Two or More Predictors

As shown in Figure 2, more than one block of the processor may have a predictor
associated. Let us assume that there are only two blocks with a predictor each.
Two situations may happen:

—A predictor enables or disables its respective block independently of what
the other predictor does.

—Some logic (shown in Figure 1(b) with the name of predictor selector logic
(PSL)) may decide which of the two blocks to disable based on the predictions
of both predictors and possibly on some other inputs from other blocks of the
Processor.

The first situation is a particular case of the second where the PSL just
redirects the enable decisions from the predictors to the enable inputs of the

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



526 o E. Musoll

respective blocks. The second situation is more generic, and the PSL could
implement different strategies:

—disable at least one block. If only one or both predictors want to disable, the
PSL will do what the predictors decide. If none of the predictors wants to
disable, the PSL should disable the block less sensitive to the IPC and/or
more power hungry.

—disable at most one block. If both predictors want to disable, the PSL will
have to decide the block that is not to disabled. If none or only one of the
predictors want to disable, the PSL will do what the predictors decide.

—disable none, one or both. This strategy corresponds the first situation de-
scribed before.

Each of these strategies has a different effect on the IPC and on the av-
erage and peak power-consumption reduction. Larger the number of blocks
disabled, (a) potentially greater the IPC degradation, (b) larger the average
power-consumption reduction and (c) larger the peak power-consumption re-
duction (however, in this case at least one of the blocks should be disabled
every cycle to effectively reduce the peak power consumption).

A similar analytical model as the one plotted in Figure 4 may be obtained
for the two-predictor scenario. The IPCRed parameter in this case is a function
of the accuracy of both predictors and the strategy implemented by the PSL.

6. CASE EXAMPLE

In this section, a case example is evaluated. High-level estimations are pre-
sented to show that the methodology explained in the previous sections might
produce significant power savings. The microprocessor example features two
blocks with a predictor for low power associated with each one and the predic-
tion selection logic. The two blocks are the on-chip level-two (I.2) cache, when
accessed for instruction fetches and the branch-target buffer (BTB), accessed
for every branch instruction to obtain a prediction of its target address. Both
the on-chip L2 cache and the BTB are large blocks that consume a significant
amount of power. Reducing the amount of accesses to these blocks is expected to
significantly reduce the overall power consumption. The purpose of this section
is to show the benefits of the methodology of predicting a block result for low
power. The ultimate overall microprocessor power reduction depends of sev-
eral micro-architectural and circuit design parameters. In this work, only the
amount of useless block accesses eliminated is evaluated.

There is one predictor associated with the L2 cache and two subpredictors
to the BTB. The subpredictor selection logic will determine which of these two
subpredictors will eventually make the prediction for the BTB.

In the following, the different predictors and both selection logics are ex-
plained in detail. Other more complex predictors may be devised. However, for
the purpose of this work, simple predictors that provide a good accuracy versus
design cost compromise will be described.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 527

Distribution of L1

0% Illlstructioanetch Misses

60% -
50% -
40% -
30% - -
20% - n
10% - -

0%

1 5 10 > 20
Consecutive L1 Instruction Fetch Hits

Fig. 5. Distribution of L1 instruction fetch misses as a function of consecutive L1 hit accesses.
Workload is an average of the SPEC95 benchmarks.

6.1 On-Chip L2 Cache Predictor for Instruction Fetches (WindowBasedPredictor)

The proposed predictor for the L2 cache predicts the misses in the L1 instruction
cache and access the L2 instruction cache concurrently with the L1 only in case
a miss is predicted. On the other hand, if a hit is predicted, the L2 cache is only
accessed if the prediction is incorrect; in this case the effective latency of the L2
cache is increased by the L1 latency of the hit/miss determination (considered
in this work to be 1 cycle).

In this work, only the instruction fetches are predicted. The IPC degradation
is around 3% when the L2 cache is accessed for instruction fetches only if there
is an L1 cache miss with respect to the case in which both levels of cache
are accessed in parallel. This percentage has been obtained using the same
microarchitectural parameters used later on in the results section. Predicting
the load accesses is also possible (see Section 4.1) but it has a larger impact on
the IPC.

The rationale behind this predictor relies on the conjecture that the distance
(in L1 cache accesses) between consecutive L1 misses is small. The author
conveyed an experiment to prove the validity of this conjecture, and the results
are shown in Figure 5, where, for a 2-way 16 KB L1 instruction cache, the
percentage of the instruction fetches to the L1 cache that result in a miss is
shown as a function of the number of consecutive L1 cache instruction fetch
accesses that resulted in a hit. As an example, around 85% of all the misses
occur within a distance of 5 or less. The shape of this distribution depends
mainly on the workload and on the cache configuration.

The prediction algorithm (as already explained in Section 4.1, Static
Window-based) defines a window size of W so that, after an instruction fetch
miss occurs, the next miss is predicted to occur within the next W instruction
fetch accesses to L1. If no miss occurs in these W accesses, a hit is predicted
until the next miss occurs. By choosing the value of W, which is fixed once
the predictor is implemented, the designer can select the fraction of L2 cache
saved accesses versus the IPC reduction ratio; the larger (smaller) the W value,

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



528 o E. Musoll

smaller (larger) the fraction of L2 cache saved accesses and also smaller (larger)
the IPC reduction.

6.2 BTB Predictor

A high accuracy in predicting the correct instruction stream is paramount in
high-performance processors to achieve a competitive IPC metric [Perleberg
and Smith 1993]. The penalty of a mispredicted branch instruction is several
lost cycles, each of which could have derived one or more committed instruc-
tions. Therefore, a large BTB, usually organized as a cache, is necessary to
provide as many correctly predicted target addresses as possible. The rather
small 512-entry BTB of the Pentium Pro consumes about 5% of the processor
power.

In our case study, the BTB, accessed for every branch instruction, has two
subpredictors for low power and, therefore, a subpredictor selection logic (SSL)
is needed to select which of the subpredictors will make the actual prediction.
In the following, both subpredictors and the SSL are described.

Based on the Burstiness of BTB Misses (BTBMissPredictor). The first sub-
predictor relies on the conjecture that the misses in the BTB often happen in
bursts, and correspond to control transfers to a new (or not recently executed)
working zone of the code. The target addresses for the branches in the new
working zone most likely will not be cached in the BTB. This conjecture was
first described in Grunwald et al. [1998].

The subpredictor keeps track of how many consecutive BTB misses have
occurred and it will predict that the next access to the BTB will be as well
a miss in the case that number of consecutive misses is larger than a given
number, henceforth named M, fixed by the designer. The larger M is the more
consecutive BTB misses the subpredictor needs to detect in order to predict a
miss in the next access to the BTB and, therefore, the smallest the fraction of
BTB accesses are saved (but also the smallest the impact on the IPC). Thus, this
predictor is again of the Static Window-based family described in Section 4.1.

Figure 6 shows how the BTB misses are distributed in bursts. For example,
50% of all the BTB misses happen in a single-miss burst, that is, there is at
least one BTB hit right before and another one right after the BTB miss. In
other words, 50% of the BTB misses are preceded by at least one BTB hit; for
all these BTB misses, the predictor will mispredict them, since after a BTB hit
the predictor described here always will predict hit.

Depending on the value of M, the number and type (hit or miss) of mispre-
dictions varies. The predictor with smaller M has more mispredicted hits than
the predictor with larger M ; this implies that the branch prediction (and even-
tually the IPC) will be more adversely affected for the case with a small M. For
this case, on the other hand, there are more BTB disables, thus saving more
power.

Based on the Detection of Code Loops (LoopPredictor). The idea of this
subpredictor is to detect the loops that the code may have, and store, in a
special structure inside the predictor, the target addresses for the different

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 529

Distribution of BTB
Misses in Bursts

60% I I I I I

50% - -

40% 50% |

30% 7

19
20% - % n

10% - ‘\‘\< .
4

0% | |
1 2 3 4 >5
BTB Misses Burst

Fig. 6. Distribution of BTB misses in bursts for a typical BTB configuration. Workload is an
average of the SPEC95 benchmarks.

branches within the loop. Thus, for nearly all the iterations of the loop, the target
addresses of the branches within the loop may be provided by the predictor and
not by the BTB (which is disabled during these iterations).

To reduce the cost of the predictor implementation, only some types of loops
(those following the pattern of Figure 7(a)) will be handled. The simplest loop
of this family of loops is depicted in Figure 7(b) (corresponds to L = 1 in
Figure 7(a)), and it only consists of the mandatory closing branch. The hard-
ware needed in the predictor to detect the loop is shown in Figure 7(b); the last
branch address and its associated target address (provided by either the BTB
or the predictor itself) are stored in two registers (PastBranchAddress (PBA)
and PastTargetAddress (PTA) registers, respectively). Every time there is a
BTB look-up, a comparator compares the current address of the branch to the
value in the PBA register and, if equal, it implies that the simplest loop has
been detected. Thus, for the next BTB look-ups till the end of the loop execu-
tion, the BTB may be disabled since the predicted target address will be pro-
vided by the PTA register. The end of the loop is detected when the comparison
fails.

The same mechanism used to update the BTB with the correct target address
when the branches are resolved by the execution units is applied to restore the
PTA register in case its value is not correct.

The predictor for low power can be extended to handle more branches (always
following the pattern in Figure 7(a)). For L = 2, the hardware needed is shown
in Figure 7(d). After the predictor has provided its prediction, the BTB look-up
signal clocks the current branch and target addresses into the PBAg and PTA,
registers, respectively. The PTA and PBA registers behave as a FIFO. Thus, to
detect an L = 2 loop, the oldest two branch addresses need to be the same as
the newest two (including the current one).

In general, to detect an L loop, 2L — 1 PTA registers, 2L — 1 PBA regis-
ters, L comparators, L — 1 multiplexers, and an L-input AND gate are needed.
Figure 7(d) shows that the simplest loop detector comes almost for free (just an
additional comparator). Therefore, the L = 2 predictor of the figure can detect

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



530 o E. Musoll

ini-loop:
if cond; goto target;

targety:

if condy goto targetq ini_loop:
targets: if not condcnd_ioop goto ini_loop
end_loop:
if condr, 1 goto targetr_1
b
targetr —1: ( )
if not condend_toop goto ini_loop
end_loop:
(a)
resolved
target address
resolved
target address
) target - >
tggget address s
e  JpTA - T TIPTA PTA [PTA predicted
. arge
predicted BTB address
BTB  — target look-up
look-up address
b ho branch
ranc address
address PBA2 PBA1 PBAO
PBA
[ 1
= L=2
. — loop
(simplest) loop detection
detection .
(simplest)
(o) » loop.
detection
(d)

Fig. 7. (a) Generic loop pattern detected by the predictor; (b) simplest loop; (¢) hardware needed
for L = 1; and (d) for L = 2.

both types of loops (I = 1 for the simplest predictor and for [ = 2); in case both
loop-detection signals get asserted, the signal corresponding to the loop with
lower [ has priority.

Figure 8 shows how many times (out of the total number of BTB accesses—
look-ups and updates—when no predictor for low power is present) the predictor
detects an/ loop (! = 1,..., L). The figure shows that, for an L = 2 predictor,
9.5% (4.8% due tol = 1 loops and 4.7% due to ! = 2 loops) of the BTB accesses
are saved.

Subpredictor Selection Logic. Since there are two subpredictors for low
power for the BTB, some logic needs to arbitrate what subpredictor will make
the prediction. The subpredictor selection logic (SSL) is described in Table V.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 531

Loop Hit Detections for L =6
6% T T T T T T

4% - .

2% - n

0% | | | | | |

Fig. 8. Percentage of all BTB accesses (look-ups and updates) that result in loop-hit detections for
L = 6. Workload is an average of the SPEC95 benchmarks.

Table V. Subpredictor Selection Logic

BTBMiss Loop
Predictor Predictor
Predicts Predicts SSL Action
Hit No loop Enables BTB
Disables BTB. Predicted
Miss No loop target address is the

fall-through path

— Disabled BTB. Predicted
— Loop target address is provided
by LoopPredictor

Two notes on the SSL behavior are

— it is static, that is, it does not maintain any history of the performance of the
subpredictors to decide which one is better at any time. This static strategy
keeps the complexity of the SSL low.

—when both subpredictors decide to disable the BTB (i.e., the BTBMiss
Predictor predicts BTB miss, and the LoopPredictor detects aloop), the SSL
decides that the predicted target address is provided by the LoopPredictor
since this predictor is more accurate in providing the target address when it
detects a loop hit than the BTBMissPredictor providing the fall-through path
when predicts a miss (as it will be seen later on).

6.3 Prediction Selection Logic (PSL)

Similarly as with the subpredictor selection logic for the BTB subpredictors,
some logic may regulate which of both blocks, the L2 cache and the BTB, are
disabled based on the outcomes of their respective predictors. The three strate-
gies explained in Section 5.1 will be evaluated in Section 6.4.

The only case in which the PSL has to override the outcome of one of the
predictors is when it follows the disable at most one block strategy and both
predictors want to disable their respective blocks. In this case, the PSL logic

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



532 o E. Musoll

will disable the L2 cache for instruction fetches, since it is less sensitive to the
IPC than the BTB (as it will be seen later on).

6.4 Simulation Scenario

The SPEC95 benchmark suite will be used to evaluate the case example. The
predictors and the PSL and SSL logic have been incorporated to the Simple
Scalar v2.0 [Burger and Austin 1997] microarchitecture simulator.

The results reported are the weighted average for all the SPEC95 bench-
marks. For each benchmark, 10M instructions are executed to warm up the
blocks of the microprocessor, and during the following 100M instructions the
statistics for the predictors for low power are gathered.

Several results will be provided in this section, each one representing a
3-value vector point in the IPC versus power-consumption design space. The
values of the vector point are

—the percentage of IPC degradation (versus the IPC when no predictors for
low power are present)

—the percentage of saved accesses to the BTB (out of all BTB accesses, including
BTB updates)

—the percentage of saved accesses to the on-chip L2 cache (out of all instruction
fetches)

The impact of the different PSL strategies will be investigated. The param-
eters for some of the predictors involved in the case example will be varied to
see their effect. Finally, an estimation of the accuracy of the predictors for low
power will be obtained as follows: one of the design points will be selected and
its IPC will be compared against the IPC that it would have been obtained if
the predictors had randomly behaved, following a uniform distribution, with
the same percentage of saved accesses for each block as those of the selected
design point.

The results presented are tightly coupled to the workload, and the underlying
microarchitecture is simulated. For example, the L1 cache miss rate affects the
amount of accesses to the L2 cache that may be saved. The branch predictor
algorithm used in the simulations also affect the number of times the BTB is
disabled. Nevertheless, the goal of this work is to show that the ideas described
might produce a significant reduction in power consumed in a typical high-
performance processor configuration.

6.4.1 Results. Asexplained above, there are three predictors for low power
involved in the case example, and each has an associated parameter:

—for the on-chip L2 block (instruction fetches only):
* WindowBasedPredictor: parameter W is the size of the window.
—for the BTB block:

e BTBMissPredictor: parameter M isthe number of consecutive BTB misses
required to predict a miss in BTB.
* LoopPredictor: parameter L is the number of branches of the loop.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 533

Table VI. Effect on the IPC and Amount of Saved Accesses, for Different
Parameter Values, of Each of the Predictors Involved in the Case Example

Percentage of IPC | Percentage of Saved

Block | Predictor | Parameters Red. Accesses
W=8 0.5 76.5
L2 Window W =16 0.3 71.0
W =32 0.2 64.7
M=1 3.6 5.7
BTBMiss M = 1.0 1.8
M =3 0.5 0.8
L=1 0.7 4.8
BTB Loop L=2 2.4 9.5
L=3 3.0 11.3
M=1L=1 4.3 10.5
Both M=2L=2 3.5 11.3
M =3,L=3 3.5 12.1

Table VI shows the effect of the three predictors independently of each other,
that is, when the predictors are applied individually, without any other pre-
dictor active (therefore, the PSL is not necessary). However, in the last row of
the table both subpredictors for the BTB are active, and in this case the SSL
strategy described in a Section 6.2 is applied (only three combinations of the M
and L parameters are shown). For the case example and workload studied in
this work, both the BTB and the L2 cache (for instruction accesses) are accessed
about 0.5 times per cycle.

The following conclusions are derived from Table VI:

—The disabling of the on-chip L2 cache for instruction fetches by the
WindowBasedPredictor degrades the least the IPC and obtains the largest
percentage of saved accesses.*

—The LoopPredictor has less IPC degradation than the BTBMissPredictor at
the same percentage of saved BTB accesses.”

—When both the LoopPredictor and the BTBMissPredictor are active

(a) the percentage of saved accesses is equal (or slightly less) than the addi-
tion of both individual percentages of saved accesses. The small difference
accounts for those accesses to the BTB that where saved independently
by both predictors and now are counted as saved only once (the SSL will
give priority to the LoopPredictor for these accesses).

(b) the percentage of IPC degradation is also less or equal than the addition
of both individual IPC degradations because the SSL gives priority to the
more accurate LoopPredictor in case of conflict.

The PSL disabling strategies compared are (a) at least one of the blocks
(henceforth named 1-or-2, i.e., one or two blocks will be disabled all the time),

4Therefore, as explained in Section 6.3, the PSL, under the disable at most one block strategy,
will disable the L2 cache when both the predictors for the L2 and the BTB want to disable their
respective blocks.

5Therefore, as explained in Section 6.2, the SSL gives priority to the LoopPredictor over the
BTBMissPredictor in case of conflict.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



534 o E. Musoll

Table VII. PSL Strategy Results (W=16, M =2, L=2)

Percentage of IPC | Percentage of L2 | Percentage of BTB
PSL Strategy Degradation Saved Accesses Saved Accesses
1-or-2 7.6 98.3 11.3
0-or-1 1.1 70.0 1.4
0-1-or-2 3.7 70.0 11.3

(b) at most one block (henceforth named 0-or-1), and (c) none, one or both
(henceforth named 0-1-or-2).

Table VII shows the effect of the PSL strategies for W=16, M =2, and L=2.
This table indicates that

—the 0-or-1 PSL strategy degrades the least the IPC since it never allows the
predictors for the L2 and the BTB to disable their respective blocks in the
same cycle;

—the 1-or-2 strategy is the most aggressive in disabling the blocks; therefore,
it has the largest IPC degradation and the largest power savings;

—the 0-1-or-2 strategy performs in between the previous two strategies.

Accuracy of the Predictors. The design points obtained in the previous sec-
tion show the IPC reduction paid for a X % of L2 cache instruction fetch saved
accesses and a Y % of BTB saved accesses. Clearly, the better the accuracy of
the predictors for low power, more saved accesses, and less IPC reduction would
have been obtained.

The following experiment has been run to obtain an estimation of how well
the predictors have performed in terms of keeping the IPC degradation low: new
“predictors” have been created for the L2 and BTB so that they will randomly
disable the L2 and the BTB X% and Y % of the time, respectively. How this
random predictor behavior affects the IPC?

The last design point in Table VII, that is, 70.0% of L2 saved accesses and
11.3% of BTB saved accesses at the cost of 3.7% IPC degradation, has been
taken as an example. With the randomly behaved predictors, the IPC degra-
dation dramatically raises to 10.7%, a penalty that certainly will slow down
the efficiency of the microprocessor and will probably offset the power savings
obtained on both blocks by the predictors. Therefore, the conclusion is that
the simple predictors described in this work are reasonably accurate although
better predictors can certainly be devised.

7. CONCLUSIONS

The power consumption of current and future high-performance microproces-
sors keeps increasing in spite of aggressive circuit design techniques and pro-
cess shrinks. One of the reasons for this increase is the complexity of the mi-
croarchitecture required to achieve the IPC metric that each processor genera-
tion demands.

This work proposes a microarchitectural technique in which a prediction is
made for some power-hungry blocks of a processor. The prediction consists of

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Speculating to Reduce Unnecessary Power Consumption . 535

whether the result of a particular block will be useful in order to execute the
current instruction. If it is predicted useless, then that block is disabled and,
therefore, no unnecessary power is consumed. Since the predictions are not
totally accurate, the IPC might be degraded that in turn may offset the power
savings obtained with the predictors.

A case example is presented where two power-hungry blocks have associ-
ated predictors for low power. The IPC versus power-consumption design space
is explored for a particular microprocessor architecture, showing encouraging
results.

REFERENCES

Bannon, P. 1998.  Alpha EV7: A scalable single-chip SMP. In Microprocessor Forum.

Burp, T. AND PETERS, B.  1994. A power analysis of a microprocessor: The MIPS R3000 architecture.
Tech. Rep., University of California at Berkeley.

BurcER, D. aND Austin, T. 1997. The SimpleScalar tool set, version 2.0. Tech. Rep., Computer
Sciences Department, University of Wisconsin-Madison.

CHANDRAKASAN, A., SHENG, S., AND BRODERSEN, R. 1992. Low power CMOS digital design. IEEE
Transactions SSC 27, 4 (Apr.), 473-483.

DoBBERPUHL D. ET AL.  1992. A 200-MHz 64-b dual-issue CMOS microprocessor. I[IEEE Journal on
Solid State Circuits 27, 11 (Nov.), 1555-1567.

GowaN, M., Biro, L., AND JAcksoN, D.  1998. Power considerations in the design of the Alpha 21264
microprocessor. In Proceedings of the 35th International Conference on Computer-Aided Design,
726-731.

GrunwaLD, D., KLAUSER, A., MANNE, S., AND PLEszKUN, A. 1998. Confidence estimation for specu-
lation control. In ISCA’98.

GweENNAP, L. 1998a. Power issues may limit future CPUs. Microprocessor Report 10, 10
(Aug.).

GwWENNAP, L.  1998b.  Shift to on-chip cache pays off. Microprocessor Report 12, 16 (Dec.).

JACOBSEN, E., ROTENBERG, E., AND SMmiTH, J. 1996. Assigning conficende to conditional branch pre-
dictions. In Micro’96.

JAGGAR, D. 1996. Branch Cache. Advanced Risc Machines Limited. US Patent no. 5506976.

KEeNNEDY, A. AND CroxTON, C. 1998. Pipelined processor operating in different power mode based
on branch prediction state of branch history bit encoded as taken weakly, not taken and strongly
not taken states. Motorola, Inc. US Patent no. 5740417.

KESSLER, R., McLELLAN, E., AND WEBB, D. 1998. The Alpha 21264 microprocessor architecture. In
International Conference on Computer Design (ICCD’98), 90-95.

Kin, J., Gurta, M., AND MaNGIONE-SMITH, W. 1997. The filter cache: An Energy efficient memory
structure. In International Symposium on Microarchitecture.

MANNE, S., KLAUSER, A., AND GRUNWALD, D. 1998. Pipeline gating: speculation control for energy
reduction. In ISCA’98.

McFarLING, S. 1993. Combining branch predictors. Tech. Rep. WRL TN-36, Digital Western Re-
search Laboratory.

MEeng, T., GorpoN, B., TsErN, E., AND Hung, A. 1995. Portable video-on-demand in wireless com-
munication. Proc. IEEE 83, 4 (Apr.), 659-680.

Musorr, E. 2000. Estimation of the upper-bound useless energy dissipation in a high-
performance processor. In Kool Chips Workshop (ISCA’00).

MusorL, E. anp Lang, T. 2002. Distance-based prediction of hit/miss of L1 caches. Tech. Rep.,
Department of Electrical and Computing Engineering, UC Irvine.

PERLEBERG, C. AND SmiTH, A. 1993. Branch target buffer: Design and optimization. IEEE Trans.
Comp. 42, 396-412.

SantHANAM, S. 1996. StrongARM SA110, a 160 MHz 23 B 0.5 W CMOS ARM processor. In Hot
Chips VIII.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



536 o E. Musoll

Scort, J., LEE, L., ARENDS, J., AND MovYER, B. 1998. Designing the low-power M-Core™ architec-
ture. In Power Driven Microarchitecture Workshop, 145-150.

Tiwagri, V., SINGH, S., RajcopaL, S., MEHTA, G., PATEL, R., AND BAEZ, F.  1998. Reducing power in high-
performance processors. In Proceedings of the 35th International Conference on Computer-Aided
Design, 732-737.

Yoaz, A., Erez, M., RoNNEN, R., AND JoURDAN, S. 1998. Speculation techniques for improving load-
related instruction scheduling. In 31st International Symp. on Microarchitecture.

Received February 2002; revised July 2002; accepted February 2003

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



