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Identifying the Problem

Most multithreaded programs use a shared 
memory model
For C/C++, multithreading is not part of 
the language specification
Instead, thread support is being provided 
through the means of libraries
Pthreads – most popular threads library
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Identifying the Problem

Claims: 
– These environments are underspecified
– Correctness of written programs derives from 

implementations, not from the standards/specs
– However, the problem is in the compiler, and 

the language specification, not in the library or 
the thread library specification

– Also, library-based approaches may exhibit 
suboptimal performance in certain cases
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Pthreads Approach to 
Concurrency

Traditional memory model:
Thread 1: x = 1; r1 = y;
Thread 2: y = 1; r2 = x;

Upon completion, either r1 or r2 must be 1
This model is called sequential consistency
However, in most realistic programming 
languages with true concurrency support, 
r1 = r2 = 0 is acceptable



10/23/2005 6

Pthreads Approach to 
Concurrency

Two reasons for this:
– Instruction reordering by (non-thread-aware) 

compiler for better performance
• Doing so is not incorrect in the context of single 

threaded execution
– Instruction reordering by the hardware 

• E.g., x86 may reorder a store followed by a load

This is a weaker memory model, and both 
Java and Pthreads allow for this
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Pthreads Approach to 
Concurrency

In practice, C/C++ implementations do this:
– Synchronization functions like 

pthread_mutex_lock include hardware 
instructions that prevent hardware reordering 
of memory operations around the call

– To prevent the compiler from reordering them, 
such functions are treated as opaque functions 
(can potentially modify any global variable), 
and thus memory operations are not moved 
around the call
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Pthreads Approach to 
Concurrency

This works most of the time
Not always, because it does not define 
precisely when a data race may occur, or 
when the compiler may introduce one
Another problem: this solution sometimes 
excludes the best performing algorithmic 
solutions; therefore, many systems violate 
these rules intentionally
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Correctness Issues: Concurrent 
Modification

Pthreads prohibits races (access to a 
shared variable while another thread is 
modifying it)
But the existence of a race is defined by 
the semantics of the language…
Which in turn requires the existence of a 
properly defined memory model !



10/23/2005 10

Correctness Issues: Concurrent 
Modification

Thread 1: if (x == 1)  ++y;
Thread 2: if (y == 1)  ++x;

Under sequential consistency model: there 
is no race, and the only valid outcome is        
x = y = 0
What if the compiler optimizes these 
statements ?…
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Correctness Issues: Concurrent 
Modification

Thread 1: ++y; if (x != 1) --y;
Thread 2: ++x; if (y != 1) --x;

This is a race, hence semantics of this programs 
is undefined
x = y = 1 is a perfectly possible outcome
Reason? Compiler is unaware of threads, and its 
optimizations are perfectly legal when only 
considering the sequential consistency model
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Correctness Issues: Rewriting of 
Adjacent Data

struct { int a:17; int b:15; } x;
The assignment x.a = 42; may be implemented 
like this:
{ 

tmp = x; //read both fields into 32-bit var.
tmp &= ~0x1ffff; //mask off old a.
tmp |= 42;
x = tmp; //overwrite all of x.

}
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Correctness Issues: Rewriting of 
Adjacent Data

This is ok for sequential code
But a race appears if a concurrent update to 
x.b occurs between ‘tmp = x’ and ‘x = tmp’
Even though the two threads operate on 
distinct fields, the update may be lost
Same problem for other cases…
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Correctness Issues: Rewriting of 
Adjacent Data

64-bit machine, compiler knows that x is 
64-bit aligned
struct {char a;char b;char c;char d;

char e;char f;char g;char h;} x;
Assume sequence of assignments:
x.b = ‘b’; x.c = ‘c’; x.d = ‘d’; x.e = ‘e’;
x.f = ‘f’; x.g = ‘g’; x.h = ‘h’;
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Correctness Issues: Rewriting of 
Adjacent Data

The compiler might compile this into the 
more efficient

x = ‘hgfedcb\0’ | x.a ;
This introduces a race with a concurrent 
assignment to x.a, even though the two 
threads access disjoint sets of fields
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Correctness Issues: Rewriting of 
Adjacent Data

This may even happen for adjacent global 
variables outside a struct declaration
Linkers commonly reorder globals, 
therefore an update to a global variable 
may potentially read/write any other global 
variable
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Correctness Issues: Register 
Promotion

for (…) {
if (mt) pthread_mutex_lock (…);
x = … x…
if (mt) pthread_mutex_unlock(…);

}
The lock is acquired conditionally, 
depending on whether a second thread has 
been started inside the process
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Correctness Issues: Register 
Promotion

Compiler determines conditionals are 
usually not taken, so it promotes x to a 
register in the loop
It treats the two pthread synchronization 
functions as opaque function calls
Hence, the code might look like:
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Correctness Issues: Register 
Promotion

r = x;
for (…) {

if (mt) {
x = r; pthread_mutex_lock (…); r = x;

}
r = … r…;
if (mt) {

x = r; pthread_mutex_unlock (…); r = x;
}

}
x = r;
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Correctness Issues: Register 
Promotion

The pthreads standard requires that 
memory be synchronized with the logical 
program state at the two sync function calls
This is satisfied by the above code
However, now there are reads and writes of 
x while the lock is not held
So code is broken and incorrect, while 
satisfying the (insufficient)  pthreads specs
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Performance

Pthreads imposes concurrent access to 
shared variables through sync. library calls
Hardware atomic instrs. are very expensive 
(> 100 register-to-register instrs.)
– x86: atomic update of memory: 100+ cycles

Pthreads primitives built on top of these 
are even more expensive
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Performance

For better performance: use lock-free and 
wait-free programming techniques and 
benefit from data races
Example: Sieve of Eratosthenes for 100M 
elements (extracted from garbage 
collection code)
Array initialized to false, get(i) is A[i] and 
set(i) is A[i]=true
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Performance

for (my_prime = start;my_prime < 10000; 
++my_prime)
if (!get(my_prime)) {

for (multiple = my_prime;multiple < 
100000000;multiple += my_prime)

if (!get(multiple)) set(multiple);
}
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Performance

Primes below 10k are not computed
On completion, get(i) is false iff i is prime
But this works (correctly) for multiple threads all 
accessing the same array, too !
Because:
– For a thread not to invoke set on all multiples of some 

j, get(j) must have returned true
– But then some other thread must have called set(j), 

and, consequently, on all multiples of j
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Performance

4-way multiprocessor (1GHz Itanium 2), 
Debian Linux, gcc3.3
4 implementations: pthread mutex sync, 
spin-locks, volatile accesses without other 
synchronization, and no synchronization at 
all
Only first 2 are compatible with pthread
rules
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Itanium2 performance on byte 
array
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Itanium2 performance on bit array



10/23/2005 28

HT P4 performance

Hyperthreaded Pentium 4 (2 GHz, 2 CPUs 
with 2 threads each), Fedora Core Linux
Higher sync costs, hence we see even 
higher benefits over the the fully 
synchronized versions
Here the single-threaded version appears 
optimal (most likely because it already 
saturates the memory system)
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HT P4 performance on byte array
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Heap tracing of 200 MB on P4
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Consequences of allowing data 
races

pthread_mutex_lock(lock);

y = 1;

x = 1;

pthread_mutex_unlock
(lock);

x = 1;
pthread_mutex_lock

(lock);
y = 1;
pthread_mutex_unlock

(lock);

The transformation on the right may have better 
performance, even though it contradicts the pthreads specs
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Conclusions

Current state of things may lead to
– Non-portable code
– Broken code
– Suboptimal performance

Solutions: adopt a proper memory model, 
similar to Java’s, but more performance-
oriented
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Conclusions

Don’t fully define the semantics of all data 
races (some may be desirable)
– E.g. restrict it to volatile accesses, or shared 

variable access through certain library calls
Don’t prohibit reordering volatile store 
followed by volatile load
Account for potential races caused by 
reordering in the case of bit-fields
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