
Threads Cannot Be Threads Cannot Be
Implemented As A Implemented As A

LibraryLibrary

Hans-J. Boehm
Presented by Burcea

Mihai

10/23/2005 2

Agenda

Identifying and Understanding the problem
The Pthreads Approach to Concurrency
Correctness Issues
Performance Issues
Conclusion/discussion

10/23/2005 3

Identifying the Problem

Most multithreaded programs use a shared
memory model
For C/C++, multithreading is not part of
the language specification
Instead, thread support is being provided
through the means of libraries
Pthreads – most popular threads library

10/23/2005 4

Identifying the Problem

Claims:
– These environments are underspecified
– Correctness of written programs derives from

implementations, not from the standards/specs
– However, the problem is in the compiler, and

the language specification, not in the library or
the thread library specification

– Also, library-based approaches may exhibit
suboptimal performance in certain cases

10/23/2005 5

Pthreads Approach to
Concurrency

Traditional memory model:
Thread 1: x = 1; r1 = y;
Thread 2: y = 1; r2 = x;

Upon completion, either r1 or r2 must be 1
This model is called sequential consistency
However, in most realistic programming
languages with true concurrency support,
r1 = r2 = 0 is acceptable

10/23/2005 6

Pthreads Approach to
Concurrency

Two reasons for this:
– Instruction reordering by (non-thread-aware)

compiler for better performance
• Doing so is not incorrect in the context of single

threaded execution
– Instruction reordering by the hardware

• E.g., x86 may reorder a store followed by a load

This is a weaker memory model, and both
Java and Pthreads allow for this

10/23/2005 7

Pthreads Approach to
Concurrency

In practice, C/C++ implementations do this:
– Synchronization functions like

pthread_mutex_lock include hardware
instructions that prevent hardware reordering
of memory operations around the call

– To prevent the compiler from reordering them,
such functions are treated as opaque functions
(can potentially modify any global variable),
and thus memory operations are not moved
around the call

10/23/2005 8

Pthreads Approach to
Concurrency

This works most of the time
Not always, because it does not define
precisely when a data race may occur, or
when the compiler may introduce one
Another problem: this solution sometimes
excludes the best performing algorithmic
solutions; therefore, many systems violate
these rules intentionally

10/23/2005 9

Correctness Issues: Concurrent
Modification

Pthreads prohibits races (access to a
shared variable while another thread is
modifying it)
But the existence of a race is defined by
the semantics of the language…
Which in turn requires the existence of a
properly defined memory model !

10/23/2005 10

Correctness Issues: Concurrent
Modification

Thread 1: if (x == 1) ++y;
Thread 2: if (y == 1) ++x;

Under sequential consistency model: there
is no race, and the only valid outcome is
x = y = 0
What if the compiler optimizes these
statements ?…

10/23/2005 11

Correctness Issues: Concurrent
Modification

Thread 1: ++y; if (x != 1) --y;
Thread 2: ++x; if (y != 1) --x;

This is a race, hence semantics of this programs
is undefined
x = y = 1 is a perfectly possible outcome
Reason? Compiler is unaware of threads, and its
optimizations are perfectly legal when only
considering the sequential consistency model

10/23/2005 12

Correctness Issues: Rewriting of
Adjacent Data

struct { int a:17; int b:15; } x;
The assignment x.a = 42; may be implemented
like this:
{

tmp = x; //read both fields into 32-bit var.
tmp &= ~0x1ffff; //mask off old a.
tmp |= 42;
x = tmp; //overwrite all of x.

}

10/23/2005 13

Correctness Issues: Rewriting of
Adjacent Data

This is ok for sequential code
But a race appears if a concurrent update to
x.b occurs between ‘tmp = x’ and ‘x = tmp’
Even though the two threads operate on
distinct fields, the update may be lost
Same problem for other cases…

10/23/2005 14

Correctness Issues: Rewriting of
Adjacent Data

64-bit machine, compiler knows that x is
64-bit aligned
struct {char a;char b;char c;char d;

char e;char f;char g;char h;} x;
Assume sequence of assignments:
x.b = ‘b’; x.c = ‘c’; x.d = ‘d’; x.e = ‘e’;
x.f = ‘f’; x.g = ‘g’; x.h = ‘h’;

10/23/2005 15

Correctness Issues: Rewriting of
Adjacent Data

The compiler might compile this into the
more efficient

x = ‘hgfedcb\0’ | x.a ;
This introduces a race with a concurrent
assignment to x.a, even though the two
threads access disjoint sets of fields

10/23/2005 16

Correctness Issues: Rewriting of
Adjacent Data

This may even happen for adjacent global
variables outside a struct declaration
Linkers commonly reorder globals,
therefore an update to a global variable
may potentially read/write any other global
variable

10/23/2005 17

Correctness Issues: Register
Promotion

for (…) {
if (mt) pthread_mutex_lock (…);
x = … x…
if (mt) pthread_mutex_unlock(…);

}
The lock is acquired conditionally,
depending on whether a second thread has
been started inside the process

10/23/2005 18

Correctness Issues: Register
Promotion

Compiler determines conditionals are
usually not taken, so it promotes x to a
register in the loop
It treats the two pthread synchronization
functions as opaque function calls
Hence, the code might look like:

19

Correctness Issues: Register
Promotion

r = x;
for (…) {

if (mt) {
x = r; pthread_mutex_lock (…); r = x;

}
r = … r…;
if (mt) {

x = r; pthread_mutex_unlock (…); r = x;
}

}
x = r;

10/23/2005 20

Correctness Issues: Register
Promotion

The pthreads standard requires that
memory be synchronized with the logical
program state at the two sync function calls
This is satisfied by the above code
However, now there are reads and writes of
x while the lock is not held
So code is broken and incorrect, while
satisfying the (insufficient) pthreads specs

10/23/2005 21

Performance

Pthreads imposes concurrent access to
shared variables through sync. library calls
Hardware atomic instrs. are very expensive
(> 100 register-to-register instrs.)
– x86: atomic update of memory: 100+ cycles

Pthreads primitives built on top of these
are even more expensive

10/23/2005 22

Performance

For better performance: use lock-free and
wait-free programming techniques and
benefit from data races
Example: Sieve of Eratosthenes for 100M
elements (extracted from garbage
collection code)
Array initialized to false, get(i) is A[i] and
set(i) is A[i]=true

10/23/2005 23

Performance

for (my_prime = start;my_prime < 10000;
++my_prime)
if (!get(my_prime)) {

for (multiple = my_prime;multiple <
100000000;multiple += my_prime)

if (!get(multiple)) set(multiple);
}

10/23/2005 24

Performance

Primes below 10k are not computed
On completion, get(i) is false iff i is prime
But this works (correctly) for multiple threads all
accessing the same array, too !
Because:
– For a thread not to invoke set on all multiples of some

j, get(j) must have returned true
– But then some other thread must have called set(j),

and, consequently, on all multiples of j

10/23/2005 25

Performance

4-way multiprocessor (1GHz Itanium 2),
Debian Linux, gcc3.3
4 implementations: pthread mutex sync,
spin-locks, volatile accesses without other
synchronization, and no synchronization at
all
Only first 2 are compatible with pthread
rules

10/23/2005 26

Itanium2 performance on byte
array

10/23/2005 27

Itanium2 performance on bit array

10/23/2005 28

HT P4 performance

Hyperthreaded Pentium 4 (2 GHz, 2 CPUs
with 2 threads each), Fedora Core Linux
Higher sync costs, hence we see even
higher benefits over the the fully
synchronized versions
Here the single-threaded version appears
optimal (most likely because it already
saturates the memory system)

10/23/2005 29

HT P4 performance on byte array

10/23/2005 30

Heap tracing of 200 MB on P4

10/23/2005 31

Consequences of allowing data
races

pthread_mutex_lock(lock);

y = 1;

x = 1;

pthread_mutex_unlock
(lock);

x = 1;
pthread_mutex_lock

(lock);
y = 1;
pthread_mutex_unlock

(lock);

The transformation on the right may have better
performance, even though it contradicts the pthreads specs

10/23/2005 32

Conclusions

Current state of things may lead to
– Non-portable code
– Broken code
– Suboptimal performance

Solutions: adopt a proper memory model,
similar to Java’s, but more performance-
oriented

10/23/2005 33

Conclusions

Don’t fully define the semantics of all data
races (some may be desirable)
– E.g. restrict it to volatile accesses, or shared

variable access through certain library calls
Don’t prohibit reordering volatile store
followed by volatile load
Account for potential races caused by
reordering in the case of bit-fields

	Threads Cannot Be Implemented As A Library
	Agenda
	Identifying the Problem
	Identifying the Problem
	Pthreads Approach to Concurrency
	Pthreads Approach to Concurrency
	Pthreads Approach to Concurrency
	Pthreads Approach to Concurrency
	Correctness Issues: Concurrent Modification
	Correctness Issues: Concurrent Modification
	Correctness Issues: Concurrent Modification
	Correctness Issues: Rewriting of Adjacent Data
	Correctness Issues: Rewriting of Adjacent Data
	Correctness Issues: Rewriting of Adjacent Data
	Correctness Issues: Rewriting of Adjacent Data
	Correctness Issues: Rewriting of Adjacent Data
	Correctness Issues: Register Promotion
	Correctness Issues: Register Promotion
	Correctness Issues: Register Promotion
	Correctness Issues: Register Promotion
	Performance
	Performance
	Performance
	Performance
	Performance
	Itanium2 performance on byte array
	Itanium2 performance on bit array
	HT P4 performance
	HT P4 performance on byte array
	Heap tracing of 200 MB on P4
	Consequences of allowing data races
	Conclusions
	Conclusions

