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Abstract

Pointer analysis is a critical compiler analysis used tamiisiguate
the indirect memory references that result from the use oitprs
and pointer-based data structures. A conventional poartalysis
deduces for every pair of pointers, at any program point,tidre
a points-to relation between them @igfinitelyexists, (ii)definitely
does notexist, or (iii) maybeexists. Many compiler optimizations
rely on accurate pointer analysis, and to ensure correctsot
optimize in themaybecase. In contrast, recently-proposguecu-
lative optimizationsan aggressively exploit thmaybecase, espe-
cially if the likelihood that two pointers alias can be quéed. This
paper proposes Brobabilistic Pointer AnalysigPPA) algorithm
that statically predicts the probability of each pointg¢tation at
every program point. Building on simple control-flow edgefjf
ing, our analysis is both one-level context and flow seresitiyet
can still scale to large programs including the SPEC 200&y&tt
benchmark suite. The key to our approach is to compute ptints
probabilities through the use of linear transfer functitiret are ef-
ficiently encoded as sparse matrices. We demonstrate thahal+
ysis can provide accurate probabilities, even without guigéile
information. We also find that—even without consideringlaro
bility information—our analysis provides an accurate aggh to
performing pointer analysis.

Categories and Subject Descriptors  D.3.4 [Processors Compil-
ers

General Terms Algorithms, Performance

Keywords Dependence analysis, Pointer analysis, Speculative op-
timization

1. Introduction

Pointers are powerful constructs @and other similar program-
ming languages that enable programmers to implement cample
data structures. However, pointer values are often ambigad
compile time, complicating program analyses and impedipii o
mization by forcing the compiler to be conservative. Maninger
analyses have been proposed which attempt to minimize groint
ambiguity and enable compiler optimization in the preseate
pointers [1, 2, 8, 12, 20, 25, 26, 30-32]. In general, the glesif

a pointer analysis algorithm is quite challenging, with map-
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tions that trade accuracy for space/time complexity. Fangxe,
the most accurate algorithms often cannot scale in time pades
to accommodate large programs [12], although some progass
been made recently usifgnary decision diagramf, 30, 32].

The fact that memory references often remain ambiguous even
after performing a thorough pointer analysis has motivatethss
of compiler-based optimizations callsgpeculative optimizations
A speculative optimization typically involves a code trimma-
tion that allows ambiguous memory references to be schedule
potentially unsafe order, and requires a recovery mectraftisen-
sure program correctness in the case where the memoryneésre
were indeed dependent. For example, EPIC instruction sets (
Intel's 1A64) provide hardware support that allows the cdemto
schedule a load ahead of a potentially-dependent storepapec-
ify recovery code that is executed in the event that the di@tis
unsafe [11, 18]. Proposed speculative optimizations thawvahe
compiler to exploit this new hardware support include sjstoie
dead store elimination, speculative redundancy elindmaspecu-
lative copy propagation, and speculative code schedufifgil[22].

More aggressive hardware-supported techniques, sucheaslth
level speculation [15,19,24,27] and transactional pnogning [14]
allow the speculative parallelization of sequential pasgs through
hardware support for tracking dependences between spigeula
threads, buffering speculative modifications, and redogefrom
failed speculation. Unfortunately, to drive the decisidwben to
speculate many of these techniques rely on extensive dptnde
dence profile information which is expensive to obtain arnerof
unavailable. Hence we are motivated to investigate contjile
techniqgues—to take a fresh look at pointer analysis witltsige
tive optimizations in mind.

1.1 Probabilistic Pointer Analysis

A conventional pointer analysis deduces for every pair affgos,

at any program point, whether a points-to relation betwbemt(i)
definitelyexists, (ii)definitely does nogxist, or (iii) maybeexists.
Typically, a large majority of points-to relations are gaigzed as
maybe especially if a fast-but-inaccurate approach is usedotInf
tunately, many optimizations must treat thaybecase the same as
the definitelycase to ensure correctness. However, speculative op-
timizations can capitalize on tmeaybecase—especially if we can
quantify the likelihood that two pointers alias.

We propose ®robabilistic Pointer AnalysiéPPA) for which we
have the following three goals: (i) to accurately predia grob-
ability of each points-to relation at every program poinithaut
the need for detailed data dependence profile informatignto(
scale to the SPEC 2000 integer benchmark suite; and (iiinto u
derstand potential trade-offs between scalability andiaay. We
have developed a PPA infrastructure, callédear One-Level In-
terprocedural Probabilistic Points-t( OLIPoP), based an innova-
tive algorithm that is both scalable and accurate: buildingimple
edge (control-flow) profiling, our analysis is both one-lex@ntext



and flow sensitive, yet can still scale to large programs. Keyeto
our approach is to compute points-to probabilities throtighuse
of linear transfer functions that are efficiently encodedsparse
matrices. LOLIPOP is very flexible, allowing us to explore #tal-
ability/accuracy trade-off space.

1.2 Related Work
Pointer analysis is a well-researched problem and manyitigts

have been proposed, yet no single approach has emerged as the

preferred choice [17]. A universal solution to pointer s
is prevented by the large trade-off between precision aathsc
bility, motivating different pointer analyses for differeapplica-
tions [16]. The most accurate algorithms are both contertisive
and control-flow-sensitive (CSFS) [12, 20, 31]; howevehas yet
to be demonstrated whether these approaches can scal@¢o lar
programs. Context-insensitive control-flow-insensi(@éFI) algo-
rithms [1,26] can scale almost linearly to large progranusthese
approaches are regarded as overly conservative and magémpe
aggressive compiler optimization. Several approachemnbalthis
trade-off well by providing an appropriate combination cgision
and scalability [2, 8, 30, 32]. However, studies suggest ahmore
accurate pointer analysis does not necessarily provideased
optimization opportunities [10, 17] because ambiguoustecs
will persist. Hence speculative optimizations have regebeen
proposed to bridge this persistent disparity betweensafed op-
timization. However, none of these conventional pointealyses
quantify the probability of potential points-to relations

Several compiler analyses that support speculative opgimi
tions have been proposed. In earlier work, Ramalingam [28] p
posed a generic dataflow frequency analysis framework shedile
to propagate edge frequencies interprocedurally, for nsepti-
mizations where such frequency information is beneficial et
al. [6] presented a probabilistic memory disambiguatiamfework
that quantifies the likelihood that two array referenceasatiy an-
alyzing the array subscripts—but this approach is not apple to
pointers. More recently, Chen et al. [4, 5] developed anitingu
CSFS probabilistic point-to analysis algorithm. Theiralthm is
based on an iterative data flow analysis framework, whichdd-m
ified such that probabilistic information is additionallopagated.
Their experimental results show that their technique céimage
the probabilities of points-to relations in benchmark pergs with
reasonable accuracy, although they model the heap as & $ingl
cation set and the benchmarks studied are relatively skather-
more, their interprocedural approach is based on Emangs-al
rithm [12] and is therefore not expected to scale to largganms.
Fernandez and Espasa [13] proposed a pointer analysisthigor
that targets speculation by relaxing analysis safety. T ik-
sight is that such unsafe analysis results are acceptatéeibe the
speculative optimization framework can tolerate themyeding a
safety concern into a performance concern. Finally, Bhdwenid
Franklin [3] present a similar unsafe approach that useatitrans-
fer functions to achieve scalability. Unfortunately, heit of these
last two approaches provide the probability informatioeded to
compute cost/benefit trade-offs for speculative optiniiret

1.3 Contributions
This paper makes the following three contributions:

1. a novel algorithm for pointer analysis based on sparssfve
mation matrices;

2. an accurate, context-sensitive and flow-sensitive poamaly-
sis that scales to SPEC integer benchmarks;

3. a method for computing points-to probabilities that does

intx,y;
int *a, *b; void f() {
int *tmp;

void main() { so: tmp = b;
st: a=&x; s10: b=a;
s2: b =&y; S11: a =tmp;
s3: if(...) s12: a();
s4: f(); }
S5: while(...){ void g() {
S6: a(); s13: if(...)
s7: L..=*b; S14: a=&x;
s8: *a=...; }

}
}

Figure 1. In this sample program, global pointessand b are
assigned in various ways. The statement atS3 is taken with
probability 0.9, theif statement af'13 is taken with a probability
of 0.01, and thewhile loop atS5 iterates exactly 100 times.

2. A Scalable PPA Algorithm

This section describes our PPA algorithm in detail. We bdyin
showing an example program. We then give an overview of our
PPA algorithm, followed by the matrix framework that it isilbu
on. Finally, we describe the bottom-up and top-down analyisat

our algorithm is composed of.

2.1 Example Program

For the remainder of this section, the example program inréig
will be used to illustrate the operation of our algorithm.this
sample program there are three pointer variables,(andtmp)
and two variables that can be pointed ataphdy), each of which
is allocated a unique location set. We assume that edgeipgofil
indicates that thef statement a3 is taken with probability0.9,
the if statement aiS13 is taken with a probability 0f).01, and
the while loop at.S5 iterates exactlyl00 times (recall that our
algorithm can proceed using heuristics in the absence dfig@ro
feedback). Initiallya andb are assigned to the addresses @ind

y respectively. The functiorf () is then potentially called, which
effectively swaps the pointer values @fandb and then calls the
function g(). The functiong() potentially assigns the pointerto
the address af, depending on the outcome of the statement at
S13 which is taken 1% of the time.

For an optimizing compiler to safely target the loop %,
accurate knowledge about the dereference§7aand S8 is re-
quired. If both instructions always dereference the sarnation
(i.e.,xa == xb), the dereferences can be replaced by a single tem-
porary variable. Conversely, if the dereference targetsadways
different and also loop invariant then the correspondingefae-
ence operations can be hoisted out of the loop. If the comgélie-
not prove either case to be true (which is often the resultactre
because of the difficulties associated with pointer ansjytsien it
must be conservative and refrain from optimization. In gagticu-
lar example, neither optimization is possible; howeves, [itossible
to perform either optimization speculatively so long as ¢ipai-
mized code is guarded with a check and recovery mechanism [22
To decide whether a speculative optimization is desirabtettie

rely on dependence-profiling, and can optionally use edge- code involving the points-to relations & andS8, we first require

profiling.

the corresponding probabilities.



0-@-1
0899 & %

0.10T%,

[x]

(@) Conventional points-to (b) Probabilistic points-to graph
graph.

Figure 2. A points-to graph and the corresponding probabilistic
points-to graph, associated with the program point aft¢rand
initially into S5 (Pss) in the example found in Figure 1. A dotted
arrow indicates anaybepoints-to relation whereas a solid arrow
denotes alefinite points-to relationUND is a special location set
used as the sink target for when a pointer’s points-to taiget
undefined.

2.2 Algorithm Overview

The main objective of our probabilistic pointer analysisasom-
pute, at every program poistthe probability that any pointes
points to any addressable memory locatibMore precisely, given
every possible points-to relatiofa, #3), the analysis must solve
for the probability functiorp(s, (a, *3)) for all program pointss.
The expected probability is defined by the following equatio

pls. () = 2P @

where E(s) is the expected execution count associated with pro-
gram points andE (s, («, *3)) is the expected frequency for which
the the points-to relatiofr, x3) holds dynamically at the program
point s [4]. Intuitively, the probability is largely determined llge
control-flow path and the procedure calling context to thegpam
point s—hence an approach that is both control-flow and context
sensitivé will produce the most probabilistically accurate results.
To perform pointer analysis, we must first construct an ab-
stract representation of addressable memory caldtec memory
model For our PPA algorithm the static memory model is com-
posed oflocation setg31].2 A location set can represent one or

PPA algorithm computes a probabilistic points-to graphohlsim-
ply annotates each edge of a regular points-to graph withighive
representing the probability that the points-to relatioifl told.
Figure 2(a) shows an example points-to graph based on tme-exa
ple code given in Figure 1, and Figure 2(b) gives the corneding
annotated probabilistic points-to graph. It is importanhote that
the sum of all outgoing edges for a given vertex is always kegua
one, to satisfy Equation 1.

To perform an inter-procedural context-sensitive analgsid to
compute probability values for points-to relations, ouAR#go-
rithm also requires as input amterprocedural control flow graph
(ICFG) that is decorated with expected runtime frequency ew-
plain the construction of the ICFG in greater detail lateiSiec-
tion 3. The ICFG is a representation of the entire program tha
contains the control flow graphs for all procedures, coretebly
the overall call graph. Furthermore, all control-flow andocation
edges in the ICFG are weighted with their expected runtirae fr
qguency. These edge weights can be obtained through the use of
simple edge profiling (eg., the output fragprof) or by static es-
timation based on simple heuristics.

Because our analysis is a control flow-sensitive analydis, a
every points the program is said to have a probabilistic points-
to graph denoted®;. Given a second point in the programsuch
that a forward path froms to s/ exists, the probabilistic points-to
graphP;, can be computed using a transfer function that represents
the changes in the points-to graph that occur on the path $rtam
st, as formulated by

PS/:fS—»s/(Ps)- (2)

2.3 Matrix-Based Analysis Framework

As opposed to conventional pointer analyses which are asdeb
and can use analysis frameworks composed of bit vectors rsBD
a PPA requires the ability to track floating-point values foe
probabilities. Conveniently, the probabilistic pointsgraph and
transfer functions can quite naturally be encoded as nestrial-
though the matrix formulation in itself is not fundamentalthe
idea of PPA. The matrix framework is a simple alternativerpp
agating frequencies in an iterative data flow framework [28¢

more real memory locations, and can be classified as a pointer choose matrices for several reasons: (i) matrices are easgson

pointer-target, or both. A location set only tracks its apjmate
size and the approximate number of pointers it represelisy-a
ing us to abstract away the complexities of aggregate data-st
tures and arrays of pointers. For example, fields withthsiruct
can either be merged into one location set, or else treatedpss
rate location sets. Such options give us the flexibility tplese the
accuracy/complexity trade-off space without modifying tinder-
lying algorithm. We also define a special location set calfighl as
the sink target for when a pointer’s points-to target is dimeel.
Since a location set can be a pointer, a location set can foint
another location set. Such a relation is callegoints-torelation,
and the set of all such relations is callegh@ints-to graph a di-
rected graph whose vertices represent location sets. fitpdg a
directed edge from vertex to vertexs indicates that the pointer
may point to the targef. In a flow-sensitive analysis where state-
ment order is considered when computing the points-to grayph
ery point in the program may have a unique points-to graph. Ou

1A context-sensitivgoointer analysis distinguishes between the different
calling contexts of a procedure, andantrol-flow-sensitivgpointer analysis
takes into account the order in which statements are excawithin a
procedure.

2Note that our algorithm itself is not necessarily dependerthis location-
set-based model.

about, (ii) they have many convenient and well-understaoger-
ties, and (iii) optimized implementations are readily &alie. Our
algorithm can now build on two fundamental matrices: a proba
bilistic points-to matrixP, and alinear transformation matrix’.
Thus we have the fundamental PPA equation

Pout = Tinﬁout X Pzn (3)

One key to the scalability of our algorithm is the fact tha thans-
formation matrix is linear, allowing us to compute the prioitiatic

points-to graph at any point in the program by simply perfiogn
matrix multiplication—we do not require the traditionaltddlow

framework used by other flow-sensitive approaches [4].

2.3.1 Points-to Matrix

We encode a probabilistic points-to graph usingh\ax M points-

to matrix whereM is the number of location set vertices that can
be pointed at, andV is the number of pointer location sets plus the
number of target location sets—therefore the verticesabboth

as pointers and pointee-targets have two matrix row erdridsare
hence counted twice. The following equation formally deitiee
points-to matrix format:



P1,1 P1,M
P2,1 P2, M
P, =
PJ\},l pN.,M
4
p(s, (i, jn) i< N-—-M
pij =141 t>N-—-Mandi=j+ (N—-M)
0 otherwise

The rows1 to N — M are reserved for the pointer locations
sets and the row®v — M + 1 to N are reserved for the tar-
get location sets. To determine the row associated with angiv
pointer or pointee variable, theow_id(«) function is used. Given
a pointer variabley, the functionrow_id(«) is equal to the matrix
row mapped to the pointer and the functiorrow_id(&«) is equal
to the matrix row mapped to the addressaofFor a points-to ma-
trix, pointer-target location sets are mapped to theiresponding
column number by computingow_id(&«) — (N — M). The inner
matrix spanning rows to N — M fully describes the probabilistic
points-to graph; the other inner matrix spanning raws- M + 1
to N is the identity matrix, and is only included to satisfy thafu
damental PPA equation. Finally, but crucially, the mats»main-
tained such that every row within the matrix sums to one—vatig

us to treat a row in the matrix as a probability vector

Example Consider the points-to graph depicted in Figure 2. We
assume thatow_id(a) = 1, row_id(b) = 2,

row_id(tmp) = 3, row_id(&x) = 4, row_id(&y) = 5,

androw_id(UND) = 6. We also assume that the columns correspond
to x, y, and UND respectively. This produces the corresponding
points-to matrix:

Y
a0.101  0.889 0
b| 0.9 0.1 0
Pss = tmp| O 0 1
z| 1 0 0
y| o 1 0
oL o 0 1

2.3.2 Transformation Matrix

A transfer function for a given points-to matrix is encodeihg an

N x N transformation matrix, wheré&/ is the number of pointer
location sets plus the number of target location sets. Eagtand
column is mapped to a specific location set using the equivale
row_id(«) function. Transformation matrices are also maintained

such that the values in every row always sum to one. Given any

possible instruction or series of instructions, there texéstrans-
formation matrix that satisfies Equation 3. If a statemergt ha
effect on the probabilistic points-to graph, then the cspomding
transformation matrix is simply the identity matrix. Thdlésving
sections describe how transformation matrices are cordpute

2.4 Representing Assignment Instructions

In any C program there are four basic ways to assign a value to a

pointer, creating a points-to relation:

1. address assignment:= &b;
2. pointer assignment: = b;
3. load assignmenti = xb;

4, store assignmenta = b.

For each of the four cases there exists a correspondingdrares
tion matrix. Types (1) and (2) generate a safe transformatia-
trix, whereas types (3) and (4) are modeled using a one-lmsslfe
transformation. The dereferenced target that is introdceype
(3) or (4) is modeled as a shadow variable and any ensuingshad

variable aliasing is ignored, which is of course unsafe.elfickd,
safety can be added by incorporating an additional lighgivealias
analysis (as will be discussed further in Section 2.8). kaheof
the four cases, a transformation matrix is computed usiagdh
lowing equation:

t1,1 t1,2 t1,N

t2,1 t2,2 t2, N
Ta=p,p) =
tl\},l *z\},z tNV,N
D i =row_id(a) andj = row_id(0) ©)
1—p i=j=row.id(«)

ti; = . .
- 1 1 = j andi # row_id(a)

0 otherwise

In this equationa represents the pointer location set on the left
side of the assignment an#idenotes the location set (pointer or
target) on the right side of the assignment. The probahibityep
represents the appropriate probability for the transfoionaand it

is equal to 1 divided by the approximate number of pointeps re
resented by the pointer location gsets defined in Equation 6. A
pointer location set can represent multiple pointers. Sudgation

is required to represent the following cases: (1) an arrgpofters;
(2) pointers within recursive data structures are stdyicabdeled
as a single location set; (3) pointers witlinstructs are merged
when a field-insensitive approach is utilized; and (4) shadari-
able aliasing (as described in Section 2.8). A heuristicsisduto
approximate how many pointers are represented by a givenguoi
location set if this information cannot be determined stdly. A
probability of p = 1 is equivalent to astrong updateused in a
traditional flow-sensitive pointer analysis, whereas &phility of

p < 1is representative of @eak update

= : ©®)
" approx # of pointers il

It is important to note that the transformation matrix used f
pointer assignment instructions is simply the identity nxatvith
the exception of one row that represents the left side of skga-
ment.

Example The transformation matrices corresponding to the pointer
assignment statemengd andS10 from Figure 1 are:

p

Ts1 = Tja=ge,1.00 =

Ts10 = Tip=a,1.0) =

cococorrIgoo o000
©COOO0O0 coocoro
©O0OrOO gcooroO
COrOOO coroo R
©HrOOO0O omoooo
HO0000 noooo0

To compute the points-to matrix &2 we useT’s: and the funda-

mental PPA equation as follows:

Psy =Ts1 - Psy
UND
a
b
tmp
e

corooORR
orooOoO,
HoOORRO
|
coococoo
coocoroO
coorooO
coroo=
oroooO
mooooo
coroooO
oroooOo
OO R R

Y
UND

The resulting points-to matrix &2 shows that the points-to rela-
tion (a, &x) exists with probability 1, while all other pointer$ (
andt¢mp) are undefined.



2.5 Representing Basic Blocks

For a basic block with a series of instructiofs ... Sn whose
individual transformation matrices correspond to

T:...T,, we can construct a single transformation matrix that
summarizes the entire basic block using the following:

T =Tn-...- To-T} @)

Therefore, given any points-to matrix at the inbound edgelsic
block, the points-to matrix at the outbound edge can be cteapu
simply by performing the appropriate matrix multiplicat® Note
that the construction of a transformation matrix is a backlaflow
analysis: to solve for the transformation matrix that sumnes
an intraprocedural path fromto s/, the analysis starts at and
traverses backwards until it reaches

Example The basic block that contains stateme$itsand.S2 from
Figure 1 can be summarized as:

Tyo(s1-s52) = Ts2 - Ts1
0

coocooo
coocooco
cooroo
corooOr
oroorO
rooooo
coocoor
coocooco
cooroo
coroo0O
rooooo
coocooco
coocoro
cooroo
corooOr
o~oooo
mooooo

1
0
0
1
0

Assume that we are given the points-to matrix for the stathef
basic block atS1 in Figure 1; also assume that all pointers are
undefined at that point. The points-to matrix at the end obtisc
block (i.e., atS3) can be computed as follows:

x Y UND
a 1 0 O
b 0 1 0
Ps3 = Typ(s1-52) * Ps1 = tmp [0 0 1
x 1 0 0
vy o 1 o
UND 0 0 1

The resulting points-to matrix indicates that %3 the points-to
relations(a, &z) and (b, &y) exist with a probability of 1.

2.6 Representing Control Flow

The main objective of this matrix-based PPA framework isums
marize large regions of code using a single transformatiatrim

To summarize beyond a single basic block, our transformatia-
trices must be able to represent control flow. Recall thatcte
struction of a transformation matrix proceeds backwandsnfs/
backwards ta. When the start of a basic block is encountered dur-
ing this backwards analysis, the analysis must categolliné taat
basic block’s incoming edges. For now we consider the fatligw
three non-trivial cases for each edge:

1. the edge is a forward edge (Figure 3(a));

2. the edge is a back-edge apdis outsidethe region that the
back-edge spans (Figure 3(b));

3. the edge is a back-edge as1ds within the region that the back-
edge spans (Figure 3(c)).

The following considers each case in greater detail.

2.6.1 Forward Edges

When there exists a single incoming forward edge from amdithe
sic block the transformation matrix that results is simpig prod-
uct of the transformation matrices for the current basiclbland
the incoming basic block. When there are exactly two incgmin
forward edges from basic blocksandd, we compute the transfor-
mation matrix as follows:

Tif/else:p'TW'l'q'Té (8)

<L,U>

(a) Forward edge

(b) Back-edge,s’ out-(c) Back-edge,s in-
side side

Figure 3. Control flow possibilities

T, andTs represent the transformation matrices from the program
point s to the end of each basic bloekandé respectively. The
scalar probabilityp represents the fan-in probability from basic
block «, and ¢ represents the fan-in probability from basic block
4, and we require thap and ¢ sum to 1. This situation of two
forward incoming edges typically arises from the use tfelse
statements. In the more general case, we compute the trarasfo
tion matrix as follows:

Tcond = Pi Z Tz (9)

This equation is simply a generalized version of Equationit® w
the added constraint that p; = 1.

Example From Figure 1 the functiop() can be fully summarized
using Equation 9:

Tg() =0.01-Ts14+099 -1 =

[eR=NoNaNlry
coocoro
cocoorooO
coroOo
oroooo
~ooooo

The identity matrixl is weighted with a probability 0.99 since there
is noelse condition. Recall that thef statement ab13 is taken
1% of the time. This matrix indicates that after the functig()
executesg has a 1% chance of pointing atand a 99% chance of
remaining unchanged.

2.6.2 Back-Edge withs’ Outside it's Region

When a back-edge is encountered ani outsidethe region that
the back-edge spans, we can think of the desired transfarmat
matrix as similar to that for a fully-unrolled version of tleop—
eg., the same transformation matrix multiplied with itssfmany
times as the trip-count for the loop. In the case where the loo
trip-count is constant, we can model the back-edge throimpls
exponentiation of the transformation matrix. Assuming tha is
the transformation matrix of the loop body, aétis the constant
loop trip-count value, we can model this type of back-edgé thie
following:

Tloop = Tzc (10)

When the loop trip-count is not a constant, we estimate the
transformation matrix by computing the distributed averag all
possible unrollings for the loop. Assuming that the bacgests
annotated with a lower-bound trip-count valuelofind an upper-
bound value o, the desired transformation matrix can be com-
puted efficiently as the geometric series averaged ffamU':

1 v,
Too T — Tzz
loop U—L+1;

(11

Example Consider theshile loop found at statemerft5 in Fig-
ure 1. The transformation matrix for the path frefi to S8 is:



Tss5—s8 = (Tse—ss)'"" = (T,)'" =
0.37 0 0.63

coocoo
coocow

coorooO
corOOg
oroooo
~ooooo

This matrix indicates that after the loop fully iteratashas a 63%
chance of pointing at and a 37% chance of remaining unchanged.

2.6.3 Back-Edge withs/ Inside it's Region

The final case occurs when the edge is a back-edger/asthside
the region that the back-edge spans, as shown in FigureS3fce
st is within the loop, the points-to relations &t may change for
each iteration of that loop. In this case we compute the e@sir
transformation matrix using a geometric series such thi the
maximum trip-count value:

1 U-—1 )
Tloup - ﬁ Z Tzl
0

Example In Figure 1 this scenario occurs if we require the trans-
formation matrix for the patt$'1 to S7, since in this caser is S7,
which is within thewhile loop atS5. The required transformation
matrix can be computed as follows:

12)

Ty0 - ﬁ Zgg(Tstﬂss)i -Ts1-s5

2.7 Bottom Up and Top Down Analyses

We have so far described a method for computing probalilisti
points-to information across basic blocks, and hence wihpro-
cedure. To achieve an accurate program analysis we needadnet
for propagating a points-to matrix inter-procedurally. @osure
that our analysis can scale to large programs, we have dsbign
method for inter-procedural propagation such that eachegohare

is visited no more than a constant number of times.

We begin by computing a transformation matrix for every pro-
cedure through a reverse topological traversal of the aalply
(eg., a bottom-up (BU) pass). Recursive edges in the cajtgare
weakenedland procedures are then analyzed iteratively for a fixed
number of times to ensure that an accurate transformatiornxis
computed. The result of the bottom-up pass is a linear toamsf-
tion matrix that probabilistically summarizes the behawbeach
procedure.

In the second phase of the analysis, we initialize a pomts-t
matrix by (i) computing the result of all statically definedipter
assignments, and (ii) setting all other pointers to poirthatun-
definedlocation setND). We then propagate the points-to matrix
throughout the entire program using a forward topologicaler-
sal of the call-graph (eg., a top-down (TD) pass). When a twrad
store instruction is reached, the probability vector fattteref-
erence is retrieved from the appropriate row in the matrikewa
call instruction is reached we store the points-to matrikat point
for future use. Finally, we compute the initial points-totmainto
every procedure as the weighted average of all incomingtpon
matrices that were previously stored.

Ts1—s7 =

Example The call graph for our example dictates that in the
bottom-up phase of the analysis the procedure-level wamsi-
tion matrices are computed in the following ord&yy), T’ (), and
thenT,,:n()- This is intuitively necessary sin@g , requiresl,,;
andT,,qin() requires bothl’y(y andTyy. The algorithm then pro-
ceeds into the top-down phase which visits the procedurésein

3Weakening means that we iteratively tag edges within SC8lsiR‘weak-
ened’ and then ignore them for the purpose of topologicaktsal, since
such edges are recursion-causing invocation edges.

reverse order. Initially, the following input points-to ma into
main() is used since there are no static declarations:

UND
a

b
tmp
x

y
UND

Pmain()_in =

coroo0O8
oroooOo,
RO O R =K

The algorithm propagates and updates this matrix forwati an
pointer dereference or a procedure call instruction istredcAt
S4, the points-to matrixPs, is cached so that when the procedure
£ () is analyzed the points-to matrix representing the initiaiesof

£ () will be available.

x Y UND
a 1 0 o
b 0 1 0
Pf()_zn = PS4 = tmp 0 0 1
x 1 0 0
y o 1 o0
UND 0 0 1

Similarly, the points-to matrice®ss and Ps12 are also stored to
analyze procedurg() during the top-down phase. These matrices
are later merged using a weighted sum based on the fan-ingneq
cies from their respective callee procedures:

Py(y.in =100 x Psg + Ps12

2.8 Safety

At this point our algorithm does not necessarily computefa i
sult in all circumstances: for certain code, the theorépoints-to
transfer function may contain non-linear side effects \Wtioe not
captured by our linear transformation matrix encoding. Noear
effects occur when multiple levels of dereferencing araluseas-
sign to pointers: (i) load assignment:= xb; (ii) store assignment:
*xa = b.

We handle multi-level dereferencing by instantiatisigadow
variable pointer location sets, a technique that is similar to invisi
ble variables [12]. These shadow variable location setgpcten-
tially alias with other pointer location sets and cause fenfe-
havior if ignored. To handle these non-linearities safelg, use
a lightweight, context-insensitive and flow insensitivefigation-
based alias analysis [26] to precompute any shadow varidible-
ing that can potentially occur. We assume that aliasing éetwo-
cation sets occurs with a probability that is inverselygmaional
to the size of the aliasing set. All transformations invotyshadow
variables that alias are extended to handle these norriliesan a
safe manner. However, it is key to note that since we are stippo
ing speculative optimizations, we also have the option nbrgng
safety.

3. The LOLIPoP PPA Infrastructure

Figure 4 shows a block diagram of the LOLIPoP infrastructure
which operates og source code. We have also developed a light-
weight edge-profiler which instrumertsource code to track con-
trol flow edges, invocation edges, and indirect functioh teagets.
The foundation of LOLIPoP is a SUIF 1.3 compiler pass [29]e Th
pass begins by building an Interprocedural Control Flowp@ra
(ICFG) that is annotated with any available profile inforioat
The static memory model (SMM) is then built by extracting lo-
cation sets from SUIF’s symbol tables. For this paper, almoey
allocation call sites are treated as a single unique locata, and
all aggregate structures and arrays are merged into a dogge
tion set each. Recursive data structures are merged intalaae
structure after one level of recursion. We then perform thigoln-

up (BU) and top-down (TD) phases of the analysis as desciibed
Section 2.7. We exploit the sparse matrix library availahteugh
MATLAB's runtime library to perform all matrix operations.
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Figure 4. The LOLIPoP infrastructure.

Table 1. Benchmark inputs used.

[ Benchmark [ TrainlInput | Ref Input |
BZIP2 default default
CRAFTY default default
GAP default default
GCC default expr.i

8 [ Gzir default default

[ mMcFE default default

E [ PARSER default default

8 PERLBMK diffmalil.pl diffmail.pl

% TWOLF default default
VORTEX default bendianl.raw
VPR default default

O | compPress | default reduced to 5.6MB

E [ Go default Ostone21.in

Q [[wrEG default Vigo.ppm

% LI default default
M88KSIM default default
PERL jumble.pl primes.pl

For experiments when edge-profile information is not atdéla
we use the following three compile-time heuristics: (i) vesame
that fan-in probability is a uniform distribution betwedhiacom-
ing branches; (ii) when the upper and lower bound for thecmipnt
of a loop cannot be determined through a simple inspectidheof
loop bounds, we assume that the lower bound is zero and tkez upp
bound is tef; and (iii) we assume that fan-in call graph invocation
edge counts have a uniform distribution between all calleeg
dures. We do not use a heuristic for indirect function caljets
and therefore require the edge-profiler to always provideittior-
mation.

Finally, we put a great deal of effort into optimizing the exe
cution of LOLIPOP. In particular we exploit sparse matrice®s
compress matrices before exponentiating, we perform agiyee
memoization of matrix results at the intra-procedural lesad we
use an efficient implementation for computing the geomseites
for Equations 11 and 12 [9].

4. Evaluating LOLIPoP

In this section we evaluate LOLIPOP’s running-time, theuaacy
of the pointer analysis results in a conventional sense,thad
accuracy of the computed probabilities.

4.1 Experimental Framework

The following describes our framework for evaluating LObHP

Table 2. LOLIPoP measurements, including lines-of-code (LOC)
and transformation matrix size N for each benchmark, as asll|
the running times for both the unsafe and safe analyses.iffiee t
taken to obtain points-to profile information at runtimerisluded
for comparison.

‘ ‘ ‘ Matrix | Running Time (min:sec) |
Benchmark LOC Size [ Unsafe [ Safe [ Profile |

BZIP2 4686 251 0:0.3 0:0.3 13:34
CRAFTY 21297 1917 0:5.5 0:5.5 14:47
GAP 71766 25882 54:56 83:38 55:56
GCC 22225 42109 309:40 N/A 39:58*

8 GZIP 8616 563 0:0.71 0:0.77 3:48

Q [ MCF 2429 354 0:0.39 0:0.61 19:46

€ [ PARSER 11402 2732 0:30.7 0:50.0 84:52

8 PERLBMK 85221 20922 44:15 89:43 N/A

% TWOLF 20469 2611 0:16.6 0:20.6 N/A
VORTEX 67225 11018 3:59 4:56 0:0.7*
VPR 17750 1976 0:9.3 0:10.3 197:0

© | compress | 1955 97 0:0.1 0:0.1 1:55

E GO 29283 651 0:2.9 0:3 5:58

8 IJPEG 31457 4491 0:23.4 0:24.9 7:12

o PERL 4686 5395 5:3 7:49 8:37

D 27144 3868 0:28.8 | 0:59.15 72:5
M88KSIM 19933 1932 0:4.9 0:5.24 0:0.2

*Note that for GCC and VORTEX the profiler is significantly fasbecause a reduced ref input set was used to make

the analysis tractable (see Table 1).

IV with 1GB of RAM. We report results for all of the SPECint95
and SPECint2000 benchmarks except for the following: 2BR,
which is written in C++ and not handled by our compiler; 1@6c,
which is similar to 176ccc; and 147vORTEX, which is identical
to 255VORTEX. Table 1 describes both thef andtrain inputs
used for each benchmark.

4.2 Analysis Running-Time

LOLIPoP meets our objective of scaling to the SPECint95 and
SPECIint2000 benchmark suites. Table 2 shows the runnimesti
for both the safe (where shadow variable alias analysis is pe
formed) and unsafe analyses. Each running-time includes th
bottom-up and top-down phases of the overall analysis, dput i
nores the time taken to build the interprocedural contrev fipaph
and static memory model—but note that this time is negleihl
most cases. The runtimes range from less than a second for fou
benchmarks up to 5 hours for most challenging benchmadc.
These results are promising especially given that this i
demic prototype implementation of PPA.

For speculative optimizations, the alternative to poiatealysis
is to use a points-to profiler which instruments the souraedo
extract points-to frequency information at runtime; hefarecom-
parison purposes we have implemented a points-to profiderirth
struments the source code so that the memory addressed®f all
cation sets can be tracked and queried at runtime. Thisviesol
two key instrumentation techniques: (1) overloading lipriunc-
tion calls toalloc andfree to track heap location set addresses;
and (2) storing the addresses of every stack variable (whdse
dress is taken) when pushed on the program’s runtime staeky E
pointer dereference is also instrumented with a wrappectiom
that enables the points-to profiler to determine which locaset
is being referenced during the dereference operation. dimtspto
profiler queries the set of available addresses to deterwiimeh
runtime points-to relation is currently applicable to tlaaidress,
and the count of this points-to relation is then incremenitad im-
portant to understand that a points-to profiler is only abledack
points-to relations that actually occur at runtime, anddeehas

All timing measurements were obtained using a 3GHz Pentium fewer possibilities to track than a static points-to analys sum-

4Fully exploring the impact of these default loop bounds igdnel the
scope of this work.

mary, points-to profiling is a computationally intense gsid and
furthermore has no ability to provide safety in the resgitalias
information it provides.



Table 3. LOLIPOP Measurements.
Avg.
Avg. Dereference Size Maximum
Benchmark Safe [ p > 0.001 | Unsafe | Certainty
BZIP2 1.00 1.00 1.00 1.00
COMPRESS 1.080 1.08 1.08 0.96
CRAFTY 1.830 1.40 1.83 0.95
GAP 143.84 77.61 6.21 0.78
GCC N/A N/A 2.64 0.96
GO 3.290 2.15 3.29 0.94
GzZIP 1.41 1.31 1.45 0.90
1JPEG 6.740 2.46 1.33 0.90
LI 80.10 14.70 4.34 0.76
M88KSIM 1.82 1.66 1.84 0.83
MCF 151 151 151 0.92
PARSER 42.52 2.09 3.23 0.97
PERLBMK 18.48 5.45 3.10 0.79
PERL 88.98 8.40 35.35 0.87
TWOLF 1.26 1.25 1.19 0.90
VORTEX 6.06 3.61 6.13 0.91
VPR 1.18 1.10 1.09 0.95

The results in Table 2 show that in most cases, our analysis
approach is much faster than the profiler. In fact, for twoesas
(PERLBMK and TwOLF) the profiler did not terminate after two
weeks of execution. It is also important to note that the [ingfi
approach is very dependent on the input set used, both iesuéts
it provides and on the profiler's runtime. Farcc and VORTEX
reduced reference input sets were used to ensure a traptabler
time (described in Table 1)—in these cases the profiler ofaras
LOLIPoP because LOLIPoP must analyze the entire progrartewhi
the profiler only analyzes the subset of code that is exeatdise
the reduced input set. For the more challenging benchmaiks, (
GCC, andPERLBMK), there is a significant increase in running-time
to compute safe results—i.e., to handle pointer assigrsmaith
multiple levels of dereferencing as described in Secti@n 2.

4.3 Pointer Analysis Accuracy

The accuracy of a conventional pointer analysis algorithrypi-
cally measured and compared by computing the average editgin
of the target location sets that can be dereferenced adtpssraer
dereference sites in the program—in short, the averagéatlenee
size. Table 3 shows the average dereference sizes for athben
marks studied, showing the safe result, the result when aimyg
to relation with a probability less than 0.001 is ignoredd dhe
unsafe result (when shadow variable aliasing is ignorederame
maximum certainty will be discussed later in Section 4.Dhe
very interesting result is that the benchmarks with a negfitilarge
average dereference size for the safe analysig (LI, PARSER
PERLBMK, PERL) show a dramatic decrease when unlikely points-
to relations are ignored (i.e., those for whigh< 0.001). This re-
sult suggests that many points-to relations are unlikelycur at
runtime, underlining the strong potential for speculatiyptimiza-
tions. As expected, a similar result is observed for the fenger-
sion of the analysis since the safe analysis introduces maagu-
racies through the flow-insensitive, context-insensitiaes that ad-
dresses shadow variable aliasing. These inaccuraciet ecremy
low probability points-to relations that are unlikely toegvoccur at
runtime. For example, the safe average dereference sizeafois
relatively high at 143.84, while the unsafe size is only 6.21

4.4 Probabilistic Accuracy

We now measure the accuracy of the probabilitigs compljted by
LOLIPoP by comparing the two B[obability vectord; and P4

at every pointer dereference poiri.;, represents the probability
vector reported by LOLIPoP—the static probability vectﬁd

represents the dynamic probability vector calculated eypibints-
to profiler. In particular, we want to quantify the accuradytiee

probability vectorsF; that are statically computed at every pointer
dereference. For comparison, we use the results of the qrofil
where each benchmark (using itef input) is instrumented to
track—for each pointer dereference location—a frequerestor
that indicates the frequency that each location set is thgeta
Each resulting dynamic freguency vector is then normalinema

dynamic probability vector P ;) so that it may be compared with
the corresponding probability points-to relation vectardescribed
in Equation 1. To compare the two vectors in a meaningful wasy,
compute thenormalized average Euclidean distan(ldAED) as
defined by:

— —
NAED — —— 2 Ps— P4

V2 ' (# pointer dereferences)

This metric summarizes the average error uniformly acrdss a
probability vectors at every pointer dereference on a stizée
ranges from zero to one, where a zero means no discrepancy be-
tween dynamic and static vectors, and a one means theredagsalw
a contradiction at every dereference.

Figure 5 shows the NAED for the SPECint95 and SPECint2000
benchmarks relative to the dynamic execution on the input
set (results foiGAP, PERLBMK, and TWOLF are omitted because
their dynamic points-to profile information could not bectizbly
computed). In the first experimenD) we distribute probability
uniformly to every target in the static points-to probakiVector

.F—i , making the naive assumption that all targets are equ&ili
This experiment is used to quantify the value-added of gritiba
information, and leads to an average NAED across all bendtsna
of 0.32 relative to the dynamic result. It is important toioetthat
for BzIP2, COMPRESSandGo even the uniform distributiorY) is
quite accurate.

The second experimensl) plots the NAED for the safe analy-
sis using edge-profile information from tiref input set. Compar-
ing the static and dynamic results using the same input kstsl
us to defer the question of how representative the profilimmyt
set is. With LOLIPoP we improve the NAED to an average of 0.25
across all benchmarks, although that average can be misead
For about half of the benchmarks probability informatioresimot
make a large difference (bzip2, compress, go, m88ksim, vpcf,
while for the remaining benchmarks probability informatisig-
nificantly improves the NAED. Forl, the probability information
slightly increases the NAED. The benchmark contains a tremen-
dous amount of shadow variable aliasing—we know this bexaus
of the large gap between the safe and unsafe average dexsfere
sizes shown in Figure 3. The spurious points-to relatiomeduced
by the ‘safe’ analysis appear to corrupt the useful prokighiifor-
mation. A similar result would be expected fenp. Using a more
accurate shadow variable analysis pass would help to retiise
effect; applying field-sensitivity would also help becaitseould
drastically reduce the amount of shadow variable aliasing.

The next experimentUr) shows the NAED for the unsafe
analysis, also using edge-profile information from thef input
set. Comparing with the safe experime8t)( surprisingly we see
that on average the unsafe result is more accurate (with INA
of 0.24): this result implies that safety adds many falsentsei
to relations, and can actually be undesirable in the condéxt
speculative optimizations. The exception to thisiaP, where the
NAED deteriorates when transitioning from safe to unsatesT
implies thatczip frequently utilizes and relies on many levels of
pointer dereferencing.

The final two experiments plot the NAED for the unsafe analy-
sis when using therain input set UJt), and when using compile-

(13)
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Figure 5. Normalized Average Euclidean Distance (NAED) relativeidynamic execution on thef input setD is a uniform distribution
of points-to probabilitiesSris the safe LOLIPoP result using tlkef input set, and th& bars are the unsafe LOLIPoP result usingthe
(Ur) andtrain (Ut) input sets, or instead using compile-time heuristids)(

time heuristics instead of edge-profile informatidsnj. Surpris-
ingly, the average NAED when using theain input set Ut) is
slightly more accurate than with thef input set {Ur): this indi-
cates that there are aliases which occur rarely during étieexe-
cution, which when profiled and fed back into LOLIPoP, became
source of inaccuracy compared to the lesser coverage otthia
input set. Finally, we see that the unsafe approaches are mor
accurate with edge-profiling information than when comtiilee
heuristics are usedUf), although even with heuristics LOLIPoP is
more accurate than the uniform distributidp) (

4.4.1 Average Maximum Certainty

To further evaluate the potential utility of the points-tmbpability
information provided by LOLIPoP, we measuaeerage maximum
certainty.

>~ (Max Probability Value)
(# pointer dereferences)

This equation takes the maximum probability value assediat
with all points-to relations at every pointer dereferenod aver-
ages these values across all pointer dereference sites.spet-
ulative optimizations benefit from increased certaintyt thgiven
points-to relation exists: since the probabilities acragsobabil-
ity vector sum to one, if there is one large probability it irep
that the probabilities for the remaining location sets anals In
other words, the closer the average maximum certainty \altee
one, the more potential there is for successful speculagitieiza-
tion. The average maximum certainty for each SPEC benchimark
given in Table 3, and in general these values are quite Highat-
erage value across all benchmarks is 0.899. This indichs#h
average, at any pointer dereference, there is likely onéy dami-
nant points-to relation. Therefore a client analysis ui@g |IPoP
will be very certain of which points-to relation will exist a given
pointer dereference.

Avg. Max. Certainty= (14)

5. Conclusions

As speculative optimization becomes a more widespreadappr
for optimizing and parallelizing code in the presence of Eumbus
memory references, we are motivated to predict the likelihof
points-to relations without relying on expensive depeidepro-
filing. We have presented LOLIPoP, a probabilistic pointealg-
sis algorithm that is one-level context-sensitive and fimmsitive,
yet can still scale to large programs including the SPEQiof2
benchmark suite. The key to our approach is to compute ptints
probabilities through the use of linear transfer functitinat are
efficiently encoded as sparse matrices.

We have used LOLIPoP to draw several interesting conclu-
sions. First, we found that—even without considering phlits
information—LOLIPoP provides an accurate approach togoerf
ing pointer analysis. Second, we demonstrated that mamggto
relations are unlikely to occur at runtime, underlining 8teong
potential for speculative optimizations. Third, we fouhdtthe un-
safe version of our analysis is more probabilistically aatelithan
the safe version, implying that safety adds many false pdmte-
lations and can actually be undesirable in the context afidpéve
optimizations. Finally, we demonstrated that LOLIPoP cardpce
accurate probabilities when using compile-time heussiitstead
of edge-profile information.
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