
IMPROVING PIPELINED SOFT PROCESSORS WITH MULTITHREADING

Martin Labrecque and J. Gregory Steffan

Department of Electrical and Computer Engineering, University of Toronto
email: {martinl,steffan}@eecg.toronto.edu

ABSTRACT

Designers of FPGA-based systems are increasingly in-
cludingsoft processors—processors implemented in program-
mable logic—in their designs. Any combination of area,
clock frequency, performance, and power may be of impor-
tance in the choice of a soft processor design to use, moti-
vatingarea efficiencyas the best metric with which to com-
pare potential designs. In this paper we demonstrate that 3,
5, and 7-stage pipelined multithreaded soft processors are
33%, 77%, and 106% more area efficient than their single-
threaded counterparts, the result of careful tuning of the ar-
chitecture, ISA, and number of threads.

1. INTRODUCTION

FPGAs that are used to implement a system-on-chip often
contain one or moresoft processors: compared with custom
logic, a soft processor is easier to program (usingC instead
of hardware-description language), flexible, and can be used
to manage and communicate with other custom accelerators
in the design. For soft processors, raw performance is often
not crucial—otherwise an off-chip or on-chip (if available)
hard processor would be preferable. Other metrics or their
combination may instead be more important, such as min-
imizing the area of the processor, matching the clock fre-
quency of another key component in the same clock domain,
handling requests or interrupts within specified time con-
straints (i.e., real-time), or processing a stream of requests
or data at a sufficient rate. Flexibility and control over per-
formance/area trade-offs in the soft processor design space
are key, and hence when comparing soft processor designs a
summarizing metric that combines area, frequency, and cy-
cle count such asarea efficiencyis most relevant.

1.1. Multithreaded Soft Processors

A promising way to improve area efficiency is through the
use of multithreading. Fortet al. [1] presented a 4-way
multithreaded soft processor design, and demonstrated that
it provides a significant area savings over having four soft
processors—but with a moderate cost in performance. In
particular, they show that a multithreaded soft processor need
not have hazard detection logic nor forwarding lines, so long
as the number of threads matches the number of pipeline

This work is supported by NSERC, NATEQ, and Altera.

stages such that all instructions concurrently executing in
different stages are independent. Researchers in the CUS-
TARD project [2] have also developed a similar pipelined
4-stage 4-way multithreaded soft processor.

Rather than comparing with multiple soft processors, in
this paper we show that a multithreaded soft processor can
be better than one that is single-threaded. In particular we
make four main contributions by demonstrating: (i) that mul-
tithreaded soft processors are more area-efficient and are ca-
pable of a better sustained instructions-per-cycle (IPC) than
single-threaded soft processors; (ii) that these benefits in-
crease with the number of pipeline stages (at least up to and
including 7-stage pipelines); (iii) that careful optimization
of any unpipelined multi-cycle paths in the original soft pro-
cessor is important, and (iv) that careful selection of certain
ISA features, the number of registers, and the number of
threads are key to maximizing area-efficiency.

2. SOFT PROCESSOR INFRASTRUCTURE

In this section we briefly describe our infrastructure for de-
signing and measuring soft processors, including the SPREE
system for generating single-threaded pipelined soft proces-
sors, our methodology for comparing soft processor designs,
our compilation infrastructure, and the benchmark applica-
tions we study.

SPREE: We use the SPREE system [3] to generate a
wide range of soft processor architectures. SPREE takes
as input ISA and datapath descriptions and produces RTL
which is synthesized, mapped, placed, and routed byQuartus
5.0 [4] using the default optimization settings. The gen-
erated processors target Altera Stratix FPGAs, and we cur-
rently synthesize for aEP1S40F780C5 device—a mid-sized
device in the family with the fastest speed grade. We deter-
mine the area and clock frequency of each soft processor
design using the arithmetic mean across 10 seeds (which
produce different initial placements before placement and
routing) to improve our approximation of the true mean. For
each benchmark, the soft processor RTL design is simulated
usingModelsim 6.0b [5] to (i) obtain the total number
of execution cycles, and (ii) to generate a trace which is val-
idated for correctness against the corresponding execution
by an emulator (MINT [6]).

Measurement:For Altera Stratix FPGAs, the basic logic
element (LE) is a 4-input lookup table plus a flip-flop—
hence we report the area of these processors inequivalent



LEs, a number that additionally accounts for the consumed
silicon area of any hardware blocks (e.g. multiplication or
block-memory units). For the processor clock rate, we re-
port the maximum frequency supported by the critical path
of the processor design. To combine area, frequency, and
cycle count to evaluate an optimization, we use a metric of
area efficiency, in million instructions per second (MIPS)
per thousand equivalent LEs. It is important to have such
a summarizing metric since a system designer may be most
concerned with soft processor area in some cases, or fre-
quency or wallclock-time performance in others. Finally,
we obtain dynamic power metrics for our benchmarks using
Quartus’ Power Play tool and report nano-Joules per instruc-
tion (nJ/instr), discounting the power consumed by I/O pins.

Single-Threaded Processors:The single-threaded pro-
cessors that we compare with are pipelined with 3 stages
(pipe3), 5 stages (pipe5), and 7 stages (pipe7). The 2
and 6 stage pipelines were previously found to be uninter-
esting [3], hence we study the 3, 5, and 7 stage pipelines
for even spacing. All three processors have hazard detec-
tion logic and forwarding lines for both operands. The 3-
stage pipeline implements shift operations using the multi-
plier, and is the most area-efficient processor generated by
SPREE [3] (at 1256 equiv. LEs, 78.3 MHz). The 5-stage
pipeline also has a multiplier-based shifter, and implements
a compromise between area efficiency and maximum op-
erating frequency (at 1365 equiv. LEs, 86.79 MHz). The
7-stage pipeline has a barrel shifter, is the largest processor,
and has the highest frequency (at 1639 equiv. LEs, 100.59
MHz). Pipe3 andpipe5 both take one extra cycle for
shift and multiply instructions, andpipe3 requires an extra
cycle for loads from memory.

Compilation: Our compiler infrastructure is based on
modified versions ofgcc 4.0.2,Binutils 2.16, andNewlib
1.14.0 that target variations of the 32-bits MIPS I [7] ISA;
for example, we can trade support for Hi/Lo registers with
3-operand multiplies, enable or disable branch delay slots,
and vary the number of architected registers used. Integer
division is implemented in software.

Benchmarking: We evaluate our soft processors using
the 10 embedded benchmark applications described in Ta-
ble 1, which are divided into 4 categories: dominated by
loads (L), shifts (S), multiplies (M) or by none of the above
(other,O).1 By selecting benchmarks from each category, we
also create 3 multiprogrammed mixes that each execute until
the completion of the shortest application in the mix (appli-
cations are chosen from the left to right of the mix until all
threads available on the processor are filled). We measure
multithreaded processors using (i) multiple copies of the
same program executing as separate threads (with separate
data memory), and (ii) using the multiprogrammed mixes.

1The benchmarks chosen are a subset of those used in previous
work [11] since for now we require both data and instructionsto each fit
in separate single MegaRAMs in the FPGA.

Table 1. Benchmark applications evaluated.
Dyn. Instr.

Source Benchmark Modified Counts Category

MiBench [8] BITCNTS di 26,175 L

XiRisc [9] BUBBLE_SORT - 1,824 L
CRC - 14,353 S
DES - 1,516 S
FFT* - 1,901 M
FIR* - 822 M

QUANT* - 2,342 S
IQUANT* - 1,896 M

VLC - 17,860 L

RATES [10] GOL di 129,750 O

Mix T0 T1 T2 T3 T4 T5 T6

1 FFT QUANT BUBBLE_SORT GOL FIR CRC VLC

2 FIR CRC VLC GOL IQUANT DES BITCNTS

3 IQUANT DES BITCNTS GOL FFT QUANT BUBBLE_SORT

* Contains multiply
di Reduced data input set and number of iterations

Categories: dominated by (L)oads, (S)hifts, (M)ultiplies, (O)ther

3. MULTITHREADING A SOFT PROCESSOR

Commercially-available soft processors such as Altera’s NIOS
II and Xilinx’s Microblaze are both single-threaded, in-order,
and pipelined, as are our SPREE processors (described in
the previous section). Such processors require hazard de-
tection logic and forwarding lines for correctness and good
performance. These processors can be multithreaded with
minimal extra complexity by adding support for instructions
from multiple independent threads to be executing in each of
the pipeline stages of the processor—an easy way to do this
is to have as many threads as there are pipeline stages. This
approach is known asFine-Grained Multithreading(FGMT),
and is also the approach adopted by Fortet al. [1] and the
CUSTARD project [2].2

In this section we evaluate several SPREE processors of
varying pipeline depth that support fine-grained multithread-
ing. Since each pipe stage executes an instruction from an
independent thread, these processors no longer require haz-
ard detection logic nor forwarding lines—which as we show
can provide improvements in both area and frequency. Fo-
cusing on our base ISA (MIPS), we also found that load and
branch delay slots are undesirable, which makes intuitive
sense since the dependences they hide are already hidden
by instructions from other threads—hence we have removed
them from the modified version of the ISA that we evaluate.

To support multithreading, the main challenge is to repli-
cate the hardware that stores state for a thread: in particular,
each thread needs access to independent architected regis-
ters and memory. In contrast with ASICs, for FPGAs the
relative latency of on-chip memory vs logic latency grows
very slowly with the size of the memory—hence FPGAs are
amenable to implementing the replicated storage required

2The CUSTARD group also investigatedBlock Multi-Threadingwhere
threads are switched only at long-latency events, but foundthis approach to
be inferior to FGMT.



Fig. 1. Area efficiency of single-threaded (st) and mul-
tithreaded (mt) processors with varying pipeline depths,
where the number of threads is equal to the number of stages
for the multithreaded processors. Results are the mean
across all single benchmarks (i.e., not the mixes).

for multithreading. We provide replicated program coun-
ters which are selected in a round-robin fashion each cycle.
Rather than physically replicating the register file, which
would require the addition of costly multiplexers, we index
different ranges of a shared physical register file by appro-
priately shifting the register numbers. We implement this
register file using block memories available on Altera Stratix
devices; in particular, we could use eitherM4Ks (4096 bits
capacity, 32 bits width) orM512s (512 bits capacity, 16
bits width). We chooseM4Ks because (i) they more natu-
rally support the required 32-bit register width; and (ii) we
can implement the desired register file using a smaller total
number of block memories, which minimizes the amount of
costly multiplexing logic required.

We must also carefully provide separation of instruction
and data memory as needed. For this paper we support only
on-chip memory—we are currently working on support for
caches and off-chip memory. Similar to the register file,
we provide only one physical instruction memory and one
physical data memory, but map to different ranges of those
memories as needed. In particular, every thread is always
allocated a unique range of data memory. When we exe-
cute multiple copies of a single program then threads share
a range of instruction memory,3 otherwise instruction mem-
ory ranges are unique as well.

Figure 1 shows the mean area efficiency, in MIPS per
1000 equivalent LEs, across all single benchmarks from Ta-
ble 1 (i.e., we do not yet consider the multiprogrammed

3Since each thread needs to initialize its global pointer andstack pointer
differently (in software), we create a unique initialization routine for each
thread, but otherwise they share the same instruction memory range.

Fig. 2. IPC gain of multithreaded over single-threaded pro-
cessors.

mixes). We measure single-threaded (st) and multithreaded
(mt) processors with varying pipeline depths, and for the
multithreaded processors the number of threads is equal to
the number of pipeline stages. The area efficiency of the
3, 5, and 7-stage pipelined processors is respectively 33%,
77% and 106% greater than each of their single-threaded
counterparts. The 5-stage pipeline has the maximum area
efficiency, as it benefits the most from the combination of
optimizations we describe next. The 3 and 7-stage pipeline
have similar area efficiencies but offer different trade-offs in
IPC, thread count, area, frequency, and power.

Figure 2 shows the improvement in instructions-per-cycle
(IPC) of multithreaded processors over single-threaded pro-
cessors. For the 3, 5, and 7-stage pipelines IPC improves
by 24%, 45% and 104% respectively. These benefits are
partly due to the interleaving of independent instructionsin
the multithreaded processors which reduce or eliminate the
inefficiencies of the single-threaded processors such as un-
used delay slots, data hazards, and mispredicted branches
(our single-threaded processors predict branches are “not-
taken”). We have shown that multithreading offers com-
pelling improvements in area-efficiency and IPC over single-
threaded processors. In the sections that follow we describe
the techniques we used to achieve these gains.

4. TUNING THE ARCHITECTURE

In this section, we identify two architectural features of mul-
tithreaded processors that differ significantly from theirsingle-
threaded version and hence must be carefully tuned: the
choice of Hi/Lo registers versus 3-operand multiplies, and
the organization of multicycle paths.

Optimizing the Support for Multiplication: By de-
fault, in the MIPS ISA the 64-bit result of 32-bit multipli-
cation is stored into two special 32-bit registers called Hi
and Lo—the benefit of these being that multicycle multi-
plication need not have a write-back path into the regular



Fig. 3. Hi/Lo registers vs 3-operand multiplies for vari-
ous pipeline depths, normalized to the corresponding single-
threaded processor.

register file, allowing higher-frequency designs. Hence for a
multithreaded implementation of a MIPS processor we must
also replicate the Hi and Lo registers. Another alternative
is to modify MIPS to support two 3-operand multiply in-
structions, which target the regular register file and com-
pute the upper or lower 32-bit result independently. We
previously demonstrated that Hi/Lo registers result in bet-
ter frequency than 3-operand multiplies but at the cost of
extra area and instruction count, and are a better choice for
more deeply-pipelined single-threaded processors [11]. In
this paper we re-investigate this option in the context of mul-
tithreaded soft processors. Figure 3 shows the impact on
area, frequency, and energy-per-instruction with Hi/Lo reg-
isters or 3-operand multiplies, for multithreaded processors
of varying pipeline stages each relative to the correspond-
ing single-threaded processor. We observe that Hi/Lo reg-
isters require significantly more area than 3-operand multi-
plies due to their replicated storage but more importantly to
the increased multiplexing required to route them.

Since the frequency benefits of Hi/Lo registers are no
longer significant, and 3-operand multiplies also have signif-
icantly reduced energy-per-instruction, we chose supportfor
3-operand multiplies as our default in all multithreaded ex-
periments in this paper. In Figure 4(a) we show the raw IPC
of the multithreaded processors on all benchmarks as well as
the multiprogrammed mixes, demonstrating two key things:
(i) that our results for replicated copies of the individual
benchmarks are similar to those of multiprogrammed mixes;
and (ii) that stalls for the multithreaded 7-stage pipelinehave
been completely eliminated (since it achieves an IPC of 1).
For the three-stage pipeline, the most area efficient for single-
threaded processors, the baseline multithreaded processor is
only 5% more area efficient than the single-threaded pro-
cessor (see Figure 4(b)). Area and frequency of our multi-

(a) Raw IPC. The 7-stage pipeline has an IPC of 1 because it never stalls.

(b) Area efficiency normalized to the single-threaded processors computed
with the instruction count on the multithreaded-processors(icount_mt)
and with the scaled instruction count on the single-threaded processor
(icount_st).

Fig. 4. IPC and area efficiency for the baseline multi-
threaded processors.

threaded processors are similar to those of the single-threaded
processors, hence the majority of these gains (36% and 106%
for the 5 and 7-stage pipelines) are related to reduction in
stalls due to various hazards in the single-threaded designs.
Figure 4(b) shows that the reduction of instructions due to
the removal of delay slots and 3-operand multiplies also con-
tributes by 3% on average to the final area efficiency that
utilizes the scaled instruction count of single-threaded pro-
cessors to compare a constant amount of work. Comparing
with Figure 1, we see that single-threaded soft processors fa-
vor short pipelines while multithreaded soft processors favor
deep pipelines.

Optimizing Multicycle Paths: Our 3 and 5-stage pro-
cessors must both stall for certain instructions (such as shifts
and multiplies), which we callunpipelined multicycle paths[3].
It is important to optimize these paths, since otherwise such
stalls will impact all other threads in a multithreaded pro-
cessor. Fort et al. [1] address this challenge by queueing



F E W

F W

F W

F E W

add

shift

load

sub

F E W

F E M W

F

F E M W

WE

E

E

Time

(b) with intra−stage pipelining(a) unpipelined (baseline)

Fig. 5. Example execution showing multicycle paths in the
3-stage pipeline where: (i) shifts and loads require two cy-
cles in the execute stage; and (ii) we assume each instruc-
tion has a register dependence on the previous. Assuming
a single-threaded processor, forward arrows represent for-
warding lines required, while the backward arrow indicates
that a stall would be required.

requests that stall in a secondary pipeline as deep as the orig-
inal, allowing other threads to proceed. We instead attempt
to eliminate such stalls by modifying the existing processor
architecture.

For the single-threaded 3-stage pipeline, multicycle paths
were created by inserting registers to divide critical paths,
improving frequency by 58% [3]; this division could also
have been used to create two pipeline stages such that shifts
and multiplies would be pipelined, but this would have cre-
ated new potential data hazards (see Figure 5), increasing the
complexity of hazard detection logic—hence this option was
avoided for the single-threaded implementation. In contrast,
for a multithreaded processor we can pipeline such paths
without concern for data hazards (since consecutive instruc-
tions are from independent threads)—hence we do so for
the 3-stage processor. The single-threaded 5-stage pipeline
also contains multicycle paths. However, we found that for a
multithreaded processor that pipelining these paths was not
worth the cost, and instead opted to revert the multicycle
paths to be single-cycle at a cost of reduced frequency but
improved instruction rate. Consequently, eliminating these
multicycle paths results in an IPC of 1 for the 5-stage multi-
threaded processor. The 7-stage processor has no such paths,
hence we do not consider it further here.

Figure 6 shows the impact on both cycle count and area-
efficiency of optimizing multicycle paths for the 3 and 5-
stage pipeline multithreaded processors, relative to the cor-
responding baseline multithreaded processors. First, ourop-
timizations reduced area for both processors (by 1% for the
3-stage, and by 4% for the 5-stage); however, frequency is
also reduced for both processors (by 3% for the 3-stage and
by 5% for the 5-stage). Fortunately, in all cases cycle count
is reduced significantly, improving the IPC by 24% and 45%
for the 3-stage and 5-stage processors over the correspond-
ing single-threaded processors. Overall, this technique alone
improves area-efficiency by 18% and 15% for the 3 and 5-

Fig. 6. Impact on both cycle count and area-efficiency of op-
timizing multicycle paths for the 3 and 5-stage pipeline mul-
tithreaded processors, relative to the corresponding baseline
multithreaded processors.

stage processors over their multithreaded baseline.
Focusing on the multiprogrammed mixes, we see that

the cycle count savings is less pronounced: when executing
multiple copies of a single program it is much more likely
that consecutive instructions will require the same multicy-
cle path, resulting in avoided stalls with the use of pipelining
(as shown in Figure 5(b)); for multiprogrammed workloads
such consecutive instructions are less likely. Hence for mul-
tiprogrammed mixes we achieve only 5% and 12% improve-
ments in area-efficiency for the 3 and 5-stage pipelines.

5. REDUCING THREAD STATE

In this section, we investigate two techniques for improv-
ing the area-efficiency of multithreaded soft processors by
reducing thread state.

Reducing the Register File:In previous work [11] we
demonstrated that 8 of the 32 architected registers (s0-s7)
could be avoided by the compiler (such that programs do not
target them at all) with only a minor impact on performance
for most applications. Since our multithreaded processors
have a single physical register file, we can potentially signif-
icantly reduce the total size of the register file by similarly
removing these registers for each thread. Since our regis-
ter file is composed ofM4K block memories, we found that
this optimization only makes sense for our 5-stage pipeline:
only for that processor does the storage saved by removing
registers allow us to save entireM4K blocks. In particular,
if we remove 7 of 32 registers per thread then the entire
resulting 25-register register file fits in a singleM4K block
(since 25 registers× 5 threads× 32 bits< 4096 bits).4 In
fact, since our register file is actually duplicated to provide

4However, rather than simply shifting, we must now add an offsetto
register numbers to properly index the physical register file.



Fig. 7. Impact of having one thread less than the pipeline
depth, normalized to processors having the number of
threads equal to the pipeline depth.

enough read and write ports, this optimization allows us to
use twoM4Ks instead of four. For our 5-stage multithreaded
processor this optimization allows us to save 5% area and
improve frequency by 3%, but increases cycle count by 3%
on average due to increased register pressure.

Reducing the Number of Threads:Multithreaded soft
processors proposed to date have supported a number of
threads equal to the number of pipeline stages [1,2]. For sys-
tems where long multicycle stalls are possible (such as with
high latency off-chip memory), supporting a larger number
of threads than pipeline stages may be interesting. How-
ever, for our work which so far assumes on-chip memory, it
may also be beneficial to have fewer threads than pipeline
stages: we actually require a minimum number of threads
such that the longest possible dependence between stages is
hidden, which for the processors we study in this paper re-
quires one less thread than there are pipeline stages. This
reduction by one thread may be beneficial since it will re-
duce the latency of individual tasks, result in the same over-
all IPC, and reduce the area by the support for one thread
context. Figure 7 shows the impact on our CAD metrics
of subtracting one thread from the baseline multithreaded
implementation. Area is reduced for the 3-stage pipeline,
but frequency also drops significantly because the computa-
tion of branch targets becomes a critical path. In contrast,
for the 5 and 7-stage pipelines we achieve area and power
savings respectively, while frequency is nearly unchanged.
Overall this possibility gives more flexibility to designers
in choosing the number of threads to support for a given
pipeline, with potential area or power benefits. When com-
bined with eliminating multicycle paths, reducing the num-
ber of threads by one for the 5-stage pipeline improves area-
efficiency by 25%, making it 77% more area-efficient than
its single-threaded counterpart with 78 MIPS/1000 LEs.

6. CONCLUSIONS

We have shown that, relative to single-threaded 3, 5, and
7-stage pipelined processors, multithreading can improve
overall IPC by 24%, 45%, and 104% respectively, and area-
efficiency by 33%, 77%, and 106%. In particular, we demon-
strated that (i) intra-stage pipelining is undesirable forsingle
threaded processors but can provide significant increases in
area-efficiency for multithreaded processors; (ii) optimizing
unpipelined multicycle paths is key to gaining area-efficiency;
(iii) for multithreaded soft processors that 3-operand multi-
plies are preferable over Hi/Lo registers such as in MIPS;
(iv) reducing the registers used can potentially reduce the
number of memory blocks used and save area; (v) having
one thread less than the number of pipeline stages can give
more flexibility to designers while potentially saving areaor
power. In summary, this work shows that there are signif-
icant benefits to a multithreaded soft processor design over
single-threaded, and gives system designers a strong incen-
tive to program with independent threads.

7. REFERENCES

[1] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A
multithreaded soft processor for SoPC area reduction,” in
Proc. of FCCM ’06. Washington, DC, USA: IEEE Com-
puter Society, 2006, pp. 131–142.

[2] R. Dimond, O. Mencer, and W. Luk, “Application-
specific customisation of multi-threaded soft processors,”
IEE Proceedings—Computers and Digital Techniques, vol.
153, no. 3, pp. 173– 180, May 2006.

[3] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and
customization of FPGA-based soft processors,”IEEE Trans-
actions on Computer Aided Design of Integrated Circuits and
Systems, February 2007.

[4] Altera Corporation, “Quartus II,” San Jose, CA, USA, Altera.

[5] Mentor Graphics Corp., “Modelsim SE,”
http://www.model.com, Mentor Graphics, 2004.

[6] J. Veenstra and R. Fowler, “MINT: a front end for efficient
simulation of shared-memory multiprocessors,” inProc. of
MASCOTS ’94, NC, USA, January 1994, pp. 201–207.

[7] S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P. Jouppi,
and C. Rowen, “Organization and VLSI implementation of
MIPS,” Stanford University, CA, USA, Tech. Rep., 1984.

[8] M. G. et al., “ MiBench: A free, commercially representative
embedded benchmark suite,” inProc. of WWC ’01, Decem-
ber 2001.

[9] F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusable 32-bit
VLIW RISC core,” inProc. of the 27th European Solid-State
Circuits Conf, 2001, pp. 456–459.

[10] L. Shannon and P. Chow, “Standardizing the performance as-
sessment of reconfigurable processor architectures,” inProc.
of FCCM ’03, 2003, pp. 282–283.

[11] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Custom
code generation for soft processors,” inProc. of RAAW ’06,
Florida, US, December 2006.


