Caliper: A Tool to Generate Precise and Closed-loop Traffic

Monia Ghobadi*, Martin Labrecquet, Geoffrey Salmon*, Kaveh Aasaraait,
Soheil Hassas Yeganeh~, Yashar Ganjali*, J. Gregory Steffan?
*Department of Computer Science, Department of Electrical and Computer Engineering, University of Toronto
{monia, geoff, soheil, yganjali}{@cs.toronto.edu, {martinl, aasaraai, steffan}@eecg.toronto.edu

ABSTRACT

Generating realistic and responsive traffic that reflects differ-
ent network conditions is a challenging problem associated
with performing valid experiments in network testbeds.
In this work, we preset Caliper, a highly precise traffic
generation tool, built on NetThreads, a flexible platform
that we have created for developing packet processing
applications on FPGA-based devices and the NetFPGA in
particular. We will demonstrate the effect of ad-hoc inter-
departure times on a commodity NIC compared to precisely
timed inter-departures with Caliper. Both NetThreads and
Caliper are available as free software to download [1].

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks|: Network
Architecture and Design

General Terms

Design, Experimentation, Measurement

Keywords
NetFPGA, Traffic Generation, Soft Processors

1. INTRODUCTION AND MOTIVATION

There are many challenges associated with performing
valid experiments in network testbeds. Generating real-
istic and responsive traffic that reflects different network
conditions and topologies is one of such key challenges.
To perform network experiments, researchers often use a
collection of commodity Linux machines as traffic gener-
ators. However, creating a large number of connections
in order to accurately model the traffic shape in networks
with thousands of flows is difficult for several reasons. As
an alternative, commercial traffic generators are useful for
some experiments, but they are usually very expensive
and their proprietary nature makes them inflexible for
research purposes. Hence, it is intrinsically difficult to
perform time-sensitive network experiments with confidence
on the accuracy of packet injection times. Time-sensitive
experiments are those that need very high-precision timings
for packet injections into the network. Experimenting with
new congestion control algorithms, buffer sizing in Internet

Copyright is held by the author/owner(s).
SIGCOMM’ 10, August 30-September 3, 2010, New Delhi, India.
ACM 978-1-4503-0201-2/10/08.

445

routers, and denial of service attacks are all examples
of time-sensitive experiments, where a subtle variation in
packet injection times can change the results significantly.
This demonstration has two objectives. First, we present
Caliper, a precise packet generator that controls the trans-
mission times of packets, created by arbitrary software on
the host machine. We demonstrate Caliper’s capabilities
by visualizing the adverse effect of ad-hoc packet inter-
departure times on a commodity NIC compared to the
high precision achieved by Caliper. The difference can
be perceptible for the audience by comparing two side-
by-side video streams. One video feed is transmitted
using a commodity NIC and the other using Caliper.
As a commodity NIC has an imprecise injection rate of
packets onto the network, its corresponding video will suffer
from a much higher packet drop rate than the other and
consequently deliver a much worse viewing experience. The
second part of our demonstration focuses on presenting
NetThreads [2], the software programmable system on the
NetFPGA card that enables Caliper, and its ease-of-use.

2. DESIGN AND IMPLEMENTATION

Caliper allows to specify programmable packet timing
requirements using NetThreads, a flexible platform that we
have created for developing packet processing applications
on FPGA-based devices and the NetFPGA in particular.
NetThreads is primarily composed of FPGA-based pro-
cessors, providing a familiar yet flexible environment for
software developers: programs are written in C, and existing
applications can be ported to the platform. In the rest of this
section, we briefly go over the design and implementation of
NetThreads and Caliper.

NetThreads: While the Internet infrastructure is dom-
inated by vendors with proprietary technologies, there is
a push to democratize the hardware, to allow researchers
to revisit network protocols that have not evolved years.
This desire to add programmability in the network is for-
mally embraced by large scale projects such as CleanSlate,
RouteBricks and GENI, in turn supported by massive
infrastructure projects such as Internet2 and CANARIE.
NetThreads is a possible solution to fulfill that need as
it allows to rapidly develop low-level packet processing
applications.

To avoid implementing a networking application in low-
level hardware-description language (which is how FPGAs
are normally programmed), we instead implement soft
processors —processors composed of programmable logic on
the FPGA. Despite the raw performance drawbacks, a soft



i
%, Gaier o0

Conceptual Model

///&

Physical Model
/4
/

Receiver

Router

Sender

Figure 1: The conceptual (top) and physical (bot-
tom) network configuation for the demonstration.

processor has several advantages: it is easier to program
(e.g., using C), portable to different FPGAs, flexible (i.e.,
can be customized), and can be used to communicate with
other components/accelerators in the design. In this work,
our FPGA resides on a NetFPGA board and communicates
through DMA on a PCI interface to a host computer [3].

Precise Traffic Generation: Caliper’s main objective is
to precisely control the transmission times of packets which
are created in the host computer, continually streamed to
the NetFPGA, and transmitted on the wire. The generated
packets are sent out of a single Ethernet port of the
NetFPGA, according to any given sequence of requested
inter-transmission times. Unlike previous works that replay
packets with prerecorded transmission times from a trace
file, Caliper generates live packets and supports closed-
loop traffic. Therefore, Caliper can easily be coupled
with existing traffic generators (such as Iperf, the widely
used traffic generation tool in the Linux kernel, or as we
demonstrate here, a video streaming application) to improve
their accuracy at small time scales. In the following we
explain each stage of a packet’s journey through Caliper.

First, a user space process or a kernel module on the
host computer determines when a packet should be sent. A
description of the packet, containing the transmission time
and all the information necessary to assemble the packet
is sent to the NetFPGA driver. In the driver, multiple
packet headers are combined and copied to the NetFPGA
card. The last part of Caliper runs as software on the
NetThreads platform inside the NetFPGA. The driver sends
its messages containing the headers of multiple packets
and their corresponding transmission times. Then, Caliper
creates these packets and sends them at the appropriate
times.

3. DEMONSTRATION

In this section, we describe the two experiments that we
will perform, highlighting the key characteristics of Caliper
and NetThreads.

Demonstrating Precision and its Importance: The
goal of this part of the demonstration is to visually show the
adverse effects of imprecise packet injections by commodity
NICs while the same experiment works fine using Caliper.
For this purpose, we design a time-sensitive experiment, as
we explain next.

The continuous growth in network link speeds makes it
increasingly difficult to design routers with buffer sizes equal
to the standard bandwidth-delay product. As a result,
many network providers revert to using routers with small

446

Figure 2: The demonstration in action.

buffers. Those routers have the drawback of losing packets
when the traffic is bursty, so they are usually used in
conjunction with software packet pacing techniques that
reduce traffic burstiness. Software pacing is however not
completely effective, due to timing inaccuracies introduced
by commodity NICs and their software drivers.

As shown in Figure 1, we use one video transmitter
software running on a host equipped with two interfaces:
a commodity NIC, and Caliper. Video is transmitted on
both interfaces: the NIC traffic is software-paced by the
Linux kernel, while Caliper enforces pacing on the other
interface. Both interfaces are directly connected to two
identical NetFPGA router cards with small buffers, both
installed on a single host. Each router forwards packets
to separate NICs on the receiving machine. Finally, we
display videos side-by-side with a single receiver software.
Packet drops result in obvious reduced video quality for the
software-paced traffic, showing that pacing with Caliper is
substantially more effective. Figure 2 shows two HD videos
feeds on the receiving machine: the right hand side of the
image shows the stream from the NIC and the left hand side
image is from Caliper. As it can be seen, the right hand side
picture is suffering from packet drops and exhibits worse
quality.

Demonstrating Usability: Caliper relies on some
software executing inside the NetFPGA network card. Since
our compiler infrastructure for that program is based on
a modified gcc compiling ordinary C code, users need no
special introduction to the programming environment. We
demonstrate the flexibility of NetThreads by allowing users
to change a program that modifies a video stream on-the-
fly. In particular they are able to add custom headers to
packets including a text which is used as a closed captioning
of their choice updated in real-time on the video stream sent
by Caliper. This experiment uses the same setup as above:
only the NetThreads software program is changed. By
getting a first hand experience with NetThreads, attendees
can hopefully earn confidence to write gigabit applications
on their own by downloading our infrastructure [1].

4. REFERENCES

[1] Caliper wiki. http://netfpga.org/foswiki/bin/view/
NetFPGA /OneGig/PreciseTrafGen.

[2] M. Labrecque, J. G. Steffan, G. Salmon, M. Ghobadji,
and Y. Ganjali, “NetThreads: Programming NetFPGA
with threaded software,” in NetF’PGA Developers
Workshop, Palo Alto, California, August 2009.

[3] The NetFPGA project. http://www.netfpga.org/.



