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Abstract

With the advent of chip-multiprocessors (CMPs),
Thread-Level Speculation (TLS) remains a promising
technique for exploiting this highly multithreaded hard-
ware to improve the performance of an individual pro-
gram. However, with such speculatively-parallel exe-
cution the cache locality once enjoyed by the original
uniprocessor execution is significantly disrupted: for
TLS execution on a four-processor CMP, we find that
the data-cache miss rates are nearly four-times those
of the uniprocessor case, even though TLS execution
utilizes four private data caches (i.e., four-fold greater
cache capacity).

We break down the TLS cache locality problem into
instruction and data cache, execution stages, and par-
allel access patterns, and propose methods to improve
cache locality in each of these areas. We find that
for parallel regions across 13 SPECint applications
our simple and low-cost techniques reduce data-cache
misses by 38%, improve performance by 12.8%, and
significantly improve scalability—further enhancing the
feasibility of TLS as a way to capitalize on future
CMPs.

1 Introduction

The chip multiprocessor revolution has begun: all
major processor vendors have announced chip mul-
tiprocessor (CMP) designs, including Intel’s “Smith-
field” (dual-core Pentium IV’s), AMD’s Opteron (dual-
core), IBM’s Power 4/5 (combinable, dual-core), and
Sun Microsystems’ Niagara (8 cores). While it is rel-
atively straightforward to improve the throughput of
a workload using these CMPs, to improve the per-
formance of an individual program it must somehow
be parallelized into threads. One promising possibil-
ity for automatically-parallelizing general-purpose pro-
grams is Thread-Level Speculation (TLS) [6,7,9,14,15]
which allows the compiler to create parallel threads

even in the presence of ambiguous memory references,
relying on the underlying hardware support to detect
dependence violations and recover from failed specula-
tion.

1.1 The TLS Cache Locality Problem

Under TLS, a sequential application is divided into
speculative threads, which are in turn executed on the
processors of the underlying CMP. In a typical CMP,
the processors will share a unified second-level cache,
but will each have private first-level data and instruc-
tion caches. While the original sequential program
would have executed on a single processor using only
one data and instruction cache, with TLS that pro-
gram is divided across several processors and will there-
fore use several data and instruction caches. Although
the main motivation of TLS is to allow a single pro-
gram to exploit distributed resources, spreading the
memory accesses of a program across multiple caches
can dramatically disrupt the cache locality enjoyed by
the original sequential execution. This tension between
parallelism and locality is a key challenge for a single
program to fully exploit the resources of a CMP.

To demonstrate the TLS cache locality problem, in
Figure 1(a) we compare the data cache miss rate for
each sequential SPECint application with that of the
speculatively-parallel version on a 4-processor CMP
with 32KB first-level data caches (the details of our ex-
perimental framework are available in Section 2.1). As
expected, the miss rate increases significantly in every
case, with M88ksim, Perlbmk, and Vpr route suf-
fering the most. Overall, the average data cache miss
rate for the TLS versions is nearly four times that of
the original sequential versions. Intuitively, this makes
sense since four processors are now accessing data that
was originally accessed by only one processor. As fur-
ther evidence that the culprit is reduced cache locality,
in Figure 1(b) we show the fraction of data cache misses
during parallel regions for which the missing cache line
is currently resident in another processor’s data cache.



D-Cache Miss Rate

Application Seq. TLS Increase

Bzip2 comp 0.025 0.048 93.4%

Crafty 0.015 0.034 129.8%

Gcc 0.016 0.028 72.4%

Go 0.014 0.043 209.8%

Ijpeg 0.007 0.030 306.9%

Li 0.009 0.010 9.3%

M88ksim 0.004 0.039 808.9%

Mcf 0.277 0.383 37.9%

Parser 0.031 0.037 19.1%

Perlbmk 0.012 0.124 934.2%

Vortex 0.012 0.014 22.7%

Vpr place 0.049 0.104 110.3%

Vpr route 0.016 0.145 788.2%

Average 272.5%
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Cache Locality Problem

Shared cache architecturePrivate cache architecture

Data cache

Sequential regionsParallel regions

Instruction cache

Investigate miss patterns Investigate region transitions

(a) Comparing miss rates. (b) Percentage locality misses. (c) Our investigation.

Figure 1. The TLS cache locality problem: (a) comparing data cache miss rates for the original se-
quential execution and the speculatively-parallel TLS exe cution; (b) the fraction of data cache misses
during parallel regions where the missing cache line is curr ently resident in another processor’s data
cache (we call these locality misses); (c) our investigatio n of the cache locality problem.

On average 61.1% of all misses are such locality misses,
indicating that locality has indeed been significantly
disrupted.

In this paper we present a thorough investigation
of the cache locality problem for TLS execution, as
summarized by Figure 1(c). We discuss shared cache
architectures, such as when an SMT processor sup-
ports TLS, although locality problems are the result
of private cache TLS support—hence we focus only
on private cache support in this paper. Similarly, we
consider instruction cache locality for TLS, but find
that instruction cache misses are overshadowed by the
impact of data cache misses. We divide data cache
miss behavior temporally, into regions (i) where the
program executes sequentially and (ii) those where it
executes speculatively in parallel. We further classify
the data cache misses observed during the execution
of parallel regions into several categories based on the
observed patterns of misses. We find that read-only
and write-based sharing patterns as well as strided ac-
cess patterns represent the vast majority of misses dur-
ing parallel execution. The results of this classification
suggest several techniques for improving TLS cache lo-
cality which we evaluate in this paper.

1.2 Related Work

To the best of our knowledge, there has been no
significant work on improving cache locality for TLS
execution of general-purpose programs. In contrast,
there has been a great deal of work on improving local-
ity for array-based, scientific programs [3, 16], in par-
ticular employing software transformations that adjust
access patterns and data layout to improve locality.

In this paper we consider only hardware techniques
for exploiting parallel access patterns to reduce cache
misses and improve locality, although interesting fu-
ture work would further consider potential compiler
techniques. Memory latency can be tolerated through
prefetching [1,4,5]; since TLS itself has prefetching ef-
fects, many schemes have been proposed to specula-
tively execute helper threads which prefetch or precom-
pute for a main thread [8, 12]. Most closely-related to
this work, Brown et al. [2] propose broadcasting load-
missed cache lines to all private data caches to improve
the performance of speculative precomputation on a
CMP. We find that similar support works well to im-
prove locality and performance for TLS.

1.3 Contributions

This paper makes the following contributions. First,
we provide a thorough classification of the cache local-
ity problem for TLS, and use this classification to di-
vide and conquer the problem. Second, we perform a
detailed evaluation of techniques for addressing read-
only sharing, write-based sharing, and strided-based
miss patterns. We show that these simple techniques
can significantly reduce the number of cache misses for
TLS programs and improve overall performance. Fi-
nally, we show that these techniques significantly im-
prove the ability of TLS execution to scale to larger
numbers of processors.

2 Underlying Support for TLS

Before we investigate the cache locality problem, in
this section we describe the support for TLS that this



Table 1. Simulation parameters.

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Bus Interconnect 8B per cycle
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

work is based on, including both hardware and com-
piler support. While this study is within the context of
a particular TLS implementation, the techniques that
we suggest for improving cache locality would be ap-
plicable to other TLS systems as well.

Compiler Support: Our compiler infrastructure
decides how to divide a program into speculative
threads [15]. For now we consider only loops, since
loops comprise a significant fraction of overall execu-
tion time. Using profile information, the compiler de-
cides to speculatively parallelize the set of non-nested
loops which maximize performance assuming baseline
hardware support on a four-processor CMP. The com-
piler then transforms these loops by performing loop
unrolling, inserting new instructions that interface with
the underlying TLS hardware to manage speculative
threads and perform synchronization, and scheduling
code within synchronized portions to maximize parallel
overlap. The compiler outputs modified C code which
is then compiled with gcc 2.95.2 using the “-03” flag
to produce optimized MIPS binaries.

Hardware Support: The underlying hardware
support for TLS must implement two important
features: buffering speculative modifications from
regular memory, and detecting and recovering from
failed speculation. Our underlying hardware support
implements these features by using the data caches and
an extended version of standard invalidation-based
cache coherence [15]. In a nutshell, the extended
coherence scheme tracks which cache lines have been
speculatively loaded or modified, and piggybacks a se-
quence number on coherence messages to detect when
a speculative thread has violated a data dependence.
Cache lines which have been speculatively modified
may not be evicted from the data cache until the
speculative thread commits.

2.1 Experimental Framework

We evaluate our support for TLS through detailed
simulation. Our simulator models 4-way issue, out-

of-order, superscalar processors similar to the MIPS
R14000, but modernized to have a 128-entry reorder
buffer. We simulate a system with four processing
cores, where each has its own physically private data
and instruction caches, connected to a unified second
level cache by a bus. Register renaming, the reorder
buffer, branch prediction, instruction fetching, branch-
ing penalties, and the memory hierarchy (including
bandwidth and contention) are all modeled, and are
parameterized as shown in Table 1.

We report results for all of the SPECint95 and
SPECint2000 benchmarks except for the following:
252.eon, which is written in C++ and therefore
not handled by our compiler; 126.gcc, which is
similar to 176.gcc; 147.vortex, which is identi-
cal to 255.vortex; and 134.perl, which is simi-
lar to 253.perlbmk; for 129.compress, 254.gap,
164.gzip, and 300.twolf, the region selection algo-
rithm has opted to select no regions at all and we ex-
clude them from our study. For each benchmark, after
skipping over the initialization phases, we simulate ap-
proximately a billion instructions using the first input
in the ref input set. Note that we have separated the
compression phase of Bzip2, and the place and route
phases of Vpr.

3 Classifying TLS Cache Misses

Since the cache locality problem for TLS is quite
broad, in this section we systematically break the prob-
lem down so we can focus on the most important oppor-
tunities for improvement, as illustrated in Figure 1(c).

TLS support has been proposed for both shared [15]
and private [6,7,15] cache architectures, and both have
interesting cache behavior. For a shared cache ar-
chitecture, the hardware-supported threads of execu-
tion (such as independent processors or the contexts
of a simultaneously-multithreaded processor (SMT)) all
share the same cache hierarchy. In this case the cache
locality of the original sequential program is relatively
preserved for the TLS execution, since only the one
cache hierarchy is used. In the private-cache case, the
cache locality enjoyed by the original sequential pro-
gram has definitely been disrupted (as demonstrated
in Figure 1), hence we focus our efforts on this area.

3.1 Execution Stages

A TLS program, like any parallel program, is di-
vided into regions of code which are executed either
sequentially or in parallel. The cache behavior of a
TLS program will therefore change significantly as the
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Figure 2. Execution stages of a TLS program.

Data Cache Miss Pattern Percentage

L2 misses 15.7%
Read-only sharing 53.7%

Write-based sharing 11.4%
Strided 6.2%
Other 13.0%

(a) Miss pattern breakdown
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(b) Detailed miss pattern breakdown

Figure 3. Data cache miss patterns within
parallel regions.

program transitions from sequential to parallel execu-
tion and back again, hence we further divide the prob-
lem into the different stages of execution that occur:
startup, steady-state, and wind-down, as shown in Fig-
ure 2. These stages are repeated throughout the ex-
ecution of the program, occurring for each dynamic
parallel region instance, and exhibiting the following
behavior.

Startup: In the initial transition from sequential
to parallel execution, it is expected that certain data
which will be used by every speculative thread will re-
sult in locality misses for every processor, with the pos-
sible exception of the processor which executed the pre-
ceding sequential region. Preliminary results showed
that these startup misses do exist, but that address-

ing them directly would not provide significant perfor-
mance gains.

Steady-state: In a parallel region, after suffer-
ing any startup misses, execution enters a steady-state
where we expect the majority of locality misses to oc-
cur. This stage of execution is our main focus, and we
further classify its data cache misses in Section 3.3.

Wind-down: At the end of a parallel region we
transition back to sequential execution, and expect
that this sequential region will initially suffer a signifi-
cant number of locality misses for data resident in the
caches of temporarily inactive processors. In Section 4
we demonstrate how scheduling the sequential region
can impact the number of locality misses observed dur-
ing this wind-down stage.

3.2 Data and Instruction Cache Misses

Access patterns for instructions and data are quite
different: instruction references are normally read-only
and exhibit high locality, while data references are
read/write and can show a broad range of behavior.
Hence the memory hierarchy typically has separate
first level caches for instructions and data, and we are
obliged to investigate them separately. In an early ex-
periment to clarify the potential benefits of improving
cache locality for TLS execution, we modeled perfect
private instruction and data caches where every ref-
erence is considered to be a hit. We found that the
ideal data cache improved the performance of paral-
lel regions by 23%, while the ideal instruction cache
provided less than 1% improvement. This result is in-
tuitive, since so far only loops have been speculatively
parallelized in our benchmark applications; parallelized
loops will have very good instruction cache locality,
with the exception of possible cold misses during the
startup stage of each parallel region. While there are
simple methods for eliminating some of this small over-
head, we do not discuss them further here and instead
focus on improving cache locality for data.

3.3 Miss Patterns in Parallel Regions

To guide our efforts to improve cache locality for
parallel regions, we analyzed traces of data cache miss
addresses and observed the following five most common
patterns of miss: (i) second-level cache (L2) misses;
(ii) read-only sharing misses, where a cache line is read
(but not written) by multiple processors; (iii) write-
based sharing misses, where a cache line is written by
at least one processor and possibly read by other pro-
cessors; (iv) strided miss patterns, where the addresses
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(c) Program performance: fixed vs. floating.

Figure 4. TLS execution with a floating and fixed sequential pr ocessor. In (a), the processor which
executed the last speculative thread of the parallel region goes on to execute the sequential region.
In (b), one processor (P0) is elected to execute all sequenti al regions. Finally, (c) shows the perfor-
mance impact of a fixed sequential processor relative to float ing.

of missing cache lines progress by a fixed stride; and (v)
the remaining misses (other), for which we could find
no pattern and are likely conflict and capacity misses.

Classifying miss patterns based on a trace must be
done carefully. To decide whether a set of misses belong
in a given category, we analyze all of the misses within
a fixed-size sliding window of 1000 cycles of the trace
(experimentation showed that larger window sizes up
to 16000 cycles did not significantly alter the classifi-
cation). Some misses fit under multiple categories: for
example, a strided miss may also be a L2 miss; a read-
based miss can also be a write-based miss when the
same cache line is written by one processor but then
read by multiple processors. For simplicity, we deal
with overlap in our classification by attempting to fit
each miss within the described categories in priority
order. Figure 3(a) lists the percentage of misses for
each category (which are in this priority order), aver-
aged across all benchmark applications. We also show
the breakdown for each individual application in Fig-
ure 3(b).

From the figure, we observe that data cache misses
within parallel regions exhibit interesting behavior. L2
Misses, which comprise an average of 15.7% of all
misses, are given the highest priority: an L2 miss can-
not also be a locality miss (since our system enforces
the inclusion property) hence we do not want to tar-
get these misses. L2 misses are an equivalent problem
for both the sequential version of a program and its
TLS counterpart, and can be addressed with known
techniques for prefetching [1, 4, 5, 13]. Cache lines that
exhibit read-only sharing are the most common, rep-

resenting 53.7% of all misses. This is promising, since
under TLS read-only cache lines are much easier to deal
with than those which are modified. We address this
category of misses in Section 5. Cache lines involved
in write-based sharing represent 11.4% of misses, hence
we address them in Section 6. Strided accesses com-
prise another 6.2% of misses, and we address them in
Section 7. Finally, cache lines in the other category
represent the remaining 13.0% of misses.

In the remainder of this paper we propose techniques
to address the transitions between sequential and par-
allel regions, as well as the sharing and strided miss
categories which combined constitute more than 70%
of all cache misses in parallel regions.

4 Scheduling the Sequential Region

In the wind-down stage (as illustrated in Figure 2),
we expect that the sequential region will suffer locality
misses for cache lines that are resident in the caches of
now inactive processors. In this section we investigate
the impact of the different possibilities for scheduling
which processor executes the sequential region. In par-
ticular we consider two options, as illustrated in Fig-
ure 4. First, we consider a “floating” sequential proces-
sor, where the processor which executed the last spec-
ulative thread of the parallel region goes on to execute
the sequential region. Intuitively, this scheme assumes
that there is potential cache locality between the last
speculative thread and the sequential region. Second,
we consider a “fixed” sequential processor, where one
processor is elected to execute all sequential regions.
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(a) Number of data cache misses.
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(b) Normalized execution time.

Figure 5. Impact of broadcasting all load misses on parallel regions.

This scheme assumes the potential benefit of cache lo-
cality between sequential regions, for cache lines which
are not evicted during the parallel region. In Fig-
ure 4(c) we show the program performance for the fixed
sequential processor scheme relative to floating. Ev-
idently the cache locality between sequential regions
is much more prevalent than the locality between the
last speculative thread of a parallel region and the sub-
sequent sequential region: three applications perform
more than 5% better, and all benchmarks perform on
average 3.4% better. While this improvement is not
tremendous, proper scheduling of the sequential region
is essentially free and therefore worth doing. Hence we
use the fixed sequential processor scheme for the re-
mainder of our investigation and consider it to be part
of our “baseline” measurement when comparing with
other schemes for improving cache locality.

5 Exploiting Read-Only Sharing

Our classification of miss patterns within parallel re-
gions shows that read-only sharing miss patterns dom-
inate all other access patterns, comprising more than
half of all cache misses. In other words, a large num-
ber of misses are for data which multiple speculative
threads read yet no speculative thread writes. There-
fore, for any given load miss it is highly likely that
other processors will soon suffer a load miss for the
same cache line. This observation motivates a tech-
nique which, for a given load miss, “pushes” the re-
sulting cache line to caches other than the one which
originally suffered the load miss.

5.1 Broadcasting for all Load Misses

The simplest scheme for addressing read-only shar-
ing patterns is for every load miss to result in a broad-
cast of that cache line to all data caches. For a CMP

with a bus interconnect between the first-level data
caches and unified second-level cache, such as we model
in this work, such broadcasting is fairly trivial to im-
plement and does not generate additional traffic. All
data caches simply snoop on the bus for any specula-
tive read requests serviced by the unified cache and fill
their caches with the resulting cache line, so long as do-
ing so does not replace a cache line that is currently in
a speculative or modified state (if this occurs then the
broadcast cache line is simply dropped). It is impor-
tant to understand that this is not the same thing as
a snoopy update, since every speculatively-read cache
line will be pushed to every cache, regardless of whether
each cache already has a copy.

We do not expect this scheme to eliminate all of
the cache misses involved in read-only sharing patterns
(50% of all misses) since we require at least one miss to
trigger the broadcast mechanism for every such cache
line. Figure 5 shows the performance of this broadcast-
ing scheme relative to our baseline model. On average
across all benchmarks, this simple broadcasting scheme
eliminates 27.7% of the data cache misses in speculative
regions on average, and significantly more for several
applications. This technique also improves execution
time for every application, by 7.3% on average.

Throttling Broadcast: Although the scheme pro-
posed above seems to have worked well, a potential
overhead of this scheme is the pollution created when
a cache line is “pushed” to a cache which does not sub-
sequently use the cache line, possibly evicting a useful
cache line in the process. To investigate whether such
cache pollution is a significant overhead we attempted
to throttle the amount of broadcasting, narrowing the
broadcast cache lines to those which are truly needed
by multiple caches. Before designing an efficient imple-
mentation of throttled broadcast, we began by mod-
eling an unrealistic but aggressive scheme by feeding
our profile of read-only sharing misses (from our trace



of execution described in Section 3.3) into a second
simulation run which would then only broadcast cache
lines that were pre-identified as showing this pattern.
We found that aggressively throttling broadcast in this
manner does not further improve performance, indicat-
ing that pollution is not a problem for this broadcast
approach.

6 Exploiting Write-Based Sharing

The underlying coherence scheme for supporting
TLS execution that we use is necessarily a write-
back scheme, since only the first-level data caches may
hold speculative modifications; in other words, any
speculatively-modified cache line must remain in the
first-level data cache until the corresponding specula-
tive thread is committed, at which point that cache line
simply transitions to a normal modified state. When
such a modified (and non-speculative) cache line is read
or written by another processor, or if it is replaced, then
that cache line must be written back to the second-
level cache and propagated to the requesting proces-
sor’s data cache.

In Figure 3 we showed that write-based sharing
misses are significant, hence we endeavor to reduce
them. Ideally, any cache line which is written by
one processor and then accessed by another could be
aggressively propagated ahead of time. One scheme
would be to broadcast all modified cache lines at
commit-time—but this scheme would generate too
much traffic, and would increase the amount of time
to acquire exclusive ownership when writing a cache
line (since the broadcast would have created so many
copies). Instead we prefer a more selective scheme
which predicts when a cache line is involved in write-
based sharing, and at commit time writes-back, self-
invalidates, and pushes that cache line to the next
processor—eliminating the cache miss, and expediting
the acquisition of exclusive access.

We propose a mechanism for predicting cache lines
involved in write based sharing, which consists of main-
taining the following three components per processor—
as illustrated in Figure 6(a). First, a recent store table
(RST) which is direct-mapped, indexed by the last 3
bits of the set-index of a store address, and tracks the
PCs of recent stores. Second, a push required buffer
(PRB) which saves a list of extended cache tags (tag
plus set index) which are to be invalidated, written
back, and pushed to another cache when the specu-
lative thread commits. This list can simply overflow
when it is full, since correctness is not an issue for this
technique. Finally, we require an invalidation PC list

(IPCL)—a FIFO queue of store PCs. Through exper-
imentation, we found that limiting the size of each of
the three structures to eight entries is sufficient.

The operation of our technique is as follows. When a
store executes, the store PC is saved in the RST (using
three bits of the store address as an index). If that PC
is currently in the IPCL, then it has been identified as
being involved in write-based sharing in the past, and
hence the extended tag for that cache line is added
to the PRB. For every external coherence request that
generates a writeback, such as a read, read-exclusive,
or invalidation request, we lookup the corresponding
store PC in the RST, and add that PC to the IPCL.
Finally, when the speculative thread commits, for each
entry in the PRB we self-invalidate and write back the
corresponding cache line, and “push” it to the next
processor’s data cache. For this paper, we assume that
speculative threads are assigned to processors in round-
robin order, and hence the “next processor” is easily
predictable. If this were not the case, one could easily
add a processor ID to each entry of the IPCL to track
which other processor is involved in the write-based
sharing and should be the target of the push.

The effect of our technique is similar to that of
dynamic self-invalidation [11], although our technique
does not need to implement versioning numbers to de-
cide which blocks to self-invalidate. Furthermore, last-
touch prediction [10] cannot be used in our approach
since modified cache lines may not be propagated until
the speculative thread commits.

Figure 6 shows the performance of our write-based
sharing technique relative to our baseline model. On
average across all benchmarks, this scheme eliminates
19.6% of the data cache misses in speculative regions
and improves execution time for most applications, by
7.8% on average. Since the additional hardware struc-
tures required for this technique are both small and
decentralized, we expect it to scale well to CMPs with
larger numbers of processors.

7 Exploiting Strided Miss Patterns

In the previous sections we focussed on techniques
for exploiting read-only and write-based sharing miss
patterns. According to our classification of data cache
miss patterns in Section 3.3, the third major category
of misses are strided misses, which comprise more than
6% of all data cache misses within parallel regions. As
opposed to sharing misses which involve a single cache
line, strided misses involve different cache lines with
addresses that are separated by a constant distance.
While schemes for prefetching based on such strided
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(b) Normalized data cache misses.
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(c) Normalized execution time.

Figure 6. Our technique for exploiting write-based sharing .

access patterns have been well studied [1,4,5,13], there
has been relatively little investigation into how stride-
based prefetching interacts with TLS execution.

To evaluate the maximum potential impact of stride-
based prefetching on TLS execution, we model an ag-
gressive adaptive stride prefetcher [4] in each proces-
sor (fully associative, 512 entries, LRU replacement,
queues 16 prefetches when a stride is recognized after
3 instances, and throttles the issuing of the prefetches
to avoid traffic bursts). We do not allow prefetching
beyond the L2, since this would lead to an unfair com-
parison with the sequential execution. On average, we
found that strided prefetching has no significant perfor-
mance impact—we do not show the full results here for
this reason and due to space limitations. Prefetching
strided accesses reduced data cache misses by nearly
20% or more for three applications, and by an average
of 10% across all applications—indicating that we suc-
cessfully eliminated most stride-based misses as iden-
tified in Section 3.3. However, the insignificant per-
formance gained indicates that the benefits of reduced
cache misses are overwhelmed by the increase in inter-
connect traffic.

8 Combining the Techniques

We have proposed three techniques for improving
cache locality for TLS execution that target the three

distinct categories of data cache misses identified in
Section 3.3. In this section we evaluate the impact
of combining all three techniques. In Figure 7(a) we
show data cache miss patterns within parallel regions
after applying the locality techniques. The read-based
(RB) technique significantly reduces read-based shar-
ing misses, as well as some write-based sharing misses:
for a cache line which was just broadcast, a subsequent
write to that line on another processor need only obtain
obtain ownership of the line and not a copy. Similarly,
the write-based (WB) technique eliminates write-based
misses as well as some read-based misses. ST mainly
reduces strided misses. The combination of RB/WB is
indeed complementary, further reducing misses by an
additional 10.5% over RB alone. Since it targets all
three major miss categories, RB/WB/ST provides the
greatest reduction in data cache misses of 42.7%.

Figure 7(b) shows the performance impact of com-
bining the techniques. It is evident that while the
combination of all three schemes eliminates the most
cache misses, the read/write-based combination actu-
ally performs the best on average. This indicates that
the read/write-based schemes were unable to reduce
traffic enough for the strided prefetcher to be effec-
tive. However, the read/write-based combination has
still significantly improved the performance of parallel
regions, by an average of 12.8% across all applications.

Figure 8 summarizes the performance impact of all
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Figure 7. Impact on (a) data cache misses and (b) performance of all three techniques within parallel
regions relative to the baseline. The baseline includes a fix ed sequential processor.
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techniques on overall program performance. The re-
sults are shown as program speedup relative to the
original sequential execution of the un-modified binary.
The baseline hardware support (including a fixed se-
quential processor) provides a 13.4% program speedup
relative to sequential execution. The combination of
read and write-based techniques (RB/WB) further
improves program performance over the baseline by
5.5% on average across all benchmarks, demonstrating
that the performance impact of the read and write-
based techniques is also complementary. We again
observe that the additional traffic of the stride-based
technique (RB/WB/ST) is still detrimental to overall
performance, even though it does further reduce cache
misses.
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Figure 9. Impact of the techniques for im-
proved locality on the scalability of parallel
regions, as we vary the number of proces-
sors from 2 to 8.

8.1 Impact on Scalability

Without using the techniques proposed in this pa-
per, as we increase the number of processors the
cache locality problem is exacerbated: more proces-
sors means more caches which in turn means decreased
cache locality when compared with the original sequen-
tial execution. This trend is evident in Figure 9, where
we show the region execution time for a varying num-
ber of processors (from two to eight). Looking at the
average of all benchmarks with baseline TLS support,
we see that increasing the number of processors to eight
actually hinders performance (as compared with only
using six processors). This negative trend is most pro-
nounced in Bzip2 comp and Vpr place.

After applying the techniques for improving local-
ity (labeled improved, which exploits both read-based



and write-based sharing patterns), both Bzip2 comp
and Vpr place show improved scaling, as well as sig-
nificantly improved performance. Looking at the aver-
age case, we see that increasing processors from six to
eight improves performance (although modestly). The
amount of improvement over the baseline case grows
with the number of processors (6.2%, 10.4%, 11.4%,
and 14.1% for 2, 4, 6, and 8 processors respectively),
demonstrating that the importance of dealing with
cache locality issues for TLS grows with the number
of processors.

9 Conclusions

Thread-Level Speculation (TLS) is a promising way
to exploit chip multiprocessors (CMPs) and improve
the performance of an individual program through
speculative parallelization. However, the cache local-
ity of the original program is significantly disrupted
by TLS execution, resulting in nearly a four-fold in-
crease in the data cache miss rate. Our investigation
shows that scheduling the sequential portion of exe-
cution to a single processor is much better for cache
locality than a floating sequential processor. We also
discovered that, given this proper scheduling, instruc-
tion cache locality is not an issue, and that the ma-
jority of performance problems come from data cache
locality and interconnect traffic during parallel exe-
cution. Finally, we observed that a vast majority of
misses are for miss patterns exhibiting read-only shar-
ing, with write-based sharing and stride-based patterns
being next most significant. These observations sug-
gested several schemes for improving data cache local-
ity that we implement. With respect to baseline TLS
hardware support, we can further reduce cache misses
by 38.2%, improve parallel region and program per-
formance by 12.8% and 5.5% respectively through our
techniques for exploiting read and write based sharing.
While stride-based prefetching can significantly reduce
data cache misses, we found that the additional traffic
incurred during parallel regions is prohibitive. Finally,
we demonstrated that our techniques facilitate scaling,
and that the importance of dealing with cache locality
issues for TLS grows with the number of processors.
Extracting thread-speculative parallelism from general
purpose programs is challenging. However, by max-
imizing the efficiency of every aspect of the system,
including repairing cache locality, we can use CMPs
to automatically extract significant speculative paral-
lelism from a broad range of applications.
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