Application-Specific Signatures for Transactional
Memory in Soft Processors

Martin Labrecque, Mark Jeffrey, and J. Gregory Steffan

Department of Electrical and Computer Engineering, University of Toronto
{martinl,markj,steffan}@eecg.toronto.edu

Abstract. As reconfigurable computing hardware and in particular
FPGA-based systems-on-chip comprise an increasing number of pro-
cessor and accelerator cores, supporting sharing and synchronization
in a way that is scalable and easy to program becomes a challenge.
Transactional memory (TM) is a potential solution to this problem,
and an FPGA-based system provides the opportunity to support TM
in hardware (HTM). Although there are many proposed approaches to
HTM support for ASICs, these do not necessarily map well to FPGAs.
In particular in this work we demonstrate that while signature-based
conflict detection schemes (essentially bit vectors) should intuitively be
a good match to the bit-parallelism of FPGAs, previous schemes result
in either unacceptable multicycle stalls, operating frequencies, or false-
conflict rates. Capitalizing on the reconfigurable nature of FPGA-based
systems, we propose an application-specific signature mechanism for
HTM conflict detection. Using both real and projected FPGA-based
soft multiprocessor systems that support HTM and implement threaded,
shared-memory network packet processing applications, relative to sig-
natures with bit selection we find that our application-specific approach
(i) maintains a reasonable operating frequency of 125MHz, (ii) has an
area overhead of only 5%, and (iii) achieves a 9% to 71% increase in
packet throughput due to reduced false conflicts.

1 Introduction

As reconfigurable computing systems and in particular FPGAs become more
dense, they are increasingly used to implement larger and more complex
systems-on-chip composed of multiple processor and acceleration cores that must
synchronize and share data. While systems based on shared memory can ease
communication between cores, the programmer’s job of inserting correct lock-
based synchronization can be error-prone and difficult to debug, and the resulting
critical sections of code within locks are serialized, thus reducing the overall
parallelism and efficiency of the system.

Transactional memory (TM) [1-3] can potentially address both challenges.
First, TM provides an easier programming model for synchronization, allowing
programmers to specify more coarse-grain critical sections (transactions) to be
executed atomically. Second, TM reduces contention on these larger critical
sections by executing transactions in parallel so long as their memory accesses
do not conflict. Hence we are motivated to implement TM for multiple-core
reconfigurable computing systems; in this paper we focus on implementing TM

for an FPGA-based soft multiprocessor. While TM can be implemented purely
in software (STM), an FPGA-based system can be extended to support TM
in hardware (HTM) with much lower performance overhead than an STM.
There are many known methods for implementing HTM for an ASIC multicore
processor, although they do not necessarily map well to an FPGA-based system.

In this paper we focus specifically on the design of the conflict detection
mechanism for FPGA-based HTM, and find that an approach based on
signatures [4] is a good match for FPGAs because of the underlying bit-level
parallelism. A signature is essentially a bit-vector [5] that tracks the memory
locations accessed by a transaction via hash indexing. However, since signatures
normally have many fewer bits than there are memory locations, comparing
two signatures can potentially indicate costly false-positive conflicts between
transactions. Hence prior HTMs employ relatively large signatures—thousands
of bits long—to avoid such false conflicts. One important goal for our system
is to be able to compare signatures and detect conflicts in a single pipeline
stage, otherwise memory accesses would take an increasing number of cycles and
degrade performance. However, as we demonstrate in this paper, implementing
previously proposed large signatures in the logic-elements of an FPGA can be
detrimental to processor operating frequency. Or, as an equally unattractive
alternative, one can implement large and sufficiently fast signatures using block
RAMs but only if the indexing function is trivial—which can itself exacerbate
false-positive conflicts and negate the value of larger signatures.

1.1 Application-Specific Signatures

To summarize, our goal is to implement a moderately-sized signature mechanism
while minimizing the resulting false conflicts. We capitalize on the reconfigurable
nature of the underlying FPGA and propose a method for implementing
an application-specific signature mechanism that achieves these goals. An
application-specific signature is created by (i) profiling the memory addresses
accessed by an application, (ii) using this information to build and optimize a
trie (a tree based on address prefixes) that allocates more branches to frequently-
conflicting address prefixes, and (iii) implementing the trie in a conflict detection
unit using simple combinational circuits.

Our evaluation system is built on the NetFPGA platform [6], comprising
a Virtex IT Pro FPGA, 4 1GigE MACs, and 200MHz DDR2 SDRAM. On
it we have implemented a dual-core multiprocessor (the most cores that our
current platform can accommodate), composed of 125MHz MIPS-based soft
processors, that supports an eager HTM [7] via a shared data cache. We
have programmed our system to implement several threaded, shared-memory
network packet processing applications (packet classification, NAT, UDHCP,
and intrusion detection).

We use a cycle-accurate simulator to explore the signature design space, and
implement and evaluate the best schemes in our real dual-core multiprocessor
implementation. For comparison, we also report the FPGA synthesis results
for a conflict detection unit supporting 4 and 8 threads. Relative to signatures
with bit selection (the only other signature implementation that can maintain a

reasonable operating frequency of 125MHz), we find that our application-specific
approach has an area overhead of only 5%, and achieves a 9% to 71% increase
in packet throughput due to reduced false conflicts.

1.2 Related Work

There is an abundance of prior work on TM and HTM. Most prior FPGA
implementations of HTM were intended as fast simulation platforms to study
future multicore designs [1,2], and did not specifically try to provide a solution
tuned for FPGAs. Conflict detection has been previously implemented by
checking extra bits per line in private [1,2] or shared [3] caches. In contrast
with caches with finite capacity that require complex mechanisms to handle
cache line collisions for speculative data, signatures can represent an unbounded
set of addresses and thus do not overflow. Signatures can be efficiently cleared
in a single cycle and therefore advantageously leverage the bit-level parallelism
present in FPGAs. Because previous signature work was geared towards general
purpose processors [5,8,9], to the best of our knowledge there is no prior art in
customizing signatures on a per-application basis.

1.3 Contributions

This paper makes the following contributions: (i) we describe the first soft
processor cores integrated with transactional memory, and evaluated on a real
(and simulated) system with threaded applications that share memory; (ii)
we demonstrate that previous signature schemes result in implementations
with either multicycle stalls, or unacceptable operating frequencies or false
conflict rates; (iii) we demonstrate that application-specific signatures can allow
conflict detection at acceptable operating frequencies (125MHz), single cycle
operation, and improved false conflict rates—resulting in significant performance
improvements over alternative schemes.

2 Previous Signature Implementations for HTM

A TM system must track read and write accesses for each transaction (the read
and write sets), hence an HTM system must track read and write sets for each
hardware thread context. The signature method of tracking read and write sets
implements Bloom filters [5], where an accessed memory address is represented
in the signature by asserting the % bits indexed by the results of k£ distinct
hashes of the address, and a membership test for an address returns true only
if all k bits are set. Since false conflicts can have a significant negative impact
on performance, the number and type of hash functions used must be chosen
carefully. In this paper we consider only the case where each one of the k hash
functions indexes a different partition of the signature bits—previously shown to
be more efficient [5]. The following reviews the four known hash functions that
we consider in this paper.

Bit Selection [5] This scheme directly indexes a signature bit using a subset
of address bits. An example 2-bit index for address a = [agasa;iag] could simply
be h = [a3, az]. This is the most simple scheme (i.e., simple circuitry) and hence
is important to consider for an FPGA implementation.

Hs [5] The Hs class of hash functions is designed to provide a uniformly-
distributed hashed index for random addresses. Each bit of the hash result h =
[h1, ho] consists of a separate XOR, (@) tree determined by the product of an
address a = [azasa;ag] with a fixed random matrix H as in the following example
with a 4-bit address and a 2-bit hash [9]:

10

11
01 = [az ® az B ap, a2 B a1] (1)
10

[h1, ho] = aH = [azazaiap]

Page-Block XOR (PBX) [8] This technique exploits the irregular use of the
memory address space to produce hash functions with fewer XOR gates. An
address is partitioned into two non-overlapping bit-fields, and selected bits of
each field are XOR’ed together with the purpose of XOR’ing high entropy bits
(from the low-order bit-field) with lower entropy bits (from the high order bit-
field). Modifying the previous example, if the address is partitioned into 2 groups
of 2 bits, we could produce the following example 2-bit hash: [as @ ag, a3z ® a1].

Locality-sensitive XOR [9] This scheme attempts to reduce hash collisions
and hence the probability of false conflicts by exploiting memory reference
spatial locality. The key idea is to make nearby memory locations share some
of their k£ hash indices to delay filling the signature. This scheme produces k
Hj functions that progressively omit a larger number of least significant bits
of the address from the computation of the k indices. When represented as Hs
binary matrices, functions require an increasing number of lower rows to be null.
Our implementation, called LE-PBX, combines this approach with the reduced
XOR’ing of PBX hashing. In LE-PBX, we XOR high-entropy bits with low-
entropy bits within a window of the address, then shift the window towards the
most significant (low entropy) bits for subsequent hash functions.

3 Application-Specific Signatures

All the hashing functions listed in the previous section create a random index
that maps to a signature bit range that is a power of two. In Section 5 we
demonstrate that these functions require too many bits to be implemented
without dramatically slowing down our processor pipelines. To minimize the
hardware resources required, the challenge is to reduce the number of false
conflicts per signature bit, motivating us to more efficiently utilize signature
bits by creating application-specific hash functions.

Our approach is based on compact trie hashing [10]. A trie is a tree where each
descendant of a node has in common the prefix of most-significant bits associated
with that node. The result of the hash of an address is the leaf position found
in the tree, corresponding to exactly one signature bit. Because our benchmarks
can access up to 64 Mbytes of storage (16 million words), it is not possible
to explicitly represent all possible memory locations as a leaf bit of the trie.
The challenge is to minimize false conflicts by mapping the most contentious

Combined read and Trie of all addresses Trie with low false positive Resulting address signature
write address sets o — based on compacted trie
a2 ala0 ; :
* 000 = sig[0]= a2 & ao0;
011 = sig[1]= a2 & ~a0;
% 8 2 sig[2]= ~a2;
* 110
* 111

* most frequent
accesses

@

(d)

Fig. 1. Example trie-based signature construction for 3-bit addresses. We show (a) a partial address
trace, where * highlights frequently accessed addresses, (b) the full trie of all addresses, (c) the
initial and final trie after expansion and pruning to minimize false positives, and (d) the logic for
computing the signature for a given address (i.e., to be AND’ed with read and write sets to detect
a conflict).

memory locations to different signature bits, while minimizing the total number
of signature bits.

We use a known greedy algorithm to compute an approximate solution to this
NP-complete problem [11]. In the first step, we record in our simulator a trace of
the read and write sets of a benchmark functioning at its maximum sustainable
packet rate. We organize the collected memory addresses in a trie in which every
leaf represents a signature bit. This signature is initially too large to be practical
(Figure 1(b)) so we truncate it to an initial trie (Figure 1(c)), selecting the most
frequently accessed branches. To reduce the hardware logic to map an address
to a signature (Figure 1(d)), only the bits of the address that lead to a branch in
the trie are considered. For our signature scheme to be safe, an extra signature
bit is added when necessary to handle all addresses not encompassed by the
hash function. We then replay the trace of accesses and count false conflicts
encountered using our initial hashing function. We iteratively expand the trie
with additional branches and leaves to eliminate the most frequently occurring
false-positive conflicts (Figure 1(c)). Once the trie is expanded to a desired false
positive rate, we greedily remove signature bits that do not negatively impact the
false positive rate (they are undesirable by-products of the expansion). Finally,
to further minimize the number of signature bits, we combine signature bits that
are likely (> 80%) to be set together in non-aborted transactions.

4 Evaluation Infrastructure

Table 1 describes our evaluation infrastructure including the platform and
compilation, and how we do timing, validation, and measurement. Due to
stringent timing requirements (there are no free PLLs after merging-in the
NetFPGA support components), and despite some available area on the FPGA,
(i) our caches are limited to 16KB each, and (ii) we are also limited to a maximum
of two processors. These limitations are not inherent in our architecture, and
would be relaxed in a system with more PLLs and a more modern FPGA.
The rest of this section describes our system architecture and benchmark
applications.

[Aspect[Description
Compilation|Modified gcc 4.0.2, Binutils 2.16, and Newlib 1.14.0
Instruction set|[32-bit MIPS-I ISA without delay slots [12], with software mul and div
FPGA/|Virtex Il Pro 50 speed grade 7ns
Platform|NetFPGA 2.1 [6] with 4 x 1GigE Media Access Controllers (MACs)
Synthesis|Xilinx ISE 10.1.03, high effort to meet timing constraints
Off-chip memory|64 Mbytes 200MHz DDR2 SDRAM, Xilinx MIG controller
Processor clock|125MHz, same as Ethernet MACs
Validation|Execution trace generated in RTL simulation and online in debug mode,
compared against cycle-accurate simulator built on MINT [13]
Measuring host|Linux 2.6.18 Dell PowerEdge 2950 with two quad-core 2GHz Xeon processors
Packet source|Modified Tcpreplay 3.4.0 sending packet traces from a Broadcom NetXtreme
II GigE NIC to an input port of the NetFPGA
Packet sink|NetXtreme GigE NIC connected to another NetFPGA port used for output
Max. throughput|Smallest fixed packet inter-arrival rate without packet drop, obtained through
bisection search (we empirically found 5 second runs to be sufficient)
Table 1. Evaluation infrastructure.

single—thread
processor

[\ instr.

data
input mem.
output mem

[

_ [input data output

packet buffer cache buffer packet

input] output
to DDR2 SDRAM

busses

Fig. 2. The architecture of our soft multiprocessor with 2 single-threaded processor cores.

System architecture Our base processor is a single-issue, in-order, single-
threaded, 5-stage pipelined processor. To eliminate the critical path for haz-
ard detection logic, we employ static hazard detection [14] in our architec-
ture/compiler. The processor is big-endian which avoids having to do network-
to-host byte ordering transformations. Each processor in Figure 2 has a 16 KB
private instruction cache. The SDRAM controller services a merged load/store
queue of up to 64 entries in-order; since this queue is shared by all processors it
serves as a single point of serialization and memory consistency, hence threads
need only block on pending loads but not stores. As described in Table 2, our
multiprocessor architecture is bus-based and sensitive to the two-port limitation
of block RAMs available on FPGAs. In its current form it will not easily scale
to a large number of processors. However, as we demonstrate later in Section 5,
our applications are mostly limited by synchronization and critical sections, and
not contention on the shared buses; in other words, the synchronization inherent
in the applications is the primary roadblock to scalability.

Transactional memory support The single port from the processors to the
shared cache in Figure 2 implies that memory accesses undergo conflict detection
one by one in transactional execution, therefore a single trie hashing unit suffices
for both processors. Our transactional memory processor uses a shadow register
file to revert its state upon rollback (versioning [16] avoids the need for register

Table 2. On-chip memory hierarchy.
| Memory|Description |

Input buffer|Receives packets on one port and services processor requests on the other port,
read-only, logically divided into ten fixed-sized packet slots

Output buffer|Sends packets to the NetFPGA MAC controllers on one port, connected to the
processors via its second port

Data cache [Connected to the processors on one port, 32-bit line-sized data transfers with the
DDR2 SDRAM controller (similar to previous work [15]) on the other port

All three|16KB, single-cycle random access, arbitrated across processors, 32 bits bus

Table 3. Applications and their mean statistics.

Dyn. Instr.| Dyn. Instr. [Uniq. Sync. Addr.
/packet |/transaction /transaction
Benchmark|Description Reads | Writes
Classifier [Regular expression matching on TCP 2553 1881 67 58
packets for application recognition.
NAT Network address translation plus 2057 1809 50 41
statistics.
UDHCP Modified open-source DHCP server. 16116 3265 430 20
Intruder |Network intrusion detection [17] mod- 12527 399 37 23

ified to have packetized input.

copy). Speculative memory-writes trigger a backup of the overwritten value
in an undo-buffer [7] that we over-provision with storage for 2048 values per
thread. Each processor has a dedicated connection to a synchronization unit that
triggers the beginning and end of speculative executions when synchronization
is requested in software.

Applications Network packet processing is no longer limited solely to
routing, with many applications that require deeper packet inspection becoming
increasingly common and desired. We focus on stateful applications—i.e.,
applications in which shared, persistent data structures are modified during the
processing of most packets. Qur processors process packets from beginning-to-
end by executing the same program, because the synchronization around shared
data structures makes it impractical to extract parallelism otherwise (e.g. with
a pipeline of balanced execution stages). To take full advantage of the software
programmability of our processors, our focus is on the control-flow intensive
applications described in Table 3. While we could enforce ordering in software,
we allow packets to be processed out-of-order because our application semantics
allow it.

5 Results

In this section we first evaluate the impact of signature scheme and length on
false-positive conflicts, application throughput, and implementation cost. These
results guide the implementation and evaluation of our real system.

Resolution of Signature Mechanisms Using a recorded trace of memory
accesses obtained from a cycle-accurate simulation of our TM system that models
perfect conflict detection, we can determine the false-positive conflicts that
would result from a given realistic signature implementation. We use a recorded
trace because the false positive rate of a dynamic system cannot be determined
without affecting the course of the benchmark execution: a dynamic system

30, . 45
— BitSel —BitSel
H3 40t H3
25+ ---PBX ---PBX
= LE-PBX|| = 35¢ LE-PBX
S — trie S —trie
2 20+ 2 30r
& &
[o 251
2 15 2
£ &%
3 100 3 15
g £l
51
5
o !) : o \ >
10° 10" 10° 10° 10* 10° 10° 10" 10° 10° 10 10°
Signature Bit Length (bits) Signature Bit Length (bits)
a assifier
Classifi b) NAT
25, 12
—BitSel —BitSel
H3 H3
---PBX 10 ---PBX
201 LE-PBX LE-PBX
—trie —trie

False Positive Rate (%)
False Positive Rate (%)
(=)

0 B
10° 10" 10° 10° 10* 10° 10° 10 10° 10° 10" 10°
Signature Bit Length (bits) Signature Bit Length (bits)

(c) UDHCP (d) Intruder

Fig. 3. False positive rate vs signature bit length. Trie-based signatures were extended in length up
to the length that provides zero false positives on the training set.

cannot distinguish a false-positive conflict from a later true conflict that would
have happened in the same transaction, if it was not aborted immediately. We
compute the false positive rate as the number of false conflicts divided by the
total number of transactions, including repeats due to rollback.

The signatures that we study are configured as follows. The bit selection
scheme selects the least significant word-aligned address bits, to capture the
most entropy. For H3, PBX and LE-PBX, we found that increasing the number
of hash functions caused a slight increase in the false positive rate for short
signatures, but helped reduce the the number of signature bits required to
completely eliminate false positives. We empirically found that using four hash
functions is a good trade-off between accuracy and complexity, and hence we
do so for all results reported. To train our trie-based hash functions, we use a
different but similarly-sized trace of memory accesses as a training set.

Figure 3 shows the false positive rate for different hash functions (bit
selection, H3, PBX, LE-PBX and trie-based) as signature bit length varies.
The false positive rate generally decreases with longer signatures because of
the reduced number of collisions on any single signature bit—although small
fluctuations are possible due to the randomness of the memory accesses. Our
results show that LE-PBX has a slightly lower false positive rate than H3 and
PBX for an equal number of signature bits. Bit selection generally requires a

—2T
--aT
8T

Frequency (MHz)

10 150 20 ® 15 20
Signature Bit Length (bits) Signature Bit Length (bits)
(a) Frequency (b) LUT usage

Fig. 4. Impact of increasing the bit length of trie-based signatures on (a) frequency and (b) LUT
usage of the conflict detection unit for 2, 4, and 8-thread (27T,4T,8T) systems. The results for H3,
PBX and LE-PBX are similar. In (a) we highlight the system operating frequency of 125MHz.

larger number of signature bits to achieve a low false positive rate, except for
UDHCP for which most of the memory accesses point to consecutive statically
allocated data. Overall, the trie scheme outperforms the others for CLASSIFIER,
NAT and UDHCP by achieving close to zero false positive rate with less than
100 bits, in contrast with several thousand bits. For INTRUDER the non-trie
schemes have a better resolution for signatures longer than 100 bits due to
the relatively large amount of dynamic memory used, which makes memory
accesses more random. Quantitatively we can compute the entropy of accesses
as Z?;Ol —p(z;) logs p(x;) where p(x;) is the probability of an address appearing
at least once in a transaction—with this methodology INTRUDER has an entropy
1.7 times higher on average than the other benchmarks, thus explaining the
difficulty in training its trie-based hash function.

Implementation of a Signature Mechanism Figure 4 shows the results of
implementing a signature-based conflict detection unit using solely the LUTs in
the FPGA for a processor system with 2 threads like the one we implemented
(2T) and for hypothetical transactional systems with 4 and 8 threads (4T and
8T). While the plot was made for a trie-based hashing function, we found that
H3, PBX and LE-PBX produced similar results. As we will explain later, the bit
selection scheme is better suited to a RAM-based implementation. In Figure 4(a)
we observe that the CAD tools make an extra effort to meet our 125 MHz
required operating frequency by barely achieving it for many designs. In a 2-
thread system, two signatures up to 200 bits will meet our 125MHz timing
requirement while a 4-thread system can only accommodate four signatures
up to 100 bits long. For 8-threads, the maximum number of signature bits
allowed at 125MHz is reduced to 50 bits. Figure 4(b) shows that the area
requirements grow linearly with the number of bits per signature. In practice
for 2-threads at 200 bits, signatures require a considerable amount of resources:
approximatively 10% of the LUT usage of the total non-transactional system.
When the conflict detection unit is incorporated into the system, we found that
its area requirements—by putting more pressure on the routing interconnect of

10

105 1
b ___]
V\
,F 095 — Intruder B
'
E S 3 - - UDHCP
2o S £ oor - - - Classifi
=) i ’I =) assiier
3 oes o 3 oo o NAT
£ 0~ £
08 08
o s °
o} | 3 o)
N oozt Noormst e ecee-m==mmmszETTSEEET
< - < A
g 07p = — Intruder g L e -
z 0.65 '~ UDHCP z 0.65
- - - Classifier
0.6 oo NAT 1 06
0.55 L L L L L L L L L a 085F) L L L L L L L L a
0 2 4 e @ 10 10 10 160 10 20 o 2 40 w0 s 10 12 10 10 180 20
Signature Bit Length (bits) Signature Bit Length (bits)
(a) Trie-based hashing (b) LE-PBX

Fig. 5. Throughput with signatures using trie-based hashing with varying signature sizes normalized
to the throughput of an ideal system with perfect conflict detection (obtained using our cycle-
accurate simulator).

the FPGA—Ilowered the maximum number of bits allowable to less than 100 bits
for our 2-thread system (Table 4). Re-examining Figure 3, we can see that the
trie-based hashing function delivers significantly better performance across all
the hashing schemes proposed for less than 100 signature bits.

An alternate method of storing signatures that we evaluate involves mapping
an address to a signature bit corresponding to a line in a block RAM. On
that line, we store the corresponding read and write signature bit for each
thread. To preserve the 125MHz clock rate and our single-cycle conflict detection
latency, we found that we could only use one block RAM and that we could
only use bit selection to index the block RAM—other hashing schemes could
only implement one hash function with one block RAM and would perform
worse than bit selection in that configuration. Because the data written is only
available on the next clock cycle in a block RAM, we enforce stalls upon read-
after-write hazards. Also, to emulate a single-cycle clear operation, we version
the read and write sets with a 2-bit counter that is incremented on commit or
rollback to distinguish between transactions. If a signature bit remains untouched
and therefore preserves its version until a transaction with an aliasing version
accesses it (the version wraps over a 2-bit counter), the bit will appear to be
set for the current transaction and may lead to more false positives. The version
bits are stored on the same block RAM line as their associated signature bits,
thus limiting the depth of our 16Kb block RAM to 2048 entries (8-bits wide).
Consequently, our best bit selection implementation uses a 11 bit-select of the
word-aligned least-significant address bits.

Impact of False Positives on Performance Figure 5 shows the impact
on performance in a full-system simulation of a varying signature length, when
using either a trie-based hashing function or LE-PBX, the scheme with the
second-lowest false positive rate. The jitter in the curves is again explained by
the unpredictable rollback penalty and rate of occurrence of the false positives,
varying the amount contention on the system. Overall, we can see that signatures
have a dramatic impact on system throughput, except for INTRUDER for which

11

Benchmark|Max. Signature

Total LUT| LUT [Additional ‘

bits usage overhead|throughput
CLASSIFIER 92 20492 5% 12%
NAT 68 20325 1% 58%
UDHCP 84 20378 4% 9%
INTRUDER 96 20543 5% 1%

Table 4. Size, LUT usage, LUT overhead and throughput gain of our real system with the best
application-specific trie-based hash functions over bit selection.

the false positive rate varies little for this signature size range (Figure 3(d)).
We observe that for CLASSIFIER, UDHCP and NAT, although they achieve a
small false positive rate with 10 bits on a static trace of transactional accesses
(Figure 3), their performance increases significantly with longer signatures. We
found that our zero-packet drop policy to determine the maximum throughput
of our benchmarks is very sensitive to the compute-latency of packets since
even a small burst of aborts and retries for a particular transaction directly
impacts the size of the input queue which in turn determines packet drops. The
performance of NAT plateaus at 161 bits because that is the design that achieves
zero false positives in training (Figure 3(b)). As expected, Figure 5(b) shows that
there is almost no scaling of performance for LE-PBX in the possible signature
implementation size range because the false positive rate is very high.

Measured Performance on the Real System As shown in Table 4 and
contrarily to the other schemes presented, the size of the trie-based signatures
can be adjusted to an arbitrary number of bits to maximize the use of the
FPGA fabric while respecting our operating frequency. The maximum signature
size is noticeably smaller for NAT because more address bits are tested to set
signature bits, which requires more levels of logic and reduces the clock speed.
In all cases the conflict detection with a customized signature outperforms the
general purpose bit selection. This is coherent with the improved false positive
rate observed in Figure 3. We can see that bit selection has the best performance
when the data accesses are very regular as in UDHCP, as indicated by the low
false positive rate in Figure 3(c). Trie-based hashing improves the performance
of INTRUDER the most because the bit selection scheme suffers from bursts of
unnecessary transaction aborts.

CAD Results Comparing two-processor full system hardware designs, the
system with trie-based conflict detection implemented in LUTs consumes 161
block RAMs and the application-specific LUT usage reported in Table 4. Block-
RAM-based bit selection requires one additional block RAM (out of 232, i.e.,
69% of the total capacity) and consumes 19546 LUTs (out of 47232, i.e. 41%
of the total capacity). Since both kinds of designs are limited by the operating
frequency, trie-based hashing only has an area overhead of 4.5% on average
(Table 4). Hence the overall overhead costs of our proposed conflict detection
scheme are low and enable significant throughput improvements.

6 Conclusions

In this paper we have studied several previously-proposed signature-based
conflict detection schemes for TM. Among those, we found that bit selection

12

provides the best implementation that avoids (i) degrading the operating
frequency of an FPGA-based soft multiprocessor system or (ii) stalling the
processors for multiple cycles. We have presented a method for implementing
more efficient signatures by customizing them to match the access patterns
of an application. Our scheme builds on trie-based hashing, and minimizes
the number of false conflicts detected, improving the ability of the system to
exploit parallelism. On a real FPGA-based packet processor, we measured packet
throughput improvements of 12%, 58%, 9% and 71% for four applications,
demonstrating that application-specific signatures are a compelling means to
facilitate conflict detection for FPGA-based TM systems.

References

1. S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and K. Olukotun,
“A practical FPGA-based framework for novel CMP research,” in Proc. of FPGA
’07, 2007, pp. 116-125.

2. S. Grinberg and S. Weiss, “Investigation of transactional memory using FPGAs,”
in Proc. of EEEI’06, Nov. 2006, pp. 119-122.

3. C. Kachris and C. Kulkarni, “Configurable transactional memory,
FCCM’07. IEEE Computer Society, 2007, pp. 65-72.

4. L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation of speculative
threads in multiprocessors,” in Proc. of ISCA’06, 2006, pp. 227-238.

5. D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing signatures
for transactional memory,” in Proc. of MICRO ’07, 2007, pp. 123-133.

6. J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA - an open platform for gigabit-rate
network switching and routing,” in Proc. of MSE ’07, June 3-4 2007.

7. L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift,
and D. A. Wood, “LogTM-SE: Decoupling hardware transactional memory from
caches,” in Proc. of HPCA 07, 2007, pp. 261-272.

8. L. Yen, S. Draper, and M. Hill, “Notary: Hardware techniques to enhance
signatures,” in Proc. of Micro’08, Nov. 2008, pp. 234-245.

9. R. Quislant, E. Gutierrez, and O. Plata, “Improving signatures by locality
exploitation for transactional memory,” in Proc. of PACT’09, 2009, pp. 303-312.

10. E. J. Otoo and S. Effah, “Red-black trie hashing,” Carleton University, Tech. Rep.
TR-95-03, 1995.

11. S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage problem,”
Inf. Process. Lett., vol. 70, no. 1, pp. 39-45, 1999.

12. M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Custom code generation for
soft processors,” in Proc. of RAAW ’06, December 2006.

13. J. Veenstra and R. Fowler, “MINT: a front end for efficient simulation of shared-
memory multiprocessors,” in Proc. of MASCOTS ’94, Jan. 1994, pp. 201-207.

14. M. Labrecque and J. G. Steffan, “Fast critical sections via thread scheduling for
FPGA-based multithreaded processors,” in Proc. of FPL’09, Sept. 2009.

15. R. Teodorescu and J. Torrellas, “Prototyping architectural support for program
rollback using FPGASs,” Proc. of FCCM 05, pp. 23-32, April 2005.

16. K. Aasaraai and A. Moshovos, “Towards a viable out-of-order soft core: Copy-free,
checkpointed register renaming,” in Proc. of FPL, 2009.

17. C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
transactional applications for multi-processing,” in Proc. of IISWC ’08, Sept. 2008.

> in Proc. of

