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tri
al and Computer Engineering, University of Toronto{martinl,markj,steffan}�ee
g.toronto.eduAbstra
t. As re
on�gurable 
omputing hardware and in parti
ularFPGA-based systems-on-
hip 
omprise an in
reasing number of pro-
essor and a

elerator 
ores, supporting sharing and syn
hronizationin a way that is s
alable and easy to program be
omes a 
hallenge.Transa
tional memory (TM) is a potential solution to this problem,and an FPGA-based system provides the opportunity to support TMin hardware (HTM). Although there are many proposed approa
hes toHTM support for ASICs, these do not ne
essarily map well to FPGAs.In parti
ular in this work we demonstrate that while signature-based
on�i
t dete
tion s
hemes (essentially bit ve
tors) should intuitively bea good mat
h to the bit-parallelism of FPGAs, previous s
hemes resultin either una

eptable multi
y
le stalls, operating frequen
ies, or false-
on�i
t rates. Capitalizing on the re
on�gurable nature of FPGA-basedsystems, we propose an appli
ation-spe
i�
 signature me
hanism forHTM 
on�i
t dete
tion. Using both real and proje
ted FPGA-basedsoft multipro
essor systems that support HTM and implement threaded,shared-memory network pa
ket pro
essing appli
ations, relative to sig-natures with bit sele
tion we �nd that our appli
ation-spe
i�
 approa
h(i) maintains a reasonable operating frequen
y of 125MHz, (ii) has anarea overhead of only 5%, and (iii) a
hieves a 9% to 71% in
rease inpa
ket throughput due to redu
ed false 
on�i
ts.1 Introdu
tionAs re
on�gurable 
omputing systems and in parti
ular FPGAs be
ome moredense, they are in
reasingly used to implement larger and more 
omplexsystems-on-
hip 
omposed of multiple pro
essor and a

eleration 
ores that mustsyn
hronize and share data. While systems based on shared memory 
an ease
ommuni
ation between 
ores, the programmer's job of inserting 
orre
t lo
k-based syn
hronization 
an be error-prone and di�
ult to debug, and the resulting
riti
al se
tions of 
ode within lo
ks are serialized, thus redu
ing the overallparallelism and e�
ien
y of the system.Transa
tional memory (TM) [1�3℄ 
an potentially address both 
hallenges.First, TM provides an easier programming model for syn
hronization, allowingprogrammers to spe
ify more 
oarse-grain 
riti
al se
tions (transa
tions) to beexe
uted atomi
ally. Se
ond, TM redu
es 
ontention on these larger 
riti
alse
tions by exe
uting transa
tions in parallel so long as their memory a

essesdo not 
on�i
t. Hen
e we are motivated to implement TM for multiple-
orere
on�gurable 
omputing systems; in this paper we fo
us on implementing TM



2for an FPGA-based soft multipro
essor. While TM 
an be implemented purelyin software (STM), an FPGA-based system 
an be extended to support TMin hardware (HTM) with mu
h lower performan
e overhead than an STM.There are many known methods for implementing HTM for an ASIC multi
orepro
essor, although they do not ne
essarily map well to an FPGA-based system.In this paper we fo
us spe
i�
ally on the design of the 
on�i
t dete
tionme
hanism for FPGA-based HTM, and �nd that an approa
h based onsignatures [4℄ is a good mat
h for FPGAs be
ause of the underlying bit-levelparallelism. A signature is essentially a bit-ve
tor [5℄ that tra
ks the memorylo
ations a

essed by a transa
tion via hash indexing. However, sin
e signaturesnormally have many fewer bits than there are memory lo
ations, 
omparingtwo signatures 
an potentially indi
ate 
ostly false-positive 
on�i
ts betweentransa
tions. Hen
e prior HTMs employ relatively large signatures�thousandsof bits long�to avoid su
h false 
on�i
ts. One important goal for our systemis to be able to 
ompare signatures and dete
t 
on�i
ts in a single pipelinestage, otherwise memory a

esses would take an in
reasing number of 
y
les anddegrade performan
e. However, as we demonstrate in this paper, implementingpreviously proposed large signatures in the logi
-elements of an FPGA 
an bedetrimental to pro
essor operating frequen
y. Or, as an equally unattra
tivealternative, one 
an implement large and su�
iently fast signatures using blo
kRAMs but only if the indexing fun
tion is trivial�whi
h 
an itself exa
erbatefalse-positive 
on�i
ts and negate the value of larger signatures.1.1 Appli
ation-Spe
i�
 SignaturesTo summarize, our goal is to implement a moderately-sized signature me
hanismwhile minimizing the resulting false 
on�i
ts. We 
apitalize on the re
on�gurablenature of the underlying FPGA and propose a method for implementingan appli
ation-spe
i�
 signature me
hanism that a
hieves these goals. Anappli
ation-spe
i�
 signature is 
reated by (i) pro�ling the memory addressesa

essed by an appli
ation, (ii) using this information to build and optimize atrie (a tree based on address pre�xes) that allo
ates more bran
hes to frequently-
on�i
ting address pre�xes, and (iii) implementing the trie in a 
on�i
t dete
tionunit using simple 
ombinational 
ir
uits.Our evaluation system is built on the NetFPGA platform [6℄, 
omprisinga Virtex II Pro FPGA, 4 1GigE MACs, and 200MHz DDR2 SDRAM. Onit we have implemented a dual-
ore multipro
essor (the most 
ores that our
urrent platform 
an a

ommodate), 
omposed of 125MHz MIPS-based softpro
essors, that supports an eager HTM [7℄ via a shared data 
a
he. Wehave programmed our system to implement several threaded, shared-memorynetwork pa
ket pro
essing appli
ations (pa
ket 
lassi�
ation, NAT, UDHCP,and intrusion dete
tion).We use a 
y
le-a

urate simulator to explore the signature design spa
e, andimplement and evaluate the best s
hemes in our real dual-
ore multipro
essorimplementation. For 
omparison, we also report the FPGA synthesis resultsfor a 
on�i
t dete
tion unit supporting 4 and 8 threads. Relative to signatureswith bit sele
tion (the only other signature implementation that 
an maintain a



3reasonable operating frequen
y of 125MHz), we �nd that our appli
ation-spe
i�
approa
h has an area overhead of only 5%, and a
hieves a 9% to 71% in
reasein pa
ket throughput due to redu
ed false 
on�i
ts.1.2 Related WorkThere is an abundan
e of prior work on TM and HTM. Most prior FPGAimplementations of HTM were intended as fast simulation platforms to studyfuture multi
ore designs [1, 2℄, and did not spe
i�
ally try to provide a solutiontuned for FPGAs. Con�i
t dete
tion has been previously implemented by
he
king extra bits per line in private [1, 2℄ or shared [3℄ 
a
hes. In 
ontrastwith 
a
hes with �nite 
apa
ity that require 
omplex me
hanisms to handle
a
he line 
ollisions for spe
ulative data, signatures 
an represent an unboundedset of addresses and thus do not over�ow. Signatures 
an be e�
iently 
learedin a single 
y
le and therefore advantageously leverage the bit-level parallelismpresent in FPGAs. Be
ause previous signature work was geared towards generalpurpose pro
essors [5, 8, 9℄, to the best of our knowledge there is no prior art in
ustomizing signatures on a per-appli
ation basis.1.3 ContributionsThis paper makes the following 
ontributions: (i) we des
ribe the �rst softpro
essor 
ores integrated with transa
tional memory, and evaluated on a real(and simulated) system with threaded appli
ations that share memory; (ii)we demonstrate that previous signature s
hemes result in implementationswith either multi
y
le stalls, or una

eptable operating frequen
ies or false
on�i
t rates; (iii) we demonstrate that appli
ation-spe
i�
 signatures 
an allow
on�i
t dete
tion at a

eptable operating frequen
ies (125MHz), single 
y
leoperation, and improved false 
on�i
t rates�resulting in signi�
ant performan
eimprovements over alternative s
hemes.2 Previous Signature Implementations for HTMA TM system must tra
k read and write a

esses for ea
h transa
tion (the readand write sets), hen
e an HTM system must tra
k read and write sets for ea
hhardware thread 
ontext. The signature method of tra
king read and write setsimplements Bloom �lters [5℄, where an a

essed memory address is representedin the signature by asserting the k bits indexed by the results of k distin
thashes of the address, and a membership test for an address returns true onlyif all k bits are set. Sin
e false 
on�i
ts 
an have a signi�
ant negative impa
ton performan
e, the number and type of hash fun
tions used must be 
hosen
arefully. In this paper we 
onsider only the 
ase where ea
h one of the k hashfun
tions indexes a di�erent partition of the signature bits�previously shown tobe more e�
ient [5℄. The following reviews the four known hash fun
tions thatwe 
onsider in this paper.Bit Sele
tion [5℄ This s
heme dire
tly indexes a signature bit using a subsetof address bits. An example 2-bit index for address a = [a3a2a1a0] 
ould simplybe h = [a3, a2]. This is the most simple s
heme (i.e., simple 
ir
uitry) and hen
eis important to 
onsider for an FPGA implementation.



4H3 [5℄ The H3 
lass of hash fun
tions is designed to provide a uniformly-distributed hashed index for random addresses. Ea
h bit of the hash result h =
[h1, h0] 
onsists of a separate XOR (⊕) tree determined by the produ
t of anaddress a = [a3a2a1a0] with a �xed random matrix H as in the following examplewith a 4-bit address and a 2-bit hash [9℄:

[h1, h0] = aH = [a3a2a1a0]









1 0
1 1
0 1
1 0









= [a3 ⊕ a2 ⊕ a0, a2 ⊕ a1] (1)Page-Blo
k XOR (PBX) [8℄ This te
hnique exploits the irregular use of thememory address spa
e to produ
e hash fun
tions with fewer XOR gates. Anaddress is partitioned into two non-overlapping bit-�elds, and sele
ted bits ofea
h �eld are XOR'ed together with the purpose of XOR'ing high entropy bits(from the low-order bit-�eld) with lower entropy bits (from the high order bit-�eld). Modifying the previous example, if the address is partitioned into 2 groupsof 2 bits, we 
ould produ
e the following example 2-bit hash: [a2 ⊕ a0, a3 ⊕ a1].Lo
ality-sensitive XOR [9℄ This s
heme attempts to redu
e hash 
ollisionsand hen
e the probability of false 
on�i
ts by exploiting memory referen
espatial lo
ality. The key idea is to make nearby memory lo
ations share someof their k hash indi
es to delay �lling the signature. This s
heme produ
es k

H3 fun
tions that progressively omit a larger number of least signi�
ant bitsof the address from the 
omputation of the k indi
es. When represented as H3binary matri
es, fun
tions require an in
reasing number of lower rows to be null.Our implementation, 
alled LE-PBX, 
ombines this approa
h with the redu
edXOR'ing of PBX hashing. In LE-PBX, we XOR high-entropy bits with low-entropy bits within a window of the address, then shift the window towards themost signi�
ant (low entropy) bits for subsequent hash fun
tions.3 Appli
ation-Spe
i�
 SignaturesAll the hashing fun
tions listed in the previous se
tion 
reate a random indexthat maps to a signature bit range that is a power of two. In Se
tion 5 wedemonstrate that these fun
tions require too many bits to be implementedwithout dramati
ally slowing down our pro
essor pipelines. To minimize thehardware resour
es required, the 
hallenge is to redu
e the number of false
on�i
ts per signature bit, motivating us to more e�
iently utilize signaturebits by 
reating appli
ation-spe
i�
 hash fun
tions.Our approa
h is based on 
ompa
t trie hashing [10℄. A trie is a tree where ea
hdes
endant of a node has in 
ommon the pre�x of most-signi�
ant bits asso
iatedwith that node. The result of the hash of an address is the leaf position foundin the tree, 
orresponding to exa
tly one signature bit. Be
ause our ben
hmarks
an a

ess up to 64 Mbytes of storage (16 million words), it is not possibleto expli
itly represent all possible memory lo
ations as a leaf bit of the trie.The 
hallenge is to minimize false 
on�i
ts by mapping the most 
ontentious
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Fig. 1. Example trie-based signature 
onstru
tion for 3-bit addresses. We show (a) a partial addresstra
e, where * highlights frequently a

essed addresses, (b) the full trie of all addresses, (
) theinitial and �nal trie after expansion and pruning to minimize false positives, and (d) the logi
 for
omputing the signature for a given address (i.e., to be AND'ed with read and write sets to dete
ta 
on�i
t).memory lo
ations to di�erent signature bits, while minimizing the total numberof signature bits.We use a known greedy algorithm to 
ompute an approximate solution to thisNP-
omplete problem [11℄. In the �rst step, we re
ord in our simulator a tra
e ofthe read and write sets of a ben
hmark fun
tioning at its maximum sustainablepa
ket rate. We organize the 
olle
ted memory addresses in a trie in whi
h everyleaf represents a signature bit. This signature is initially too large to be pra
ti
al(Figure 1(b)) so we trun
ate it to an initial trie (Figure 1(
)), sele
ting the mostfrequently a

essed bran
hes. To redu
e the hardware logi
 to map an addressto a signature (Figure 1(d)), only the bits of the address that lead to a bran
h inthe trie are 
onsidered. For our signature s
heme to be safe, an extra signaturebit is added when ne
essary to handle all addresses not en
ompassed by thehash fun
tion. We then replay the tra
e of a

esses and 
ount false 
on�i
tsen
ountered using our initial hashing fun
tion. We iteratively expand the triewith additional bran
hes and leaves to eliminate the most frequently o

urringfalse-positive 
on�i
ts (Figure 1(
)). On
e the trie is expanded to a desired falsepositive rate, we greedily remove signature bits that do not negatively impa
t thefalse positive rate (they are undesirable by-produ
ts of the expansion). Finally,to further minimize the number of signature bits, we 
ombine signature bits thatare likely (> 80%) to be set together in non-aborted transa
tions.4 Evaluation Infrastru
tureTable 1 des
ribes our evaluation infrastru
ture in
luding the platform and
ompilation, and how we do timing, validation, and measurement. Due tostringent timing requirements (there are no free PLLs after merging-in theNetFPGA support 
omponents), and despite some available area on the FPGA,(i) our 
a
hes are limited to 16KB ea
h, and (ii) we are also limited to a maximumof two pro
essors. These limitations are not inherent in our ar
hite
ture, andwould be relaxed in a system with more PLLs and a more modern FPGA.The rest of this se
tion des
ribes our system ar
hite
ture and ben
hmarkappli
ations.



6 Aspe
t Des
riptionCompilation Modi�ed g

 4.0.2, Binutils 2.16, and Newlib 1.14.0Instru
tion set 32-bit MIPS-I ISA without delay slots [12℄, with software mul and divFPGA Virtex II Pro 50 speed grade 7nsPlatform NetFPGA 2.1 [6℄ with 4 x 1GigE Media A

ess Controllers (MACs)Synthesis Xilinx ISE 10.1.03, high e�ort to meet timing 
onstraintsO�-
hip memory 64 Mbytes 200MHz DDR2 SDRAM, Xilinx MIG 
ontrollerPro
essor 
lo
k 125MHz, same as Ethernet MACsValidation Exe
ution tra
e generated in RTL simulation and online in debug mode,
ompared against 
y
le-a

urate simulator built on MINT [13℄Measuring host Linux 2.6.18 Dell PowerEdge 2950 with two quad-
ore 2GHz Xeon pro
essorsPa
ket sour
e Modi�ed T
preplay 3.4.0 sending pa
ket tra
es from a Broad
om NetXtremeII GigE NIC to an input port of the NetFPGAPa
ket sink NetXtreme GigE NIC 
onne
ted to another NetFPGA port used for outputMax. throughput Smallest �xed pa
ket inter-arrival rate without pa
ket drop, obtained throughbise
tion sear
h (we empiri
ally found 5 se
ond runs to be su�
ient)Table 1. Evaluation infrastru
ture.
bu

ss
es

instr.

data

input mem.

output mem.

I$I$

synch. unit

input
buffer

data
cache

output
bufferpacket packet

input output

processor

to DDR2 SDRAM

single−threadsingle−thread
processor

Fig. 2. The ar
hite
ture of our soft multipro
essor with 2 single-threaded pro
essor 
ores.System ar
hite
ture Our base pro
essor is a single-issue, in-order, single-threaded, 5-stage pipelined pro
essor. To eliminate the 
riti
al path for haz-ard dete
tion logi
, we employ stati
 hazard dete
tion [14℄ in our ar
hite
-ture/
ompiler. The pro
essor is big-endian whi
h avoids having to do network-to-host byte ordering transformations. Ea
h pro
essor in Figure 2 has a 16 KBprivate instru
tion 
a
he. The SDRAM 
ontroller servi
es a merged load/storequeue of up to 64 entries in-order; sin
e this queue is shared by all pro
essors itserves as a single point of serialization and memory 
onsisten
y, hen
e threadsneed only blo
k on pending loads but not stores. As des
ribed in Table 2, ourmultipro
essor ar
hite
ture is bus-based and sensitive to the two-port limitationof blo
k RAMs available on FPGAs. In its 
urrent form it will not easily s
aleto a large number of pro
essors. However, as we demonstrate later in Se
tion 5,our appli
ations are mostly limited by syn
hronization and 
riti
al se
tions, andnot 
ontention on the shared buses; in other words, the syn
hronization inherentin the appli
ations is the primary roadblo
k to s
alability.Transa
tional memory support The single port from the pro
essors to theshared 
a
he in Figure 2 implies that memory a

esses undergo 
on�i
t dete
tionone by one in transa
tional exe
ution, therefore a single trie hashing unit su�
esfor both pro
essors. Our transa
tional memory pro
essor uses a shadow register�le to revert its state upon rollba
k (versioning [16℄ avoids the need for register



7Table 2. On-
hip memory hierar
hy.Memory Des
riptionInput bu�er Re
eives pa
kets on one port and servi
es pro
essor requests on the other port,read-only, logi
ally divided into ten �xed-sized pa
ket slotsOutput bu�er Sends pa
kets to the NetFPGA MAC 
ontrollers on one port, 
onne
ted to thepro
essors via its se
ond portData 
a
he Conne
ted to the pro
essors on one port, 32-bit line-sized data transfers with theDDR2 SDRAM 
ontroller (similar to previous work [15℄) on the other portAll three 16KB, single-
y
le random a

ess, arbitrated a
ross pro
essors, 32 bits busTable 3. Appli
ations and their mean statisti
s.Dyn. Instr. Dyn. Instr. Uniq. Syn
. Addr./pa
ket /transa
tion /transa
tionBen
hmark Des
ription Reads WritesClassifier Regular expression mat
hing on TCPpa
kets for appli
ation re
ognition. 2553 1881 67 58NAT Network address translation plusstatisti
s. 2057 1809 50 41UDHCP Modi�ed open-sour
e DHCP server. 16116 3265 430 20Intruder Network intrusion dete
tion [17℄ mod-i�ed to have pa
ketized input. 12527 399 37 23
opy). Spe
ulative memory-writes trigger a ba
kup of the overwritten valuein an undo-bu�er [7℄ that we over-provision with storage for 2048 values perthread. Ea
h pro
essor has a dedi
ated 
onne
tion to a syn
hronization unit thattriggers the beginning and end of spe
ulative exe
utions when syn
hronizationis requested in software.Appli
ations Network pa
ket pro
essing is no longer limited solely torouting, with many appli
ations that require deeper pa
ket inspe
tion be
omingin
reasingly 
ommon and desired. We fo
us on stateful appli
ations�i.e.,appli
ations in whi
h shared, persistent data stru
tures are modi�ed during thepro
essing of most pa
kets. Our pro
essors pro
ess pa
kets from beginning-to-end by exe
uting the same program, be
ause the syn
hronization around shareddata stru
tures makes it impra
ti
al to extra
t parallelism otherwise (e.g. witha pipeline of balan
ed exe
ution stages). To take full advantage of the softwareprogrammability of our pro
essors, our fo
us is on the 
ontrol-�ow intensiveappli
ations des
ribed in Table 3. While we 
ould enfor
e ordering in software,we allow pa
kets to be pro
essed out-of-order be
ause our appli
ation semanti
sallow it.5 ResultsIn this se
tion we �rst evaluate the impa
t of signature s
heme and length onfalse-positive 
on�i
ts, appli
ation throughput, and implementation 
ost. Theseresults guide the implementation and evaluation of our real system.Resolution of Signature Me
hanisms Using a re
orded tra
e of memorya

esses obtained from a 
y
le-a

urate simulation of our TM system that modelsperfe
t 
on�i
t dete
tion, we 
an determine the false-positive 
on�i
ts thatwould result from a given realisti
 signature implementation. We use a re
ordedtra
e be
ause the false positive rate of a dynami
 system 
annot be determinedwithout a�e
ting the 
ourse of the ben
hmark exe
ution: a dynami
 system
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(d) IntruderFig. 3. False positive rate vs signature bit length. Trie-based signatures were extended in length upto the length that provides zero false positives on the training set.
annot distinguish a false-positive 
on�i
t from a later true 
on�i
t that wouldhave happened in the same transa
tion, if it was not aborted immediately. We
ompute the false positive rate as the number of false 
on�i
ts divided by thetotal number of transa
tions, in
luding repeats due to rollba
k.The signatures that we study are 
on�gured as follows. The bit sele
tions
heme sele
ts the least signi�
ant word-aligned address bits, to 
apture themost entropy. For H3, PBX and LE-PBX, we found that in
reasing the numberof hash fun
tions 
aused a slight in
rease in the false positive rate for shortsignatures, but helped redu
e the the number of signature bits required to
ompletely eliminate false positives. We empiri
ally found that using four hashfun
tions is a good trade-o� between a

ura
y and 
omplexity, and hen
e wedo so for all results reported. To train our trie-based hash fun
tions, we use adi�erent but similarly-sized tra
e of memory a

esses as a training set.Figure 3 shows the false positive rate for di�erent hash fun
tions (bitsele
tion, H3, PBX, LE-PBX and trie-based) as signature bit length varies.The false positive rate generally de
reases with longer signatures be
ause ofthe redu
ed number of 
ollisions on any single signature bit�although small�u
tuations are possible due to the randomness of the memory a

esses. Ourresults show that LE-PBX has a slightly lower false positive rate than H3 andPBX for an equal number of signature bits. Bit sele
tion generally requires a
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(b) LUT usageFig. 4. Impa
t of in
reasing the bit length of trie-based signatures on (a) frequen
y and (b) LUTusage of the 
on�i
t dete
tion unit for 2, 4, and 8-thread (2T,4T,8T) systems. The results for H3,PBX and LE-PBX are similar. In (a) we highlight the system operating frequen
y of 125MHz.larger number of signature bits to a
hieve a low false positive rate, ex
ept forUDHCP for whi
h most of the memory a

esses point to 
onse
utive stati
allyallo
ated data. Overall, the trie s
heme outperforms the others for Classifier,NAT and UDHCP by a
hieving 
lose to zero false positive rate with less than100 bits, in 
ontrast with several thousand bits. For Intruder the non-tries
hemes have a better resolution for signatures longer than 100 bits due tothe relatively large amount of dynami
 memory used, whi
h makes memorya

esses more random. Quantitatively we 
an 
ompute the entropy of a

essesas ∑

n−1

i=0
−p(xi) log

2
p(xi) where p(xi) is the probability of an address appearingat least on
e in a transa
tion�with this methodology Intruder has an entropy1.7 times higher on average than the other ben
hmarks, thus explaining thedi�
ulty in training its trie-based hash fun
tion.Implementation of a Signature Me
hanism Figure 4 shows the results ofimplementing a signature-based 
on�i
t dete
tion unit using solely the LUTs inthe FPGA for a pro
essor system with 2 threads like the one we implemented(2T) and for hypotheti
al transa
tional systems with 4 and 8 threads (4T and8T). While the plot was made for a trie-based hashing fun
tion, we found thatH3, PBX and LE-PBX produ
ed similar results. As we will explain later, the bitsele
tion s
heme is better suited to a RAM-based implementation. In Figure 4(a)we observe that the CAD tools make an extra e�ort to meet our 125 MHzrequired operating frequen
y by barely a
hieving it for many designs. In a 2-thread system, two signatures up to 200 bits will meet our 125MHz timingrequirement while a 4-thread system 
an only a

ommodate four signaturesup to 100 bits long. For 8-threads, the maximum number of signature bitsallowed at 125MHz is redu
ed to 50 bits. Figure 4(b) shows that the arearequirements grow linearly with the number of bits per signature. In pra
ti
efor 2-threads at 200 bits, signatures require a 
onsiderable amount of resour
es:approximatively 10% of the LUT usage of the total non-transa
tional system.When the 
on�i
t dete
tion unit is in
orporated into the system, we found thatits area requirements�by putting more pressure on the routing inter
onne
t of
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(b) LE-PBXFig. 5. Throughput with signatures using trie-based hashing with varying signature sizes normalizedto the throughput of an ideal system with perfe
t 
on�i
t dete
tion (obtained using our 
y
le-a

urate simulator).the FPGA�lowered the maximum number of bits allowable to less than 100 bitsfor our 2-thread system (Table 4). Re-examining Figure 3, we 
an see that thetrie-based hashing fun
tion delivers signi�
antly better performan
e a
ross allthe hashing s
hemes proposed for less than 100 signature bits.An alternate method of storing signatures that we evaluate involves mappingan address to a signature bit 
orresponding to a line in a blo
k RAM. Onthat line, we store the 
orresponding read and write signature bit for ea
hthread. To preserve the 125MHz 
lo
k rate and our single-
y
le 
on�i
t dete
tionlaten
y, we found that we 
ould only use one blo
k RAM and that we 
ouldonly use bit sele
tion to index the blo
k RAM�other hashing s
hemes 
ouldonly implement one hash fun
tion with one blo
k RAM and would performworse than bit sele
tion in that 
on�guration. Be
ause the data written is onlyavailable on the next 
lo
k 
y
le in a blo
k RAM, we enfor
e stalls upon read-after-write hazards. Also, to emulate a single-
y
le 
lear operation, we versionthe read and write sets with a 2-bit 
ounter that is in
remented on 
ommit orrollba
k to distinguish between transa
tions. If a signature bit remains untou
hedand therefore preserves its version until a transa
tion with an aliasing versiona

esses it (the version wraps over a 2-bit 
ounter), the bit will appear to beset for the 
urrent transa
tion and may lead to more false positives. The versionbits are stored on the same blo
k RAM line as their asso
iated signature bits,thus limiting the depth of our 16Kb blo
k RAM to 2048 entries (8-bits wide).Consequently, our best bit sele
tion implementation uses a 11 bit-sele
t of theword-aligned least-signi�
ant address bits.Impa
t of False Positives on Performan
e Figure 5 shows the impa
ton performan
e in a full-system simulation of a varying signature length, whenusing either a trie-based hashing fun
tion or LE-PBX, the s
heme with these
ond-lowest false positive rate. The jitter in the 
urves is again explained bythe unpredi
table rollba
k penalty and rate of o

urren
e of the false positives,varying the amount 
ontention on the system. Overall, we 
an see that signatureshave a dramati
 impa
t on system throughput, ex
ept for Intruder for whi
h



11Ben
hmark Max. Signature Total LUT LUT Additionalbits usage overhead throughputClassifier 92 20492 5% 12%NAT 68 20325 4% 58%UDHCP 84 20378 4% 9%Intruder 96 20543 5% 71%Table 4. Size, LUT usage, LUT overhead and throughput gain of our real system with the bestappli
ation-spe
i�
 trie-based hash fun
tions over bit sele
tion.the false positive rate varies little for this signature size range (Figure 3(d)).We observe that for Classifier, UDHCP and NAT, although they a
hieve asmall false positive rate with 10 bits on a stati
 tra
e of transa
tional a

esses(Figure 3), their performan
e in
reases signi�
antly with longer signatures. Wefound that our zero-pa
ket drop poli
y to determine the maximum throughputof our ben
hmarks is very sensitive to the 
ompute-laten
y of pa
kets sin
eeven a small burst of aborts and retries for a parti
ular transa
tion dire
tlyimpa
ts the size of the input queue whi
h in turn determines pa
ket drops. Theperforman
e of NAT plateaus at 161 bits be
ause that is the design that a
hieveszero false positives in training (Figure 3(b)). As expe
ted, Figure 5(b) shows thatthere is almost no s
aling of performan
e for LE-PBX in the possible signatureimplementation size range be
ause the false positive rate is very high.Measured Performan
e on the Real System As shown in Table 4 and
ontrarily to the other s
hemes presented, the size of the trie-based signatures
an be adjusted to an arbitrary number of bits to maximize the use of theFPGA fabri
 while respe
ting our operating frequen
y. The maximum signaturesize is noti
eably smaller for NAT be
ause more address bits are tested to setsignature bits, whi
h requires more levels of logi
 and redu
es the 
lo
k speed.In all 
ases the 
on�i
t dete
tion with a 
ustomized signature outperforms thegeneral purpose bit sele
tion. This is 
oherent with the improved false positiverate observed in Figure 3. We 
an see that bit sele
tion has the best performan
ewhen the data a

esses are very regular as in UDHCP, as indi
ated by the lowfalse positive rate in Figure 3(
). Trie-based hashing improves the performan
eof Intruder the most be
ause the bit sele
tion s
heme su�ers from bursts ofunne
essary transa
tion aborts.CAD Results Comparing two-pro
essor full system hardware designs, thesystem with trie-based 
on�i
t dete
tion implemented in LUTs 
onsumes 161blo
k RAMs and the appli
ation-spe
i�
 LUT usage reported in Table 4. Blo
k-RAM-based bit sele
tion requires one additional blo
k RAM (out of 232, i.e.,69% of the total 
apa
ity) and 
onsumes 19546 LUTs (out of 47232, i.e. 41%of the total 
apa
ity). Sin
e both kinds of designs are limited by the operatingfrequen
y, trie-based hashing only has an area overhead of 4.5% on average(Table 4). Hen
e the overall overhead 
osts of our proposed 
on�i
t dete
tions
heme are low and enable signi�
ant throughput improvements.6 Con
lusionsIn this paper we have studied several previously-proposed signature-based
on�i
t dete
tion s
hemes for TM. Among those, we found that bit sele
tion



12provides the best implementation that avoids (i) degrading the operatingfrequen
y of an FPGA-based soft multipro
essor system or (ii) stalling thepro
essors for multiple 
y
les. We have presented a method for implementingmore e�
ient signatures by 
ustomizing them to mat
h the a

ess patternsof an appli
ation. Our s
heme builds on trie-based hashing, and minimizesthe number of false 
on�i
ts dete
ted, improving the ability of the system toexploit parallelism. On a real FPGA-based pa
ket pro
essor, we measured pa
ketthroughput improvements of 12%, 58%, 9% and 71% for four appli
ations,demonstrating that appli
ation-spe
i�
 signatures are a 
ompelling means tofa
ilitate 
on�i
t dete
tion for FPGA-based TM systems.Referen
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