
Scaling Soft Processor Systems

Martin Labrecque, Peter Yiannacouras, and J. Gregory Steffan
{martinl,yiannac,steffan}@eecg.toronto.edu

Department of Electrical and Computer Engineering
University of Toronto

Abstract

As FPGA-based systems including soft-processors be-
come increasingly common we are motivated to better un-
derstand the best way to scale the performance of such sys-
tems. In this paper we explore the organization of proces-
sors and caches connected to a single off-chip memory chan-
nel, for workloads composed of many independent threads.
In particular we design and evaluate real FPGA-based pro-
cessor, multithreaded processor, and multiprocessor systems
on EEMBC benchmarks—investigating different approaches
to scaling caches, processors, and thread contexts to maxi-
mize throughput while minimizing area. Our main finding is
that while a single multithreaded processor offers improved
performance over a single-threaded processor, multiproces-
sors composed of single-threaded processors scale better
than those composed of multithreaded processors.

1. Introduction

As embedded systems designers increasingly use FP-
GAs to implement single-chip designs, they are often moti-
vated to usesoft processors—processors built using an FPGA’s
programmable logic. Soft processors provide a familiar pro-
gramming environment allowing non-hardware experts to
target FPGAs. Soft processor environments allow FPGA
designs to be more easily modified, and typically provide
methods for bottleneck computations to be accelerated as
necessary through additional custom hardware [1, 2]. One
of the strengths of an FPGA-based design is the ability to
connect to a number of memory channels, possibly of vary-
ing memory technologies; a typical performance goal for the
construction of such a system is to fully-utilize a given mem-
ory channel. For example, in the field of packet processing
the goal is often to process packets at line rate, scaling up
a system composed of processors and accelerators to make
full use of available bandwidth to and from a given packet-
buffer (i.e., memory channel).

The goal of this paper is to explore architectural options
for scaling the performance of soft systems, focussing on
the organization of processors and caches connected to a
single off-chip memory channel. For now we consider sys-

This research is supported by grants from Altera Corporation and
NSERC. Martin Labrecque and Peter Yiannacouras are partially supported
by FCAR and NSERC scholarships respectively.

tems similar to packet processing where there are many in-
dependent tasks/threads to execute, and maximizing system
throughput is the over-arching performance goal. In partic-
ular, we use a real FPGA-based soft system connected to
DDR SDRAM to evaluate the performance scaling of soft
uniprocessors, multithreaded processors, and multiproces-
sors. We focus solely on regular processors for now, leaving
a study of the role of application-specific hardware acceler-
ators for future work.

Scaling Soft UniprocessorsIt is relatively straightforward
to connect a soft uniprocessor to off-chip DDR memory through
data and instruction caches. We analyze the resulting mem-
ory latency, the usage of FPGA resources, and the impact
of scaling up the data cache size for such a system. Our
analysis shows that off-chip memory latency is not as much
of a challenge for FPGA-based processors as it is for ASIC
processors, limiting the impact of large caches. As expected
we find that increasing the data cache size shows diminish-
ing returns, but surprisingly that a relatively small direct-
mapped cache can capture most of the benefit of an infinite-
sized cache. Hence we are motivated to pursue other meth-
ods of scaling the performance of soft systems.

Scaling Soft Multithreaded ProcessorsIn previous work
we demonstrated that, for a system with only on-chip mem-
ory, a soft multithreaded processor can eliminate nearly all
of the stall-cycles observed by a comparable single-threaded
processor by executing an independent instruction in ev-
ery stage of the processor pipeline [3]. In this paper we
extend our multithreaded processors to interface with off-
chip DDR memory through caches, which in contrast with
uniprocessors presents some interesting challenges and de-
sign options. In particular we present an approach called
instruction replay to handle cache misses without stalling
other threads, and a mechanism for handling the resulting
potential live-locks. We also evaluate several cache organi-
zation alternatives for soft multithreaded processors, namely
shared, private, and partitioned caches, as well as supportfor
different numbers of hardware contexts. We finally investi-
gate issues related to sharing and conflicts between threads
for soft multithreaded processors. In contrast with previous
studies of systems with on-chip memory [3,4], with off-chip
memory we find that single-threaded processors are gener-
ally more area-efficient than multithreaded processors.

Scaling Soft MultiprocessorsWe also evaluate multipro-
cessors composed of uniprocessors or multithreaded proces-
sors. We find that, for a system of given area, multiproces-
sors composed of multithreaded processors provide a much
larger number of thread contexts, but that uniprocessor-based
multiprocessors provide the best overall throughput.

1.1. Related Work

There is a large body of prior work on memory systems,
showing the benefits and trade-offs of different cache or-
ganizations for conventional systems; for FPGA-based sys-
tems, caches built in the FPGA fabric [5] are routinely uti-
lized to improve the performance of systems with off-chip
memory. The commercial off-the-shelf soft processors Nios-
II [6] and Microblaze [7] both support optional direct-mapped
instruction and data caches with configurable cache line sizes.
Both processors allocate a cache line upon write misses (allocate-
on-write) but the Microblaze uses a write-through policy
while Nios-II uses write-back. Both vendors have extended
their instruction set to accomplish tasks such as cache flush-
ing, invalidating and bypassing. Our implementation is com-
parable to those designs (other than we do not allocate on
writes) and we did not require ISA extensions: this renders
our conclusions widely applicable.

While there exist several academic multiprocessor-on-
FPGA implementations [8–10], there has been little work
studying the impact of processor and cache architecture on
the scalability of performance. Fort et al. [4] compared their
soft multithreaded processor design to having multiple unipro-
cessors, using the Mibench benchmarks [11] and a system
with on-chip instruction memory and off-chip shared data
storage (with no data cache). They conclude that a single
multithreaded soft processor can perform similarly to mul-
tiple uniprocessors in that environment. We further demon-
strated that a soft multithreaded processor can be more area
efficient than a single soft uniprocessor with on-chip mem-
ory [3].

The addition of off-chip memory and caches introduces
variable-latency stalls to the processor pipeline. Handling
such stalls in a multithreaded processor without stalling all
threads is a challenge. Fortet. al. [4] use a FIFO queue
of loads and stores, while Moussaliet. al. [12] use an in-
struction scheduler to issue ready instructions from a poolof
threads. In contrast with either of these approaches, our in-
structionreplayapproach requires little additional hardware
support.

Commercial FPGA systems often have more than one
off-chip memory channel [13–16], and in fact supporting
multiple memory channels is one of the benefits of an FPGA
implementation. Kulmalaet al. [17] implement a distinct
memory channel for instruction memory, and show that with
small instruction caches, the scalability of the system through-
put depends mainly on the data memory. For simplicity

and because we expect workloads to often be parallel across
memory channels, in our work so far we focus on maximiz-
ing performance given a single off-chip memory channel.

1.2. Contributions

This paper makes the following contributions: we describe
and evaluate soft uniprocessors, multithreaded processors,
and multiprocessors in a real system with off-chip DDR SDRAM,
and evaluate them with EEMBC industrial benchmarks; we
demonstrate the importance of evaluating with a real system
and with off-chip memory, as our conclusions are different
from previous work using only on-chip memory; we show
that off-chip memory latency is not a significant challenge
for soft systems; we present the technique of instructionre-
play to handle cache misses in soft multithreaded processors
without stalling other threads; we show that, on a system of a
given area with off-chip memory, single-threaded processors
have a better instruction throughput than multithreaded pro-
cessors, even for multiprocessors composed of either type of
processor.

2. Experimental Framework

In this section we briefly describe our infrastructure for
designing and measuring soft processors, our methodology
for comparing soft processor designs, our compilation in-
frastructure, and the benchmark applications that we study.

CachesThe Altera Stratix FPGA that we target provides
three sizes of block-memory: M512 (512bits), M4K (4Kbits)
and M-RAM (512Kbits). We use M512s to implement reg-
ister files. In contrast with M-RAM blocks, M4K blocks
can be configured to be read and written at the same time
(using two ports), such that the read will return the previous
value—hence, despite their smaller size, caches built with
M4Ks typically out-perform those composed of M-RAMs,
and we choose M4K-based caches for our processors.

Platform Our RTL is synthesized, mapped, placed, and routed
by Quartus 7.2 [18] using the default optimization set-
tings.1 The resulting soft processors are measured on the
Transmogrifier platform [19], where we utilize one Altera
Stratix FPGAEP1S80F1508C6 device to (i) obtain the to-
tal number of execution cycles, and (ii) to generate a trace
which is validated for correctness against the corresponding
execution by an emulator (MINT [20]). Our memory con-
troller connects a 64-bit-wide data bus to a 1Gbyte DDR
SDRAM DIMM clocked at 133 MHz, and configured to
transfer two 64-bit words (i.e., one cache line) on each mem-
ory access.

1We expect our conclusions to hold across different optimization set-
tings, but for now we opt for the shorter synthesis times of thedefault con-
figuration.

Table 1. EEMBC benchmark applications evaluated.ST
stands for single-threaded andMT stands for multithreaded.

Dyn. Instr. Counts (x106)
Category Benchmark ST MT

Automotive A2TIME01 374 356
AIFIRF01 33 31
BASEFP01 555 638
BITMNP01 114 97
CACHEB01 16 15
CANRDR01 38 35
IDCTRN01 62 57
IIRFLT01 88 84

PUWMOD01 17 14
RSPEED01 23 21
TBLOOK01 149 140

Telecom AUTCOR00DATA _2 814 733
CONVEN00DATA _1 471 451
FBITAL 00DATA _2 2558 2480

FFT00DATA _3 61 51
VITERB00DATA _2 765 750

Networking IP_PKTCHECKB4M 42 38
IP_REASSEMBLY 385 324

OSPFV2 49 33
QOS 981 732

MeasurementFor Altera Stratix FPGAs, the basic logic el-
ement (LE) is a 4-input lookup table plus a flip-flop—hence
we report the area of our soft processors inequivalent LEs, a
number that additionally accounts for the consumed silicon
area of any hardware blocks (e.g. multiplication or block-
memory units). Even if a memory block is partially utilized
by the design, the area of the whole block is nonetheless
added to the total area required. For consistency, all our
soft processors are clocked at 50 MHz and the DDR re-
mains clocked at 133 MHz. The exact number of cycles
for a given experiment is non-deterministic because of the
phase relation between the two clock domains, a difficulty
that is amplified when cache hit/miss behavior is affected.
However, we have verified that the variations are not large
enough to significantly impact our measurements.

Compilation and BenchmarksOur compiler infrastructure
is based on modified versions ofgcc 4.0.2, Binutils
2.16, andNewlib 1.14.0 that target variations of the 32-
bit MIPS I [21] ISA; for example, for multithreaded proces-
sors we implement 3-operand multiplies (rather than MIPS
Hi/Lo registers [3,22]), and eliminate branch and load delay
slots. Integer division is implemented in software. Table 1
shows the selected benchmarks from the EEMBC suite [23],
avoiding benchmarks with significant file I/O that we do not
yet support, along with the benchmarks dynamic instruction
counts as impacted by different compiler settings. For sys-
tems with multiple threads and/or processors, we run multi-
ple simultaneous copies of a given benchmark (i.e., similar
to packet processing), measuring the time from the start of

execution for the first copy until the end of the last copy.2 In
future work we hope to instead move towards implementing
and analyzing fully-parallel applications with shared data
and synchronization.

3. Integrating Uniprocessors with Off-Chip
Memory

Past studies have shown that memory latency is not a
concern for soft processors built with on-chip memory, since
FPGA on-chip block-RAMs typically operate at higher speeds
than the soft processors that use them [24, 25]. However,
such systems can only support applications with limited data
and instruction memory footprints. Soft-processor systems
with caches and off-chip memory can support larger appli-
cations (such as the EEMBC benchmarks). In this section
we analyze an implementation of such a system in detail, in
particular examining memory latency as well as the break-
down of FPGA area devoted to parts of the system.

3.1. Uniprocessor Design

The specific uniprocessor design selected for our study was
automatically generated by the SPREE processor genera-
tor [24, 25]. SPREE initially supported only on-chip mem-
ory, so we modified SPREE to export an external mem-
ory bus allowing the connection of a memory subsystem.
We chose a 3-stage pipelined processor with full forward-
ing and a 1-bit branch history table for branch prediction as
we found it to be the most area-efficient (good performance
with low area). The instruction and data caches share access
to the single-channel DDR controller. The caches have a 16-
byte block size to match the word size of the DDR memory.
The data cache implements a write-back, no-write-allocate
write policy. The processor suffers a single pipeline stall
on any branch misprediction or instance of a shift, multi-
ply, load, or store instruction. Loads and stores can suffer
varying additional stalls for cache misses, depending on the
response of the memory subsystem.

The processor and caches are clocked together at 50 MHz
while the DDR controller is clocked at 133 MHz. There
are three main reasons for the reduced clock speed of the
processor and caches: i) the original 3-stage pipelined pro-
cessor with on-chip memory could only be clocked at 72
MHz on the slower speed grade Stratix FPGAs on the TM4;
ii) adding the caches and bus handshaking further reduced
the clock frequency to 64 MHz; and iii) to relax the timing
constraints when crossing clock domains, we chose a 20 ns
clock period which is a rational multiple of the 133 MHz
(7.5 ns) DDR clock. In our evaluation in Section 6, we es-
timate the impact of higher processor clock frequencies that

2We verified that in most cases no thread gets significantly ahead of the
others.

match the actual critical paths of the underlying circuits,and
find that the results do not alter our conclusions.

3.2. Uniprocessor Area Breakdown

It is important to understand the relative area of compo-
nents in a soft processor system. Our example uniproces-
sor system is comprised of the processor core (41.7%), 4KB
direct-mapped L1 data cache (10.9%), 4KB direct-mapped
L1 instruction cache (10.9%), and the rest of the system in-
cluding memory controller, peripherals, and communication
logic between the TM4 and Linux host (36.5%). Note that
cache accounts for only a quarter of system area, despite
the simplicity of the processor core. While this is quite dif-
ferent from conventional processors whose silicon area is
typically dominated by cache, it is expected in FPGA tech-
nology since caches are composed mostly of SRAM storage
and can be built by stitching together a few RAM blocks.
Similarly, in contrast with “hard” systems, cache area is also
dominated by area devoted to the memory controller and
other peripherals.

3.3. Uniprocessor Memory Latency

Our system has a processor clock of 50MHz, a memory sys-
tem clock of 133MHz, and a load-miss latency of only 8-
cycles. If we assume a faster processor implementation with
a clock matching that of memory (133MHz), then the load
latency would be 21 cycles, which can be broken-down as
follows. The processor uses a 3-cycle handshaking scheme
to communicate the memory request to the DDR controller.
Pipelining within the DDR controller and the row and col-
umn access latencies are responsible for a 9-cycle delay be-
fore the data is available at the pins of the FPGA.3 Con-
version from the 64-bit dual-data-rate signal to a 128-bit
wide single-edge signal requires 2 cycles, followed by 3
cycles for phase realignment to the DDR controller’s 133
MHz clock. Crossing back into the processor’s clock do-
main with some handshaking then consumes an additional
4 cycles. Furthermore, our current memory controller im-
plementation has room for improvement such as by: (i) set-
ting the column access latency to 2 instead of 3; (ii) track-
ing open DRAM pages and saving unnecessary row access
latency; (iii) fusing the single edge conversion, phase re-
alignment, and clock crossing which together amount to a
single clock crossing.

Our first key observation is therefore that off-chip mem-
ory latency for FPGA-based soft processors is not as sig-
nificant as it is for ASICs and other “hard” processors, be-
cause the clock frequency of typical soft processors is much
slower. While this may reduce the effect of the memory la-
tency hiding offered by multithreading, it also reduces the

3Note the controller uses a closed-page policy so that every request
opens a DRAM row and then closes it.

penalties arising from cache collisions suggesting that we
may be able to more easily scale the number of hardware
threads.

Although our hardware platform is two generations old,
we expect our results to hold in a Stratix III FPGA system
with DDR3 SDRAM. Synthesis results of our uniprocessor
on a Stratix III yields a clock frequency of 151 MHz. Con-
servatively, the DDR3 bus clock would be 400 MHz, thus
preserving the memory-to-processor clock ratio of our cur-
rent system. However the column access latency would have
increased from 3 to 5-6 for the DDR3-based system. The ex-
tra 2-3 clock cycles would result in only 1 cycle of increased
memory latency from the perspective of the processor. We
believe that our conclusions hold even in the face of the extra
cycle or so of memory latency.

Summary The small load miss latency observed in our soft
processor (8 cycles) is at least 20 times slower than what
is typically encountered in modern desktop ASIC proces-
sors [26], encouraging us to investigate scaling performance
through larger numbers of threads—as we do in the next
section—rather than pursuing better latency-tolerance tech-
niques.

4. Scaling Uniprocessor Caches

Designers of soft systems are frequently concerned with
trade-offs between area and performance. In particular, the
question is how to best utilize additional area to improve
performance. Possible non-trivial solutions include schemes
for prefetching, or customizing instructions or the memory
system to match the needs of a particular application. In this
section we evaluate the impact of the more straightforward
solution of increasing soft uniprocessor data cache size.

To demonstrate the impact on performance of increasing
data cache size, in Figure 1 themeasuredline shows the
geometric-mean speedup across our EEMBC benchmarks
for varying direct-mapped data-cache sizes, relative to a 256B
data cache. Compared to the 4KB data cache, a 256KB data
cache provides only a 9.8% additional speedup at the cost of
a 64-fold increase in area devoted to cache.

To model the impact of a given cache, we use

Speedup = CPIperfect+(fldMldPld)+(fstMstPst) (1)

whereCPIperfect is the cycles-per-instruction measured
with a perfect memory system, and for loads and storesf

is the frequency of memory references,M is the miss rate,
andP is the miss penalty. Using the CPI values measured
previously for processors with only on-chip memory [24] as
an estimate, the frequency of memory references and miss
rates reported by our instruction simulator, and miss penal-
ties reported by the Quartus II SignalTap Logic Analyzer
software, we plot the “modelled speedup” line shown in Fig-

1.23

1.31

1.34
1.35

1.36
1.38

1.11

1.21

1.28

1.31
1.33

1.13

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

256B 1KB 4KB 16KB 64KB 256KB 1024KB Perfect

A
ve

ra
g

e
S

p
ee

d
u

p
 v

s
25

6B
 D

ca
ch

e

Modelled Speedup
Measured Speedup

Fig. 1. Geometric mean speedup across our EEMBC bench-
marks for varying direct-mapped data-cache sizes, relative
to a 256B data cache. Speedup is bothmeasuredin real
hardware andmodeledaccording to Equation 1, both with a
64KB instruction-cache. For the modeled speedup, theper-
fectpoint shows the impact of an infinite-size data cache.

ure 1. We observe that the modelled speedup tracks the mea-
sured speedup very closely, with the modelled speedup be-
ing slightly larger since it models neither instruction misses
nor bus contention. According to this model a perfect data
cache improves performance only 11.6% over the 4KB data
cache. Caches with increased associativity would be ineffec-
tive at reclaiming this fraction because they would increase
the cache access latency.

The diminishing returns seen in the larger cache sizes
and the idealized cache motivate the exploration of other
means of translating additional area into improved perfor-
mance other than increasing cache performance. In this work
we focus on exploiting additional threads, in particular by
considering multithreaded processors in the next section,and
multiprocessors composed of either single-threaded or mul-
tithreaded processors in the subsequent section.

5. Integrating Multithreaded Processors with
Off-Chip Memory

As prior work has shown [3, 4], multithreaded soft pro-
cessors can hide processor stalls while saving area, result-
ing in more area-efficient soft systems than those composed
of uniprocessors or multiprocessors. Our multithreaded soft
processors support fine-grained multithreading, where an in-
struction for a different thread context is fetched each clock
cycle in a round-robin fashion. Such a processor requires
the register file and program counter to be logically repli-
cated per thread context. However, since consecutive in-
structions in the pipeline are from independent threads, we
eliminate the need for data hazard detection logic and for-

warding lines—assuming that there are at leastN−1 threads
for anN -stage pipelined processor [3,4]. Our multithreaded
processors have a 5-stage pipeline that never stalls: this pipeline
depth was found to be the most area-efficient for multithread-
ing in earlier work [3]. In this section we describe the chal-
lenges in connecting a multithreaded soft processor to off-
chip memory through caches, and our respective solutions.

5.1. Reducing Cache Conflicts

The workload we assume for this study is comprised of mul-
tiple copies of a single task (i.e., similar to packet process-
ing), hence instructions and an instruction cache are easily
shared between threads without conflicts. However, since
the data caches we study are direct-mapped, when all the
threads access the same location in their respective data sec-
tions, these locations will all map to the same cache entry,
resulting in pathologically bad cache behavior. As a simple
remedy to this problem we pad the data sections for each
thread such that they are staggered evenly across the data
cache, in particular by inserting multiples of padding equal
to the cache size divided by the number of thread contexts
sharing the cache. However, doing so makes it more com-
plicated to share instruction memory between threads: since
data can be addressed relative to the global pointer [21], we
introduce a short thread-specific initialization routine that
adjusts the global pointer by the padding amount; there can
also be static pointers and offsets in the program, that we
must adjust to reflect the padding. We find that applying this
padding increases the throughput of our base multithreaded
processor by 24%, hence we apply this optimization for all
of our experiments.

5.2. Tolerating Miss Latency via Replay

When connected to an off-chip memory through caches, a
multithreaded processor will ideally not stall other threads
when a given thread suffers a multiple-cycle cache miss. In
prior work, Fortet. al. [4] use a FIFO queue of loads and
stores, while Moussaliet. al. [12] use an instruction sched-
uler to issue ready instructions from a pool of threads. For
both instruction and data cache misses we implement a sim-
pler method requiring little additional hardware that we call
instructionreplay. The basic idea is as follows: whenever a
memory reference instruction suffers a cache miss, that in-
structionfails—i.e., the program counter for that thread is
not incremented. Hence that instruction will execute again
(i.e., replay) when it is that thread context’s turn again, and
the cache miss is serviced while the instruction is replaying.
Other threads continue to make progress, while the thread
that suffered the miss fails and replays until the memory ref-
erence is a cache hit. However, since our processors can
handle only a single outstanding memory reference, if a sec-
ond thread suffers a cache miss it will itself fail and replay

R/DF EX
EX
/ M WB

R/DF EX
R/DF EX

R/DF EX
EX
/ M WB

EX
/ M WB

load instr.

store intr.

{
data cache

data path

shared

{

..N

partitioned

(a) (b)

private

Fig. 2. Cache organizations and the corresponding impact
on the execution of a write hit from one thread followed by
a load from a consecutive thread: (a) a shared data cache, for
which the load is aborted and later replays; (b) partitioned
and private caches, for which the load succeeds.

until its miss is serviced.
To safely implement the instruction replay technique we

must consider how cache misses from different threads might
interfere. First, it is possible that one thread can load a cache
block into the cache, and then another thread replaces that
block before the original thread is able to use it. Such in-
terference between two threads can potentially lead to live-
lock. However, we do not have to provide a solution to this
problem in our processors because misses are serviced in
order and the miss latency is guaranteed to be greater than
the latency of a full round-robin of thread contexts—hence
a memory reference suffering a miss is guaranteed to suc-
ceed before the cache line is replaced. However, a second
possibility is one that we must handle: the case of a mem-
ory reference that suffers a data cache miss, for which the
corresponding instruction cache block is replaced before the
memory reference instruction can replay. This subtle pathol-
ogy can indeed result in live-lock in our processors, so we
prevent it by saving a copy of the last successfully fetched
instruction for each thread context.

5.3. Cache Organization

Each thread has its own data section, hence despite our padding
efforts a shared data cache can still result in conflicts. A
simple solution to this problem is to increase the size of the
shared data cache to accommodate the aggregate data set of
the multiple threads, although this reduces the area-saving
benefits of the multithreaded design. Furthermore, since our
caches are composed of FPGA memory blocks which have
only two ports (one connected to the processor, one con-
nected to the DRAM channel), writes take two cycles: one
cycle to lookup and compare with the tag, and another cy-
cle to perform the write (on a hit). As illustrated in Fig-

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

C
P

I (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Area (Equivalent LEs)

single (1D$/1T)2
4

8
16

shared (1D$/4T)

1

2

4

partitioned (2D$/4T)

1

2
4

8

private (4D$/4T)

16
84

2

Fig. 3. CPI versus area for thesinglethreaded processor and
for the multithreaded processors withshared, partitioned,
andprivate caches. 1D$/4T means there is one data cache
and 4 threads total. Each point is labeled with the total cache
capacity in KB available per thread.

ure 2(a), this can lead to further contention between consec-
utive threads in a multithreaded processor that share a cache:
if a second consecutive thread attempts a memory reference
directly after a write-hit, we apply our failure/replay tech-
nique for the second thread, rather than stall that thread and
subsequent threads.

Rather than increasing the size of the shared cache, we
consider two alternatives. The first is to haveprivate caches
such that each thread context in the multithreaded processor
accesses a dedicated data cache. The second, if the number
of threads is even, is to havepartitioned cachessuch that
non-consecutive threads share a data cache—for example, if
there are four threads, threads 1 and 3 would share a cache
and threads 2 and 4 would share a second cache. As shown
in Figure 2(b), both of these organizations eliminate port
contention between consecutive threads, and reduce (parti-
tioned) or eliminate (private) cache block conflicts between
threads.

6. Scaling Multithreaded Processor Caches

In this section we compare single-threaded and multi-
threaded soft processors, and study the impact of cache or-
ganization and thread count on multithreaded processor per-
formance and area efficiency.

In Figure 3 we plot performance versus area for the sin-
gle threaded processor and the three possible cache orga-
nizations for multithreaded processors (shared, partitioned,
and private), and for each we vary the sizes of their caches.
For performance we plot cycles-per-instruction (CPI), which
is computed as the total number of cycles divided by the total

number of instructions executed; we use this metric as op-
posed to simply execution time because the single-threaded
and multithreaded processors execute different numbers of
threads, and because the compilation of benchmarks for the
single-threaded and multithreaded processors differ (as shown
in Table 1). CPI is essentially the inverse of throughput for
the system, and this is plotted versus the area in equivalent
LEs for each processor design—hence the most desirable
designs minimize both area and CPI.

We first observe that the single-threaded and different
multithreaded processor designs with various cache sizes al-
low us to span a broad range of the performance/area space,
giving a system designer interested in supporting only a small
number of threads the ability to scale performance by invest-
ing more resources. The single-threaded processor is the
smallest but provides the worst CPI, and this is improved
only slightly when the cache size is doubled (from 2KB
to 4KB). Of the multithreaded processors, the shared, par-
titioned, and private cache designs provide increasing im-
provements in CPI at the cost of corresponding increases
in area. The shared designs outperform the single-threaded
processor because of the reduced stalls enjoyed by the mul-
tithreaded architecture. The partitioned designs outperform
the shared designs as they eliminate replays due to con-
tention. The private cache designs provide the best perfor-
mance as they eliminate replays due to both conflicts and
contention, but for these designs performance improves very
slowly as cache size increases.

There are several instances where increasing available
cache appears to cost no additional area: similar behavior is
seen for the single-threaded processor moving from 2KB to
4KB of cache and for the partitioned multithreaded proces-
sor moving from 1KB to 2KB of cache per thread. This is
because the smaller designs partially utilize M4K memories,
while in the larger designs they are more fully utilized—
hence the increase appears to be free since we account for
the entire area of an M4K regardless of whether it is fully
utilized. For the private-cache multithreaded designs, mov-
ing from 2KB to 4KB of cache per thread actually saves
a small amount of area, for similar reasons plus additional
savings in LEs due to fortuitous mapping behavior.

To better understand the trade-off between performance
and area for different designs, it is instructive to plot their
area efficiency as shown in Figure 4(a). We measure area
efficiency as millions of instructions per second (MIPS) per
1000 LEs. The single-threaded processors are the most area-
efficient, in contrast with previous work comparing similar
processors with on-chip memory and without caches [3].
The partitioned design with 2KB of cache per thread is nearly
as area-efficient as the corresponding single-threaded pro-
cessor. The shared-cache designs with 1KB and 2KB of
cache per thread are the next most area-efficient, with the
private-cache designs being the least area-efficient. These

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

1 2 4 8 16

A
re

a
ef

fic
ie

nc
y

(M
IP

S
/1

00
0L

E
s)

Cache per thread (Total cache size in kbytes / thread count)

single (1D$/1T)
shared (1D$/4T)

partitioned (2D$/4T)
private (4D$/4T)

(a) 50MHz processor clock frequency.

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16

A
re

a
ef

fic
ie

nc
y

(M
IP

S
/1

00
0L

E
s)

Cache per thread (Total cache size in kbytes / thread count)

single (1D$/1T)
shared (1D$/4T)

partitioned (2D$/4T)
private (4D$/4T)

(b) Maximum allowable processor clock frequency.

Fig. 4. Area efficiency versus total cache capacity per thread
for the single-threaded processor and the multithreaded pro-
cessors, reported using (a) the implemented clock frequency
of 50MHz, and (b) the maximum allowable clock frequency
per processor design.

results tell us to expect the single-threaded and partitioned-
cache multithreaded designs to scale well, as they provide
the best performance per area invested.

Due to limitations of the Transmogrifier platform, all of
our processors are actually clocked at 50MHz, while their
maximum possible frequencies (i.e.,fmax) are on average
65MHz. To investigate whether systems measured using
the true maximum possible frequencies for the processors
would lead to different conclusions, we estimate this sce-
nario in Figure 4(b). We observe that the relative trends are
very similar, with the exception of the single-threaded pro-
cessor with 2KB of cache for which the area efficiency drops
below that of the corresponding partitioned design to close
to that of the shared cache design.

Impact of Increasing Thread ContextsOur multithreaded
processors evaluated so far have all implemented a minimal
number of threads contexts: four thread contexts for five
pipeline stages. To justify this choice, we evaluated mul-
tithreaded processors with larger numbers of threads for the
different cache designs and for varying amounts of avail-
able cache per thread. For shared and partitioned designs
we found that increasing the number of thread contexts (i)
increases the CPI, due to increased contention and conflicts,
and (ii) increases area, due to hardware support for the ad-
ditional contexts. Since the private cache designs eliminate
all contention and conflicts, there is a slight CPI improve-
ment as area increases significantly with additional thread
contexts. These results confirmed that the four-thread mul-
tithreaded designs are the most desirable.

Summary We have observed that multithreaded processors
provide significant throughput improvements over single-
threaded processors when port contention is removed be-
tween the threads (i.e., with partitioned and private data cache
organizations), even when the multithreaded processor has
less total data cache capacity. The most area-efficient mul-
tithreaded processors are larger than the most area-efficient
single threaded processors of same cache capacity because
(i) the multithreaded pipeline is longer (five stages rather
than three), and (ii) the additional hardware overheads of
supporting multithreading for memory references (partition-
ing, checks for conflicts, support for replay and deadlock
avoidance). Finally, we demonstrated that supporting the
minimum number of thread contexts (four thread contexts
for five pipeline stages) in a multithreaded processor mini-
mizes both contention and area.

7. Scaling Multiprocessors

For systems with larger numbers of threads available,
another alternative for scaling performance is to instantiate
multiple soft processors. In this section we explore the de-
sign space of soft multiprocessors, with the goals of maxi-
mizing (i) performance, (ii) utilization of the memory chan-
nel, and (iii) utilization of the resources of the underlying
FPGA. To support multiple processors we augment our DRAM
controller with an arbiter that serializes requests by queuing
up to one request per processor; note that this simple inter-
connect architecture does not impact the clock frequencies
of our processors.

In Figure 5 we plot CPI versus area for multiprocessors
composed of single-threaded or multithreaded processors;
we replicate the processor designs that were found to be the
most area-efficient according to Figure 4(a). For each mul-
tiprocessor design, each design point has double the num-
ber of processors as the previous, with the exception of the
largest (rightmost) for which we plot the largest design sup-
ported by the FPGA—in this case the design that has ex-

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10000 20000 30000 40000 50000 60000 70000

C
P

I (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Area (Equivalent LEs)

shared 1x4K/4T
partitioned 2x4K/4T

private 4x4K/4T
single 1x4K/1T

1

2

4

8
16

4

8

16
24

4

8

16

44

4

8

16

68

Fig. 5. CPI versus area for multiprocessors composed of
single-threaded and multithreaded processors. 1x4K/4T
means that each processor has one 4KB data cache and 4
thread contexts, and each point is labeled with the total num-
ber of thread contexts supported.

hausted the M4K block memories.
Our first and most surprising observation is that the Pareto

frontier (the set of designs that minimize CPI and area) is
mostly comprised of single-threaded multiprocessor designs,
many of which out-perform multithreaded designs that sup-
port more than twice the number of thread contexts. For
example, the 16-processor single-threaded multiprocessor
has a lower CPI than the 44-thread-context partitioned-cache
multithreaded multiprocessor of the same area. We will
pursue further insight into this result later in this section.
For the largest designs, the private-cache multithreaded mul-
tiprocessor provides the second-best overall CPI with 24
thread contexts (over 6 processors), while the partitioned
and shared-cache multithreaded multiprocessor designs per-
form significantly worse at a greater area cost.

Sensitivity to Cache SizeSince the shared and partitioned-
cache multithreaded designs have less cache per thread than
the corresponding private-cache multithreaded or single-threaded
designs, in Figure 6 we investigate the impact of doubling
the size of the data caches (from 4KB to 8KB per cache)
for those two designs. We observe that this improves CPI
significantly for the shared-cache designs and more mod-
estly for the partitioned cache design, despite the fact that
the 4KB designs were the most area-efficient (according to
Figure 4(a)). Hence we evaluate the 8KB-cache shared and
partitioned-cache designs in subsequent experiments.

Per-Thread Efficiency In this section we try to gain an un-
derstanding of how close to optimally each of our architec-
tures performs—i.e., how close to a system that experiences
no stalls. The optimal CPI is 1 for our single-threaded pro-

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10000 20000 30000 40000 50000 60000 70000

C
P

I (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Area (Equivalent LEs)

4

8

16

44

4

8

16

48

4

8

16
28

4

8

16

68

shared 1x4K/4T
shared 1x8K/4T

partitioned 2x4K/4T
partitioned 2x8K/4T

Fig. 6. CPI versus area for the shared and partitioned de-
signs as we increase the size of caches from 4KB to 8KB
each. Each point is labeled with the total number of thread
contexts supported.

cessor, and hence 1/X for a multiprocessor composed ofX

single-threaded processors. For one of our multithreaded
processors the optimal CPI is also 1, but since there are four
thread contexts per processor, the optimal CPI forX mul-
tithreaded processors is 4/X. In Figure 7(a) we plot CPI
versus total number of thread contexts for our single and
multithreaded designs, as well as the two ideal curves (as
averaged across all of our benchmarks). As expected, for a
given number of threads the single-threaded processors ex-
hibit better CPI than the corresponding multithreaded de-
signs. However, it is interesting to note that the private-
cache multithreaded designs perform closer to optimally than
the single-threaded designs. For example, with 16 threads
(the largest design), the single-threaded multiprocessorhas a
CPI that is more than 4x greater than optimal, but regardless
this design provides the lowest CPI across any design. This
graph also illustrates that private-cache designs outperform
partitioned-cache designs which in turn outperform shared-
cache designs.

Potential for CustomizationA major advantage of soft sys-
tems is the ability to customize the hardware to match the
requirements of the application—hence we are motivated to
investigate whether the multithreaded designs might domi-
nate the single-threaded design for certain applications.How-
ever, we find that this is not the case. To summarize, in
Figures 7(b) and 7(c) we plot CPI versus total number of
thread contexts for the three best performing and three worst
performing benchmarks per design, respectively. For nei-
ther extremity do the multithreaded designs outperform the
single-threaded designs. Looking at Figure 7(b), we see that
for the best performing benchmarks the private-cache mul-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15 20 25 30 35 40 45 50

C
P

I (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Total number of hardware thread contexts

shared 1x8K/4T
partitioned 2x8K/4T

private 4x4K/4T
single 1x4K/1T

4/x
1/x

(a) All benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40 45 50

3
be

st
 C

P
I v

al
ue

s

Total number of hardware thread contexts

shared 1x8K/4T
partitioned 2x8K/4T

private 4x4K/4T
single 1x4K/1T

4/x
1/x

(b) Three best performing benchmarks per design.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40 45 50

3
be

st
 C

P
I v

al
ue

s

Total number of hardware thread contexts

shared 1x8K/4T
partitioned 2x8K/4T

private 4x4K/4T
single 1x4K/1T

4/x
1/x

(c) Three worst performing benchmarks per design.

Fig. 7. CPI versus total thread contexts across all bench-
marks (a), and the three best (b) and worst (c) performing
benchmarks per design.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.05 0.1 0.15 0.2

C
P

I (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Fraction of load misses

1P
2P
4P

Fig. 8. CPI versus fraction of load misses. For each sur-
face the upper edge plots the single-threaded multiproces-
sor designs (4KB data cache per processor) and the lower
edge plots the private-cache multithreaded multiprocessor
designs (4KB data cache per thread context).

tithreaded designs perform nearly optimally. In the worst
cases (Figure 7(c)), the single-threaded designs maintaintheir
dominance, despite the 16-processor design performing slightly
worse than the 8-processor design.

Understanding the Single-Threaded AdvantageTo clar-
ify the advantage of the single-threaded multiprocessor de-
signs, we use a synthetic benchmark that allows us to vary
the density of load misses. In particular, this benchmark
consists of a thousand-instruction loop comprised of loads
and no-ops, and the loads are designed to always miss in the
data cache. This benchmark allows us to isolate the impact
of load misses since they can be the only cause of stalls in
our processors. In Fig 8 we compare the CPI for single-
threaded designs with the private-cache multithreaded de-
signs as the fraction of load misses increases. In particular,
for a certain number of processors we plot a surface such
that the top edge of the surface is the single-threaded de-
sign and the bottom edge is the corresponding private-cache
multithreaded design. Hence the three surfaces show this
comparison for designs composed of 1, 2, and 4 processors.
Looking at the surface for a single processor, as the frac-
tion of load misses increases the multithreaded processor
(bottom edge) has a somewhat consistent CPI advantage (of
about 0.5 at 10% misses) over the single-threaded processor
(top edge). However, this advantage narrows as the number
of processors increases, and for four processors the multi-
threaded designs have only a negligible advantage over the
single-threaded designs—and the multithreaded processors
have greater area requirements than their single-threadedcoun-
terparts.

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 35000 40000 45000 50000 55000 60000 65000 70000 75000

C
P

I (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Area (Equivalent LEs)

private mix A (36 threads)

private mix B (28 threads)

single mix (19 threads)

private 4x4K/4T (24 threads)

single 1x4K/1T (16 threads)

Composition of Heterogeneous Multiprocessors
Private mix A Private mix B Single mix

M4K-based mt_private x 5 mt_private x 5 st x 15
M-RAM-based mt_shared x 4 mt_partitioned x 2 st x 4
Total threads 36 28 19

Fig. 9. CPI versus area for our two best-performing max-
imal designs (the 16-thread-context single-threaded design
and the 24-thread-context private-cache multithreaded de-
sign), and for those designs extended with processors with
M-RAM-based caches.

Exploiting Heterogeneity In contrast with ASIC designs,
FPGAs provide limited numbers of certain resources, for
example block memories. This leads to an interesting differ-
ence when targeting an FPGA as opposed to an ASIC: repli-
cating only the same design will eventually exhaust a cer-
tain resource while under-utilizing others. For example, our
largest multiprocessor design (the 68-thread shared-cache
multithreaded design) uses 99% of the M4K block memo-
ries but only 43% of the available LEs. Hence we are moti-
vated to exploit heterogeneity in our multiprocessor design
to more fully utilize all of the resources of the FPGA—in
this case we consider adding processors with M-RAM based
caches despite the fact that individually they are less effi-
cient than their M4K-based counterparts. In particular, we
extend our two best-performing multiprocessor designs with
processors having M-RAM-based caches as shown in Fig-
ure 9. In this case, extending the multithreaded processor
with further processors does not improve CPI but only in-
creases total area. For the single-threaded case the heteroge-
neous design improves CPI slightly but at a significant cost
in area—however, this technique does allow us to go beyond
the previously maximal design.

SummaryMultithreaded and single-threaded processors both
have an ideal CPI equal to one, although one of our mul-
tithreaded processors requires four threads to achieve that

CPI; hence for an equal total number of threads, single-
threaded processors have the most favorable lower bound
on CPI. However, even when threads are abundant, mul-
tithreaded processors are larger and suffer more frequent
cache misses due to cache contention than single-threaded
processors. Overall, when scaling-up multiprocessors based
on multithreaded and single-threaded processors, we find
that those based on multithreaded processors exhaust all mem-
ory resources on the FPGA or saturate the memory bus be-
fore they can outperform those based on single-threaded pro-
cessors.

8. Conclusions

In this paper we explored architectural options for scal-
ing the performance of soft systems, focussing on the or-
ganization of processors and caches connected to a single
off-chip memory channel, for workloads composed of many
independent threads. Our investigation of real FPGA-based
processor, multithreaded processor, and multiprocessor sys-
tems has led to a number of interesting conclusions. First,
we found that off-chip memory latency is not a significant
challenge for FPGA-based systems, and that a small direct-
mapped cache is sufficient to capture much of the benefit
of an ideal cache. We showed that multithreaded designs
help span the throughput/area design space, and that private-
cache based multithreaded processors offer the best perfor-
mance. Looking at multiprocessors we found that designs
based on single-threaded processors perform the best for a
given total area, followed closely by private-cache multi-
threaded multiprocessor designs. We demonstrated that as
the number of processors increases, multithreaded proces-
sors lose their latency-hiding advantage over single-threaded
processors, as both designs become bottlenecked on the mem-
ory channel. Finally, we showed the importance of exploit-
ing heterogeneity in FPGA-based multiprocessors to fully
utilize a diversity of FPGA resources when scaling-up a de-
sign.

9. References

[1] Altera Corp., “Nios II C2H compiler user guide v7.2,” 2007.

[2] Xilinx Inc., “AccelDSP synthesis tool v9.2.01,” 2007.

[3] M. Labrecque and J. G. Steffan, “Improving pipelined soft
processors with multithreading,” inProc. of FPL’07, Ams-
terdam, Netherlands, August 2007, pp. 210–215.

[4] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A
multithreaded soft processor for SoPC area reduction,” in
Proc. of FCCM ’06, DC, USA, 2006, pp. 131–142.

[5] P. Yiannacouras and J. Rose, “A parameterized automatic
cache generator for FPGAs,” inProc. of FPT’03, December
2003, pp. 324– 327.

[6] Altera Corp., “Nios II Processor Reference v7.2,” 2007.

[7] Xilinx Inc., “MicroBlaze Processor Reference v8.0,” 2007.

[8] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and
D. Sciuto, “A design kit for a fully working shared memory
multiprocessor on FPGA,” inProc. of GLSVLSI’07. New
York, NY, USA: ACM, 2007, pp. 219–222.

[9] M. Saldaña, L. Shannon, and P. Chow, “The routability of
multiprocessor network topologies in FPGAs,” inProc. of
FPGA’06. New York, NY, USA: ACM, 2006, pp. 232–232.

[10] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An auto-
mated exploration framework for FPGA-based soft multipro-
cessor systems,” inProc. of CODES+ISSS ’05. New York,
NY, USA: ACM, 2005, pp. 273–278.

[11] M. G. et al., “ MiBench: A free, commercially representative
embedded benchmark suite,” inProc. of WWC ’01, 2001.

[12] R. Moussali, N. Ghanem, and M. A. R. Saghir, “Supporting
multithreading in configurable soft processor cores,” inProc.
of CASES’07, NY, USA, 2007, pp. 155–159.

[13] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo, “NetFPGA–
an open platform for gigabit-rate network switching and rout-
ing,” in Proc. of MSE ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 160–161.

[14] SGI, “SGI RASC RC100 Blade,” 2008.

[15] Cray Inc., “Cray XD1TM supercomputer release 1.3,” 2005.

[16] XtremeData Inc., “XD2000F FPGA coprocessor for AMD
socket F,” 2007.

[17] A. Kulmala, E. Salminen, and T. D. Hamalainen, “Instruction
memory architecture evaluation on multiprocessor FPGA
MPEG-4 encoder,” inProc. of DDECS’07, April 2007.

[18] Altera Corp., “Quartus II,” San Jose, CA, USA, Altera.

[19] J. Fender, J. Rose, and D. Galloway, “The Transmogrifier-4:
an FPGA-based hardware development system with multi-
gigabyte memory capacity and high host and memory band-
width,” in Proc. of FPT’05, december 2005, pp. 301– 302.

[20] J. Veenstra and R. Fowler, “MINT: a front end for efficient
simulation of shared-memory multiprocessors,” inProc. of
MASCOTS ’94, NC, USA, January 1994, pp. 201–207.

[21] S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P. Jouppi,
and C. Rowen, “Organization and VLSI implementation of
MIPS,” Stanford University, CA, USA, Tech. Rep., 1984.

[22] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Custom
code generation for soft processors,”SIGARCH Computer
Architecture News, vol. 35, no. 3, pp. 9–19, 2007.

[23] “Embedded Microprocessor Benchmark Consortium
(EEMBC),” http://www.eembc.org.

[24] P. Yiannacouras, J. Rose, and J. G. Steffan, “The mi-
croarchitecture of FPGA-based soft processors,” inProc. of
CASES’05, September 2005, pp. 202–212.

[25] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-
specific customization of soft processor microarchitecture,”
in Proc. of FPGA’06, Monterey, CA, 2006, pp. 201–210.

[26] D. Besedin, “Platform benchmarking with RightMark mem-
ory analyzer,” http://www.digit-life.com, 2004.

