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Packet processing is the enabling technology of networked informatstersg such as the Internet
and is usually performed with fixed-function custom-made ASIC chips. Asntonication protocols
evolve rapidly, there is increasing interest in adapting features of tleegsimg over time and, since
software is the preferred way of expressing complex computation, wénsmeested in finding a
platform to execute packet processing software with the best possiblggtiput. Because FPGAs are
widely used in network equipment and they can implement processorseweadivated to investigate
executing software directly on the FPGAs. Off-the-shelf soft pramsssn FPGA fabric are currently
geared towards performing embedded sequential tasks and, in camtagirk processing is most often
inherently parallel between packet flows, if not between each indilvphaket.

Our goal is to allow multiple threads of execution in an FPGA to reach a higlgeegate throughput
than commercially available shared-memory soft multi-processors via improvsmoecthe underlying
soft processor architecture. We study a number of processor pigetiaaizations to identify which
ones can scale to a larger number of execution threads and find that ouititthreaded pipelines can
provide compact cores with high throughput. We then perform a desapesxploration of multicore
soft systems, compare single-threaded and multithreaded designs to idsaipility limits and
develop processor architectures allowing threads to execute with as litiieeataral stalls as possible:
in particular with instruction replay and static hazard detection mechanismartheif reduce the wait
times, we allow threads to speculatively execute by leveraging transaatienabry. Our multithreaded
multiprocessor along with our compilation and simulation framework makes the FR&Ato use for
an average programmer who can write an application as a single threadchptidion with coarse-

grained synchronization around shared data structures. Comparinguliithreaded processors using



lock-based synchronization, we measure up to 57% additional throtgituthe use of transactional-
memory-based synchronization. Given our applications, gigabit inesgfacd 125 MHz system clock
rate, our results suggest that soft processors can processgiackeftware at high throughput and low

latency, while capitalizing on the FPGAs already available in network equipment.
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Chapter 1

Introduction

Packet processing is a key enabling technology of the modern informaf@aral is at the foundation
of digital telephony and TV, the web, emails and social networking. Becafithe rapidly evolving
standards for hardware (e.g. from 10 to 1000 Mbits/sec over coppes)wprotocols (e.g. from
CDMA to LTE wireless protocols) and applications (from static web contestrsaming video), the
bandwidth requirements are increasing exponentially and the tasks thad gafiket processing for a
given application and transport medium must be updated periodically. meha time, accommodating
those needs by designing and fabricating processors with an applispéaific integrated circuit
(ASIQ approach has progressively become more difficult because of theasiosg complexity of
the circuits and processes, the high initial cost and the long time to market.ef@feprocessing
packets in software at high throughput is increasingly desirable. Teutxsoftware, a designer can
choose network processor ASICs which have a fixed organizatioRP@As (Field-Programmable
Gate Arrays) which are configurable chips that can implement any kindgaadcircuit and do not

require a large initial capital investment.

1.1 FPGAs in Packet Processing

Other than being able to implement a considerable number of equivalent latgis, -=PGAs present
advantages specifically in the context of packet processing. FirstAER&h be connected with a very

low latency to a network link and can be reprogrammed easily, thus providiray #or the networking
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hardware equipment to keep up with the constantly changing demands ofdheett. Also, FPGAs can
partition their resources to exploit the parallelism available in packet streathgr than processing
packets in sequence as single-core systems do. FPGAs providd séveradvantages for computing:
they allow for application-specific hardware acceleration, their codébeareused in several designs,
and they can be integrated with almost any memory or peripheral techntthogyreducing a board’s
device count and power requirements.

FPGAs are already widely adopted by network appliance vendors su€isao Systems and
Huawei and there exists a number of commercial reference designsgfospeed edge and metro
network nodes consisting of Altera and Xilinx devices [10, 60]. Overalgsin the communications
industry represent more than 4&%f the market for Altera and Xilinx (who, in turn, account for 87% of
the total PLD market [11]). In most of these use-cases however, BRE’e as data paths for passing
packets between other chips in charge of the bulk of the packet proge3#e challenge to the wide-
spread use of FPGAs for computing is providing a programming model foaghécation functions
that need to be updated frequently. The current design flow of FP&4edly involves converting a full
application into a hardware circuit—a process that is too cumbersome foedis pf many applications
and design teams. To make configurable chips easy to program for asoffaveloper, FPGA-based
designs increasingly implement soft processors in a portion of their coafitpufabric. While software
packet processing on FPGAs is only in its infancy, the processoP@AFexecution paradigm has
gained considerable traction in the rest of the embedded community. Theseeseseveral challenges

in making a system of these processors efficient, and this thesis aims essiddrsome of them.

1.2 Soft Processors in Packet Processing

Although there exist tools to compile a high-level program down to a logic itirtue quality of

the circuit often suffers because of the difficulty of analyzing pointéeresces. Since converting
complex applications into state machines leads to the creation of a very largemnahstates, current
synthesis tools often produce bulky circuits that are not always désifedm a frequency or area

standpoint. Reprogramming the configurable fabric of an FPGA in the fieldaleayequire board-level

ITelecom and wireless represent 44% of Altera’s sales [11]. Commitimits account for 47% of Xilinx's sales [156].
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circuitry that adds to the cost and complexity of the final system. Softwargrgmmable processor
systems, i.e. programmable cores that potentially have accelerators shdmiisg are therefore very
desirable, assuming that they can deliver the performance requirgi/éor clock frequency and area
specifications.

While data intensive manipulations can be performed in parallel on a widerhoffidata either
with wide-issue or vector-processing elements, control intensive apiplisaare best described in a
sequential manner because of an abundance of dependent condititeaments. To support arbitrary
software compiled from a high-level programming language, we focusearithitecture of general-
purpose processors on FPGA platforms, which could later be augmeiittechpplication-specific
accelerators to execute the data-intensive portions of an application.eXéighlight areas where
currently available commercial soft processors need improvement éepprocessing, and how we

overcome those difficulties in this thesis.

1.3 Research Goals

The goal of this research is to allow multiple threads of execution, such aadkep processing
applications, to reach a higher aggregate throughput via improvementsuodbdying soft processor
architecture. We demonstrate that our resulting soft processors oaidgran efficient packet

processing platform while being easy to use for software programmesgtting the following goals.

1. To build soft processors with an improved area efficiency with the inént of instantiating
a plurality of them. To this end, we augment the single-threaded soft processor arclatectur
that are currently commercially available with support for customized coderggon and

multithreading and study their area and performance trade-offs.

2. To explore the memory system and processor organization tradeff space for scaling up
to larger numbers of processors, while minimizing contention and mainizing locality. To
reach this goal, we assemble instances of these processors into a mussproiodrastructure
that requires the design of a memory hierarchy. Studying differenecacitectures to hide the
latency of off-chip memory accesses and evaluating the scalability limits ofdasigns gives us

insight on how to build an efficient packet processing system.
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3. To build a real packet processing system on an FPGA to validate our ahitectural
exploration with real applications. For this purpose, we integrate our soft multiprocessor on
a platform with high-speed packet interfaces, a process requiringifped for fast packet input

and off-chip memory storage.

4. To characterize and tackle the primary bottleneck in the system, \Wwich we identify as
inter-thread synchronization in our packet processing applicatiors. As a first remedy, we
introduce hardware thread scheduling which is both a compiler and atcin#etechnique in
our solution. While this technique improves throughput significantly, sigmifisgnchronization
stalls remain. To utilize the available hardware thread contexts more efficiamtlintroduce
optimistic concurrency through transactional memory. We first study in isolatial on single-
threaded processors, methods to track memory accesses to enable optiangtedigm. We
further refine this mechanism to incorporate it in our multithreaded multiprocéssnework.
Finally, to measure the benefits of our programming model, we compare otgnsysith
speculative execution against alternate programming models, including ffioityascheduling

where each thread of an application accesses different data.

1.4 Thesis Organization

This thesis is organized as follows: in Chapter 2, we provide some baakgjinformation on FPGAs,
network processing and soft processors. In Chapter 3, we ideegiesentative packet processing
applications and investigate how to execute them efficiently. In particulaguaeatify performance
problems in the pipeline programming model for packet processing applisadioth determine that
the run-to-completion approach (Section 3.1.2) is easier to program arel aporat fully utilizing
multiple concurrent processing threads. In consequence, we deteranip®n that the synchronization
bottleneck must be addressed for the simpler run-to-completion appro&ehdompetitive in terms
of performance; this objective is the driving force for the rest of thisitheln Chapter 4, we study
multithreaded soft processor variations: those cores act as a buildiclg folothe remainder of the
thesis. Our target for this chapter is a Stratix FPGA with 41,250 logic elemenig]-sange device.

In Chapter 5, we replicate our soft cores and study their scalability whigny wonventional single-
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threaded soft processors as a baseline. As we are interested in maxithizinge of larger FPGAs,
we leverage the Transmogrifier 4 infrastructure with a Stratix FPGA contaif040 logic elements
(the largest chip in its family). Encouraged by the results, we select anrARR@rd for packet

processing with 4 gigabit Ethernet ports, which represents even todayséderable bandwidth at the
non-ISP level. We migrate our processor infrastructure to this new tenztdbuild the rest of our

experimentation on the board’s Virtex-1l Pro FPGA with 53,136 logic cells :dedicate Chapter 6
to describe this platform and our baseline processor organization. Adeteemine that our packet
processing applications are hindered by the use of mutexes, in Chapier @resent a hardware
thread scheduler to address the synchronization bottleneck. In Clgapter present our full system
integration of speculative execution with multithreaded multiprocessors aaglergble to validate that
a programming model with speculative execution on a pool-of-threadgi@san improved throughput
compared to a programming model where threads have a specialized beRaatly, in Chapter 9, we

state our conclusions and directions for future work.



Chapter 2

Background

This chapter presents some background information regarding sofpvestiet processing and its
implementation in network processor ASICs. We then provide some contextriafion on FPGAs,
on their programming model, and how they can be used to process packeteftviare-defined
applications. For reading convenience, we place the related work spedifie processor architecture
components that we study in their respective later thesis chapters. Wbystaving some high-level

information on packet processing and its application types.

2.1 Software Packet Processing

With close to 2 billion users in 2010 [104] and growing needs for interactiviimedia and online
services, the computing needs of the Internet are expanding rapidiytypls of interconnect devices
range from traditional computers, to emerging markets such as sensibshanes and miniaturized
computers the size of a wall adapter called “plug computers” [26]. Enicpsedicts that there will be
50 billion network connections between devices by 2020 [40]. As anasanrg number of businesses
depend on network services, packet processing has broad finamdikegal impacts [45, 46].

Many packet processing applications must process packets at lineanatdp do so, they must
scale to make full use of a system composed of multiple processors andratars cores and of the
available bandwidth to and from packet-buffers and memory channelsie#srk users are moving

towards networks requiring higher-level application processing, flesitftware is best suited to adapt
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to fast changing requirements. Given the broad and varied use aétga@cessing, in this section we
clarify the application-types and bandwidths for which software paaketgssing is suitable, and what

challenges emerge when programming these applications in a multicore enuiitonme

2.1.1 Application Types
We divide network processing applications into three categories:

1) Basic Common packet processing tasks performed in small office/home office nkedgyoipment
include learning MAC addresses, switching and routing packets, aforméang port forwarding, port
and IP filtering, basic QoS, and VLAN tagging. These functions are tipitimited to a predefined
number of values (e.g. 10 port forwarding entries) such that theyeanflemented in an ASIC switch

controller chip, without the need for software programmability.

2) Byte-Manipulation A number of network applications, in particular cryptography and conspras

routines, apply a regular transformation to most of the bytes of a packedtuBe these workloads often
require several iterations of specialized bit-wise operations, they bérmafi hardware acceleration
such as the specialized engines present in network processors{b@grn processors (e.g. Intel
AES instruction extensions), and off-the-shelf network cards; theay gémerally do not require the

programmability of software.

3) Control-Flow Intensive Network packet processing is no longer limited solely to routing, with many
applications that require deep packet inspection becoming increasingijmaon. Some applications,
such as storage virtualization and server load balancing, are variatiadhs theme of routing that reach
deeper into the payload of the packets to perform content-based raatitess control, and bandwidth
allocation. Other applications have entirely different computing needsesuttte increasingly complex
firewall, intrusion detection and bandwidth management systems that mughize@pplications,
scan for known malicious patterns, and recognize new attacks among af se@cuous packets.
Furthermore, with the increasing use of application protocols built on HROPXML, the distinction
between payload and header processing is slowly disappearing. lietws thesis we focus on
such control-flow intensive applications. We focusstatefulapplications—i.e., applications in which

shared, persistent data structures are modified during the procetsilngtgpackets.
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2.1.2 Network Processors

Until recently, the machines that process packets were exclusively niadéfixed ASICs performing
increasingly complex tasks. To keep up with these changing requirementputer architects have
devised a new family of chips callegetwork processors They are software programmable chips
designed to process packets at line speed: because the processiog lstgally exceeds the packet
inter-arrival time, multiple packets must be processed concurrently. Baetiison, network processors
(NPs) usually consist of multithreaded multiprocessors. Multithreading &&s also used extensively

in ASIC network processors to hide pipeline stalls [57].

The factors limiting the widespread adoption of network processors dhe @isagreement on what
is a good architecture for them; and (ii) their programming complexity often tetatéheir complex
ISAs and architectures. Network processor system integratorsaheeefoid the risk of being locked-in
a particular ASIC vendor’s solutions. We next give an overview of thedlitee on network processor

architecture research and how it relates to our work.

StepNP [114] provides a framework for simulating multiprocessor netwamkisallows for multi-
threading in the processor cores. It has even been used to exploedfebe of multithreading in
the face of increasing latencies for packet forwarding [115]. Inwaork, we explore similar issues
but do so directly in FPGA hardware, and focus on how performancebeascaled given an FPGA

implementation and single-channel memory interface.

Ravindran et al. [122] created hand-tuned and automatically generatédrougessor systems for
packet-forwarding on FPGA hardware. However, they limited the scbfieeo work to routing tables
which can fit in the on-chip FPGA Block RAMs. Larger networks will demaaudjer routing tables
hence necessitating the use of off-chip RAM. Our work differs in thaheevily focus on the effect of
the on-board off-chip DDR(2)-SDRAM, and do so over a range othenarks rather than for a specific

application.

There exists a large body of work focusing on architecture exploratioNPs [31,32,49,114,130,
135, 149], however none of them has seriously investigated nor ciagesnst the run-to-completion
programming model on which we focus (see Section 3) and that is becomirgagiogly common

in commercial products such as the PowerNP/Hifn 5NP4G [5, 36], Miretspd27483 TSP3 [68],
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Broadcom BCM1480 [20], AMCC nP7510 [29] and Vitesse 1Q220]11

2.1.3 Fast- vs Slow-Path Processing

Network equipment typically connects multiple network ports on links with spdetspan multiple
orders of magnitude: 10Mbps to 10Gbps are common physical layer data r&Vhile local area
networks can normally achieve a high link utilization, typical transfer speedsd from the Internet
are on the order of megabits per second [27] as determined by the nettli@dtion and organization
between the Internet service providers.

The amount of processing performed on each packet will directly taffieclatency introduced on
each packet and the maximum allowable sustained packet rate. The arhbuffedng available on
the network node will also help mitigate bursts of traffic and/or variability in theluarhof processing.
For current network appliances that process an aggregate multi-gitpdhistream across many ports,
there is typically a division of the processingdata plane(a.k.a. fast path) andontrol plane(a.k.a.
slow path) operations. The data plane takes care of forwarding peatk&is speed based on rules
defined by the control plane which only processes a fraction of thectr@fg. routing protocols).
Data plane processing is therefore very regular from packet to pankiedeterministic in the number
of cycles per packet. Data plane operations are typically implemented in ABlGsecards; control
plane operations are typically implemented on a centralized supervisor Hagdcontrol plane, often
software programmable and performing complex control-flow intensive task has to be provisioned
to handle high data rates. For example, the Cisco SPP network procetsCRS-1 router is designed
to handle 40Gbps [24]. On smaller scale network equipment (eg., a commedktog-based router at
the extreme end of the spectrum), the two planes are frequently implementesingrhegprinted circuit
board either with ASICs or programmable network processors or a cotigniraf both. In that case,
the amount of computation per packet has a high variance, as the bpietaeen the fast and slow
path is often blurred.

In this thesis, we focus on complex packet processing tasks that arewesl to a software
implementation, since a complete hardware implementation would be impractical. @chniark
applications therefore target the control plane, rather than the data g@ilanelti-gigabit machines.

We now introduce FPGAs, in contrast with ASIC network processord,explain how FPGAs can
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implement packet processing.

2.2 FPGAs and their Programming Model

An FPGA is a semiconductor device with programmable lookup-tallésT$) that are used to
implement truth tables for logic circuits with a small number of inputs (on the orfdétm6 typically).
Thousands of these building blocks are connected with a programmableoimexct to implement
larger-scale circuits. FPGAs may also contain memory in the form of flip-feops block RAMs
(BRAMS), which are small memories (on the order of a few kilobits), thatttugyeprovide a small
storage capacity but a large bandwidth for circuits in the FPGA.

FPGAs have been used extensively for packet processing [B2,%28,102,110,129] due to several
advantages that they provide: (i) ease of design and fast time-to-mgiktte ability to connect to a
number of memory channels and network interfaces, possibly of varyihmddogies; (iii) the ability
to fully exploit parallelism and custom accelerators; and (iv) the ability to-igdrade the hardware
design.

Other than being used in commercial end-products, FPGAs also providgportunity for
prototyping and high-speed design space exploration. While the Intedfrestructure is dominated
by vendors with proprietary technologies, there is a push to democratizbatiigvare, to allow
researchers to revisit some low-level network protocols that havevobtesl in more than a decade.
This desire to add programmability in the network is formally embraced by laaje pmjects such as
CleanSlate [41], RouteBricks [37] and GENI [137], in turn supportgediassive infrastructure projects
such as Internet2 [6] and CANARIE [131]. FPGAs are a possible solutdfulfill such a need as
they allow one to rapidly develop low-level packet processing applicatidasan example of FPGA-
based board, the NetFPGA development platform [91] (see Chaptdo@}paetworking researchers
to create custom hardware designs affordably, and to test new thesdgesthms, and applications at
line-speeds much closer to current state-of-the-art. The challenge ma&mg networking researchers
are not necessarily trained in hardware design; and even for thase¢haomposing packet processing
hardware in dardware-description languags time consuming and error prone.

FPGA network processing with software programmable processorsekastplored mostly in the
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perspective of one control processor with FPGA acceleration [8,44 89, 140]. A pipeline-based
network processor has been proposed where an ILP solver findesh@rocessor count per pipeline
stage [67, 165]. The most relevant work to our research is found @éhticaand Vassiliadis [65] where
two Microblaze soft-processors with hardware assists are evaluated foiths on the importance of the
load balance between the processors and the hardware assists. Tim ahparallelism they exploit is
limited to two threads programmed by hand and they do not make use of extermary. FPL-3 [30]

is another project suggesting compilation from a high-level languageckEparocessing; however, we

prefer to use a well-accepted language for our experiments.

2.2.1 Hard Processors on FPGA

While the FPGA on the current NetFPGA board on which we perform oursarements has two
embedded PowerPC hard cores, the next generation of NetFPGA wil{asstiming a Virtex-5
XCV5TX240T-2 FPGA device [90]), making an alternative way of implemenpnocessors—via the
reconfigurable fabric—invaluable to software programmers. At the monfetitiowriting, Altera
abandoned hard cores on FPGAs with the Excalibur device family that et ARM922T processor,
the Xilinx Virtex-5 family of FPGAs provides a limited number of devices with haodvBrPC cores,
and the Virtex-6 family does not offer any hard processor cores.rdstiagly, because processors
are common and useful, the latest Xilinx 7-Series introduced ARM-basecegsors [157]. So
far, hard processors FPGA cannot reach the gigahertz speeceddtiom of modern processors for
single-threaded workloads: the PowerPC cores in the FXT family of VBt&RGAS can reach at
most 550MHz [155] and the state-of-the-art Xilinx 7-Series Zynq camesreported to operate at
800MHz [157]. In retrospect, while the two major FPGA vendors, Xilinx Attéra, formerly had hard
processors in some of their devices, it seems that they have, up uniitlyestowed their investment

in hard processor cores, possibly given the emergence of sofgsors.

2.2.2 Soft Processors

Improving logic density and maximum clock rates of FPGAs have led to an siaggaumber of FPGA-
based system-on-chip (i.e. single-chip) designs, which in turn incrégagingtain one or moreoft

processors—processors composed of programmable logic on the FPGA. Despite theerfavmance
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drawbacks, a soft processor has several advantages comparedtiog custom logic in a hardware-
description language: it is easier to program (e.g., usipgportable to different FPGAS, flexible
(i.e., can be customized), and can be used to control or communicate withcothponents/custom
accelerators in the design. Soft processors provide a familiar programenivironment allowing
non-hardware experts to target FPGAs and can provide means to identifaccelerate bottleneck
computations through additional custom hardware [8, 95, 153].

The traditional network packet forwarding and routing are now welkusithod problems that can be
accomplished at line speed by FPGAs but more complex applications amelsesbed in a high-level
software executing on a processor. Soft processors are verguiteltl to packet processing applications
that have irregular data access and control flow, and hence unaigdiprocessing times. As FPGA-
based systems including one or more soft processors become incheasimgnon, we are motivated
to better understand the architectural trade-offs and improve the effjoidithese systems.

FPGAs are now used in numerous packet processing tasks and evaryife@saarch projects have
demonstrated working systems using exclusively soft processors GA$-[54, 67, 108], the bulk of
the processing is often however assumed by another on-board ASt@éssor. Our proposed soft
processor system improves on commercially available soft processr$52] by: (i) specifically
taking advantage of the features of FPGAs; and (ii) incorporating somefiteefrom ASIC network
processor architectures such as multithreaded in-order single isseg wdrich can be found in the
Intel IXP processor family [57E and the QuantumFlow processor [25]. Our final system targets the
NetFPGA [91] card, which is unique with its four Gigabit Ethernet portspwesion however that our
design could be adapted for system with a different number of Etheonistguch as RiceNIC [132].

Because most soft processors perform control-intensive tasksb(ilkeof the reconfigurable
fabric being reserved for data intensive tasks), commercial SPs (iicwar NIOS-II [16] and
Microblaze [152]) issue instructions one at a time and in order. Therdseaidarge number of
open-source soft processors with instruction sets as varied as ARR, 8PARC, MIPS and full-
custom [1,117]. Vector soft processors [71, 164] offer instrudtitor array-based operations, which
relate to applications domains such as graphics and media processing, ambiciot our focus in

this thesis. The most related soft processors to our investigations aréctiRIFC processor from

INow owned by Netronome Systems Inc.
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Altera [69] which has not been publicly documented yet and the multithreddéd processor [43],

which we describe in Chapter 4. SPREE [161] gives an overview of #réopnance and area
consumption of soft processors. As a reference point, on a StratiSHARFT80C5 device with the
fastest speed grade, a platform that we use in Chapter 4, the Niss[tia variation with the fastest
clock rate [16]) reaches 135 MHz (but instructions are not retiredveryecycle). We next review how

packet processing can be expressed, i.e. how will the soft-prosdssprogrammed inside an FPGA.



Chapter 3

Choosing a Programming Model

While nearly all modern packet processing is done on multicores, the mappihg application to
those cores is often specific to the underlying processor architectdrées atso a trade-off between
performance and ease-of-programming. In this chapter, we firstrexile multiple ways of managing
parallelism in packet processing and focus on the most versatile andréentvapproach. Then, after
defining a set of representative software packet processing appiisawe quantitatively justify our

choice of programming model for extracting parallelism to be able to scalerpehce.

3.1 Programming Models Overview

In this section, we examine the three main programming models illustrated in Figure 3.1

3.1.1 Pipelining

To program the multiple processing elements (PEs) of a network procesest research focuses
on breaking the program into one or several parallel pipelines of tasksrtap to an equal nhumber
of processor pipelines (as shown in Figure|/ 3.1 (a) and (c)). In this sanpiegle-pipeline model,
while inter-task communication is allowed, sharing of data between tasks ibyusotesupported. The
pipeline model rather focuses on exploiting data locality, to limit the instructiomgtoper PE and to
regroup accesses to shared resources for efficient instructieddoty. Pipelining is widely used as

the underlying parallelization method [33,59, 145, 148], most often to dakeidifficulty of managing

14
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a) Pipelined PE,r= PE, =~ | PE

b) Run-to—completion PE
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¢) Hybrid PE,
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Figure 3.1: Parallelization models.

locks: there is no need to synchronize if writes to shared data structere®ae in a single pipeline

stage, even if there are multiple readers.

The pipeline programming model is well suited for heterogeneous PEsgadaim a one-
dimensional array. Conversely, programs are best suited for pipeliiningy are composed of data-
independent and self-contained kernels executing in a stable computatiempvith communication at
the boundaries [136]. To obtain the best performance on such a pipetinigecture, all the processing
stages have to be of similar latency so that one stage is ready to acceptvtbeksame time as the
previous stage is ready to hand off some work. However, efficientlynbadg the pipeline stages and
the amount of communication between them to maximize multiprocessor utilization is cataglic
and often not possible for complex applications. Even if an acceptahlé ig®btained, this difficult
process must be repeated when the application is updated or the coddstpa different processor
architecture. Furthermore, handling packets that require varying amofinomputation or breaking

down frequent accesses to large stateful data structures (suchitaey riables) to ensure lock-free

1Assuming the writes can be flushed atomically.
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operation is impractical in a pipeline with many stages. We quantify those diffisutien pipelining
existing applications in Chapter 8.1.

In earlier work [74], we have demonstrated the difficulties of the pipeline @nodVe have
investigated the compilation issues in compiling a high-level description of dicafpn to a network
processor. Our applications were defined as task graphs that we atletoptansform to execute
efficiently on the underlying hardware. We created a parametric modelnetvaork processor that
allowed us to approximate the performance of different execution scheM&esobserved that the
decomposition of the application into a graph of tasks resulted in a signifiocamira of idle cycles
in processing elements, a result that was also observed in NepSim [88ky§tem remained complex
to analyze, debug and to target by a compiler, because of problems sucadaimbalance and the
competing effects of task scheduling and mapping. We also identified thatl matrkloads can easily
be expressed as task graphs: the bulk of numerous network proeggsizcations is contained in a
single loop nest.

Earlier publications [85, 97] have asserted that network processinépisneof streaming [138], a
computing model related to pipelining. In stream programming, the programesawsistom language
to describe regular computations and their parallelism such that the compilecchadule precisely
concurrent SIMD operations in automatically balanced pipeline stagesrglve that complex control
flow in advanced network processing is too unpredictable to be bestlukxbas a stream program. For
example, a network application that interprets TCP packets to provide ddtimgdior a database server
will have widely varying amounts of processing to apply on packets: isgrthe work as a pipeline

of tightly scheduled parallel instructions is impractical and inefficient.

3.1.2 Run-to-Completion

The model in Figure 3!1(b) refers to the method of writing a program whi#feseht processors process
packets from beginning-to-end by executing the same program. Diffpeghs in the program will
exercise different parts of the application on different threads, wilichot execute in lock-step. The
programming is therefore intuitive but typically requires the addition of lockgrttect shared data
structures and coherence mechanisms when shared data can be held in foodiples.

Nearly all modern multicore processors are logically organized in a grid tohwthe programmer
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can map an execution model of his choice. The maahitectural factors that would push a

programmer away from the intuitive run-to-completion model are: (i) a highe@oherence penalty
across private data caches, or (i) a reduced instruction and date stmiage compared to a task
decomposition in pipeline(s). Most network processors do not implemetieceoherence (except
commodity multicore machines) and for our experiments, our data cache exdstrad therefore has
roughly the same hit rate with or without task pipelining. For network pragsswith no special

communication channel between the cores for pipeline operations, sutie 490Gbps-rated 160-

threads Cisco QuantumFlow Processor [25], run-to-completion is theahatogramming model.

3.1.3 Pipeline Hybrid

The grid of processors drybrid scheme (see Figure 3.1 (c)) also requires a task decomposition and
presents, to some extent, the same difficulty as the pipelined model. While paakefiow across
different pipelines, the assumption is that a specialized engine at the inpid dispatch a packet to a
given pipeline, which would function generally independently. Enforénigindependence to minimize
lock contention across pipelines is actually application specific and can lsade¢ce load-imbalance.
The number of processors assigned to each pipeline must also be siredirag to the number of
network interfaces to provide a uniform response time. In the presdémpregrams with synchronized
sections, abundant control flow and variable memory access laterdiésyiag a good load balance is
often infeasible. The hybrid model is also inflexible: the entire code must-begemized as a whole
if the architecture or the software is changed. A variation on the hybrid huasists of using the
processors as run-to-completion but delegating atomic operations tolsgggetmocessors [143]. That
model also removes the need for locks (assuming point-to-point loclcfr@enunication channels) but
poses the same problems in terms of ease of programming and load imbalareeigslihe model.
Because the synchronization around shared data structures in stapplidations makes it
impractical to extract parallelism otherwise (e.g., with a pipeline of balanaszlignrn stages), we adopt
the run-to-completiofpool-of-threadsnodel, where each thread performs the processing of a packet
from beginning-to-end, and where all threads essentially executerttee@agram code. Consequently
our work can be interpreted as an evaluation of a run-to-completion ar bf/larid model where we

focus on a single replicated pipeline stage. We next present our applgatidrguantify in Section 3.3
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what would be the impact of pipelining them.

3.2 Benchmark Applications

To measure packet throughput, we need to define the processingnpedfon each packet. Network
packet processing is no longer limited solely to routing, with many applicationsehaire deeper
packet inspection becoming increasingly common and desired. Most Niteatare evaluations
to date have been based on typical packet processing tasks takeiduatijzx microbenchmarks
NetBench [101], NPBench [86] and CommBench [150] provide testjqams ranging from MD5
message digest to media transcoding. Stateless kernels that emulate isaké&tgprressing routines
fall into the first two categories in Section 2.1.1 which are not our focus. tlise kernels that are
limited to packet header processing, the amount of instruction-level demaligLP) can exceed several
thousand instructions [86]. Because such tasks are best addissSdtD processors or custom
ASICs, in this thesis we instead focus on control-flow intensive applicatidrese the average ILP
is only five (a number in agreement with other studies on control-flow interisnchmarks [144]).
While microbenchmarks are useful when designing an individual PEamigng memory behavior,
they are not representative of the orchestration of an entire NP appticafiwere is little consensus
in the research community on an appropriate suite of benchmarks forcedi/aacket processing, at
which current fixed-function ASICs perform poorly and networkgassors should excel in the future.

To take full advantage of the software programmability of our processarsfocus is on control-
flow intensive applications performing deep packet inspection (i.e., debpe the IP header). In
addition, and in contrast with prior work [86, 101, 150], we focus siateful applications—i.e.,
applications in which shared, persistent data structures are modifiedydbenprocessing of most
packets. Since there is a lack of packet processing benchmark syitesewting applications that
are threaded and synchronized, we have developed the four ctiatvahtensive applications detailed
in Table 3.1. Except foIntruder [22] and its variationintruder2, the benchmarks are the result of
discussions with experts in the networking community, in particular at the thiiyef Toronto and at
Cisco Systems Inc., with a focus on realistic applications.

Table 3.1 also describes the nature of the parallelism in each applicatiom tGatehe applications
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Table 3.1:

Benchmark Applications

19

Description

Critical Sections

Input packet trace

Classifier

Performs a regular expression matching on T
packets, collects statistics on the number
bytes transferred and monitors the packet ratg
classified flows to exemplify network-based g

Cifas long transactions when regul
@xpressions are evaluated; explg
fparallelism across flows stored in
pglobal synchronized hash-table.

plication recognition. In the absence of a match,

the payloads of packets are reassembled
tested up to 500 bytes before a flow is mark
as non-matching. As a use case, we config

the widely used PCRE matching library [58]
(same library that the popular Snort [124] intru-
sion detection/prevention system uses) with the
HTTP regular expression from the “Linux layer

7 packet classifier” [87].

and
ed
ure

aPublicly available packet trace frof
itR007 on a 150Mbps trans-Pacific
dink (the link was upgraded from
100Mbps to 150Mbps on June |1
2007) [28] HTTP server replies af
added to all packets presumahly
coming from an HTTP server t
trigger the classification.

@

O

NAT

Exemplifies network address translation b¥xhibits short transactions that e
rewriting packets from one network as if orig-compass most of the processing;
inating from one machine, and appropriatelgxploits parallelism across flows
rewriting the packets flowing in the other direcstored in a global synchronized

tion. As an extensiomAT collects flow statisticg
and monitors packet rates.

hash-table.

nSame packet trace 83assifier.

UDHCP

Derived from the widely-used open-sour
DHCP server. As in the original code, leas
are stored in a linearly traversed array and
addresses are leased after a ping request for {
expires, to ensure that they are unused.

c@®eriodic polling on databases f

henTablg 6.2. Has high contention an
shared lease and awaiting-for-ping
array data structures.

briPacket trace modeling the expected
e8me expired records results in mamyDHCP message distribution of [a
IRRad-dominated transactions as se¢aretwork of 20000 hosts [14].

Intruder

Network intrusion detection [22] modified fqg
packetized input. Extensive use of queues
lists, reducing the effectiveness of signatures
to random memory accesses [75]; mostly CH
bound with bursts of synchronized computati
on highly- contended data structures.

amized associative array until con

tures and sent over the networkpackets.
Multiple lists and associative array

make extensive use of the memary
allocation routines.

rPackets are stored in a synchro256 flows sending random messages
n-of at most 128 bytes, broken ran-
dydete messages are fully reassendomly in at most 4 fragments, con-
Wled. They are then checked againgaining 10% of 'known attacks’. The
oa dictionary before being removediragments are shuffled with a sliding
from the synchronized data strucwindow of 16 and encapsulated in |P

Intruder2

Network intrusion detection [22] modified fqg

packetized input and re-written to have arraylighter data strutures because of stat-

based reassembly buffers to avoid the overh
of queues, lists and maps that also redu

earlly allocated memory. Has twp
caynchronization phases: first a per-

the effectiveness of signatures due to the lardlew lock is acquired and released

amount ofnalloc ()/free () calls [75].

to allow processing each packet in-
dividually, then most of the com-

putation is performed on reassem-
bled messages before the per-flow
variables are modified again under

synchronization.

rSimilar to above, with significantly Same as row above.
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initially exist as sequential programs where an infinite loop processesamketmon each iteration, the
parallelism discussed is across the iterations of the main infinite loop. We onleutieZntruder
benchmarks starting in Chapter 8 because they present a differevidaelvith regards to speculative
execution, which is the focus of the last part of this thesis. Since quarditatetrics about our
benchmarks have evolved slightly as we edited the benchmarks, we tguiated numbers in the
appropriate sections of the thesis. The baseline measurements in| Tableo6o2afed with the
experimental results) reports statistics on the dynamic accesses per séttiah for each application.
Note that the critical sections comprise significant numbers of loads aresstaeth a high disparity
between the average and maximum values, showing that our applicatiosimifel and irregular in
terms of computations per packet. We next analyze the representativeofradash application and
generalize them to other control-flow intensive network applications, péatlg with respect to packet

ordering, data parallelism, and synchronization.

Packet Ordering In a network device, there is typically no requirement to preserve thespaottering
across flows from the same or different senders: they are intermstadrelated. For a given flow, one
source of synchronization is often to preserve packet orderinghvdaic mean: i) that packets must be
processed in the order that they arrived; and/or ii) that packets musgtriieout on the network in the
order that they arrived. The first criteria is often relaxed becausenielsknown that packets can be
reordered in a network [146], which means that the enforced ordgtiimigtically the order in which
the original sender created the packets. The second criteria can bgedaatahe output queues and
does not usually affect the core of packet processing. For owhibeark applications in Table 3.1,
while we could enforce ordering in software, we allow packets to be peatkout-of-order because our

application semantics allow it.

Data Parallelism Packet processing typically implies tracking flows (or clients BDHCP) in a
database, commonly implemented as a hash-table or direct-mapped arragiz€ lné the database
is bounded by the size of the main memory—typically larger than what can heiced in any single
data cache—and there is usually little or a very short-term reuse of incoraokg{s. Because a network
device executes continuously, a mechanism for removing flows from thdakse after some elapsed

time is also required. Istatefulapplications, i.e. applications where shared, persistent data structures
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are modified during the processing of most packets, there may be varibatedo not relate directly
to flows (e.g. a packet counter). Therefore, it is possible that theepsotg of packets from different
flows access the same shared data and therefore the processingqfabkests in parallel may conflict.
Also, for certain applications, it may possible to extract intra-packetlplisan (e.g. parallelization of a
loop), however those cases are rare because they are likely to leagesacessors underutilized so we
do not consider them further. Whenever shared data is accessetdyrient threads, those accesses

must be synchronized to prevent data corruption.

Synchronization To increase parallelism, implementing finer-grain synchronization is notyalwa
feasible since repeatedly entering and exiting critical sections will likely apfdficant overhead. For
exampleNAT andClassifier have a significant fraction of their code synchronized because theme is
interaction between the hash table lock and the per-flow lock (see Tabl@3htead cannot release the
lock on the hash table prior to acquiring a lock on a flow descriptor to etisatéhe flow is not removed
in the mean time. Mechanisms for allowing coarser-grained sections whilerpireg performance are

therefore very desirable for packet processing.

3.3 Motivating Run-to-Completion

Because a number of network processors implement the pipeline model [88the promise of
extracting parallelism while being lock-free, we must justify our choice offferént model (run-to-
completion). For this purpose, we use benchmarks from NetBenchi1d] our stateful benchmarks
running on a single thread. As Netbench'’s applications require a nurh®gstem and library calls, they
cannot be ported easily to our NetThreads embedded target (Chameng instead record execution
traces using the PIN tool [123]. We only monitor the processing for eackegt and ignore the packet
and console 1/O routines.

As seen in Figure 3.2(a), our four applications span the spectrum otjat@niability (i.e. jitter)
per packet that is represented by the NetBench benchmaikste and ipchain have completely
deterministic behavior (no variability), while table looktp and the regular expression matching

Classifier have the most variation across packets. Considering that for thoseaigpigcthe amount

2Exceptdh which is not packet based nss1 because of its inlined console output.
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pipeline based on instruction clustering for NetBench [100] benchmawtk®ar benchmarks (marked
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of computation can be more than doubled depending on the packet, we ad®rbht they are less
amenable to pipelining. Even if re-circulating a packet from the end to theriag of a pipeline were
effective at mitigating this huge variation in latency [88], we would also haeffaxtively divide the
packet processing into pipeline stages.

To emulate pipelining, we employ a previously-proposed graph-clusteririgoahéhat greedily
clusters instructions with the highest control and data flow affinity [12 1ljiairate cyclic dependences
and minimize communication between pipeline stages. Since NetTM has 8 threadd,ster the
instructions into 8 pipeline stages based on the profile infornJ(%tiorall benchmarks in Figure 3.2(b),
clustering the code into pipeline stages leads to significant load imbalaricéas the largest pipeline
imbalance (i.e. the rate of the pipeline is 7.9 times slower than the average rithefktages) because
of the clustering of the Boyer-Moore string search function in a singlelipgpetage. Everroute
which has a deterministic execution (Figure 3.2(a)) has load imbalancedeechihe clustering of the
checksum routine in a single longer-latency pipeline stageigntlains has similar problems. While
hardware accelerators could be used to accelerate checksum aperatiwogrammer cannot rely on
them to balance the latency of arbitrary code in stages. To get a betted@ad®, a programmer would
replicate the slowest stages and move to the hybrid or run-to-completion randelgdd synchronization

around stateful data structures.

3.4 Summary

Modern network appliance programmers are faced with larger and morel@omsystems-on-chip
composed of multiple processor and acceleration cores and must meepéiotadion that performance
should scale with the number of compute threads [112, 145]. When the appiiégs composed of
parallel threads, accesses to shared data structures must be sjzeshrdhese dependences make it
difficult to pipeline the code into balanced stages of execution to extraaligleam. We demonstrated
in this chapter that such applications are more suitableuo-#o-completiormodel of execution, where

a single thread performs the complete processing of a packet from stiaisto The main advantages

of this model is that there is a unique program, it can be reused on neiteatates and its scalability

3Control-flow and data dependences are based on the profiled basks-blo
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is more predictable. The programmer only writes one program in the mosthatay possible and
the compilation infrastructure and the processor architecture ease thléelpaation problem. For
performance, the system must be able to execute multiple instances of tmanpriogparallel. We

next investigate ways of improving the efficiency of soft processcesctir later build multicores.



Chapter 4

Improving Soft Processor Area Efficiency

with Multithreading

In an FPGA packet processor, each processing element must beat@ngeoptimized to deliver the
maximum performance, as we want to replicate those processing elements swltaktage of all the
available memory bandwidth. For soft processors in general, especidligone systems, raw single-
threaded performance is often not as crucial as the aggregaterparice of all the cores—otherwise
an off-chip or on-chip (if available) single hard processor would ledguable. Other metrics or their
combination may also be of importance, such as minimizing the area of the pgaas¢ching the
clock frequency of another key component in the same clock domainJilhgmdquests or interrupts
within specified time constraints (i.e., real-time), or processing a streamudstor data at a sufficient
rate. Flexibility and control over performance/area trade-offs in thiggso€essor design space are key,
and hence, for comparing soft processor designs, a summarizing matreotnbines area, frequency,

and cycle count such asea efficiencys most relevant.

In this chapter, we first summarize our work on custom code generatiggrdoessors to improve
area efficiency. After, we demonstrate how to make 3, 5, and 7-stagknpgbenultithreaded soft
processors 33%, 77%, and 106% more area efficient than their simgbed&d counterparts, the result

of careful tuning of the architecture, ISA, and number of threads.

25
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4.1 Custom Code Generation for Soft Uniprocessors

Since soft processors may be easily modified to match application requirentaatsompelling to

go beyond default compilation (e.g., defagdic), and customize compilation aspects such as the code
generation. A first step in our research is to determine the extent to whidamveustomize the soft
processors to (i) improve the performance of the existing processor@esave area to accommodate
more processors on a chip. As well, we are interested in using a compilatiteade transformations
that can potentially save reconfigurable hardware resources. \irmpeour experiments on the
processors generated by the SPREE infrastructure [161, 162]EESRiRes as input an architectural
description of a processor and generates an RTL implementation of it, baselibrary of pre-defined
modules. The RTL currently targets hardware blocks of the Altera FP®Ales Quartus tools are
integrated in the SPREE infrastructure to characterize the area, figgard power of the resulting

processaors.

In a recent publication [83], we summarize our findings on soft pracesstomization, notably: (i)
we can improve area efficiency by replacing a variable-amount shiftentwiHixed-amount shifters;
(i) hazard detection logic is a determining factor in the processor’s acka@rating frequency; (iii) we
can eliminate load delay slots in most cases; (iv) branch delay slots cambea@ in a 7-stage pipeline
even with no branch prediction; (v) 3-operand multiplies are only justifiedaf@-stage processor
(and otherwisdli/Lo registers are best); (vi) unaligned memory loads and stores do not eravid
significant performance benefit for our benchmarks; (vii) we are @hlemove one forwarding line
with simple operand scheduling and improve area efficiency; and (viii) welioat the compiler’s
use of a significant fraction of the 32 architected registers for manyhnesiks without degrading
performance. To maximize the efficiency of the customized architecturera$adtiprocessors, we
combined several of these optimizations and obtained a 12% additional ficganey increase on
average (and up to 47% in the best case). By including instruction sulgsgifihin the processors
and our optimizations, the mean improvement is 13% but the maximum is 51%. Fentla@der of
this thesis, we will implement 3-operand multiplies and the removal of hazardtietedelay slots
and unaligned access instructions; all four techniques become everberfcial in the processors

that we propose in the next chapter. Since subsetting the architectuadiyaodguires recompilation
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of the FPGA design, we next investigate another architectural techniquentty be more rewarding
for software-only programmers that do not have the option of re-custiogrize processor architecture

when they update their application.

4.2 Multithreaded Soft Processors

A promising way to improve area efficiency is through the use of multithreaéiog et al. [43] present
a 4-way multithreaded soft processor design, and demonstrate thatidgsignificant area savings
over having four soft processors—hbut with a moderate cost in peéoce. In particular, they show
that a multithreaded soft processor need not have hazard detectiomtwdmrwarding lines, so long
as the number of threads matches the number of pipeline stages such thstt@dtions concurrently
executing in different stages are independent. Researchers in theARDSproject [35] have also
developed a similar pipelined 4-stage 4-way multithreaded soft processor.

In this chapter, rather than comparing with multiple soft processors, we #tat a multithreaded
soft processor can be better than one that is single-threaded. Inufmartiwe demonstrate: (i) that
multithreaded soft processors are more area-efficient and areleapabbetter sustained instructions-
per-cycle (IPC) than single-threaded soft processors; (ii) thaetherefits increase with the number
of pipeline stages (at least up to and including 7-stage pipelines); (iii) &mafud optimization of any
unpipelined multi-cycle paths in the original soft processor is important, ighthét careful selection
of certain ISA features, the number of registers, and the number otitheza key to maximizing area-

efficiency.

4.3 Soft Processor Infrastructure

In this section we briefly describe our infrastructure for designing andsoréng soft processors,
including the SPREE system for generating single-threaded pipelineprsoéissors, our methodology
for comparing soft processor designs, our compilation infrastrucéure the benchmark applications
we study.

SPREE: We use the SPREE system [163] to generate a wide range of soft pooegshitectures.

SPREE takes as input ISA and datapath descriptions and producesHtrdi. i&/synthesized, mapped,
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placed, and routed bQuartus 5.0 [9] using the default optimization settings. The generated
processors target Altera Stratix FPGAs, and we synthesize BBl 40F780C5 device—a mid-sized
device in the family with the fastest speed grade. We determine the area ekéretpuency of each soft
processor design using the arithmetic mean across 10 seeds (whichediffierent initial placements
before placement and routing) to improve our approximation of the true rke@aeach benchmark, the
soft processor RTL design is simulated usiiglelsim 6.0b [103] to (i) obtain the total number of
execution cycles, and (ii) to generate a trace which is validated for ¢nessagainst the corresponding

execution by an emulator (MINT [141]).

Measurement: For Altera Stratix FPGAs, the basic logic element (LE) is a 4-input lookup fabke
a flip-flop—hence we report the area of these processarguivalent LEsa number that additionally
accounts for the consumed silicon area of any hardware blocks (e.g. maliphior block-memory
units). For the processor clock rate, we report the maximum frequempposted by the critical path of
the processor design. To combine area, frequency, and cycle tooevdluate an optimization, we use
a metric ofarea efficiencyin million instructions per second (MIPS) per thousand equivalent Lifs. |
important to have such a summarizing metric since a system designer may beonuzsned with soft
processor area in some cases, or frequency or wallclock-time perioenraothers. Finally, we obtain
dynamic power metrics for our benchmarks using Quartus’ Power Play9polhe measurement is
based on the switching activities of post-placed-and-routed nodesrieser by simulating benchmark
applications on a post-placed-and-routed netlist of a processor inlsiodé03]: we divide the energy
consumed in nano-Joules by the number of instructions executed (nJ/distpunting the power

consumed by /O pins.

Single-Threaded ProcessorsThe single-threaded processors that we compare with are pipelined
with 3 stagesyipe3), 5 stagesgipeb), and 7 stagesplipe7). The 2 and 6 stage pipelines were
previously found to be uninteresting [163], hence we study the 3, 5,7astdge pipelines for even
spacing. All three processors have hazard detection logic and fdingdines for both operands. The
3-stage pipeline implements shift operations using the multiplier, and is the mastféicdent processor
generated by SPREE [163] (at 1256 equiv. LEs, 78.3 MHz). Thadespipeline also has a multiplier-
based shifter, and implements a compromise between area efficiency and meq@nating frequency

(at 1365 equiv. LEs, 86.8 MHz). The 7-stage pipeline has a barifedistheads to the largest processor,
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Table 4.1: Benchmark applications evaluated.

29

Dyn. Instr.
Source Benchmark | Modified Counts | Category

MiBench [50] BITCNTS di 26,175 L
XiRisc [21] BUBBLE_SORT - 1,824 L
CRC - 14,353 S

DES - 1,516 S

FFT* - 1,901 M

FIR* - 822 M

QUANT* - 2,342 S

IQUANT* - 1,896 M

VLC - 17,860 L

RATES [133] GoL di 129,750 o)

* Contains multiply

di Reduced data input set and number of iterations

Categories: dominated by (L)oads, (S)hifts, (M)ultiplies, (O)ther

Table 4.2: Benchmark applications mixes evaluated.

Mix| TO T1 T2 T3 T4 TS T6

1 FFT |QUANT |BUBBLE_SORT|GOL FIR CRC VLC

2 FIR CRC VLC GOL|IQUANT | DES BITCNTS

3 |IQUANT| DES BITCNTS GOL| FFT |QUANT |BUBBLE_SORT]

and has the highest frequency (at 1639 equiv. LEs, 100.6 MMHzple3 andpipe5 both take one extra
cycle for shift and multiply instructions, and pe3 requires an extra cycle for loads from memory.

Compilation: Our compiler infrastructure is based on modified versiongaaf 4.0.2,Binutils
2.16, andVewlib 1.14.0 that target variations of the 32-bits MIPS | [66] ISA; for example can trade
support for Hi/Lo registers with 3-operand multiplies, enable or disabledbrdelay slots, and vary the
number of architected registers used. Integer division is implemented insseftw

Benchmarking: We evaluate our soft processors using the 10 embedded benchméidatiqms
described in Table 4.1, which are divided into 4 categories: dominated @y {Og shifts §), multiplies

(M) or by none of the above (otheﬂ)E By selecting benchmarks from each category, we also create

1The benchmarks chosen are a subset of those used in previous[8@prkince for now we require both data and
instructions to each fit in separate single MegaRAMs in the FPGA.
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3 multiprogrammed mixes (rows of Table 4.2) that each execute until the comptdtibe shortest
application in the mix. To use these mixes of up to 6 applications, threads avaitablerocessor are
filled by choosing one application per thread from the left to right of the mingdorow of Table 4.2. We
measure multithreaded processors using (i) multiple copies of the samermreggauting as separate

threads (with separate data memory), and (ii) using the multiprogrammed mixes.

4.4 Multithreading a Soft Processor

Commercially-available soft processors such as Altera’s NIOS Il and ¥§liMicroblaze are both
single-threaded, in-order, and pipelined, as are our SPREE poose@escribed in the previous
section). Such processors require hazard detection logic and thngdines for correctness and good
performance. These processors can be multithreaded with minimal extréesitgnpy adding support
for instructions from multiple independent threads to be executing in eattie giipeline stages of the
processor—an easy way to do this is to have as many threads as thepelne stages. This approach
is known asFine-Grained Multithreadind FGMT [113]), and is also the approach adopted by lebrt
al. [43] and the CUSTARD project [35].

In this section we evaluate several SPREE processors of varying gmidisth that support fine-
grained multithreading. Since each pipe stage executes an instructionrfiooependent thread, these
processors no longer require hazard detection logic nor forwardiesHiwhich as we show can provide
improvements in both area and frequency. Focusing on our base IS2AS)Mve also found that load
and branch delay slots are undesirable, which makes intuitive sensettsndependences they hide
are already hidden by instructions from other threads—hence we éaa@/ed them from the modified
version of the ISA that we evaluate.

To support multithreading, the main challenge is to replicate the hardwaretties state for a
thread: in particular, each thread needs access to independentcechitegisters and memory. In
contrast with ASICs, for FPGASs the relative latency of on-chip memory g&latency grows very
slowly with the size of the memory—hence FPGAs are amenable to implementing licatexpstorage

required for multithreading. We provide replicated program countersatieagelected in a round-robin

2The CUSTARD group also investigat&lock Multi-Threadingwhere threads are switched only at long-latency events,
but found this approach to be inferior to FGMT.
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Figure 4.1. Area efficiency of single-threadett) and multithreadedm{t) processors with varying
pipeline depths, where the number of threads is equal to the number o$ $teighe multithreaded

processors. Results are the mean across all single benchmarks (itee mixes).

fashion each cycle. Rather than physically replicating the register filehwyoald require the addition

of costly multiplexers, we index different ranges of a shared physegibkter file by appropriately
shifting the register numbers. We implement this register file using block memeeistde on Altera
Stratix devices; in particular, we could use eitléKs (4096 bits capacity, 32 bits width) ms12s (512

bits capacity, 16 bits width). We chooséKs because (i) they more naturally support the required 32-bit
register width; and (ii) we can implement the desired register file using a sma#éntonber of block
memories, which minimizes the amount of costly multiplexing logic required.

We must also carefully provide separation of instruction and data memorgetted. For the
processors in this chapter, we support only on-chip memory—we suggaiies and off-chip memory
in Chapter 5. Similar to the register file, we provide only one physical instructiemory and one
physical data memory, but map to different ranges of those memories dsdhelm particular, every
thread is always allocated a unique range of data memory. When we eradtifge copies of a single
program, then threads share a range of instruction mefnattyerwise instruction memory ranges are
unique as well.

Figure 4.1 shows the mean area efficiency, in MIPS per 1000 equivialestacross all single

3Since each thread needs to initialize its global pointer and stack pointerediffe(in software), we create a unique
initialization routine for each thread, but otherwise they share the samedtisir memory range.
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Figure 4.2: IPC gain of multithreaded over single-threaded processors.

benchmarks from Table 4.1 (i.e., we do not yet consider the multiprogrammess)ni¥ve measure
single-threadedst) and multithreadedmt) processors with varying pipeline depths, and for the
multithreaded processors the number of threads is equal to the numberebhgigtages. The area
efficiency of the 3, 5, and 7-stage pipelined multithreaded processoespgatively 33%, 77% and
106% greater than each of their single-threaded counterparts. Thgé@peline has the maximum
area efficiency, as it benefits the most from the combination of optimizatiordeseribe next. The
3 and 7-stage pipeline have similar area efficiencies but offer différaté-offs in IPC, thread count,

area, frequency, and power.

Figure| 4.2 shows the improvement in instructions-per-cycle (IPC) of muléittee processors
over single-threaded processors. For the 3, 5, and 7-stage pip#ti@amproves by 24%, 45% and
104% respectively. These benefits are partly due to the interleaving epéndent instructions in the
multithreaded processors which reduce or eliminate the inefficiencies dhtjle-threaded processors
such as unused delay slots, data hazards, and mispredicted bramahemgle-threaded processors
predict branches are “not-taken”). We have shown that multithreadiegs@ompelling improvements
in area-efficiency and IPC over single-threaded processors. etiteons that follow we describe the

techniques we used to achieve these gains.
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Figure 4.3: Hi/Lo registers vs 3-operand multiplies for various pipeline deptbrmalized to the

corresponding single-threaded processor.
4.5 Tuning the Architecture

In this section, we identify two architectural features of multithreaded gsmrs that differ significantly
from their single-threaded version and hence must be carefully tunedchtbice of Hi/Lo registers

versus 3-operand multiplies, and the organization of multicycle paths.

Optimizing the Support for Multiplication: By default, in the MIPS ISA the 64-bit result of 32-
bit multiplication is stored into two special 32-bit registers called Hi and Lo—#reefit of these being
that multicycle multiplication need not have a write-back path into the regularteedit, allowing
higher-frequency designs. Hence for a multithreaded implementation ofP& Mtocessor we must
also replicate the Hi and Lo registers. Another alternative is to modify MIPSipport two 3-operand
multiply instructions, which target the regular register file and compute ther ppawer 32-bit result
independently. We previously demonstrated that Hi/Lo registers resulttiarlfeequency than 3-
operand multiplies but at the cost of extra area and instruction count,raradtzetter choice for more
deeply-pipelined single-threaded processors [83]. In this chapteesweestigate this option in the
context of multithreaded soft processors. Figure 4.3 shows the impaseanfrequency, and energy-
per-instruction with Hi/Lo registers or 3-operand multiplies, for multithreadextgssors of varying

pipeline stages each relative to the corresponding single-threadegspooc We observe that Hi/Lo
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registers require significantly more area than 3-operand multiplies due tar¢ipdcated storage but

more importantly to the increased multiplexing required to route them.

Since the frequency benefits of Hi/Lo registers are no longer signifiaadt3-operand multiplies
also have significantly reduced energy-per-instruction, we chogmsifpr 3-operand multiplies as our
default in all multithreaded experiments in this chapter. In Figure 4.4(a) ow #e raw IPC of the
multithreaded processors on all benchmarks as well as the multiprogrammes] dereonstrating two
key things: (i) that our results for replicated copies of the individuatherarks are similar to those of
multiprogrammed mixes; and (i) that stalls for the multithreaded 7-stage pipelirediean completely
eliminated (since it achieves an IPC of 1). For the three-stage pipeline, thearea efficient for
single-threaded processors, the baseline multithreaded processigri&omore area efficient than the
single-threaded processor (see Figure 4.4(b)). Area and freg@éour multithreaded processors are
similar to those of the single-threaded processors, hence the majority efghies (36% and 106% for
the 5 and 7-stage pipelines) are related to reduction in stalls due to variarsldian the single-threaded
designs. Figure 4.4(b) shows that the reduction of instructions due teri&val of delay slots and 3-
operand multiplies also contributes by 3% on average to the final areareffidieat utilizes the scaled
instruction count of single-threaded processors to compare a coastannt of work. Comparing with
Figure 4.1, we see that single-threaded soft processors favdrmpelines while multithreaded soft

processors favor deep pipelines.

Optimizing Multicycle Paths: Our 3 and 5-stage processors must both stall for certain instructions
(such as shifts and multiplies), which we calhpipelined multicycle pathfl63]. It is important
to optimize these paths, since otherwise such stalls will impact all other threadsintithreaded
processor. Fort et al. [43] address this challenge by queuing sttt stall in a secondary pipeline
as deep as the original, allowing other threads to proceed. We instead dtiegtipinate such stalls by

modifying the existing processor architecture.

For the single-threaded 3-stage pipeline, multicycle paths were createcdaying registers to
divide critical paths, improving frequency by 58% [163]; this divisionulcbalso have been used to
create two pipeline stages such that shifts and multiplies would be pipelingtjswbuld have created
new potential data hazards (see Figure 4.5), increasing the complexiyzafchdetection logic—

hence this option was avoided for the single-threaded implementation. lraspritr a multithreaded
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Figure 4.4: IPC and area efficiency for the baseline multithreaded paces
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Figure 4.5: Example execution showing multicycle paths in the 3-stage pipelireswtfi) shifts
and loads require two cycles in the execute stage; and (i) we assume esuaiction has a
register dependence on the previous. Assuming a single-threadexsgoocforward arrows represent
forwarding lines required, while the backward arrow indicates that a wtalild be required. The

pipeline stages aré:. for fetch,E for executeM for memory, andv for write-back.

processor we can pipeline such paths without concern for data Isazande consecutive instructions
are from independent threads)—hence we do so for the 3-stagesgarc The single-threaded 5-stage
pipeline also contains multicycle paths. However, we found that for a multdeoe@arocessor that
pipelining these paths was not worth the cost, and instead opted to revenuttieycle paths to be
single-cycle at a cost of reduced frequency but improved instructitsn rConsequently, eliminating
these multicycle paths results in an IPC of 1 for the 5-stage multithreadedspooceThe 7-stage

processor has no such paths, hence we do not consider it furtteer he

Figure| 4.6 shows the impact on both cycle count and area-efficiencyptohiaing multicycle
paths for the 3 and 5-stage pipeline multithreaded processors, relative toittesponding baseline
multithreaded processors. First, our optimizations reduced area for fmtbgsors (by 1% for the 3-
stage, and by 4% for the 5-stage); however, frequency is alsoagddac both processors (by 3% for
the 3-stage and by 5% for the 5-stage). Fortunately, in all cases cyatet isoreduced significantly,
improving the IPC by 24% and 45% for the 3-stage and 5-stage prosesger the corresponding
single-threaded processors. Overall, this technique alone improvesfiieency by 18% and 15% for

the 3 and 5-stage processors over their multithreaded baseline.

Focusing on the multiprogrammed mixes, we see that the cycle count savings gd@mounced:

when executing multiple copies of a single program, it is much more likely thatcatige instructions
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Figure 4.6: Impact on both cycle count and area-efficiency of optimizingicycle paths for the
3 and 5-stage pipeline multithreaded processors, relative to the cordiésgdraseline multithreaded

processors.

will require the same multicycle path, resulting in avoided stalls with the use of p"lpéinfor
multiprogrammed workloads such consecutive instructions are less likeigeHer multiprogrammed

mixes we achieve only 5% and 12% improvements in area-efficiency for thd 3-atage pipelines.

4.6 Reducing Thread State

In this section, we investigate two techniques for improving the area-efficiehmultithreaded soft
processors by reducing thread state.

Reducing the Register File:In previous work [83] we demonstrated that 8 of the 32 architected
registers §0-s7) could be avoided by the compiler (such that programs do not target thelth with
only a minor impact on performance for most applications. Since our multitadepbcessors have
a single physical register file, we can potentially significantly reduce the salof the register file
by similarly removing these registers for each thread. Since our registes ¢itenposed ofl4K block

memories, we found that this optimization only makes sense for our 5-stagmeipenly for that

4As shown in Figuré 4.5(b), the transition from an instruction that usesIficgale path to an instruction that doesn't
creates a pipeline stall.
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Figure 4.7: Impact of having one thread less than the pipeline depth, noech&dizorocessors having

the number of threads equal to the pipeline depth.

processor does the storage saved by removing registers allow us ensiag®4K blocks. In particular,

if we remove 7 of 32 registers per thread then the entire resulting 25-negigister file fits in a single
M4K block (since 25 registers 5 threadsx 32 bits < 4096 bits)> In fact, since our register file is
actually duplicated to provide enough read and write ports, this optimizationsallewo use tw®4Ks
instead of four. For our 5-stage multithreaded processor this optimizatiomsalle to save 5% area
and improve frequency by 3%, but increases cycle count by 3% aa@gwaue to increased register

pressure.

Reducing the Number of Threads:Multithreaded soft processors proposed to date have supported
a number of threads equal to the number of pipeline stages [35, 43]y$tenss where long multicycle
stalls are possible (such as with high latency off-chip memory), supportinger laumber of threads
than pipeline stages may be interesting. However, for our work whichrasgmes on-chip memory,
it may also be beneficial to have fewer threads than pipeline stages: vahacaquire a minimum
number of threads such that the longest possible dependence betages is hidden, which for the
processors we study in this chapter requires one less thread thanrthpijgedine stages. This reduction

by one thread may be beneficial since it will reduce the latency of indilidis&s, result in the same

SHowever, rather than simply shifting, we must now add an offset totergisimbers to properly index the physical register
file.
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overall IPC, and reduce the area by the support for one threadxtortigurel 4.7 shows the impact
on our CAD metrics of subtracting one thread from the baseline multithreadddnraptation. Area
is reduced for the 3-stage pipeline, but frequency also drops signilfidzecause the computation of
branch targets becomes a critical path. In contrast, for the 5 and 7gfBali@mes we achieve area and
power savings respectively, while frequency is nearly unchange®ral this possibility gives more
flexibility to designers in choosing the number of threads to support forengiipeline, with potential
area or power benefits. When combined with eliminating multicycle paths, regtietnnumber of
threads by one for the 5-stage pipeline improves area-efficiency by g&#ing it 77% more area-

efficient than its single-threaded counterpart with 78 MIPS/1000 LEs.

4.7 Summary

We have shown that, relative to single-threaded 3, 5, and 7-stage pibplioeessors, multithreading
can improve overall IPC by 24%, 45%, and 104% respectively, aradefficiency by 33%, 77%, and
106%. In particular, we demonstrated that (i) intra-stage pipelining is inatéss for single threaded
processors but can provide significant increases in area-effijcfenanultithreaded processors; (ii)
optimizing unpipelined multicycle paths is key to gaining area-efficiency; (iii)nfotithreaded soft
processors that 3-operand multiplies are preferable over Hi/Lo regsieh as in MIPS; (iv) reducing
the registers used can potentially reduce the number of memory blocksnsed\ee area; (v) having
one thread less than the number of pipeline stages can give more flexibilityigmdes while potentially
saving area or power. Other than removing registers, which can be detaine performance, we will
incorporate all the above optimizations in the multithreaded designs that weevaiithe remainder
of this thesis. In summary, this chapter shows that there are significaefilseto multithreaded soft
processor designs over single-threaded ones, and gives systigmete a strong motivation to program
with independent threads. In the next chapter, we investigate the impaciaifening the scope of our

experiments from on-chip to off-chip memory.



Chapter 5

Understanding Scaling Trade-offs in Soft

Processor Systems

Based on encouraging performance and area-efficiency resultspretrieus chapter, we are motivated
to better understand ways to scale the performance of such multithreastesnsyand multicores
composed of them. In this chapter, we explore the organization of parseasd caches connected
to a single off-chip memory channel, for workloads composed of many erdmnt threads. A typical
performance goal for the construction of such a system is to fully-utilizgengnemory channel. For
example, in the field of packet processing the goal is often to procekstpat line rate, scaling up a
system composed of processors and accelerators to make full useagétlable bandwidth to and from
a given packet-buffer (i.e., memory channel). In this chapter, we desidrevaluate real FPGA-based
single-threaded processors, multithreaded processors, and mulsgoosystems connected to DDR
SDRAM on EEMBC benchmarks—investigating different approachesaiingpcaches, processors, and
thread contexts to maximize throughput while minimizing area. For now, we carsidtems similar to
packet processing where there are many independent tasks/thres@stice, and maximizing system
throughput is the over-arching performance goal. Our main finding isxthiée a single multithreaded
processor offers improved performance over a single-threadextgsor, multiprocessors composed
of single-threaded processors scale better than those composed of eadiitirprocessors. We next

present the two scaling axes that we explore in this chapter:

Scaling Soft Multithreaded Processordn the previous chapter, we demonstrated that a soft multi-

40
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threaded processor can eliminate nearly all of the stall-cycles obseyaeddmparable single-threaded
processor by executing an independent instruction in every stage @iraessor pipeline [76]. In
this chapter, we extend our multithreaded processors to interface withipfODR memory through
caches, which in contrast with uniprocessors presents some interdstitenges and design options. In
particular, we present an approach called instruagphayto handle cache misses without stalling other
threads, and a mechanism for handling the potential live-locks resultingdollisions in the cache from
the replayed instructions. We also evaluate several cache organiZggioatives for soft multithreaded
processors, namely shared, private, and partitioned caches, assveeipport for different numbers of
hardware contexts. We finally investigate issues related to sharing afiidtsdretween threads for soft
multithreaded processors. In contrast with previous studies of systemsnvithip memory [43, 76],
we find with off-chip memory that single-threaded processors are ginenore area-efficient than

multithreaded processors.

Scaling Soft MultiprocessorsWe also evaluate multiprocessors composed of uniprocessors or mul-
tithreaded processors. We find that, for a system of given area, mukgsors composed of
multithreaded processors provide a much larger number of thread coreixtisat uniprocessor-based
multiprocessors provide the best overall throughput.

In this chapter, we are not proposing new architectural enhancemesasdt torocessors: we are
rather trying to understand the trade-offs to give us direction when latklifg soft multiprocessors

for packet processing.

5.1 Related Work

Caches built in the FPGA fabric [160] are routinely utilized to improve thequarénce of systems
with off-chip memory. The commercial off-the-shelf soft processorssNig7] and Microblaze [154]

both support optional direct-mapped instruction and data caches wittgamatile cache line sizes.
Both processors allocate a cache line upon write misses (allocate-on-ritée Microblaze uses
a write-through policy while NIOS-II uses write-back. Both vendorsehaxtended their instruction
set to accomplish tasks such as cache flushing, invalidating and bypas3urgimplementation is

comparable to those designs (other than we do not allocate cache linesas) mmd we did not require
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ISA extensions: this renders our conclusions widely applicable.

There is little prior work which has studied soft multiprocessor organizatitim @if-chip memory
in a real FPGA system, with commercial benchmarks. Fort et al. [43] cadpheir soft multithreaded
processor design to having multiple uniprocessors, using the Mibendhinanks [50] and a system
with on-chip instruction memory and off-chip shared data storage (with rta dache). They
conclude that multithreaded soft processors are more area efficienthiéiple uniprocessors. We
further demonstrated that a soft multithreaded processor can be marefficeent than a single soft
uniprocessor with on-chip memory [76].

The addition of off-chip memory and caches introduces variable-latetatig $0 the processor
pipeline. Handling such stalls in a multithreaded processor without stalling aldiris a challenge.
Fortet. al.[43] use a FIFO queue of loads and stores, while Mougdalal. [107] use an instruction
scheduler to issue ready instructions from a pool of threads. In cbmtréh either of these approaches,

our instructiornreplay approach requires little additional hardware support.

5.2 Experimental Framework

In this section we briefly describe our infrastructure for designing anasoréng soft processors, our
methodology for comparing soft processor designs, our compilatiorstrficture, and the benchmark

applications that we study.

CachesThe Altera Stratix FPGA that we target provides three sizes of block-mervs¥2 (512bits),
M4K (4Kbits) and M-RAM (512Kbits). We use M512s to implement register files contrast with
M-RAM blocks, M4K blocks can be configured to be read and written atstimae time (using two
ports), such that the read will return the previous value—hence, delpitesmaller size, caches built
with M4Ks typically out-perform those composed of M-RAMs, and we cleodgK-based caches for

our processors.

Platform Our RTL is synthesized, mapped, placed, and route@uaytus 7.2 [9] using the default
optimization settings. The resulting soft processors are measured orati@iagrifier platform [42],
where we utilize one Altera Stratix FPGEP1S80F1508C6 device to (i) obtain the total number of

execution cycles, and (ii) to generate a trace which is validated for ¢nessagainst the corresponding
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execution by an emulator (the MINT MIPS emulator [141]). Our memory ctlatroonnects a 64-bit-
wide data bus to a 1Gbyte DDR SDRAM DIMM clocked at 133 MHz, and caméd to transfer two

64-bit words (i.e., one cache line) on each memory access.

MeasurementFor Altera Stratix FPGAS, the basic logic element (LE) is a 4-input lookup falole a
flip-flop—hence we report the area of our soft processoegjinvalent LEsa number that additionally
accounts for the consumed silicon area of any hardware blocks (e.g. malighor block-memory
units). Even if a memory block is partially utilized by the design, the area of th@lenmblock is
nonetheless added to the total area required. For consistency, abfoyracessors are clocked at
50 MHz and the DDR remains clocked at 133 MHz. The exact number téymr a given experiment
is non-deterministic because of the phase relation between the two clock domalifficulty that is
amplified when cache hit/miss behavior is affected. However, we haveecktifat the variations are

not large enough to significantly impact our measurements.

Compilation and BenchmarksOur compiler infrastructure is based on modified versionscaf4.0.2,
Binutils 2.16, andVewlib 1.14.0 that target variations of the 32-bit MIPS | [66] ISA; for example,
for multithreaded processors we implement 3-operand multiplies (rather tH2® MNi/Lo registers [76,
83]), and eliminate branch and load delay slots. Integer division is implemansadtware. Table 5.1
shows the selected benchmarks from the EEMBC suite [39], avoidindhbearks with significant file
I/O that we do not yet support, along with the benchmarks dynamic instructionts as impacted
by different compiler settings. For systems with multiple threads and/or mogsve run multiple
simultaneous copies of a given benchmark (i.e., similar to packet procgssiegsuring the time from

the start of execution for the first copy until the end of the last copy.

The processor and caches are clocked together at 50 MHz while thecoitPoller is clocked at
133 MHz. There are three main reasons for the reduced clock spehd pfocessor and caches: i)
the original 3-stage pipelined processor with on-chip memory could onhdsked at 72 MHz on
the slower speed grade Stratix FPGAs on the TM4; ii) adding the cachdsuartthndshaking further
reduced the clock frequency to 64 MHz; and iii) to relax the timing constraiheswarbitrating signals

crossing clock domains, we chose a 20 ns clock period which can be @dbtain a multiplication of

Iwe verified that in most cases no thread gets significantly ahead of ths.othe
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Table 5.1: EEMBC benchmark applications evaluattistands for single-threaded amd stands for

multithreaded.

Dyn. Instr. Counts (x10F)
Category Benchmark ST MT
Automotive A2TIMEOL 374 356
AIFIRFO1 33 31
BASEFFO1 555 638
BITMNPO1 114 97
CACHEBO1 16 15
CANRDRO1 38 35
IDCTRNO1 62 57
IIRFLTO1 88 84
PUwMODO1 17 14
RSPEEM1 23 21
TBLOOKO1 149 140
Telecom | AUTCOROODATA_2 814 733
CONVENOODATA 1 471 451
FBITALOODATA_2 2558 2480
FFTOODATA _3 61 51
VITERBOODATA_2 765 750
Networking | IP_.PKTCHECKB4M 42 38
IP_REASSEMBLY 385 324
OSPF\V2 49 33
QOs 981 732
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a rational number with the 133 MHz DDR clock period (7.5 ns). In our evalnan Section 5.4, we
estimate the impact of higher processor clock frequencies that match tla egtical paths of the
underlying circuits, and find that the results do not alter our conclusions.

Our system has a load-miss latency of only 8 processor cycles and driicbiroller uses a closed-
page policy so that every request opens a DRAM row and then clog.itHurthermore, our current
memory controller implementation has room for improvement such as by: (i) s#tgrgplumn access
latency to 2 instead of 3; (ii) tracking open DRAM pages and saving umssacg row access latency;
(i) fusing the single edge conversion, phase re-alignment, and closkiagwhich together amount

to a single clock crossing.

5.3 Integrating Multithreaded Processors with Off-Chip Memory

As prior work has shown [43, 76], multithreaded soft processorstida processor stalls while
saving area, resulting in more area-efficient soft systems than thoseosedhpf uniprocessors or
multiprocessors. Our multithreaded soft processors support fimeedranultithreading, where an
instruction for a different thread context is fetched each clock cycle riouad-robin fashion. Such
a processor requires the register file and program counter to be logiepligated per thread context.
However, since consecutive instructions in the pipeline are from indigmethreads, we eliminate the
need for data hazard detection logic and forwarding lines—assuming énatate at lead — 1 threads

for anN-stage pipelined processor [43, 76]. Our multithreaded processeesah@-stage pipeline that
never stalls: this pipeline depth was found to be the most area-efficientitithreading in the previous
chapter [76]. In this section we describe the challenges in connecting a maadtidd soft processor to

off-chip memory through caches, and our respective solutions.

5.3.1 Reducing Cache Conflicts

The workload we assume for this study is comprised of multiple copies of a damite(i.e., similar
to packet processing), hence instructions and an instruction cacleasite shared between threads
without conflicts. However, since the data caches we study are diregedawhen all the threads

access the same location in their respective data sections, these locati@ismalh to the same cache
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entry, resulting in pathologically bad cache behavior. As a simple remedy tprtiiidem we pad the
data sections for each thread such that they are staggered everdy #walata cache, in particular
by inserting multiples of padding equal to the cache size divided by the nuaflibread contexts
sharing the cache. However, doing so makes it more complicated to shauetioss memory between
threads: since data can be addressed relative to the global pointetyodrige a short thread-specific
initialization routine that adjusts the global pointer by the padding amount; tlerealso be static
pointers and offsets in the program, that we must adjust to reflect théngadd/e find that applying
this padding increases the throughput of our base multithreaded probgs34%, hence we apply this

optimization for all of our experiments.

5.3.2 Tolerating Miss Latency via Replay

When connected to an off-chip memory through caches, a multithreadeelsgiar will ideally not stall
other threads when a given thread suffers a multiple-cycle cache migsiotrwork, Fortet. al.[43]
use a FIFO queue of loads and stores, while Mougs$ahl.[107] use an instruction scheduler to issue
ready instructions from a pool of threads. For both instruction and datlaecmisses, we implement
a simpler method requiring little additional hardware that we call instrugipitay. The basic idea is
as follows: whenever a memory reference instruction suffers a caclse timég instructiorfails—i.e.,
the program counter for that thread is not incremented. Hence thatdtistrwvill execute again (i.e.,
replay) when it is that thread context’s turn again, and the cache miss/isexewhile the instruction
is replaying. Other threads continue to make progress, while the threaglffeaed the miss fails and
replays until the memory reference is a cache hit. However, since ooegsors can handle only a
single outstanding memory reference, if a second thread suffers @ gashit will itself fail and replay
until its miss is serviced.

To safely implement the instruction replay technique we must consider howe gatsses from
different threads might interfere. First, it is possible that one threadaaaha cache block into the
cache, and then another thread replaces that block before the otlgieatl is able to use it. Such
interference between two threads can potentially lead to live-lock. Hoyweeedo not have to provide
a solution to this problem in our processors because misses are servarei@lirand the miss latency

is guaranteed to be greater than the latency of a full round-robin ofdlu@aexts—hence a memory
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Figure 5.1: Cache organizations and the corresponding impact on thetiexeof a write hit from one
thread followed by a load from a consecutive thread: (a) a sharedcdate, for which the load is
aborted and later replays (the hazard is indicated by the squashed pgbetsmarked with “—"); (b)
partitioned and private caches, for which the load succeeds and tmeréézard. The pipeline logic is

divided into fetchr, decode, registelR, executeEX, memoryM, and write-backiB.

reference suffering a miss is guaranteed to succeed before thelicadsaeplaced. However, a second
possibility is one that we must handle: the case of a memory reference fieas sudata cache miss, for
which the corresponding instruction cache block is replaced before theomeaeference instruction

can replay. This subtle pathology can indeed result in live-lock in ourgssors, so we prevent it by

saving a copy of the last successfully fetched instruction for eachdlv@aext.

5.3.3 Cache Organization

Each thread has its own data section, hence despite our padding e¥fect®(l 5.3.1), a shared data
cache can still result in conflicts. A simple solution to this problem is to increassizk of the shared
data cache to accommodate the aggregate data set of the multiple threadghattiisueduces the
area-saving benefits of the multithreaded design. Furthermore, sincaahes are composed of FPGA
memory blocks which have only two ports (one connected to the processorpnnected to the DRAM
channel), writes take two cycles: one cycle to lookup and compare with thandganother cycle to
perform the write (on a hit). As illustrated in Figure 5.1(a), this can lead thiéunrcontention between

consecutive threads in a multithreaded processor that share a cagheedbnd consecutive thread
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Figure 5.2: CPI versus area for thimglethreaded processor and for the multithreaded processors with
shared partitioned andprivatecaches. 1D$/4T means there is one data cache and 4 threads total. Each

point is labeled with the total cache capacity in KB available per thread.

attempts a memory reference directly after a write-hit, we apply our failutefrépchnique for the
second thread, rather than stall that thread and subsequent threads.

Rather than increasing the size of the shared cache, we consider twatles. The first is to
haveprivate cachesuch that each thread context in the multithreaded processor accaek=gisated
data cache. The second, if the number of threads is even, is tqphavtioned cachesuch that non-
consecutive threads share a data cache—for example, if there atbifeads, threads 1 and 3 would
share a cache and threads 2 and 4 would share a second cacheowhsirshrigure 5.1(b), both of
these organizations eliminate port contention between consecutive thaeaddeduce (partitioned) or

eliminate (private) cache block conflicts between threads.

5.4 Scaling Multithreaded Processor Caches

In this section we compare single-threaded and multithreaded soft poogeasd study the impact of
cache organization and thread count on multithreaded processompanite and area efficiency.

In Figure/ 5.2 we plot performance versus area for the single thread®a@gsor and the three
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possible cache organizations for multithreaded processors (shamitioped, and private), and for
each we vary the sizes of their caches. For performance, we ploseyeteinstructionCPl), which is
computed as the total number of cycles divided by the total number of insmaaiecuted; we use this
metric as opposed to simply execution time because the single-threaded and eadéthprocessors
run different numbers of threads, and because the compilation of imemks for the single-threaded
and multithreaded processors differ (as shown in Table 5.1). CPI istedbkethe inverse of throughput
for the system, and this is plotted versus the area in equivalent LEs fompeacessor design—hence

the most desirable designs minimize both area and CPI.

We first observe that the single-threaded and different multithreadegssor designs with various
cache sizes allow us to span a broad range of the performance/aoea gpéng a system designer
interested in supporting only a small number of threads the ability to scalerperice by investing
more resources. The single-threaded processor is the smallest bigegrthe worst CPI, and this
is improved only slightly when the cache size is doubled (from 2KB to 4KB)thefmultithreaded
processors, the shared, partitioned, and private cache desigidepirecreasing improvements in CPI
at the cost of corresponding increases in area. The shared desitpesform the single-threaded
processor because of the reduced stalls enjoyed by the multithreadiidcitce. The partitioned
designs outperform the shared designs as they eliminate replays duddatmon The private cache
designs provide the best performance as they eliminate replays due tmbfittts and contention, but

for these designs performance improves very slowly as cache sizaseste

In Figure[5.2, there are several instances where increasing availatie @ppears to cost no
additional area: a similar behavior is seen for the single-threaded pmyaasving from 2KB to 4KB
of cache and for the partitioned multithreaded processor moving from 1RE®Boof cache per thread.
This is because the smaller designs partially utilize M4K memories, while in the ldegggns they
are more fully utilized—hence the increase appears to be free since wenador the entire area of
an M4K regardless of whether it is fully utilized. For the private-cache mudtittied designs, moving
from 2KB to 4KB of cache per thread actually saves a small amount of Bmeaimilar reasons plus

additional savings in LEs due to fortuitous mapping behavior.

To better understand the trade-off between performance and aredifferent designs, it is

instructive to plot their area efficiency as shown in Figure 5.3(a). We uneasea efficiency as millions
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Figure 5.4: CPI versus area for multithreaded designs supporting ganyimbers of thread contexts.

Each point is labeled with the total available cache capacity per thread.

of instructions per second (MIPS) per 1000 LEs. The single-threpdmtkssors are the most area-
efficient, in contrast with previous work comparing similar processors withtop memory and without
caches [76], as we provide a private data cache storage for eaeld tinrthe multithreaded core. The
partitioned design with 2KB of cache per thread is nearly as area-effasethe corresponding single-
threaded processor. The shared-cache designs with 1KB and 2&dloé per thread are the next most
area-efficient, with the private-cache designs being the least dieiardf These results tell us to expect
the single-threaded and partitioned-cache multithreaded designs to sdakeswieey provide the best

performance per area invested.

Due to limitations of the Transmogrifier platform, all of our processors atealg clocked at
50MHz, while their maximum possible frequencies (i.B.ay are on average 65MHz. To investigate
whether systems measured using the true maximum possible frequenciesgootbssors would lead
to different conclusions, we estimate this scenario in Figure 5.3(b). Wenabthat the relative trends
are very similar, with the exception of the single-threaded processor wighdkache for which the
area efficiency drops below that of the corresponding partitioned mi¢siglose to that of the shared

cache design.
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Figure 5.5: Diagram showing an arbiter connecting multiple processos aoeemultiprocessor.

Impact of Increasing Thread Contexts Our multithreaded processors evaluated so far have all
implemented a minimal number of threads contexts: four thread contexts fopifiedine stages.
To justify this choice, we evaluated multithreaded processors with larger ensnolh threads for the
different cache designs and for varying amounts of available caahaead (shown in Figure 5.4).
For shared and partitioned designs we found that increasing the nufrthezad contexts (i) increases
the CPI, due to increased contention and conflicts, and (ii) increasssdare to hardware support for
the additional contexts. Since the private cache designs eliminate all contanticconflicts, there is

a slight CPIl improvement as area increases significantly with additionalticedexts. These results

confirmed that the four-thread multithreaded designs are the most desirable

5.5 Scaling Multiprocessors

For systems with larger numbers of threads available, another alternatisedling performance is to
instantiate multiple soft processors. In this section we explore the desiga spsoft multiprocessors,
with the goals of maximizing (i) performance, (ii) utilization of the memory chanmel,(&i) utilization
of the resources of the underlying FPGA. To support multiple processeraugment our DRAM
controller with an arbiter that serializes requests by queuing up to onesepar processor (shown
in Figure 5.5); note that this simple interconnect architecture does not iniygactock frequencies of
our processors.

In Figure 5.6 we plot CPI versus area for multiprocessors composedngfeshreaded or
multithreaded processors; we replicate the processor designs thafoumerkto be the most area-

efficient according to Figure 5.3(a). For each multiprocessor desaph design point has double
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Figure 5.6: CPI versus area for multiprocessors composed of singladibd and multithreaded
processors. 1x4K/4T means that each processor has one 4KB dhtaarad 4 thread contexts, and

each point is labeled with the total number of thread contexts supported.

the number of processors as the previous, with the exception of thetléiightmost) for which we plot
the largest design supported by the FPGA—in this case the design thathzas®d the M4K block
memories.

Our first and most surprising observation is that the Pareto frontier éthad designs that minimize
CPI and area) is mostly comprised of single-threaded multiprocessor desigmy of which out-
perform multithreaded designs that support more than twice the numbeeatitbontexts. For example,
the 16-processor single-threaded multiprocessor has a lower CPI théé-thread-context partitioned-
cache multithreaded multiprocessor of the same area. We will pursue fimgigit into this result
later in this section. For the largest designs, the private-cache multitlreadéprocessor provides the
second-best overall CPI with 24 thread contexts (over 6 procgssdride the partitioned and shared-

cache multithreaded multiprocessor designs perform significantly woesgrataiter area cost.

Sensitivity to Cache SizeSince the shared and partitioned-cache multithreaded designs havecless ca
per thread than the corresponding private-cache multithreaded or-gimgéeled designs, in Figure 5.7

we investigate the impact of doubling the size of the data caches (from 4KiBB@8r cache) for those
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Figure 5.7: CPI versus area for the shared and partitioned desigresiasr@ase the size of caches from

4KB to 8KB each. Each point is labeled with the total number of thread cordapisorted.

two designs. We observe that this improves CPI significantly for the sttaete designs and more
modestly for the partitioned cache design, despite the fact that the 4KBndesiye the most area-
efficient (according to Figure 5.3(a)). Hence we evaluate the 8KBecabared and partitioned-cache

designs in subsequent experiments.

Per-Thread Efficiency In this section, we try to gain an understanding of how close to optimality
each of our architectures performs—i.e., how close to a system thaienges no stalls. The optimal
CPlis 1 for our single-threaded processor, and hengefdr/ a multiprocessor composed Xfsingle-
threaded processors. For one of our multithreaded processors tihelo@PI is also 1, but since
there are four thread contexts per processor, the optimal CP{ foultithreaded processors isX4/

In Figure| 5.8(a) we plot CPI versus total number of thread contextsuosiagle and multithreaded
designs, as well as the two ideal curves (as averaged across al béochmarks). As expected, for

a given number of threads the single-threaded processors exhibit 68ttehan the corresponding
multithreaded designs. However, it is interesting to note that the privateegaaltithreaded designs
perform closer to optimally than the single-threaded designs. For exarmighel 6hreads (the largest

design), the single-threaded multiprocessor has a CPI that is more thaeatergthan optimal, but
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Figure 5.8: CPI versus total thread contexts across all benchmarlen(badhe three best (b) and worst

(c) performing benchmarks per design.
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Figure 5.9: CPI versus fraction of load misses. For each surface ez adge plots the single-threaded
multiprocessor designs (4KB data cache per processor) and the ldgerpdots the private-cache

multithreaded multiprocessor designs (4KB data cache per thread context).

regardless, this design provides the lowest CPI across any desigrgraiph also illustrates that private-

cache designs outperform partitioned-cache designs which in turnrfartpeshared-cache designs.

Potential for Customization A major advantage of soft systems is the ability to customize the hardware
to match the requirements of the application—hence we are motivated to investigatieer the

multithreaded designs might dominate the single-threaded design for cerfdicatipns. However,

we find that this is not the case. To summarize, in Figures 5.8(b) and|5.8(p)ovCPI versus total

number of thread contexts for the three best performing and three penfsrming benchmarks per
design, respectively. For neither extremity do the multithreaded designsrfartp the single-threaded
designs. Looking at Figure 5.8(b), we see that for the best perforb@nghmarks the private-cache
multithreaded designs perform nearly optimally. In the worst cases, theghrgaded designs maintain

their dominance, despite the 16-processor design performing slightlywaas the 8-processor design.

Understanding the Single-Threaded AdvantageTo clarify the advantage of the single-threaded
multiprocessor designs, we use a synthetic benchmark that allows us tihve@atgnsity of load misses.

In particular, this benchmark consists of a thousand-instruction loop éeeapof loads and no-ops,
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and the loads are designed to always miss in the data cache. This benelmaskus to isolate the
impact of load misses since they can be the only cause of stalls in our ppdssFig 5.9 we compare
the CPI for single-threaded designs with the private-cache multithreaéghd as the fraction of load
misses increases. In particular, for a certain number of processgpfotve surface such that the top
edge of the surface is the single-threaded design and the bottom edgeasrégsponding private-cache
multithreaded design. Hence the three surfaces show this comparis@signslcomposed of 1, 2, and
4 processors. Looking at the surface for a single processor, &attien of load misses increases, the
multithreaded processor (bottom edge) gains a somewhat consisterdv@Rtage (of about 0.5 at 10%
misses) over the single-threaded processor (top edge). Howevexdtlzistage narrows as the number
of processors—and the resulting pressure on the memory channetsesrend for four processors,
the multithreaded designs have only a negligible advantage over the singgel¢ldrdesigns—and the

multithreaded processors require marginally greater area than their ginggeled counterparts.

Exploiting Heterogeneity In contrast with ASIC designs, FPGAs provide limited numbers of certain
resources, for example block memories. This leads to an interesting ddéevehen targeting an FPGA
as opposed to an ASIC: replicating only the same design will eventually sibacertain resource
while under-utilizing others. For example, our largest multiprocessor nésig 68-thread shared-cache
multithreaded design) uses 99% of the M4K block memories but only 43% oV#ilalble LEs. Hence
we are motivated to exploit heterogeneity in our multiprocessor design to mibyeaufilize all of the
resources of the FPGA—in this case we consider adding processofglviRtiM based caches despite
the fact that individually they are less efficient than their M4K-basedtparts. In particular, we
extend our two best-performing multiprocessor designs with procesawirsghM-RAM-based caches
as shown in Figure 5.10. In this case, extending the multithreaded procegisdurther processors
does not improve CPI but only increases total area, i.e. potentially takiay segources available for
other logic in the FPGA. For the single-threaded case, the heterogetesiga improves CPI slightly
but at a significant cost in area—however, this technique does allow gs bzyond the previously

maximal design.



CHAPTER 5. UNDERSTANDING SCALING TRADE-OFFS IN SOFT SYSTEMV 58

0.4 T T T T T T T

0.38 private mix A (36 threads) i
L]

0.36 4

0.34 - private mix B (28 threads) B
L]

0.32 4

CPI (cycles per instruction)

0.3 |-private 4x4K/AT (24 threads) R

single mix (19 threads;
L[]

0.28 - single 1x4K/1T (16 threads)

0‘ 26 1 1 1 1 1 1 1
35000 40000 45000 50000 55000 60000 65000 70000 75000

Area (Equivalent LEs)

Composition of Heterogeneous Multiprocessors

Private mix A Private mix B Single mix

M4K-based | mtprivate x 5 mt_private x 5 stx 15

M-RAM-based | mt.shared x 4| mt_partitioned x 2 stx 4
Total threads 36 28 19

Figure 5.10: CPI versus area for our two best-performing maximal degitpe 16-thread-context
single-threaded design and the 24-thread-context private-cache neatidd design), and for those

designs extended with processors with M-RAM-based caches.
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5.6 Summary

In this chapter we explored architectural options for scaling the perfocenaf soft systems, focussing
on the organization of processors and caches connected to a singleipiinemory channel, for
workloads composed of many independent threads. For soft multititrgadeessors, we present the
technique of instructiomeplay to handle cache misses processors without stalling other threads. Our
investigation of real FPGA-based processor, multithreaded pro¢cessbmultiprocessor systems has
led to a number of interesting conclusions. First, we showed that multithredeigns help span
the throughput/area design space, and that private-cache based eadigthprocessors offer the best
performance. Looking at multiprocessors, we found that designgl lmassingle-threaded processors
perform the best for a given total area, followed closely by privatehe multithreaded multiprocessor
designs. We demonstrated that as the number of processors increaiéhyeaded processors lose
their latency-hiding advantage over single-threaded processorstlasiésigns become bottlenecked
on the memory channel. Finally, we showed the importance of exploiting heteziyg in FPGA-based
multiprocessors to fully utilize a diversity of FPGA resources when scalmg-design. Armed with
this knowledge of multiprocessors, we attempt to build our packet progesgsiem on the circuit

board with gigabit network interfaces that we describe in the next chapter



Chapter 6

NetThreads: A Multithreaded Soft

Multiprocessor

To avoid the tedious and complicated process of implementing a networking atgslien low-level
hardware-description language (which is how FPGAs are normally anoged), we instead propose
to run the application ogoft processors processors composed of programmable logic on the FPGA. To
build such a system, we leverage the compiler optimizations, the instruction rapltahyanism and the
multithreading with off-chip memory from Chapters 4 and 5, while still aiming to eteeapplications
with the run-to-completion paradigm discussed in Chapter 3. In this chapeeoriefly describe the
baseline NetThreads [81] multithreaded multiprocessor system that alldegrzgram the NetFPGA
platform [91] in software using shared memory and conventional loskedbaynchronization; we also
motivate our choice of the NetFPGA board as our experimentation platforrpaftket processing.
Next, we describe our benchmarks and show the baseline performiameesystem. This architecture
and platform serves as a starting point for evaluating new soft systaisegtures in the subsequent
chapters. We conclude this section by describing how this infrastructasealgo successfully used
as the enabling platform for two other projects led by software programimehe network research

community.

60



CHAPTER6. NETTHREADS. A MULTITHREADED SOFT MULTIPROCESSOR 61

SR URGI= O0OS
4-thread 1| e 4-thread I$
processor processor
instr.
® data
m -
g input mem.
= l output mem.
input data output
packet | buffer cache buffer | packet
input output

to DDR2 SDRAM

Figure 6.1: The architecture of a 2-processor soft packet multipgoce$he suspension dots indicate

that the architecture can allow for more cores (see Appendix B).
6.1 Multithreaded Soft Multiprocessor Architecture

Our base processor is a single-issue, in-order, 5-stage, 4-way nadtiut processor, shown to be the
most area efficient compared to a 3- and 7-stage pipeline in Chapter 5. Wiijpeevious chapter also
showed us that single-threaded processors could implement more ceréiged amount of area, the
situation is different here. Because we are now using a Xilinx FPGA witlsend 8kbits block RAMSs,
and we assign all our thread contexts to perform the same packet girac@s ashared—rather than
private—data memory space, the multithreaded processors actually deqouatermore block RAMs
than single-threaded cores (in this baseline architecture), and blocksRifdve the limiting factor to
adding more cores in Chapter 5. Since the FPGA logic elements are not d tirititiag factor either
(see Sectionh 6.2), we are in a situation where it is most advantageous tdizajoitethe better CPI of
multithreaded processors (as demonstrated in Chapter 4). Also, in Cbapeeassumed independent
application threads, whereas from this chapter onwards we use reatparocessing applications
with threads that share data and synchronize, so we expect more dtdbisl te synchronization that
multithreading can help tolerate.

As shown in Figure 6.1 and summarized in Table 6.1, the memory system of cketgaocessing
design is composed of a private instruction cache for each processbthree data memories that are
shared by all processors; this organization is sensitive to the two-porttionitaf block RAMs available

on FPGAs. The first memory is an input buffer that receives packetseport and services processor
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Table 6.1: On-chip memories.

Memory Description

Input buffer Receives packets on one port and services processor requéktsather port, read-only,

logically divided into ten fixed-sized packet slots.

Output buffer Sends packets to the NetFPGA MAC controllers on one port, connected podbessors

via its second port.

Data cache Connected to the processors on one port, 32-bit line-sized data tamsfe the DDR2

SDRAM controller (similar to previous work [134]) on the other port.

Input/Output buffers | 16KB, single-cycle random access, arbitrated across proce82dvs bus.

and Data cache

Instruction caches | 16KB, single-cycle random access, private per processor, 32usts b

requests on the other port via a 32-bit bus, arbitrated across poose$he second is an output memory
buffer that sends packets to the NetFPGA output-queues on one pbis, @mnnected to the processors
via a second 32-bit arbitrated bus on the second port. Both input anct ougpoories are 16KB, allow
single-cycle random access and are controlled through memory-maggustérs; the input memory is
read-only and is logically divided into ten fixed-sized packet slots ableltbdionost one packet each.
The third is a shared memory managed as a cache, connected to the gmoeess third arbitrated
32-bit bus on one port, and to a DDR2 SDRAM controller on the other portsimplicity, the shared
cache performs 32-bit line-sized data transfers with the DDR2 SDRANra@ter (similar to previous
work [134]), which is clocked at 200MHz. The SDRAM controller sees@ merged load/store queue
in-order; since this queue is shared by all processors it servesiagla goint of serialization and
memory consistency, hence threads need only block on pending loadstlaibres (as opposed to the
increased complexity of having private data caches). In Chapter 7ughednas 16 entries but using the
techniques proposed in that chapter, we are able to increase the sieejaktle to 64 for the remaining
chapters. Finally, each processor has a dedicated connection tohre@yimation unit that implements
16 mutexes. In our current instantiation of NetThreads, 16 mutexes is thenmmaxhumber that we
can support while meeting the 125MHz target clock speed. In the Netdit&#, each lock/unlock
operation specifies a unique identifier, indicating one of these 16 mutexes.

Similar to other network processors [25, 56], our packet input/outpdigaeuing in the input and
output buffers are hardware-managed. In addition to the input birfféigure/ 6.1, the NetFPGA

framework can buffer incoming packets for up to 6100 bytes (4 maximallyl gaekets) but the small
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overall input storage, while consistent with recent findings that netwoffers should be small [17],
is very challenging for irregular applications with high computational vagaard conservatively caps
the maximum steady-state packet rate sustainable via packets droppethpttlef the system.

Since our multiprocessor architecture is bus-based, in its current fowitl mot easily scale to
a large number of processors. However, as we demonstrate later innfSeé&joour applications are
mostly limited by synchronization and critical sections, and not contention ashmed buses; in other

words, the synchronization inherent in the applications is the primary loeidio scalability.

6.2 NetThreads Infrastructure

This section describes our evaluation infrastructure, including compilatiorevaluation platform, and

how we do timing, validation, and measurement.

Compilation: Our compiler infrastructure is based on modified versiongaaf 4.0.2,Binutils
2.16, andNewlib 1.14.0 that target variations of the 32-bit MIPS-I [66] ISA. We modify 18IP
to eliminate branch and load delay slots (as described in Section 4.1 [83gemdivision and
multiplication, which are not heavily used by our applications, are both implehémtgoftware. To
minimize cache line conflicts in our direct-mapped data cache, we align the top sfabk of each
software thread to map to equally-spaced blocks in the data cache. Tdesgoois big-endian which
avoids the need to perform network-to-host byte ordering transforng(i® information is stored
in packet headers using the big-endian format). Network processitwase is normally closely-
integrated with operating system networking constructs; because dgensgises not have an operating
system, we instead inline all low-level protocol-handling directly into our @ow. To implement
time-stamps and time-outs we require the FPGA hardware to implement a devicaithatt as the
system clock using a counter.

Platform: Our processor designs are inserted inside the NetFPGRezdlog infrastructure [91]
that manages four 1GigE Media Access Controllers (MACs), which aftemsiderable bandwidth (see
Section 2.1.3). We added to this base framework a memory controller caditgiurough the Xilinx
Memory Interface Generator to access the 64 Mbytes of on-board [HDFRAM clocked at 200MHz.

The system is synthesized, mapped, placed, and routed under hight@ffoeet timing constraints
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by Xilinx ISE 10.1.03 and targets a Virtex Il Pro 50 (speed grade 7ns)erQttan using the network
interfaces, our soft processors can communicate through DMA on anBface to a host computer
when/if necessary. This configuration is particularly well suited for maoket processing applications
because: (i) the load of the soft processors is isolated from the loadedrogt processor, (ii) the soft
processors suffer no operating system overheads, (iii) they caiveeand process packets in parallel,
and (iv) they have access to a high-resolution system timer (much higimethidtzof the host timer). As
another advantage, this platform is well supported and widely-usedsbgrehers worldwide [90], thus
offering a potential group of early adopters for our soft systems.

FPGA resource utilization Our two-CPU full system hardware implementation consumes 165
block RAMs (out of 232; i.e., 71% of the total capacity). The design oesup5,671 slices (66% of the
total capacity) and more specifically, 23158 4-input LUTs when optimized kgh-effort for speed.
Considering only a single CPU, the post-place & route timing results give perigound frequency of
129MHz.

Timing: Our processors run at the clock frequency of the Ethernet MACS(HZ) because there
are no free PLLs (Xilinx DCMs) after merging-in the NetFPGA support congmts. Due to these
stringent timing requirements, and despite some available area on the FP@, i)vate instruction
caches and the shared data write-back cache are both limited to a maximukBfat@l (ii) we are
also limited to a maximum of two processors. These limitations are not inherentamahitecture, and
would be relaxed in a system with more PLLs and a more modern FPGA.

Validation: At runtime in debug mode and in RTL simulation (usitgdelsim 6.3c), the
processors generate an execution trace that has been validateddotroess against the corresponding
execution by a simulator built on MINT [141]. We validated the simulator for timioguaacy against
the RTL simulation.

Measurement: We drive our design with a modifiettpreplay 3.4.0 that sends packet traces from
a Linux 2.6.18 Dell PowerEdge 2950 system, configured with two quagl-2GiHz Xeon processors
and a Broadcom NetXtreme Il GigE NIC connecting to a port of the NetFP&#d dor input and
a NetXtreme GigE NIC connecting to another NetFPGA port used for outpud.ch¥racterize the
throughput of the system as being the maximum sustainable input packetbtaieed by finding,

through a bisection search, the smallest fixed packet inter-arrival tireeevthe system does not drop
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any packet when monitored for five seconds—a duration empirically ftamglenough to predict the
absence of future packet drops at that input rate.

To put the performance of the soft processors in perspective lingrad 16 bps stream (with a
standard inter-frame gap equivalent to the delay of transmitting 12 byteSkais), i.e. a maximized
1Gbps link, with 2 processors running at 125 MHz, implies a maximum of 168s\yper packet for

minimally-sized 64B packets; and 3060 cycles per packet for maximally-8&&8B packets.

6.3 Baseline Performance

In this section, we present our system performance in terms of latencthemeyhput, showing the
potential and limitations of our implementation. We then focus on describing whergerformance

bottlenecks are located.

6.3.1 Latency

When replying to ICMP ping packets (an example of minimum useful computatibih)only 1 thread
out of 4 executing in round-robin, we measured a latency.fifi$with a standard deviation of #4
By comparison, when using an HP DL320 G5p server (Quad Xeon 2.2B@GHning Linux 2.6.26
and equipped with an HP NC326i PCle dual-port gigabit network carth@sost replying to the
ping requests, we measured an average round-trip time.8fig®&ith a standard deviation of 15us
NetThreads therefore offers a latency on average 9.6 times shorteg stindard deviation 397 times

smaller.

6.3.2 Throughput

We begin by evaluating the raw performance that our system is capalidef, performing minimal
packet processing for tasks that are completely independent (i.enamepized). We estimate this
upper-bound by implementing a packet echo application that simply copi&stpdmom an input port
to an output port. With minimum-sized packets of 64B, the echo program &e8006:-10 dynamic
instructions per packet, and a single round-robin CPU can echo 124ahdypackets/sec (i.e., 0.07
Gbps). With 1518B packets, the maximum packet size allowable by Etheautt.eeho task requires

1300+£10 dynamic instructions per packet. In this case, the generator softwdhe dost server (see
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Figure 6.2: Throughput (in packets per second) measured on the GlatiwiRh either1 or 2 CPUs.

Section 6.2) sends copies of the same preallocated ping request paokghthibnet 1.4. With two
CPUs and 64B packets, or either one or two CPUs and 1518B packe®Cdoased packet generator
cannot generate packets fast enough to saturate our system (i.at canse packets to be dropped).
This amounts to more than 58 thousand packetsfs@c7(Gbps). Hence the scalability of our system
will ultimately be limited by the amount of computation per packet/task and the amoparaifelism
across tasks, rather than the packet input/output capabilities of oumsyste

Figure[ 6.2 shows the maximum packet throughput of our (real) hardsystem with thread
scheduling. We find that our applications do not benefit significantly frieenaddition of a second
CPU due to increased lock and bus contention and cache conflicts: thieds€®U either slightly

improves or degrades performance, motivating us to determine the pemnfceriemiting factors.

6.3.3 ldentifying the Bottlenecks

To reduce the number of designs that we would pursue in real hardesagdeto gain greater insight
into the bottlenecks of our system, we developed a simulation infrastructuride Wrified for timing
accuracy, our simulator cannot reproduce the exact order of eberitsccurs in hardware, hence there
is some discrepancy in the reported throughput. For exar@pd,sifier has an abundance of control
paths and events that are sensitive to ordering such as routines fatiaipmemory, hash table access,

and assignment of mutexes to flow records. We depend on the simulatooomly &pproximation of
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Figure 6.3: Breakdown of how cycles are spent for each instructioayerage) in simulation.

the relative performance and behavior of applications on variationsrcfystem.

To obtain a deeper understanding of the bottlenecks of our system, weliusienulator to obtain a
breakdown of how cycles are spent for each instruction, as showigime=6.3. In the breakdown,
a given cycle can be spent executing an instructiemsy), awaiting a new packet to processo(
packet), awaiting a lock owned by another thread¢ked), squashed due to a mispredicted branch
or a preceding instruction having a memory misguashed), awaiting a pipeline hazarth§zard
bubble), or aborted for another reasasther, memory misses or bus contention). The fraction of time
spent waiting for packeta16 packet) is significant and we verified in simulation that it is a result of
the worst-case processing latency of a small fraction of packets, siepadket rate is held constant at

the maximum sustainable rate.

In Table| 6.2, we measure several properties of the computation doneaglegtpn our system.
First, we observe that task size (measured in dynamic instructions perd3dw@s an extremely large
variance (the standard deviation is larger than the mean itself for all th@eatpns). This high
variance is partly due to our applications being best-effort unpipelineatle implementations, rather
than finely hand-tuned in assembly code as packet processing appboaftien are. We also note that
the applications spend over 90% of the packet processing time either aveiticlgronization or within
critical sections (dynamic synchronized instructions), which limits the amdupamllelism and the

overall scalability of any implementation, and in particular explains why our tRb @nplementation
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Benchmark Dyn. Instr. Dyn. Sync. Sync. Unig.
%1000 Instr. Addr.
/packet %l packet Ipacket
Reads Writes
UDHCP 34.9+36.4 90+105 | 5000+6300 | 150+60
Classifier 12.5+35.0 94+100 150+260 110+200
NAT 6.0+7.1 97+118 420+570 60+60
Intruder 12527:18839 | 10.7+6.3 37+55 23+20
Intruder2 12391-18331 4.9+3.4 61+10 11+14

Table 6.2: Application statistics (meastandard-deviation): dynamic instructions per packet, dynamic

synchronized instructions per packet (i.e., in a critical section) and nuofhenique synchronized

memory read and write accesses.
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Figure 6.4: Throughput in packets per secondVtf as we increase the tolerance for dropping packets

from O to 5%, with either or 2 CPUSs.

provides little additional benefit over a single CPU in Figure 6.2. Thesdtsaroativate future work to

reduce the impact of synchronization.

Our results so far have focused on measuring throughput when aek®tpdrops are tolerated

(over a five second measurement). However, we would expect pgifme to improve significantly for

measurements when packet drops are tolerated. In Figure 6.4, we ploghiput folNAT as we increase

the tolerance for dropping packets from 0 to 5%, and find that this resuttsamatic performance

improvements—confirming our hypothesis that task-size variance is undegnpi@rformance.

In summary, because of our run-to-completion programming model, multipleddipracessors

collaborate to perform the same application and synchronization has testethin our benchmarks

to keep shared data coherent. With multiple packets serviced at the same timeukipte packet
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flows tracked inside a processor, the shared data accessed by adistisenot necessarily the same,
and can sometimes be exclusively read by some threads. In those cisas sections may be overly
conservative by preventively reducing the number of threads allowediitical section. In our baseline
measurements, we observe a large fraction of cycles spent waiting andndkon packets to arrive in
Figurel 6.3, i.e. a low processor utilization, along with the large throughmsitsety to tolerating
momentary packet contention on the input packet buffer. These feateisdicative that the threads
are often blocked on synchronization, given that we measured thatystem can have a CPI of 1
without memory misses (Section 4.5) and that it can sustain an almost full link titiizaf network
traffic (Section 6.3.2). We therefore find that in our benchmarks, anexpect this to be the case for
applications with a pool of threads executing the same program, syncationiis a severe bottleneck,

and it is the focus of a number of chapters in this thesis.

6.4 Successful uses of NetThreads

NetThreads is available online [81, 82]. NetThreads has been doved@82® times at the time of this
writing and the authors have supported users from sites in Canada, andidhe United States. In a
tutorial in our university, computer science students exposed for thdifirs to NetThreads were able
to successfully run regression tests within 5 minutes by compiliégreogram and uploading it along
with the NetThreads bitfile (no CAD tools required, and other executabdesuguplied).

With the participation of academic partners, in particular Professor Gargadiisp and Professor
Jacobsen’s group and at the University of Toronto, we have deselppoof-of-concept applications

that use our FPGA-based multiprocessor system.

1. A publish/subscribe application developed in collaboration with Professr Arno Jacobsen’s
group in Computer and Electrical Engineering at the University of Toronto [126]. Pub-
lish/subscribe applications are part of an emergent technology thatleeranong others the
ubiquitous news feeds on the Internet, the timely dissemination of strategimizion for rescue
missions and the broadcasting of financial data to trading agents. Netwnrgiam detection

(computer security) applications can also be expressed as publishisahse cases.

2. A packet generator application on FPGA developed in collaboration withProfessor Yashar
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Ganjali’s group in Computer Science at the University of Toronto[44, 127]. This hardware
accelerated application enables precise traffic flow modeling that is vitalettiicg accurate
network simulations and for network equipment buyers to make cost-g#edécisions. The
bandwidth and precision required for this system exceed what a domwahcomputer can

deliver.



Chapter 7

Fast Critical Sections via Thread

Scheduling

Chapters 4 and 5 have demonstrated that support for multithreading iprecfssors can tolerate
pipeline and I/O latencies as well as improve overall system throughput—vieowlds earlier work
assumes an abundance of completely independent threads to execthé dnapter, we show that
for real workloads, in particular packet processing applicationsetisea large fraction of processor
cycles wasted while awaiting the synchronization of shared data structuméing the benefits of
a multithreaded design. We address this challenge by proposing a metholdediulng threads in
hardware that allows the multithreaded pipeline to be more fully utilized withouifisignt costs in area
or frequency. We evaluate our technique relative to conventional muéiirg using both simulation
and a real implementation onNetFPGAboard, evaluating three deep-packet inspection applications
that are threaded, synchronize, and share data structures, anthahoverall packet throughput can be
increased by 63%, 31%, and 41% for our three applications compareel basleline system presented

in the previous chapter.

7.1 Multithreading and Synchronization

Prior work [35, 43, 106] and Chapters 4 and 5 have demonstratediyoingmultithreadingcan be
very effective for soft processors. In particular, by adding tvaire support for multiple thread contexts

(i.e., by having multiple program counters and logical register files) anihgsn instruction from
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a different thread every cycle in a round-robin manner, a soft gemrecan avoid stalls and pipeline
bubbles without the need for hazard detection logic [43, 76]: a pipeline Miitages that supports
N — 1 threads can be fully utilized without hazard detection logic [76]. Suclgdssre particularly

well-suited to FPGA-based processors because (i) hazard detectiondaogften be on the critical path
and can require significant area [83], and (ii) using the block RAMsigeal in an FPGA to implement

multiple logical register files is comparatively fast and area-efficient.

A multithreaded soft processor with an abundance of independentdthiteaexecute is also
compelling because it can tolerate memory and 1/O latency [84], as well asthpute latency of
custom hardware accelerators [106]. In prior work and Chaptensd45a it is generally assumed
that such an abundance of completely independent threads is availabtielesh@s a collection of
independent benchmark kernels [35, 43, 76,84, 106]. Howevezalrsystems, threads will likely share
memory and communicate, requiring (i) synchronization between threadstimg in synchronization

latency (while waiting to acquire a lock) and (@itical sections(while holding a lock).

While a multithreaded processor provides an excellent opportunity to toleratgesulting
synchronization latency, the simple round-robin thread-issue scheradspusviously fall short for
two reasons: (i) issuing instructions from a thread that is blocked orhsynization (e.g., spin-loop
instructions or a synchronization instruction that repeatedly fails) wagteine resources; and (ii) a
thread that currently owns a lock and is hence in a critical section onlysssw ever\N — 1 cycles
(assuming support foX — 1 thread contexts), exacerbating the synchronization bottleneck forhbie w

system.

The closest work on thread scheduling for soft processors thatevaveare of is by Moussaét.

al. [106] who use a table of pre-determined worst-case instruction latencisoid pipeline stalls.
Our technique can handle the same cases while additionally prioritizing critreglds and handling
unpredictable latencies. In the ASIC world, thread scheduling is an tesseart of multithreading
with synchronized threads [139]. The IXP [57] family of network prgsm@'s use non-preemptive thread
scheduling where threads exclusively occupy the pipeline until they vaollyde-schedule themselves
when awaiting an event. Other examples of in-order multithreaded prasesstude the Niagara [73]
and the MIPS 34K [72] processors where instructions from eachdtwed to be issued in a dedicated

pipeline stage. While thread scheduling and hazard detection are welldsindieneral (operating
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systems provide thread management primitives [109] and EPIC architectueh as IA-64 [58],
bundle independent instructions to maximize instruction-level parallelismyaalis to achieve thread
scheduling efficiently in the presence of synchronization at the fine gegimred to tolerate pipeline

hazards.

7.2 Implementing Thread Scheduling

A multithreaded processor has the advantage of being able to fully utilize tleegsor pipeline by
issuing instructions from different threads in a simple round-robin matonavoid stalls and hazards.
However, for real workloads with shared data and synchronizatioe,a more threads may often
spin awaiting a lock, and issuing instructions from such threads is henesta wf pipeline resources.
Also, a thread which holds a lock (i.e., is in a critical section) can potentially denthst important,
since other threads are likely waiting for that lock; ideally we would allocateatgr share of pipeline
resources to such threads. Hence in this section we consider methathéaulingthreads that are
more sophisticated than round-robin but do not significantly increasethplexity nor area of our soft
multithreaded processor.

The most sophisticated possibility would be to give priority to any thread tHes lzocritical lock,
and otherwise to schedule a thread having an instruction that has na$aatr current instructions
in the pipeline. However, this method is more complex than it sounds due to thibifiysof nested
critical sections: since a thread may hold multiple locks simultaneously, and nemeotie thread
may hold different locks, scheduling such threads with priorities is veficdif and could even result
in deadlock. A correct implementation of this aggressive scheduling wouaty likiso be slow and
expensive in terms of hardware resources.

Instead of giving important threads priority, in our approach we prefgonly de-schedulany
thread that is awaiting a lock. In particular, any such thread will no longee linstructions issued
until any lock is released in the system—at which point the thread may spirattecepting to acquire
the lock and if unsuccessful it is blocked aJéirOtherwise, for simplicity we would like to issue

instructions from the unblocked threads in round-robin order.

1A more sophisticated approach that we leave for future work would amityoek threads waiting on the particular lock
that was released.



CHAPTER 7. FAST CRITICAL SECTIONS VIA THREAD SCHEDULING 74

To implement this method of scheduling we must first overcome two challengés. firBt is
relatively minor: to eliminate the need to track long latency instructions, ourepsmesreplay
instructions that miss in the cache rather than stalling (Chapter 5 [84]). Withhawnd-robin thread
scheduling, it is possible to have multiple instructions from the same thread inpthlenp at once—
hence to replay an instruction, all of the instructions for that thread follpwhe replayed instruction
must be squashed to preserve the program order of instructiongiexecu

The second challenge is greater: to support any thread scheduldgh@heound-robin means that
there is a possibility that two instructions from the same thread might issue withsafeudistance
between them in the pipeline, potentially violating a data or control hazardovgder several methods
for re-introducing hazard detection. First, we could simply add hazdettien logic to the pipeline—
but this would increase area and reduce clock frequency, and wisddead to stalls and bubbles
in the pipeline. Second, we could consult hazard detection logic to find ardivéiee instruction to
issue from any ready thread—but this more complex approach requéresldlition of an extra pipeline
stage, and we demonstrate that it does not perform well. A third solutioichwie advocate in this
chapter, is to performtatic hazard detectioby identifying hazards at compile time and encoding hazard
information into the instructions themselves. This approach capitalizes oedibits in block RAM
words on FPGAL%to store thesbazard bits allowing us to fully benefit from more sophisticated thread

scheduling.

Static Hazard Detection

With the ability to issue from any thread not waiting for a lock, the thread sdbedhust ensure
that dependences between the instructions from the same thread amenéther from the branch
target calculation to the fetch stage, or from the register writeback to th&teegead. The easiest
way to avoid such hazards is to suppfatwarding lines By supporting forwarding paths between the
writeback and register-read stages of our pipeline, we can limit the maximeanchdistance between
instructions from the same thread to two stages.

Our scheduling technique consists of determining hazards at compile-timmserting hazard

distancesas part of the instruction stream. Because our instructions are fetatmacoff-chip DDR2

2Extra bits in block RAMs are available across FPGA vendors: block RAMsgmost all granularities are configured in
widths that are multiples of nine bits, while processors normally have busskiples of eight bits wide.
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’ Program Disassembly | Hazard distance]rl Min. issue cyc
addi ri,ri,r4 0 0
addi (/ r2,r2,r5 1 1
or <\ rl,rl,r8 0 3
or N r2,r2,r9 0 4

Figure 7.1: Example insertion of hazard distance values. The 3 registearms for the instructions
are, from left to right, a destination and two source registers. Arrowisatel register dependences,
implying that the corresponding instructions must be issued with at least twbn@stages between
them. A hazard distance of one encoded into the second instruction comthargiscessor to ensure
that the third instruction does not issue until cycle 3, and hence the fosttiagtion cannot issue until

cycle 4.

memory into our instruction cache, it is impractical to have instructions wider tR2ahit3. We
therefore compress instructions to accommodate the hazard distance bitgriogiaen executable, and
decompress them as they are loaded into the instruction cache. We capitalimeumused capacity of
block RAMs, which have a width multiple of 9 bits—to support 32-bit instructimtires four 9-bit

block RAMs, hence there are 4 spare bits for this purpose.

To represent instructions in off-chip memory in fewer than 32 bits, we cesgthem according to
the three MIPS instruction types [19]: for tRetype, we merge the function bit field into the opcode
field and discard the original function bit field; for theype instructions, we truncate the target bit field
to use fewer than 26 bits; and for thetype, we replace the immediate values by their index in a lookup
table that we insert into our FPGA design. To size this lookup table, we fthatdhere are usually
more than 1024 unique 16-bit immediates to track, but that 2048 entries iseniffio accommodate
the union of the immediates of all our benchmarks. Therefore, the instrudéicompression in the
processor incurs a cost of some logic and 2 additional block RABLg not on the critical path of the
processor pipeline. After compression, we can easily reclaim 4 bits gendtien: 2 bits are used to
encode the maximum hazard distance, and 2 bits are used to identify loelsteqad release operations.
Our compiler automatically sets these bits accordingly when it recognizes menamyed accesses for

the locks.

SFor ease of use, the immediate lookup table could be initialized as part ofatiedgrogram executable, instead of
currently, the FPGA bit file.
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An example of code with hazard distances is shown in Figure 7.1: the compi&aceount for the
distances inserted between the previous instructions to avoid insertinglgopg hazard distances.
It first evaluates hazards with no regard to control flow: if a branchoistaken, the hazards will
be enforced by the hazard distance bits; if the branch is taken, the pipélinee flushed from
instructions on the mispredicted path and hazards will be automatically avdie®. extended our
processors to be able to predict taken branches, we would have ttert#e® hazard distance bits to
account for both execution paths. As a performance optimization, wet iadsazard distance of 2
for unconditional jumps to prevent the processor from fetching on tloagvpath, as it takes 2 cycles
to compute the branch target (indicated by the arrows fronEtt@F pipeline stages in Figure 7.2).
In our measurements, we found it best not to insert any hazard distancenditional branches; an
improvement would consist of using profile feedback to selectively irserard distances on mostly
taken branches. With more timing margin in our FPGA design, we could explber possible
refinements in the thread scheduler to make it aware of load misses and plgtémgiantiate lock

priorities.

At runtime upon instruction fetch, the hazard distances are loaded intdecsuhat inform the
scheduler about hazards between instructions in unblocked thredlistated in Figure 7.2. When
no hazard-free instruction is available for issue (Figure 7.2c), thedsédreinserts a pipeline bubble. In
our processors with thread scheduling, when two memory instructions felm other and the first
one misses, we found that the memory miss signal does not have enough tiatikgosdisable the
second memory access while meeting our frequency requirements. Olimrs@uo take advantage of
our hazard distance bits to make sure that consecutive memory instructtomshie same thread are

spaced apart by at least one instruction.

Note that in off-the-shelf soft processors, the generic hazard tigtegircuitry identifies hazards
at runtime (potentially with a negative impact on the processor frequemcly)nserts bubbles in the
pipeline as necessary. To avoid such bubbles in multithreaded proseASIC implementations [72,
73] normally add an additional pipeline stage for the thread scheduler ti baleard-free instructions.

We evaluate the performance of this approach along with ours in the reditrse



CHAPTER 7. FAST CRITICAL SECTIONS VIA THREAD SCHEDULING 77

Thread:Inst. Haz.Dist.

TO:O ... 2. FIR|E| MW
TL60 .. 0. FIR|E|MlW
T2:00 . 0. FIIR|E| MW
TO:L . 0. NFIR|E| MW
TLil .. 0. FIR|E|MW
=Time
a) T3 is de-scheduled, awaiting a lock.
TO:i0 2. FIR[E|M W
TLi0 . 0. FIR|E| MW
TLil . 0. FI|R|E| MW
TO 0. YF|R|E| MW
TL2 0 FIRIE[ MW
=Time
b) T2 and T3 are de-scheduled, awaiting a lock.
TO:i0 2 FIR|E| M w
TO:L .. 0. FIR|E|MW
TOi2 0. FIR[E[ MW
TO:3 ... 0. . FIR[E[ MW
=Time

c) T1, T2, and T3 are de-scheduled, awaiting a lock.

Figure 7.2: Examples using hazard distance to schedule threads. Theepgtages areF for fetch,
R for register,E for executeM for memory, andv for write-back. The arrows indicate potential branch

target € to F) or register dependencestp R).
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7.3 Experimental results

In this chapter, our application characteristics are unchanged frofe Baband Figure 7.3(a) shows
the maximum packet throughput of our simulated system (Section 6.3.3), limeche that of a single
round-robin CPU; these results estimate speedups for our scheduliagiogle CPU g1) of 61%,
57% and 47% foUDHCP, Classifier andNAT respectivell} We also used the simulator to estimate
the performance of an extra pipeline stage for schedulingaqdE2, as described in Section 7.2), but
find that our technique dominates in every case: the cost of extra sguasttructions for memory
misses and mispredicted branches for the longer pipeline overwhelms laagusiog benefit—hence
we do not pursue that design in hardware.

Figure| 7.3(b) shows the maximum packet throughput of our (real) leesystem, normalized
to that of a single round-robin CPU. We see that with a single CPU our athgdechnique $1)
significantly out-performs round-robin schedulingR{) by 63%, 31%, and 41% across the three
applications. However, we also find that our applications do not belgtfifisantly from the addition
of asecond CPU due to increased lock and bus contention, and rezaatedlocality: foClassifier
two round-robin CPUSRR2) is 16% better, but otherwise the second CPU either very slightly improves
or degrades performance, regardless of the scheduling used. Welssrve that our simulator
(Figure 7.3(a)) indeed captures the correct relative behaviour @fpkications and our system.

Comparing two-CPU full system hardware designs, the round-robin impliatien consumes 163
block RAMs (out of 232, i.e., 70% of the total capacity) compared to 165isl6£1%) with scheduling:
two additional blocks are used to hold the lookup table for instruction deco@isgexplained in
Section 7.2). The designs occupy respectively 15,891 and 15,963 (&latet7% of the total capacity)
when optimized with high-effort for speed. Considering only a single Qg ,post-place & route
timing results give an upper bound frequency of 136MHz for the rawhih CPU and 129MHz for
scheduling. Hence the overall overhead costs of our proposedudoigetechnique are low, with a

measured area increase of 0.5% and an estimated frequency dedrg#se o

Identifying the Bottlenecks

Much like in Section 6.3.3, to obtain a deeper understanding of the bottleléaks system,

“We will report benchmark statistics in this order from this point on.
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(a) Simulation results.
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(b) Hardware results.

Figure 7.3: Throughput (in packets per second) normalized to thatiofesound-robin CPU. Each
design has either round-robin scheduliRg)( our proposed scheduling)( or scheduling via an extra

pipeline stageR), and has eithet or 2 CPUs.
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Figure 7.4: Average cycles breakdown for each instruction at thecésp maximum packet rates from

Figure 7.3(a).

we use our simulator to obtain a breakdown of how cycles are spentdbriestruction, as shown in
Figure 7.4. In the breakdown, a given cycle can be spent executingtanction pusy), awaiting a new
packet to procesai6 packet), awaiting a lock owned by another thread¢ked), squashed due to a
mispredicted branch or a preceding instruction having a memory susaghed), awaiting a pipeline
hazard hazard bubble), or aborted for another reasosither, memory misses or bus contention).
Figure 7.4 shows that our thread scheduling is effective at tolerating aliag/cles spent spinning
for locks. The fraction of time spent waiting for packets (packet) is reduced by 52%, 47%, and
48%, a result of reducing the worst-case processing latency of {saaka simulator reports that the
task latency standard deviation decreases by 34%, 33%, and 32%.rathierf of cycles spent on
squashed instructionsdquashed) becomes significant with our proposed scheduling: recall that if one
instruction must replay that we must also squash and replay any instrudioniiat thread that has
already issued. The fraction of cycles spent on bubllessrd bubble) also becomes significant: this
indicates that the CPU is frequently executing instructions from only onadhveith the other threads
blocked awaiting locks.

While our results in this chapter have focused on measuring throughpuatzehe packet drops are
tolerated (over a five second measurement), we are interested in rettummgeriment from Figure 6.4.

Again, we would expect performance to improve significantly for measurewehen packet drops are
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allowed percentage of packet drops
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normalized throughput (packets/sec)

Figure 7.5: Throughput in packets per secondif as we increase the tolerance for dropping packets
from 0 to 5%. Each design has either round-robin schedulRydr our proposed scheduling)(and

has eithen or 2 CPUs.

tolerated. In Figure 7.5, we plot throughput AT as we increase the tolerance for dropping packets
from 0 to 5%, and find that this results in dramatic performance improvemenkoftb fixed round-
robin (previously shown in Figure 6.4) and our more flexible thread sdheg—again confirming our

hypothesis that task-size variance is still undermining performance.

7.4 Summary

In this chapter, we show that previously studied multithreaded soft poresvith fixed round-robin
thread interleaving can spend a significant amount of cycles spinninigdks when all the threads
contribute to the same application and have synchronization around datadésges. We thus
demonstrate that thread scheduling is crucial for multithreaded softgzoiseexecuting synchronized
workloads. We present a technique to implement a more advanced thresttlibieg that has minimal
area and frequency overhead, because it capitalizes on featuheskRPGA fabric. Our scheme builds
on static hazard detection and performs better than the scheme used in AS&Sgors with hazard
detection logic because it avoids the need for an additional pipeline stagem@roved handling of
critical sections with thread scheduling improves the instruction throughpighwesults in reduced
processing latency average and variability. Using a real FPGA-baaark interface, we measured
packet throughput improvements of 63%, 31% and 41% for our thrdeatpns.

For the remainder if this thesis, to eliminate the critical path for hazard detectjan) \ee employ
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the static hazard detection scheme presented in this chapter [77] both ircbhibecture and compiler.
While we were able to reclaim an important fraction of processor cyclesir&ig.4 shows that our
processors are still very under-utilized, motivating more aggressimehsgnization techniques to

increase the concurrency across the threads.



Chapter 8

NetTM: Improving NetThreads with

Hardware Transactional Memory

As reconfigurable computing hardware and in particular FPGA-basstemg-on-chip comprise an
increasing number of processor and accelerator cores, suppantnigg and synchronization in a
way that is scalable and easy to program becomes a challenge. As wdidinsss in this chapter,
Transactional memor§TM) is a potential solution to this problem, and an FPGA-based system povid
the opportunity to support TM in hardware (HTM). Although there are mameposed approaches to

support HTM for ASIC multicores, these do not necessarily map well toAB&sed soft multicores.

We propose NetTM: support for HTM in an FPGA-based soft multithrdadelticore that matches
the strengths of FPGAs—in particular by careful selection of TM featsuwel as version and contention
management, and with conflict detection via support for application-spsaiiiatures. We evaluate
our system using the NetFPGA [91] platform and four network packetgssing applications that
are threaded and shared-memory. Relative to NetThreads [81], am@xiso-processor four-way-
multithreaded system with conventional lock-based synchronization, eéhat adding HTM support
() maintains a reasonable operating frequency of 125MHz with an aredesd of 20%, (ii) can
“transactionally” execute lock-based critical sections with no softwareifination, and (iii) achieves
6%, 54% and 57% increases in packet throughput for three of fotkeparocessing applications

studied, due to reduced false synchronization.

83
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8.1 The Potential for Improving Synchronization with Hardware Trans-

actional Memory

In this section, we motivate both quantitatively and qualitatively the need fondpgarallel programs
that can be synchronized efficiently without sacrificing performance,imnevhich TM could play a

critical role.

8.1.1 Maoativating Programmer-Friendly Parallelism

Conventional lock-based synchronization is both difficult to use and @ft®m results in frequent
conservative serialization of critical sections, as demonstrated byutiidexd processors in Section 7.3.
While systems based on shared memory can ease the orchestration off strticommunication
between cores, they require the careful use of synchronization (iek,adod unlock operations).
Consequently, threads executing in parallel wanting to enter the s@tical section(i.e., a portion of
code that accesses shared data delimited by synchronization) will biezeerighus losing the parallel
advantage of such a system. Hence designers face two important challéigmultiple processors
need to share memory, communicate, and synchronize without serializingeitigien, and (i) writing
parallel programs with manually inserted lock-based synchronization as-@rone and difficult to
debug.

Alternatively, we propose thalransactional memoryTM) is a good match to software packet
processing: it both (i) can allow the system to optimistically exploit parallelismd@tvihe processing
of packets and reduce false contention on critical sections whenevesatego do so, and (ii) offers
an easier programming model for synchronization. A TM system optimisticallyalioultiple threads
inside a critical section—hence TM can improve performance when thégdaraical sections access
independent data locations. With transactional execution, a programmereigof employ coarser
critical sections, spend less effort minimizing them, and not worry abcaddeks since a properly
implemented TM system does not suffer from them. To guarantee corssctihe underlying system
dynamically monitors the memory access locations of each transactioreéthsetandwrite sej and
detectsconflictsbetween them. While TM can be implemented purely in software (STM), a haedwa

implementation (HTM) offers significantly lower performance overhead. Keéyequestion is: how
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amenable to optimistic transactional execution is packet processing on a nasticer, on a platform
with interconnected processor or accelerator cores that synchmamizehare memory?

In NetThreads, each processor has support for thread schedsdéiagChapter 7): when a thread
cannot immediately acquire a lock, its slot in the round-robin order can éeé g other threads
until an unlock operation occurs—this leads to better pipeline utilization by minimthiegxecution
of instructions that implement spin-waiting. To implement lock-based syniation, NetThreads
provides a synchronization unit containing 16 hardware mutexes; irsdymeach lock/unlock operation
specifies a unique identifier, indicating one of these 16 mutexes. In SecltiGnt®rough simulation, we
find that supporting an unlimited number of mutexes would improve the perfagraour applications
by less than 2%, except for Classifier which would improve by 12%. In #s¢ of this section,
we explain that synchronization itself can in fact have a much larger impatihroughput for our
benchmarks and we explain how is this also a challenge for many emergingpaitiest processing

applications.

8.1.2 The Potential for Optimistic Parallelism

Although it depends on the application, in many cases, only the procedsparkets belonging to
the samdlow (i.e., a stream of packets with common application-specific attributes, sucligesaes,
protocols, or ports) results in accesses to the same shared state. lWwattherthere is often parallelism
available in the processing of packets belonging to independent flowlsin\d al. [99] show that for
two NLANR [116] packet traces the probability of having at least two péckrom the same flow in
a window of 100 consecutive preceding packets is approximately 20%4@¥td Verdi et al. [142]
further show that the distance between packets from the same flow iesnedhk the amount of traffic
aggregation on a link, and therefore generally with the link bandwidth in the afwide area networks.
To demonstrate the potential for optimistic parallelism in our benchmark applisatianprofiled
them using our full-system simulator (Section 613.3). In particular, whatreérdgerested in is how
often the processing of packets has a conflict—i.e. for two threads e@ackssing a packet, their
write sets intersect or a write set intersects a read set. In Figure 8.1,ometlsh average fraction of
packets for which their processing conflicts for varying windows of 2&@@ackets: while the number

of dependent packets increases with the window size, the number iesreary slowly because of
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Figure 8.1: Average fraction of conflicting packet executions for wivglof 2 to 16 consecutive packets.

the mixing of many packet flows in the packet stream so the fraction (or mtid¢pendent packets
does diminish with the increasing window size. For three of our applicatiis,Classifier, and
Intruder2, the fraction of conflicting packet-executions varies from around 20%dgs than 10%
as the window considered increases from 2 to 16 packets, indicating twatanpthings: first, that
conventional synchronization for critical sections in these applicationddamoe overly-conservative
80% to 90% of the time, and second that there is hence a strong potentiptifarstic synchronization
for these applications. FAIDHCP, our profile indicates that nearly all packet-executions conflict. In
reality, UDHCP contains several critical sections, some that do nearly always conflictnény others
that do not conflict—hence the potential for optimistic parallelism exists evetdDidCP. Now with
the knowledge that synchronization is generally conservative foratkat processing applications, we
are interested in knowing if synchronization would also be a problem whedllelizing other, more

advanced applications that are representative of future use cases.

8.1.3 The Need for Simpler Synchronization

The Internet has withessed a transformation from static web pages td setisrking and peer-
to-peer data transfers. This transformation of user behavior pattequireés network connectivity
providers to constantly and proactively adapt their services to adégymtsision and secure their
infrastructure. As networking requirements evolve constantly, many me®guipment vendors opt for
network processors to implement functions that are likely to change overBetause many network

protocols are now considered outdated, there is even a desire to Imal@vepen the hardware to accept
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user/researcher code [41]. However, once faced with boafiepeeference code, programmers are
often hesitant to edit it, in part due to the challenge of modifying the synctation and parallelization
mechanisms in those carefully tuned multicore programs.

With multicore processors becoming commodity, general-purpose proseas® closing the
performance gap with network processors for network-edge applisaf] fueling an increased
industry use of open-source software that than can turn an offiBléemputer into a network device;
examples include the Click Modular router [105], Snort [124], Quagd4 and the XORP project [52].
Those applications are often coded as a single thread of computation withgiaday data structures
that are unsynchronized—hence porting them to multicore is a substarairgie when performance
depends on constructing finer-grained synchronized sections.e Theherefore a need for simpler
synchronization mechanisms to support control-flow intensive programs.

In this section, we show that the processing of different packets islwalys independent, and
the application must maintain some shared state. We also show that protectinggatieid state with
traditional synchronization leads to conservative serializations of phttaiads in most instances and,
beyond this quantitative argument, there is a demand for easier parallelistal¢otise performance
of packet processing applications to multicores. Because transactiomabrsnean improve both
performance and ease of programming, we are motivated to find wayshieétria our soft processor-

based platform. First, we review previous implementations of TM on FPGAs.

8.2 Prior Work in FPGA Hardware Transactional Memory

There is a large body of work studying the design space for HTM in ASIGicoves [18, 94]. Earlier
proposed transactional memory implementations [51] buffer transactioites\eind make them visible
only at the end of a transaction. They augment their caches with speelyatdad and written bits
and rely on iterating in the cache for commits and instantaneous clear oflsjexgache tag bits.
Later extensions [12, 120] allow caches to overflow speculative dataspeeified location in main
memory. In these proposals, long transactions were required to amontizaeictoverheads, but were
in turn more likely to conflict. For the Rock processor [34] (a commercialABhplementation of

HTM), it was found that most of these proposals were too complex to implemgieen the other



CHAPTER 8. NETTM: IMPROVING NETTHREADS WITH HTM 88

types of speculation already present in the processor and a limited vefsidivi was implemented
that doesn’t support function calls in transactions. LOGTM-SE [188}, most similar approach to
ours, decouples conflict detection from the caches to make commits fastntrast with LOGTM-

SE, which handles transaction conflicts in software and is evaluated withsomiyl transactions,
we alleviate the programmer from having to modify lock-based code to supposactions, and we
consider much longer transactions.

Most previous FPGA implementations of HTM were used to prototype an ARiSigd [48,
134, 147]—as opposed to targeting the strengths of an FPGA as a fothlgbr To provide a low-
overhead implementation, our work also distinguishes itself in the type of TMatbamplement and
in the way that we perform conflict detection. To track transactionaludptee state, prior FPGA
implementations [48, 63, 147] use (i) extra bits per line in a private cachéhpead or in a shared
cache, and (iiJazy version managemefite., regular memory is modified only upon commit), and (iii)
lazy conflict detectioffi.e., validation is only performed at commit time). These approaches are not a
good match for product-oriented FPGA-based systems because oftitiieaig cache storage overhead
required, as we explain later in Section|8.4.

The most closely related work to ours is the CTM system [63] which employsaeed-cache
and per-transaction buffers of addresses to track accesses. vétoviee evaluation of CTM is
limited to at-most five modified memaory locations per transaction—in contrast, Netipldosts more
than a thousand per transaction. Rather than using off-the-shelf @@ @s in CTM and other
work [48, 134, 147] and thus requiring the programmer to explicitly mark éensactional access
in the code, in NetTM we integrate TM with each soft processor pipeline atmhetically handle
loads and stores within transactions appropriately. This also allows NetTMrisatctionally execute
lock-based critical sections, assuming that the programmer has followelt sinfgs (described later in

Section 8.3).

8.3 Programming NetTM

Specifying Transactions TM semantics [54] imply that any transaction will appear to have executed

atomically with respect to any other transaction. For NetTM, as in most TMregsta transactional
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critical section is specified by denoting the start and end of a transacsioig, thhe same instruction API
as the lock-based synchronization for NetThreads—ieck (ID) can mean “start transaction” and
unlock (ID) can mean “end transaction”. Hence existing programs need not be mosiifieel NetTM

can use existing synchronization in the code and simply interpret criticiébse@s transactional. We

next describe how the lock identifidD in the previous example, is interpreted by NetTM.

Locks vs Transactions NetTM supports both lock-based and TM-based synchronization, ainode
region’s access patterns can favor one approach over the othexdraple, lock-based critical sections
are necessary for 1/0 operations since they cannot be undone ingheavan aborted transaction:
specifically, for processor initialization, to protect the sequence of memapped commands leading
to sending a packet, and to protect the allocation of output packet meneeriatsr in this section). We
use the identifier associated with lock/unlock operations to distinguish wheetiigen critical section
should be executed via a transaction or via traditional lock-based symzhtion: this mapping of the
identifiers is provided by the designer as a parameter to the hardwatesgization unit (Figure 8.4).
When writing a deadlock-free application using locks, a programmer wopldaly need to examine
carefully which identifier is used to enter a critical section protecting aes@¢sesvhich shared variables.
NetTM simplifies the programmer’s task when using transactions: NetTM&gdhe atomicity of all
transactions regardless of the lock identifier value. Therefore onlydeméfier can be designated to be
of the transaction type, and doing so frees the remaining identifiers/mutelesised as unique locks.
However, to support legacy software, a designer is also free to @sigmultiple identifiers to be of the

transaction type.

Composing Locks and Transactions It is desirable for locks and transactions in our system to be
composable, meaning they may be nested within each other. For example, toa#lioiménisfer a
record between two linked lists, the programmer might nest existing atomic datkbessert operations
within some outer critical section. NetTM supports composition as followeck within lockis
straightforward and supportediransaction within transactioiis supported, and the start/end of the
inner transaction are ignored. As opposed to lock-based synchtioniza deadlock is therefore not
possible across transactions. NetTM uses a per-thread hardwarerctutrack the nesting level of

lock operations to decide when to start/commit a transaction, or acquiregr@léask in the presence of
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lock(ID_TX); lock(ID_.MUTEX); lock(ID_TX);
lock(ID_TX); x =val; lock(ID_TX);
lock(ID_.MUTEX); X =vall;
unlock(ID.-MUTEX); unlock(ID_TX); X =val2;
unlock(ID_.MUTEX); x =val; lock(ID_.MUTEX); unlock(ID_TX);
y=Xx
unlock(ID_TX); unlock(ID_TX); unlock(ID.MUTEX); y=X;

(a) Undefined behavior: nest- (b) Undefined behavior: par- (c) Race condition: lock- (d) Race condition: transac-
ing lock-based synchroniza- tial nesting does not provide based critical sections are nottions are not atomic with re-
tion inside transaction. atomicity. atomic with respect to transac- spect to unsynchronized ac-

tions. cesses (i.e., ta).

Figure 8.2: Example mis-uses of transactions as supported by N&OIIWK identifies a critical section
as a transaction, aridb_MUTEX as a lock. Critical section nesting occurs when a program is inside more

than one critical section is at a particular instant.

nesting. Lock within transactionis not supported as illustrated in Figure 8.2(a), since code within
a lock-based critical section should never be undone, and we do ppbiunaking transactions
irrevocable [47]. Transaction within locks supported, although the transaction must be fully nested
within the lock/unlock, and will not be executed atomically—meaning that thedcios start/end are
essentially ignored, under the assumption that the enclosing lock propetBcis any shared data.
Our full-system simulator can assist the programmer by monitoring the dynaimwibe of a program
and identifying the potentially unsafe nesting of transactions inside locsedehcritical sections, as
exemplified in Figure 8.2(b). NetTM implementgeak atomicity{96], i.e. it guarantees atomicity
between transactions or between lock-based critical sections, buetw¢dn transactions and non-
transactional code. Figures 8.2(c) and (d) shows examples of noneadmcesses to the variahte
that could result in race conditions: while those accesses are suppodeate useful in some cases
(e.g. to get a snapshot of a value at a particular instant), the prograrhméd $e aware that they are
not thread safe, just like with traditional synchronization when using laéits different identifiers in

Figure 8.2(c) or a lock in Figure 8.2(d).

Memory Semantics NetTM comprises several on-chip memories (Table 6.1) with varying ptieper

hence it is important to note the interaction of TM with each. The input buffeotsimpacted by
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Table 8.1: Dynamic Accesses per Transaction
All accesses Unique

Loads Stores Store Locations

Benchmark | mean| max | mean | max (filtered) | mean| max

Classifier | 2433 | 67873| 1313 | 32398 (573) 38 314

NAT 114 | 739 | 28 104 (98) 19 55
Intruder2 | 152 | 7765 | 40 340 (255) | 22 111
UDHCP 61 | 3504 | 4 301 (36) 4 20

TM since it is read-only, and it's memory-mapped control registers shaotid@ accessed within a
transaction. The output buffer can be both read and written, howewalyitcontains packets that are
each accessed by only one thread at a time (since the allocation of ouffeuplaickets is protected by a
regular lock). Hence for simplicity the output buffer does not supporirado log, and the programmer
must take into account that it does not roll-back on a transaction abortwit@in a transaction, a

program should never read an output buffer location before writing it).

Improving Performance via Feedback TM allows the programmer to quickly achieve a correct
threaded application. Performance can then be improved by reducisgdtenm aborts, using feedback
that pin-points specific memory accesses and data structures that ¢haseohflicts. While this
feedback could potentially be gathered directly in hardware, for nonse@ur cycle-accurate simulator
of NetTM to do so. For example, we identified memory management functiadddc () andfree())

as a frequent source of aborts, and instead employed a light-weigttirpad memory allocator that

was free of conflicts.

Benchmark Applications Table[ 3.1 describes the nature of the parallelism in each application, and
Table 8.1 shows statistics on the dynamic accesses per transaction fapgdication (filtering will

be described later in Section 8.6). Note that the transactions comprise sighifimbers of loads and
stores; the actual numbers can differ from the data in Table 6.2 bechtise code transformations

applied to the original code, as explained in Section 8.3.
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8.4 \ersion Management

There are many options in the design of a TM system. For NetTM our ochirgy goals are to match
our design to the strengths and constraints of an FPGA-based systetmiving Sor simplicity, and
minimizing area and storage overhead. In this section, we focus on optiomsrgion management
which have a significant impact on the efficiency and overheads ofgddpport for HTM to an FPGA-
based multicore. Version management refers to the method of segregatisactianal modifications
from other transactions and regular memory. For a simple HTM, the two mainnspfis version

management afdazy[51] versuseager[158].

Lazy Version Management In a lazy approach, write values are saved in a write-buffer until the
transaction commits, when they are copied/flushed to regular memory. Adymest first check the
write-buffer for a previous write to the same location, which can add latemegad operations. To
support writes and fast reads, a write-buffer is often organized @scle with special support for
conflicts (e.qg., partial commit or spill to regular memory). CTM [63] (see Se@i@) minimizes cache
line conflicts by indexing the cache vizuckoohashing, although this increases read latency. Because
lazy schemes buffer modifications from regular memory: (i) they can stppaltiple transactions
writing to the same location (without conflict), (ii) conflict detection for a tratisa can be deferred
until it commits, (iii) aborts are fast because the write-buffer is simply digmirdnd (iv) commits are

slow because the write-buffer must be flushed/copied to regular memory.

Eager Version Management In an eager approach, writes modify main memory directly and are not
buffered—therefore any conflicts must be detected before a writefisrperd. To support rollback for
aborts, a backup copy of each modified memory location must be savediimdarlog Hence when a
transaction aborts, the undo-log is copied/flushed to regular memory, lzgrd avtransaction commits,
the undo-log is discarded. A major benefit of an eager approach iseidids proceed unhindered and
can directly access main memory, and hence an undo-log is much simpler thiae-buifer since the
undo-log need only be read when flushing to regular memory on aborauBe®ager schemes modify
regular memory directly (without buffering): (i) they cannot support multipdasactions writing to

the same location (this results in a conflict), (ii) conflict detection must be imeeit on every memory

access, (iii) aborts are slow because the undo-log must be flushed/¢opegular memory, and (iv)
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commits are fast because the undo-log is simply discarded.

Our Decision After serious consideration of both approaches, we concluded tlyar e@rsion
management was the best match to FPGA-based systems such as NetTMefat s=asons. First,
while similar in required number of storage elements, a write buffer is nadgssignificantly more
complex than an undo-log since it must support fast reads via indexoh@ aache-like organization.
Our preliminary efforts found that it was extremely difficult to create a whitéfer with single-cycle
read and write access. To avoid replacement from a cache-orgamizeebuffer (which in turn must
result in transaction stall or abort), it must be large or associative or &oththese are both challenging
for FPGAs. Second, an eager approach allows spilling transactionaficatidns from the shared data
cache to next level of memory (in this case off-chip), and our benchsrexkibit large write sets as
shown in Table 8/1. Third, via simulation we observed that disallowing multiple ngrtethe same
memory location(s) (a limitation of an eager approach) resulted in only a 1%giserin aborts for our
applications in the worst case. Fourth, we found that transactions commé tothmon case for our

applications, and an eager approach is fastest for commit.

8.5 Conflict Detection

A key consequence of our decision to implement eager version managisrtexitwe must be able to
detect conflicts with every memory access; hence to avoid undue adatedsof stalling in the system,
we must be able to do so in a single cycle. This requirement led us to considemerding conflict
detection viasignatures which are essentially bit-vectors that track the memory locations accegsed b
a transaction via hash indexing [23], with each transaction owning twotsiggsato track its read and
write sets. Signatures can represent an unbounded set of add@sdeallow us to decouple conflict
detection from version management, and provide an opportunity to capitalthe bit-level parallelism

of FPGAs. In Appendix A [75], we explored the design space of sigraituplementations for an
FPGA-based two-processor system (i.e., for two total threads), apbged a method for creating

application-specific hash functions to reduce signature size without imgéabiir accuracy. In this

lWhen measured at maximum saturation rate in our TM system with the defextintion manager, we measure that 78%,
67%, 92% and 79% of the transactions commit without abortingfassifier, NAT, Intruder, andUDHCP respectively.
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section, we briefly summarize our signature framework, and describenrgoadapted the previously
proposed scheme to support a multithreaded multicore (ie., for eight totati)rexs we walk through

Figure 8.3.

Application-Specific Hash Functions Signatures normally have many fewer bits than there are
memory locations, and comparing two signatures can potentially indicate cds#ypiasitive conflicts
between transactions. Hence prior HTMs employ relatively large sigrsatttteousands of bits long—
to avoid such false conflicts. However, it is difficult to implement such laigeasures in an FPGA
without impacting cycle time or taking multiple cycles to compare signatures. Ounkight was to
leverage the customizability of an FPGA-based system to create an apphspéoific hash function
that could minimize false conflicts, by mapping the most contentious memory locatiatierent
signature bits, while minimizing the total number of signature bits. Our approabhsisd on trie
hashing (Appendix A), and we build a trie-based conflict detection untiti)bgrofiling the memory
addresses accessed by an application, (ii) using this information to builopdingize atrie (i.e. a tree
based on address prefixes) that allocates more branches to freegpanftlgting address prefixes, and
(iif) implementing the trie in a conflict detection unit using simple combinational circaggjepicted
by the “hash function” logic in Figure 8.3. The result of the hash functiomesponds to a leaf in
the trie, and maps to a particular signature bit. Note that since NetTM implemenksat@aicity
(see Section 8.3), only transactional memory accesses are recordgubituses, which means that the
signature hash function depends on the memory profile of only the criticiébss of our applications,

which are the parts of an embedded application which are often the leasficacross revisions.

Signature Table Architecture In contrast with prior signature work on FPGAs [75], in NetTM we
store signatures in block RAMs. To detect conflicts, we must compare fire@mate signature bits
(as selected by the hash index) from every transaction in a single cyslsheavn in Figure 8.3, we
decided to have the hash function index the rows of a block RAM (identifgisgngle signature bit),
and to map the corresponding read and write bits for every transactiowltboasext across each row.
Therefore with one block RAM access we can read all of the read aitel signature bits for a given
address for all transactions in parallel. A challenge is that we must clearghature bits for a given

transaction when it commits or aborts, and it would be too costly to visit all ofdtws of the block
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Figure 8.4: The NetThreads architecture, currently with two processNetTM supports TM by

extending NetThreads, mainly with signatures and an undo-log.

RAM to do so. Instead we add to the signature table a version number psadtem (incremented
on commit or rollback), that allows us to compare to a register holding the tmgsewenumber of the
current transaction for that thread context. Comparing version nurpbeaisices &alid signal that is
used to ignore the result of comparing signature bits when appropriateléafesignature bits lazily:
for every memory reference a row of the signature table is accessgdyeanlear the corresponding
signature bits for any transaction with mismatching version numbers. Thisclaay-works well in
practice, although it is possible that the version number may completely woapeéibefore there is an
intervening memory reference to cause a clear, resulting in a false cwttich hurts performance but

not correctness). We are hence motivated to support version nuthbeese as large as possible.

8.6 Implementing NetTM

In this section, we describe the key details of the NetTM implementation. As skaxlier in Figure 8.4,
the main additions over the NetThreads implementation are the signature tabledivog, and

support for transactions in the register file and thread scheduler.

Signature Table As shown in Figure 8.3, this data structure of fixed size (one read andvotee
signature for each hardware thread context) requires concugattand write access. For the device
we target, the block RAMs are 36bits wide, and we determined experimentallg gignature table

composed of at most two block RAMSs could be integrated in the TM procegssline while preserving
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the 125MHz target frequency. We could combine the block RAMs horidlgritaallow larger version
numbers, or vertically to allow more signature bits; we determined experimentalitita vertical
option produced the fewest false conflicts. Hence in NetTM each blodWd Rov contains a read bit, a
write bit, and two version bits (four bits total) for each of eight transactioresi-contexts, for a total
of 32bits (slightly under-utilizing the available 36bit-width). We implement sigrestiof maximum

length ranging from 618 to 904 bits for our applications (limited by the hasttifumsize).

Undo-Log The undo-log is implemented as a single physical structure that is logically paetitiato

equal divisions per thread context. On a transaction commit, a per-thnelaelag can be cleared in one
cycle by resetting the appropriate write-pointer. On a transaction abottntieelog requests exclusive
access to the shared data cache, and flushes its contents to the caclees@ oeder. This flush is
performed atomically with respect to any other memory access, althougbssas can continue to
execute non-memory-reference instructions during an undo-log fiyehbuffer data in the undo-log
at a word granularity because that matches our conflict detection resollitidNetTM, the undo-log

must be provisioned to be large enough to accommodate the longest tramsaétgimple extension to
support undo-log overflows could consist of aborting all the othestetions to allow the transaction

with a filled undo-log to proceed without conflict.

Undo-Log Filter To minimize the required size of the undo-log as well as its flush latency omsabor
we are motivated to limit the number of superfluous memory locations saved imtleelog. Rather
than resort to a more complex undo-log design capable of indexing aidirayduplicates, we instead
attempt to filter the locations that the undo-log saves. By examining our applisatie found that a
large source of undo-log pollution was due to writes that need not beedagkbecause they belong to
the uninitialized portion of stack memory. For example, the recursive regxaiession matching code
in Classifier results in many such writes to the stack. It is straightforward to filter adeisdsscked-
up by the undo-log using the stack pointer of the appropriate thread ¢pttemaintain the clock
frequency of our processors, we keep copies of the stack poiritexsvilm a block RAM near the undo-
log mechanism. We found that such filtering reduced the required undafmarity requirement for

Classifier from 32k entries to less than 1k entries, as shown in Table 8.1 by compaginggtkimum
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number of stores per transaction and the filtered number (in parenthesessartte columrg.

Pipeline Integration To accommodate the additional signature logic and for NetTM hit/miss
processing, a memory access is split into two cycles (as shown in Figurel&8te NetTM has a
6-stage pipeline, although the results for non-memory instructions arg ire#tte 5th stage. Because
the data cache and the signature table are accessed in two differest 8ietieM can potentially suffer
from additional stalls due to contention on the shared cache lines and sgredd-after-write hazards.
While NetThreads’ non-transactional data cache does not allocatée liae for write misses, NetTM

is forced to perform a load from memory on transactional write misses sththatiginal value may be

saved to the undo-log.

Transactional Registers As with writes to memory, all transactional modifications to the program
counter and registers must be undone on a transaction abort. Thamprogunter is easily backed-up
in per-thread registers. The register file is actually composed of two ¢ophese for each register

a version bit tracks which register file copy holds the committed version amithemnbit tracks if the
register value was transactionally modified. This way all transactional mdéfisaio the register file

can be committed in a single cycle by toggling the version bit without performipgaypying.

Thread Scheduling The thread scheduler implemented in NetThreads allows better pipeline utilization:
when a thread cannot immediately acquire a lock, its slot in the round-rotdém can be used by other
threads until an unlock operation occurs [77]. For NetTM we extendedd¢heduler to similarly de-

schedule a thread that is awaiting the contention manager to signal a tramsastat.

8.7 Results on NetFPGA

In this section, we evaluate the benefits of TM for soft multicores by compaesource utilization
and throughput of NetTM (supporting TM and locks) relative to NetTdse@upporting only locks).
Because the underlying NetFPGA board is a network card, our applichdioain is packet processing

where threads execute continuously and only have access to a staR®HSIDRAM memory as the

2A programmer could further reduce the occupation of the undo-log withthoca () function to lower the stack of a
transaction (in case the checkpoint event is deeply nested in a funcliiparzior defer the allocation of stack variables until
after the checkpoint angll1oca () calls.
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last level of storage. We report the maximum sustainable packet ratedwem application as the
packet rate with 90% confidence of not dropping any packet oveeaéeond run—thus our results are
conservative given that network appliances are typically allowed to drepall fraction of packets.
We start by describing the TM resource utilization, then show how the basElihperformance can be
improved via tuning and we finally compare our TM implementation with other aphessof exploiting

additional parallelism.

8.7.1 Resource Utilization

In total, NetTM consumes 32 more block RAMs than NetThreads, so its blodk RAization is 71%
(161/232) compared to 57% (129/232) for NetThreads. The additibmeh RAMs are used as follows:
2 for the signature bit vectors, 2 for the log filter (to save last and clwekptack pointers) and 26 for
the for undo log (1024 words and addresses for 8 threads). Netdfimnsumes 18980 LUTs (out of
47232, i.e. 40% of the total LUT capacity) when optimized with high-effortsfoeed; NetTM design
variations range from 3816 to 4097 additional LUTs depending on thkcappn-specific signature
size, an overhead of roughly 21% over NetThreads. The addition@ldde associated with the extra

pipeline stage per processor and conflict detection logic.

8.7.2 NetTM Baseline Throughput

In Figure 8.5, the first bar for each applicatian{) reports the packet rate for NetTM normalized to
that of NetThreads. NetTM improves packet throughput by 49%, 4%64#6 forClassifier, NAT,
andUDHCP respectively, by exploiting the optimistic parallelism available in critical sectidgihge TM
speedup is the result of reduced time spent awaiting locks, but modesatbé bumber of conflicts
between transactions and the time to recover from tiErassifier has occasional long transactions
that do not always conflict, providing an opportunity for reclaiming theesponding large wait times
with locks. Similarly,UDHCP has an important fraction of read-only transactions that do not conflict.
NAT has a less pronounced speedup because of less-contended shos@etions. Despite having a

high average commit rate, fantruder TM results in lower throughput due to bursty periods of large

SWe use a 10-point FFT smoothing filter to determine the interpolated inteofeptr experimental data with the 90%
threshold (see Figufe 8.6 for an example).
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Figure 8.5: Packet throughput of NetTM normalized to NetThreads, wityingacontention managers
(see Section 8.7..3) that restart: at most one aborted transaction at @iitheconditionally one or two

(CM1/2), at most two ¢M2), or at most four ¢M4).

transactions during which there are repeated aborts, leading to limited fismabed a reduced packet
rate. Two indicators could have predicted this behavior: (i) across enchmarksIntruder has
the highest CPU utilization with locks-only, meaning that wait times for synéhation are smaller
and true TM conflicts will be harmful when large transactions are aboded;(ii) Intruder has a
significant amount of dynamic memaory allocation/deallocation leading to mor@mgrdd memory
accesses, limiting the effectiveness of application-specific signatuck$eading to increased false
conflicts. Furthermore, the throughput Dfitruder with locks-only can be improved by 30% by
reducing contention through privatizing key data structures: we nameadytirmized version of the
benchmarkintruder2 (Table/8.1). Despite having a high average commit ratgruder2 has a
throughput reduction of 8% (Figure 8.7 in Section 8.7.4): optimistic parallelistiffisult to extract
in this case becaugmtruder2 has short transactions and an otherwise high CPU utilization such that
any transaction abort directly hinders performance. This demonstrateBNhisn’t necessarily the best
option for every region of code or application. One advantage of NetTihkisthe programmer is free

to revert to using locks since NetTM integrates support for both transaciod locks.

UDHCP: A Closer Look Figure| 8.6 shows fouDHCP the probability of not dropping packets as a



CHAPTER 8. NETTM: IMPROVING NETTHREADS WITH HTM 101

=

& Locks-only
eIl - TM+locks

© o o o
o N ® ©

o
U

© O g
=N

Probability of no packet drop
o o
w »

o

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Normalized packet throughput

Figure 8.6: For UDHCP, the probability of no packet drops vs packeutjitput for both NetThreads
and NetTM, normalized to NetThreads. The packet throughput matchestming packet rate for a
system with no packet drops: as the incoming packet rate is increaserbtiabibity of not dropping
any packet is reduced. For each implementation, the point of 90% probabhighlighted by a vertical

line.

function of the normalized packet throughput (i.e. the inter-arrivaketi@te). In addition to providing
higher throughput than NetThreads, it is apparent that NetTM alsoda®a more graceful degradation

of packet drops versus throughput, and does s6fagsifier andNAT as well.

8.7.3 Tuning Contention Management

When a conflict between two transactions is detected there are a numbay®tavproceed, and the
best way is often dependent on the access patterns of the applicatidri-RP&A-based systems such
as NetTM provide the opportunity to tune the contention management strategyctotimaapplication.
In essence, one transaction must either stall or abort. There are algooptéons for how long to
stall or when to restart after aborting [13]. Stalling approaches redu@grient re-validation of the
read/write sets of the stalled transaction, and can lead to live-lock (if a stileshction causes conflicts
with a repeatedly retrying transaction), hence for simplicity we unconditiordityt and restart any
transaction that causes a conflict.

The decision of when to restart must be made carefully, and we studiedhseptions as shown in

Figure 8.5 with the goals of (i) requiring minimal hardware support, (ii) degittally (per-processor,
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Figure 8.7: Throughput improvement relative to locks-only (NetThregatsflow-affinity scheduling
and TM (NetTM). In its current formUDHCP is unable to exploit flow-affinity scheduling, which

explains the missing bars in the graph.

rather than centrally), and (iii) guaranteeing forward progress. Qumarct eventCM1 andCM2 allow
only one or two transactions to restart respectively (other transactiostsamait a subsequent commit).
CM1/2 adaptively restarts up to two transactions when they are the only aborteddteons in the
system, or otherwise restarts only one transaction when there are mote/thaimorted transactions in
the system.CM4 makes all aborted transactions await some transaction to commit beforetaitings
simultaneously.

As shown in Figure 8/3JDHCP significantly benefits from theéM1 contention managetIDHCP has
writer transactions that conflict with multiple reader transactions Caindninimizes repeated aborts in
that scenario. In contrastlassifier has more independent transactions and prefers a greater number
of transactions restarted concurrentfyi4). NAT shows a slight preference f@M2. In summary, in
Figurel 8.5, once we have tuned contention management we can achiedeisp®f 57% ¢M4), 6%

(CM2), and 54% ¢M1) for Classifier, NAT andUDHCP.

8.7.4 Comparing with Flow-Affinity Scheduling for NetThreads

A way to avoid lock contention that is potentially simpler than TM is attempting to s¢bgmhckets
from the same flow (i.e., that are likely to contend) to the same hardware tdtitesad context or

CPU). Such an affinity-based scheduling strategy could potentially lom&iminate the possibility of
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lock contention which forces critical sections to be executed serially arddbrto wait on each other.
We implement flow-affinity scheduling by modifying the source code of opliegtions such that, after
receiving a packet, a thread can either process the packet directigjoee (in software with a lock)
the packet for processing by other threads. In Figure 8.7 we evaluat®tms of flow-affinity, where
packets are either mapped to a specific one of the two CERIs-£ffinity), Or to a specific one of
the eight thread contexts available across both CRussad-Affinity).

Flow-affinity is determined foNAT and Classifier by hashing the IP header fields, and for
Intruder2 by extracting the flow identifier from the packet payload. We cannot aetalélow-
affinity for UDHCP because we did not find a clear identifier for flows that would result imlfehr
packet processing, since UDHCP has many inter-related critical se¢asnshown in Figure 8.1).
To implement a reduced lock contention for the flow-affinity approachegiwesplicated shared
data structures when necessary, in particular hash-tablgsTirand Classifier and (ii) modified
the synchronization code such that each CPU operates on a sepdraét sfithe mutexes for
CPU-Affinity, and uses no mutexes foliread-Affinity.

Figure| 8.7 shows that flow-affinity scheduling only improvBsssifier. NAT shows a slight
improvement for CPU-based affinity scheduling and otherWiseand Intruder?2 suffer slowdowns
due to load-imbalance: the downside of flow-affinity scheduling is that itaesl flexibility in mapping
packets to threads, and hence can result in load-imbalance. The slowldevio load-imbalance is less
pronounced foCPU-Affinity because the packet workload is still shared among the threads of each
CPU. Overall, Figure 8!7 shows that TM outperforms the best perfornmamgdlfinity approach by 4%

for NAT and 31% forClassifier, while requiring no special code modification.

8.7.5 Additional Mutexes

Other than the true data dependences in Figure 8.1, we are motivated o if/@iplications are
not serialized because of the round-robin assignment of mutexes toea farmber of shared data
structures, i.e. two independent flows that have been assigned the samédmutiéer. While there are
alternatives to mutexes in ASIC processors such as atomic operationsaainiéhkdstore-conditional,
NetThreads, like FPGA multicores made out of off-the-shelf NIOS-II daerbblaze processors, does

not yet support them. Figure 8.8 shows that an unlimited number of mutexesviespthe performance
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Figure 8.8: Simulated normalized throughput resulting from the use of an urdimitaber of mutexes,

relative to the existing 16 mutexes.

by less than 2%, except for Classifier (12%). While this is a motivation to implemenhanisms to

limit lock aliasing, the performance benefits are marginal overall.

8.8 Summary

In this chapter we describe, implement, and evaluate four threaded, ktawftrol-flow-intensive
networking applications that share memory and synchronize, a real impitoarof an HTM system
called NetTM on the NetFPGA [91] platform, and compare with a two-procesgyht-threaded base
system that implements only conventional lock-based synchronizationd dédi€rhreads [81]). We
describe the selection of TM features that match the strengths of FPGAg]ingc an eager version
management mechanism that allows for longer transactions with more writesaansupport both
lock-based and transactional synchronization, and an applicati@ifispenflict detection mechanism.
Also, we show that an eager TM can be integrated into a multithreaded poogaipeline without
impacting clock frequency by adding a stage.

On a NetFPGA board, we measure that NetTM outperforms flow-affinitgdiding, but that
NetTM could be extended to exploit a flow affinity approach, assuming te bas such affinity and
the programmer is able and willing to replicate and provide scheduling for Igiiztta structures as
necessary. Allin all, we have demonstrated that transactional memory gfidviides the best overall

performance, by exploiting the parallelism available in the processing dfemérom independent



CHAPTER 8. NETTM: IMPROVING NETTHREADS WITH HTM 105

flows, while allowing the most flexible packet scheduling and hence loadhdiata Our NetTM
implementation makes synchronization (i) easier, by allowing more coarseedreritical sections and
eliminating deadlock errors, and (ii) faster, by exploiting the optimistic paralledigailable in many
concurrent critical sections. For multithreaded applications that shdrsyachronize, we demonstrate
that NetTM can improve throughput by 6%, 55%, and 57% over our Netidw locks-only system,
although TM is inappropriate for one application due to short transactiatgrégquently conflict. As
an extension to this study, in Appendix B, we show that NetTM can scale ug-thv@aded cores, and

that NetTM performs best for coarse-grained critical sections with lavilicointensity.



Chapter 9

Conclusions

As the capacity of FPGASs continues to grow, they are increasingly usethbgdded system designers
to implement complex digital systems, especially in telecommunication equipment, theneoket
of FPGAs. Since software is the method of choice for programming applicatiith elaborate and
periodically changing control-flow, FPGAs require an overlay architecta execute software. As
a possible solution, one can already license off-the-shelf soft poresvith the caveat that they
are geared towards running sequential control tasks rather thergtimatioriented applications. By
improving soft processors, designers will be able to instantiate a numtheroffor efficiently executing

a parallel application with the maximum of programming ease.

In this thesis, we make soft processors more amenable to exploit the paraltgtisrent in packet
processing applications by (ii) increasing the area efficiency of thec@edescribing the design space
of multiprocessor architecture; and (iii) providing techniques to manage/tiehonization overheads,
in particular using transactional memory. We show that multithreaded multicgemiaations can
significantly improve the throughput of single-threaded soft processud that transactional memory
can be used to program multiple threads while avoiding the difficulties traditiona#igciated with

parallel programming (Section 8).

This thesis led to the publication of a number of papers [75-78, 80, 8ar&#i{he public release
of NetThreads [81], NetThreads-RE [82] and NetTM [79] along with @irtllocumentation, which
were welcomed by the NetFPGA networking research community. Our expeeghapproach consists

of collaborating with such experts in the networking area to do full-scaléestwdith real hardware
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and packets, as opposed to focusing on micro-benchmarks with simulatgd aonpd outputs. Our
NetThreads infrastructure was used as the enabling technology byP@A-adepts to create a precise
packet generator [127] that was extended to operate in closed-logystem that is also publicly
released [44]. Finally, our infrastructure was used to build a flexiblesy$or low-latency processing
of stock quotes in algorithmic financial trading [126]. We consider outesysarchitecture successful
if it can leverage the configurable fabric of FPGAs to: (i) provide optimnspplication-specific area
efficiency tuning; (ii) use knowledge about the application behavior to optirtiiz synchronization
wait times; and (iii) scale the performance of a given (fixed) program togetlaaumber of threads. To

achieve these requirements, we make the following contributions.

9.1 Contributions

1. Design Space Exploration of Multithreaded and Multicore Soft Systens To demonstrate that
parallel software threads can execute efficiently on FPGAs, we shaviothd, 5, and 7-stage
pipelined processors, careful tuning of multithreading can improve bwes&ructions per cycle
by 24%, 45%, and 104% respectively, and area-efficiency by 33%, @nd 106%. When
considering a system with off-chip memory, the block RAM requirements of kithreaded
system grows much faster per core when each thread requires its ol space and register
file. Therefore we find that single-threaded cores are able to more fiilizeuthe area of an
FPGA and deliver the best performance when the number of block RARe ikmiting factor.
We show that our processor designs can span a broad area verfusnagnce design space,
where multithreaded processors dominate core-for-core in terms afrpenfice. In particular,
we demonstrate a technique to handle stalls in the multithreaded pipeline that is ebl&é¢o
an area-efficiency comparable to a single-threaded core and sigtijfinzore throughput, even
if the single-threaded core has a larger cache size. We point to a nuinibesigns that can be
of interest to a designer when he must trade off area, performancteanobncy metrics in a

full-system implementation.

2. Extending Multithreading to Allow for Scheduling a Variable Number of T hread Contexts

Because of their added performance and compact size in a shared mesttomyg, we elect
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multithreaded cores for packet processing. In their most basic form, me#ided cores are
limited to executing instructions from all of their thread contexts in round-roliirposing this
limitation is what allows baseline multithreaded cores to have no hazard detectidhexefore
an improved area and clock frequency. We find that in real applicatsymghronization across
the threads leads to phases where some threads must wait on mutexésfdedyeriods of time.
As this phenomenon was measured to be the leading source of contentioreseat a technique
that allows to suspend an arbitrary number threads, and recuperatpiiedine slots without
re-introducing runtime hazard detection in the pipeline. This technique syalgifexploits the
multiple-of-9bits width of block RAMs. Using a real FPGA-based networkrfatee, we measure
packet throughput improvements of 63%, 31% and 41% for our thrdeappns because of the

ability to overlap computations with wait times on mutexes.

3. Demonstrating Advantages of a Run-to-Completion Programming Mbdel with Transac-
tional Memory for Packet ProcessingBecause there are many programming models available
for packet processing, we evaluate a number of them with our softgat®rm to determine
if our platform supports the most desirable one. We demonstrate that mamglecopacket
processing applications written in a high-level language, especially thasarh stateful, are
unsuitable to pipelining. We also show that scheduling packets to diffeltestecs of threads can
improve throughput at the expense of code changes that are oniblpagksen such an affinity of
packets to threads is possible. We demonstrate that transactional memqrgrogvidies the best
overall performance in most cases, by exploiting the parallelism availableiprgtessing of
packets from independent flows, while allowing the most flexible packetdiding and hence
load balancing. Our implementation of transactional memory also supports doakith can

therefore also leverage packet scheduling to threads for addextmparfce.

4. The First Hardware Transactional Memory Design Integrated with Soft Processor Cores
Our NetTM implementation makes synchronization (i) easier, by allowing monseagained
critical sections and eliminating deadlock errors, and (ii) faster, by expioitie optimistic
parallelism available in many concurrent critical sections. Integrating TMctir with the

processor cores makes the processor architectural changes sdantles programmer and allow
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for efficient checkpoint, rollback and logging mechanisms. For multithigt@aglications that
share and synchronize, we demonstrated that a 2-core system witactianal memory can
improve throughput by 6%, 55%, and 57% over a similar system with locks @feyalso studied
aspects that can hinder the benefits of speculative execution and idethi#id M is inappropriate

for one application due to short transactions that frequently conflict.

5. NetThreads/NetThreads-RE/NetTM Infrastructures We provide high-throughput, high uti-
lization and area efficient soft cores for packet processing throeiglases [79, 81, 82] which
have been downloaded 504 times at the time of this writing. These infrasgadan reach close
to full utilization of a 1Gbps link for light workloads [127] (see SecmB.ﬂ)ave been usedto
demonstrate real uses of software packet processing and are asaldimg platform for future
research (Section 6.4). Our released FPGA implementation also has a sirnalatterpart [82]

that can be used to perform extensive application-level debuggingexfmrmance tuning.

9.2 Future Work

In this section, we present three avenues to improve on our implementationtierfincrease its

performance.

1. Custom AcceleratorsBecause soft processors do not have the high operating frequeA8IC
processors, it is useful for some applications to summarize a block ofdtistna into a single
custom instruction [125]. The processor can interpret that new irigiruas a call to a custom
logic block (potentially written in a hardware description language or obtahredgh behavioral
synthesis). Hardware accelerators are common in network procesSitigsAe.g. NFP-32xx,
Octeon and Advanced PayloadPlus ): in the context of FPGAs, acekereill require special
attention to be integrated in a multiprocessor in a scalable fashion. In partibelzause of
area constraints, threads may have to share accelerators, pipelinentitmraake them multi-
purpose to assist in different operations in the packet processingenWsion that this added

hardware could also be treated like another processor on chip, withsaitcthe shared memory

1The actual bandwidth attained is a function of the amount of computatiopaoéet.
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busses and able to synchronize with other processors. Because lmf-lénvel parallelism of

FPGAs, custom instructions can provide significant speedup to someseotiens [64, 95].

2. Maximizing the Use of On-Chip Memory Bandwidth. Our research on packet processing so
far has focused on a particular network card with fast network linkscbnotaining an FPGA
that is a few generations old [81, 82]. While we achieved acceptablerperfice with only
two processors, another of our studies has shown that more recetsFf@Id allow scaling
to a much larger number of processors and computing threads (AppendixXrBa newer
FPGA, memory contention would gradually become a bottleneck as a designét gonnect
more processors to the shared data cache of our current archite®tiniéee an eager version
management scheme scales to multiple data caches [158], a previous implemefiztioerent
data caches on an FPGA [151] increases considerably the accesy tatédre data cache, e.g. 18
cycles pure coherence overhead per read miss. Our intuition is thus #haired data cache
performs better for a small number of processors and an interesting futonk consists of
investigating alternatives in scaling to more processors (possibly with @ieaffiand coherent

system of caches) should focus specifically to match the strengths akdegsas of FPGASs.

3. Compiler optimizations Despite using a number of compiler techniques to improve the area-
efficiency of our cores (Section 4.1), we have not tuged strictly to deliver more performance.
There are many possible automatic compiler optimizations that could, e.g.: (iYidehe
instructions based on our pipeline depth and memory latency; (ii) schedufaciien and
organize data layout based on the interaction of threads inside a single mesiil¢ial core; (iii)
maximize the benefits of transactional memory by hoisting conflicting memorysexemser to
the beginning of a transaction, optimizing the data layout to ease conflictidatec provide a

method for feedback-directed selective parallelization of the code thatsspeone to conflict.



Appendix A

Application-Specific Signatures for

Transactional Memory

As reconfigurable computing hardware and in particular FPGA-bassi@rag-on-chip comprise an
increasing number of processor and accelerator cores, suppantinigg and synchronization in a
way that is scalable and easy to program becomes a challenge. As wénedpila Chapter 8,
Transactional memor§TM) is a potential solution to this problem, and an FPGA-based system govid
the opportunity to support TM in hardware (HTM). Although there are mamposed approaches
to support HTM for ASICs, these do not necessarily map well to FPGAs.palrticular, in this
work we demonstrate that whiksignaturebased conflict detection schemes (essentially bit vectors)
should intuitively be a good match to the bit-parallelism of FPGAs, previousnseh result in either
unacceptable multicycle stalls, operating frequencies, or false-cordlies.r Capitalizing on the
reconfigurable nature of FPGA-based systems, we propose an éipplispecific signature mechanism
for HTM conflict detection. Using both real and projected FPGA-basédrultiprocessor systems that
support HTM and implement threaded, shared-memory network pade#sgsing applications, relative
to signatures with bit selection, we find that our application-specific appramaintains a reasonable
operating frequency of 125MHz, (ii) has an area overhead of onlyas#b (iii) achieves a 9% to 71%
increase in packet throughput due to reduced false conflicts. Weo#thyt introducing signatures and

how they come into play.
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A.1 Transactional Memory on FPGA

In this chapter, we focus on implementing TM for an FPGA-based soft mutigssor. While TM can
be implemented purely in software (STM), an FPGA-based system cartdredex to support TM in
hardware (HTM) with much lower performance overhead than an STRIeldre many known methods
for implementing HTM for an ASIC multicore processor, although they do Boeassarily map well to
an FPGA-based system. Because it is a challenge to implement efficientliP@&based HTM, we
focus specifically on the design of the conflict detection mechanism, anth&ihen approach based on
signatureq23] is a good match for FPGAs because of the underlying bit-level pasafleA signature
is essentially a bit-vector [128] that tracks the memory locations accessadrbpsaction via hash
indexing. However, since signatures normally have many fewer bits tham éine memory locations,
comparing two signatures can potentially indicate costly false-positive dsnifig@tween transactions.
Hence prior HTMs employ relatively large signatures—thousands of big—-tdn avoid such false
conflicts. One important goal for our system is to be able to compare sigsadad detect conflicts
in a single pipeline stage, otherwise memory accesses would take an ingneasiber of cycles and
degrade performance. However, as we demonstrate in this chapter, imfiley@reviously proposed
large signatures in the logic-elements of an FPGA can be detrimental to thespoo's operating
frequency. Or, as an equally unattractive alternative, one can impldarget and sufficiently fast
signatures using block RAMs but only if the indexing function is trivial—whaan itself exacerbate

false-positive conflicts and negate the value of larger signatures.

A.1.1 Signatures for Conflict Detection

To summarize, our goal is to implement a moderately-sized signature mechahitminimizing

the resulting false conflicts. We capitalize on the reconfigurable natureeafrttierlying FPGA and
propose a method for implementing an application-specific signature mecht@sachieves these
goals. An application-specific signature is created by (i) profiling the meamiyesses accessed by an
application, (ii) using this information to build and optimizérie (a tree based on address prefixes) that
allocates more branches to frequently-conflicting address prefixdgjiganmplementing the trie in a

conflict detection unit using simple combinational circuits.
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As described in Chapter 6, our evaluation system is built on the NetFPGAmief®1], comprising
a Virtex 1l Pro FPGA, 4x 1GigE MACs, and 200MHz DDR2 SDRAM. On it, we have implemented
a dual-core multiprocessor (the most cores that our current platfanra@a@mmodate), composed of
125MHz MIPS-based soft processors, that supportsagerHTM [158] via a shared data cache. We
have programmed our system to implement several threaded, sharedynmetwasrk packet processing

applications (packet classification, NAT, UDHCP, and intrusion detection)

We use a cycle-accurate simulator to explore the signature design spaa@apéement and evaluate
the best schemes in our real dual-core multiprocessor implementation. A& dacsingle-threaded
processor cores (the updated system diagram can be found in Fig)randl, for comparison, we also
report the FPGA synthesis results for a conflict detection unit suppottengd 8 threads. Relative to
signatures with bit selection, the only other signature implementation that can imaintasonable
operating frequency of 125MHz, we find that our application-spedqifiz@ach has an area overhead of

only 5%, and achieves a 9% to 71% increase in packet throughput deduoed false conflicts.

A.1.2 Related Work

There is an abundance of prior work on TM and HTM. Most prior FPGAlementations of HTM
were intended as fast simulation platforms to study future multicore designd448 and did not
specifically try to provide a solution tuned for FPGAs. Conflict detection Iesn previously
implemented by checking extra bits per line in private [48, 147] or shargpdéches. In contrast
with caches with finite capacity that require complex mechanisms to handle lbaelellisions for
speculative data, signatures can represent an unbounded seafre$ses and thus do not overflow.
Signatures can be efficiently cleared in a single cycle and thereforatademusly leverage the bit-level
parallelism present in FPGAs. Because previous signature work veasdyeowards general purpose
processors [119, 128, 159], to the best of our knowledge there fisiooart in customizing signatures

on a per-application basis.
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A.2 Previous Signature Implementations for HTM

A TM system must track read and write accesses for each transactioreéthend write sets), hence
an HTM system must track read and write sets for each hardware thvatekt The signature method
of tracking read and write sets implements Bloom filters [128], where arssedenemory address is
represented in the signature by assertingkhmts indexed by the results & distinct hashes of the
address, and a membership test for an address returns true onli lifigllare set. Since false conflicts
can have a significant negative impact on performance, the numbergndftigash functions used must
be chosen carefully. In this chapter, we consider only the case wheheome of thé hash functions
indexes a different partition of the signature bits—previously shown to be mificient [128]. The

following reviews the four known hash functions that we consider in thégptr.

Bit Selection [128] This scheme directly indexes a signature bit using a subset ofsgldits. An
example 2-bit index for address= [agaza;ap| could simply beh = [ag, ay]. This is the most simple

scheme (i.e., simple circuitry) and hence is important to consider for an FPGArmeptation.

Hs [128] TheHs class of hash functions is designed to provide a uniformly-distributedelaisiolex
for random addresses. Each bit of the hash rdsuit [h;, hp] consists of a separate XOR) tree
determined by the product of an addrass [azaya; 8] with a fixed random matrik as in the following

example with a 4-bit address and a 2-bit hash [119]:

[h1, ho] = aH = [agaxayap] =[ag®ar®ag, axPay] (A1)

O = = (=

1
1
0
1
Page-Block XOR (PBX) [159] This technique exploits the irregular use of the memory address spac
to produce hash functions with fewer XOR gates. An address is partitiot@déwn non-overlapping
bit-fields, and selected bits of each field are XOR’ed together with the pamgioXOR’ing high entropy
bits (from the low-order bit-field) with lower entropy bits (from the high arb&-field). Modifying the

previous example, if the address is partitioned into 2 groups of 2 bits, wd poaduce the following

example 2-bit hasha, @ ap, az P a1].
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Locality-sensitive XOR [119] This scheme attempts to reduce hash collisions and hence the probability
of false conflicts by exploiting memory reference spatial locality. The kew ideto make nearby
memory locations share some of thelrash indices to delay filling the signature. This scheme produces
k Hs functions that progressively omit a larger number of least significanobitise address from the
computation of thé indices. When represented lds binary matrices, functions require an increasing
number of lower rows to be null. Our implementation, called LE-PBX, combinesagipsoach with

the reduced XOR’ing of PBX hashing. In LE-PBX, we XOR high-entrdyitg with low-entropy bits
within a window of the address, then shift the window towards the most signtfitow entropy) bits

for subsequent hash functions.

A.3 Application-Specific Signatures

All the hashing functions listed in the previous section create a random theéxnaps to a signature
bit range that is a power of two. In Section A.4, we demonstrate that thesedns require too many
bits to be implemented without dramatically slowing down our processor pipelif@esiinimize the
hardware resources required, the challenge is to reduce the nunfaéseofonflicts per signature bit,
motivating us to more efficiently utilize signature bits by creating application#péash functions.

Our approach is based @ompact trie hashingl11]. A trie is a tree where each descendant of
a node has in common the prefix of most-significant bits associated with that Ade result of the
hash of an address is the leaf position found in the tree, correspondma@attly one signature bit.
Because our benchmarks can access up to 64 Mbytes of storage (16 mdlids), it is not possible to
explicitly represent all possible memory locations as a leaf bit of the trie. fiakenge is to minimize
false conflicts by mapping the most contentious memory locations to differematsig bits, while
minimizing the total number of signature bits.

We use a known greedy algorithm to compute an approximate solution to thisomplate
problem [70]. In the first step, we record in our simulator a trace of tlae wnd write sets of a
benchmark functioning at its maximum sustainable packet rate. We orgaeizmilected memory
addresses in a trie in which every leaf represents a signature bit. Thagigigims initially too large to be

practical (Figure A.1(b)) so we truncate it to an initial trie (Figure A.1(s@Jecting the most frequently
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Combined read and Trie of all addresses Trie with low false positive Resulting address signature
write address sets o — based on compacted trie
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* 000 2 3 sig[0]= a2 & ao0;
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Figure A.1: Example trie-based signature construction for 3-bit adelse¥¥e show (a) a partial address
trace, where * highlights frequently accessed addresses, (b) theidutlf all addresses, (c) the initial
and final trie after expansion and pruning to minimize false positives, griti€édogic for computing

the signature for a given address (i.e., to be AND’ed with read and wigdsdetect a conflict).
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Figure A.2: The architecture of our soft multiprocessor with 2 single-ttedgrocessor cores.

accessed branches. To reduce the hardware logic to map an addressgrtature (Figure A.1(d)), only
the bits of the address that lead to a branch in the trie are consideredurrgigoature scheme to be
safe, an extra signature bit is added when necessary to handle aéselsinot encompassed by the hash
function. We then replay the trace of accesses and count false coafimbsintered using our initial
hashing function. We iteratively expand the trie with additional branchddeaves to eliminate the
most frequently occurring false-positive conflicts (Figure A.1(c))c©the trie is expanded to a desired
false positive rate, we greedily remove signature bits that do not nelyativeact the false positive rate
(they are undesirable by-products of the expansion). Finally, to furiiréemize the number of signature

bits, we combine signature bits that are likely 0%) to be set together in non-aborted transactions.
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Table A.1: Applications and their mean statistics.

Dyn. Instr. | Dyn. Instr. | Unig. Sync. Addr.
/packet /transaction [/transaction

Benchmark Reads | Writes
Classifier 2553 1881 67 58
NAT 2057 1809 50 41
UDHCP 16116 3265 430 20
Intruder 12527 399 37 23
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Transactional memory support The single port from the processors to the shared cache in Figure A.2
implies that memory accesses undergo conflict detection one by one irctianabexecution, therefore

a single trie hashing unit suffices for both processors. Our transattiv@emory processor uses a
shadow register file to revert its state upon rollback (versioning [2] avitid need for register copy).
Speculative memory-writes trigger a backup of the overwritten value in do-baoffer [158] that we
over-provision with storage for 2048 values per thread. Each pgocéss a dedicated connection to a
synchronization unit that triggers the beginning and end of speculai@eigons when synchronization

is requested in software.

A.4 Results

In this section, we first evaluate the impact of signature scheme and lendglserpositive conflicts,
application throughput, and implementation cost. These results guide the impléoreatal evaluation
of our real system. For reference, we report in Table A.1 the statistioardfenchmarks (Table 3.1)
that specifically pertain to the synchronization (note that some columns d@wethe same units as in

Table 6.2, and some numbers reflect code the optimizations explained in S&8ion

Resolution of Signature MechanismsUsing a recorded trace of memory accesses obtained from a
cycle-accurate simulation of our TM system that models perfect confliectien, we can determine
the false-positive conflicts that would result from a given realistic sigeataplementation. We use

a recorded trace because the false positive rate of a dynamic systewt tendetermined without
affecting the course of the benchmark execution: a dynamic systemtadistioguish a false-positive
conflict from a later true conflict that would have happened in the samsettéian, if it was not aborted
immediately. We compute the false positive rate as the number of false conflittedlby the total

number of transactions, including repeats due to rollback.
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Figure A.3: False positive rate vs signature bit length. Trie-based sigisatiere extended in length up

to the length that provides zero false positives on the training set.

The signatures that we study are configured as follows. The bit selesttieme selects the least
significant word-aligned address bits, to capture the most entropy. BoPBX and LE-PBX, we
found that increasing the number of hash functions caused a slighasgcie the false positive rate for
short signatures, but helped reduce the number of signature bitse@daicompletely eliminate false
positives. We empirically found that using four hash functions is a goadie{cdf between accuracy and
complexity, and hence we do so for all results reported. To train our &secbhash functions, we use a

different but similarly-sized trace of memory accesses as a training set.

Figure A.3 shows the false positive rate for different hash functioitsébection, H3, PBX, LE-
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Figure A.4: Impact of increasing the bit length of trie-based signaturdg)oinequency and (b) LUT
usage of the conflict detection unit for 2, 4, and 8-thread (2T,4T,83tesys. The results for H3, PBX
and LE-PBX are similar. In (a) we highlight the system operating frequeh&25MHz.

PBX and trie-based) as signature bit length varies. The false positeegemerally decreases with
longer signatures because of the reduced number of collisions on ajig signature bit—although
small fluctuations are possible due to the randomness of the memory acd@ssessults show that
LE-PBX has a slightly lower false positive rate than H3 and PBX for anlaquaber of signature bits.
Bit selection generally requires a larger number of signature bits to achitwe false positive rate,
except for UDHCP for which most of the memory accesses point to cuotigectatically allocated
data. Overall, the trie scheme outperforms the others f@SSIFIER, NAT and UDHCP by achieving
close to zero false positive rate with less than 100 bits, in contrast withateheusand bits. For
INTRUDER, the non-trie schemes have a better resolution for signatures longer @Banits due to
the relatively large amount of dynamic memory used, which makes memorysasce®mre random.
Quantitatively we can compute the entropy of accesses'as—p(x)log, p(x) where p(x) is the
probability of an address appearing at least once in a transaction—witmétiedology NTRUDER
has an entropy 1.7 times higher on average than the other benchmarkesphaising the difficulty in

training its trie-based hash function.

Implementation of a Signature MechanismFigure A.4 shows the results of implementing a signature-

based conflict detection unit using solely the LUTs in the FPGA for a psocesystem with 2 threads
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like the one we implemente@T) and for hypothetical transactional systems with 4 and 8 thre&gls (
and8T). While the plot was made for a trie-based hashing function, we foundtBaPBX and LE-
PBX produced similar results. As we will explain later, the bit selection scherbetter suited to
a RAM-based implementation. In Figure A.4(a) we observe that the CAD todte iana extra effort
to meet our 125 MHz required operating frequency by barely achievifgr imany designs. In a
2-thread system, two signatures up to 200 bits will meet our 125MHz timing exgaint while a 4-
thread system can only accommodate four signatures up to 100 bits longti@ads, the maximum
number of signature bits allowed at 125MHz is reduced to 50 bits. FiguréAshows that the area
requirements grow linearly with the number of bits per signature. In pradtic@;threads at 200 bits,
signatures require a considerable amount of resources: approxirégéof the LUT usage of the
total non-transactional system. When the conflict detection unit is incatgubiinto the system, we
found that its area requirements—by putting more pressure on the routingpimbect of the FPGA—
lowered the maximum number of bits allowable to less than 100 bits for our 2dthyséem (Table A.2).
Re-examining Figure A.3, we can see that the trie-based hashing funelivard significantly better

performance across all the hashing schemes proposed for less thaigiéture bits.

An alternate method of storing signatures that we evaluate involves mappiagidrass to a
signature bit corresponding to a line in a block RAM. On that line, we storednesponding read
and write signature bit for each thread. To preserve the 125MHz ciieland our single-cycle conflict
detection latency, we found that we could only use one block RAM and tkatomld only use bit
selection to index the block RAM—other hashing schemes could only implementash function
with one block RAM and would perform worse than bit selection in that condiion. Because the
data written is only available on the next clock cycle in a block RAM, we erfatalls upon read-
after-write hazards. Also, to emulate a single-cycle clear operation, ®wughe read and write sets
with a 2-bit counter that is incremented on commit or rollback to distinguish bettvaasactions. If a
signature bit remains untouched and therefore preserves its verdiba iansaction with an aliasing
version accesses it (the version wraps over a 2-bit counter), thelbéppear to be set for the current
transaction and may lead to more false positives. The version bits are stotkd same block RAM
line as their associated signature bits, thus limiting the depth of our 16Kb blotkt82048 entries (8-

bits wide). Consequently, our best bit selection implementation uses a 11duit-akthe word-aligned
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Figure A.5: Throughput with signatures using trie-based hashing witkiingarsignature sizes
normalized to the throughput of an ideal system with perfect conflict tete¢obtained using our

cycle-accurate simulator).

least-significant address bits.

Impact of False Positives on PerformanceFigure| A.5 shows the impact on performance in a full-
system simulation of a varying signature length, when using either a triettheshing function or
LE-PBX, the scheme with the second-lowest false positive rate. The jittereircthves is again
explained by the unpredictable rollback penalty and rate of occurrenite dalse positives, varying
the amount contention on the system. Overall, we can see that signatueea deamatic impact on
system throughput, except fon TRUDER for which the false positive rate varies little for this signature
size range (Figure A.3(d)). We observe that famSsiFiER, UDHCP and NAT, although they achieve
a small false positive rate with 10 bits on a static trace of transactional asc@Sgure A.3), their
performance increases significantly with longer signatures. We founatinaero-packet drop policy
to determine the maximum throughput of our benchmarks is very sensitive tmthpute-latency of
packets since even a small burst of aborts and retries for a particuiaattéon directly impacts the size
of the input queue which in turn determines packet drops. The perfaem@anNAT plateaus at 161
bits because that is the design that achieves zero false positives in ti@igoge A.3(b)). As expected,
Figure A.5(b) shows that there is almost no scaling of performance fé?BE in the possible signature

implementation size range because the false positive rate is very high.
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Benchmark | Max. Signature | Total LUT LUT Additional
bits usage overhead | throughput
CLASSIFIER 92 20492 5% 12%
NAT 68 20325 4% 58%
UDHCP 84 20378 1% 9%
INTRUDER 96 20543 5% 71%

Table A.2: Size, LUT usage, LUT overhead and throughput gain ofrealr system with the best

application-specific trie-based hash functions over bit selection.

Measured Performance on the Real SystemAs shown in Table A.2 and contrarily to the other
schemes presented, the size of the trie-based signatures can be adjastebitrary number of bits
to maximize the use of the FPGA fabric while respecting our operating freguehhe maximum
signature size is noticeably smaller for NAT because more address bitste® te set signature bits,
which requires more levels of logic and reduces the clock speed. Irsal¢he conflict detection with a
customized signature outperforms the general purpose bit selectioris Thiserent with the improved
false positive rate observed in Figure A.3. We can see that bit selectiothbabest performance
when the data accesses are very regular like in UDHCP, as indicated loptifiedse positive rate in
Figure A.3(c). Trie-based hashing improves the performanceloRUDER the most because the bit

selection scheme suffers from bursts of unnecessary transactids.abo

CAD Results Comparing two-processor full system hardware designs, the systentnigitbased
conflict detection implemented in LUTs consumes 161 block RAMs and the apipfiespecific LUT
usage reported in Table A.2. Block-RAM-based bit selection requiresadditional block RAM (out
of 232, i.e., 69% of the total capacity) and consumes 19546 LUTs (out282 i.e. 41% of the total
capacity). Since both kinds of designs are limited by the operating frequiigcipased hashing only
has an area overhead of 4.5% on average (Table A.2). Hence ttedl overhead costs of our proposed

conflict detection scheme are low and enable significant throughput ienmes.

A5 Summary

In this chapter, we describe the first soft processor cores integnatedransactional memory, and

evaluated on a real (and simulated) system with threaded applications ghatrsbmory. We study
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several previously-proposed signature-based conflict detectimmss for TM and demonstrate that
previous signature schemes result in implementations with either multicycle stallaoceptable
operating frequencies or false conflict rates. Among the schemessapothe literature, we find that
bit selection provides the best implementation that avoids degrading theingdraquency or stalling
the processors for multiple cycles. Improving on this technique, we prasaethod for implementing
more efficient signatures by customizing them to match the access patternsapplication. Our
scheme builds on trie-based hashing, and minimizes the number of falsetsaéliected, improving
the ability of the system to exploit parallelism. We demonstrate that applicatiaifispggnatures
can allow conflict detection at acceptable operating frequencies (12hMihgle cycle operation,
and improved false conflict rates—resulting in significant performanceavepnents over alternative
schemes. On a real FPGA-based packet processor, we measaoket! theoughput improvements of
12%, 58%, 9% and 71% for four applications, demonstrating that appliegfiecific signatures are
a compelling means to facilitate conflict detection for FPGA-based TM systenith. tNi5 powerful

conflict detection method, we next explore building full multithreaded multicores.



Appendix B

Scaling NetTM to 8 cores

NetFPGA and its Virtexll-Pro FPGA limit the scaling of NetTM to two 4-threaderks (the most cores
that our current platform can accommodate). To evaluate the perfoenagugicresource usage of larger-
scale designs, we target a newer mid-range Virtex5 FPX&ZAWLX110-2). However, we do not yet
have an full system board and hence cannot yet consider the entif&Niesign: hence we elide the
support for network and PCI access, and measure only the multipoosyssem. Additional processors
are added to the NetTM architecture (Figure| 6.1) by simply widening the imteexd arbiters and
linearly scaling the load-store queue, the signature tables, and the undévlogssume the default
CM4 contention manager (Section 8.7.3), and include the application-specifatwigrhash function

generated for thélassifier application.

B.1 CAD Results

Figure B.1 shows the resource usage of transactional and nonetians& multiprocessors with 2, 4
and 8 cores, when synthesized with high effort for speed and with streamt of 125MHz for the core
frequency. The-3100 LUT difference between thHeM2P andNT2P systems corresponds roughly to
our earlier results in Section 8.7.1, accounting for the change in LUT actlnigsbetween the VirtexlI-
Pro and Virtex5 FPGAs. We can see that the TM processors consumexmpately the area of a
system with twice the number of non-transactional cores: additional LtETassociated with the extra
pipeline stage per core, conflict detection, the undo-log and pipelining imtiseonnect between the

cores and the cache. The BRAMs also scale to almost entirely fill the Virtawdegsor with 8 TM
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Figure B.1: CAD metrics. Processors are named as follows:for non-transactional ofM for
transactional, followed by the number of 4-threaded cores.

for 1..N do
for 1..ITERNON.TM do
work();

end for

1

2:

3:

4:

5:  acquiregloballock();

6: critical.accessat(rand()% RANGE);
7. for 1.ITERTMdo
8: work();

9:  endfor

10:  releasegloballock();

11: end for

Algorithm 1: Parametric benchmark pseudo-code.

cores. However, note that only a small portion of the capacity of the BRihlstimplement the 16 TM
log filters is utilized. Lastly, we can see that both 8-core systems fail to me&28#MHz constraint and
have roughly the same achieved frequency: in both cases, the multiplexirgimehconnect becomes
significant. However, 125MHz could be achieved by adjusting the ar¢hiteto further pipeline cache

access (at the cost of greater access latency).

B.2 Performance

Our evaluation so far has focused on realistic workloads for an FPGAddeil in a network card.
Since systems with more than two cores cannot be synthesized on the NetFP@Bi& section we

explore the performance of these larger systems via cycle-accuratesiRitilation. Since our real
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Figure B.2: Left: speedup @M over non-TM {IT) systems with an equal number of cores (2, 4 or 8)
as the ratio of critical work is increased. Middle and right: average numibactive contexts for the

corresponding processors and application parameters.

applications require a full system including off-chip memory and host iotiera, we instead focus on

the performance of a parametric application (Algorithm 1) that allows us totharrelative size of its
critical section. For this study we measuréerations of the benchmark, wheligs sufficiently large

to minimize the impact of warm-up and tear-down activity. Each thread exettigassame code (except

for therand () seeding) and is de-scheduled after completing the exeL%ufrcbrework() routine only
performs computation and stack-based memory accesses that contribdiiagdahfié TM undo-log.
Each critical section contains only one memory access that might conflictaatiam location within

a parametric range. Each potential location corresponds to one distinatwgig bit and by default we

use a range of 1024 locations. To minimize the impact of cache contention scaleethe number of
processors, we designed therk () routine such that the shared-cache bus utilization does not exceed

25% with 8 cores.

Varying the fraction of critical code Figure B.2 shows the impact of varying the relative size of critical
sections compared to the non-critical codelfERt"__ in Algorithm 1). We observe that the speedup of
TM increases with the ratio of critical code. The speedups can be attributbd average number of

active contexts (i.e. not de-scheduled because of pending on a Ipeikding on a transaction restart)

1This is ensured by forcing each hardware context into a deadlockhighjpossible because our TM architecture supports
traditional locks.
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in each processor measured at steady-state, as illustrated in the twadeglgtraphs in Figure B.2.
With mostly non-critical code£1I2-I1_ < 1), almost all the available contexts are active, resulting
in a speedup of 1 for TM processors compared to their non-TM couarteiyyith mostly critical code
TR > 1), all non-TM processors can only keep 1 thread context active. Wiftithreading,
a core can retire 1 instruction per cycl®C = 1, other than when there is a cache miss); with a single
thread to schedule, a processor core experiences pipeline haadrdaraonly retire-0.5 instructions
every cycle for this application. This result explains why the fully utiliZ&t®P has a speedup of
4.05 ovemNT2P, and not 2 (i.e. ZM cores with IPC ok-1 each, versus HT context with IPC 0f~0.5).
Because the 8-cores TM processor experiences a reduction frimid2 active contexts due to aborts,
it too experiences pipeline hazards and the speedup is 8.0 {iec@&es with IPC 0+-0.5 versus NT

context with IPC 0f~0.5).

Comparing Similar-Area Designs From Figure B.1, we observe that TM support costs roughiy 2
LUTs compared to the corresponding non-TM design. This implies thabtayhly equivalent area, a
designer could choose betweRIRP andNT4P, or betweerrM4P andNT8P—hence we are motivated to
compare the performance of these designs. From Figure B.2, we eltkatfor small critical sections,
TM2P and TM4P would each be half the performance of their respective area courtt¢kgaP and
NT8P). However, for large critical sectiongM2P would be 4.0% faster tharNT4P, andTM4P would be
5.4x faster tharNT8P. Large critical sections are inherently easier to program, hence TMda®wa

trade-off between area-efficiency and programmability.

Varying the static conflict intensity In Figure B.3, we control the transactional aborts by varying the
range of the random accesses, where each location points to one gniatuThe probability of a

conflict when all the contexts are active and have their signature loailec ywotentially conflicting

range
range—#contexts!xrangecontexts:

access is given by: 1 ( The probability thus increases with the number of
contexts and decreases with a larger range. An 8-core system withn8Xtis therefore the most
impacted system, and the conflict probability is 1 with a memory access rangaraf 8.39 with a
range of 1024 (the default range in Figure B.2). For a 2-core syst&se hrobabilities become 1.00
and 0.27. We respectively label these settings as high-conflict anddofliet intensity in Figure B.3.

With mostly critical code, the 8-core TM system experiences a speeduetiea from 8.0 to 5.1,
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Figure B.3: Left: speedup aM over non-TM {T) processors in highti-C) and low {.o-C) conflict
intensity settings, as the ratio of critical work is increased. Middle: averageber of aborts per
transaction-instance. Right: average number of active contexts. feoemee, the right-most graphs

show the appropriateT systems, althoughiT processors are not affected by conflict intensity.



which can be explained by an increased average number of abortapsadtion from 12.7 to 14.9,
and a reduction in the average number of active contexts from 14.6 totil.Sigmificantly better than
the 1 active context foNT processors, which are not visibly affected by the conflicting ranges Th
2 and 4-cores systems experience similar but more moderate slowdowarshigiiakconflict intensity.
Interestingly, all systems experience a reduction in the abort rate wheondleas mostly transactional.
This can be attributed to contention manager de-scheduling aborted tfseadenger period of time,
preventing them from repeating aborts. This reduces the potential fiaraliend the 4-core system

even experiences a speedup reduction when the ratio of critical codzeased.
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