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ABSTRACT

Overlay processor architectures allow FPGAs to be programmed
by non-experts using software, but prior designs have mainly been
based on the architecture of their ASIC predecessors. In this paper
we develop a new processor architecture that from the beginning
accounts for and exploits the predefined widths, depths, maxi-
mum operating frequencies, and other discretizations and limits of
the underlying FPGA components. The result is Octavo, a ten-
pipeline-stage eight-threaded processor that operates at the block
RAM maximum of 550MHz on a Stratix IV FPGA. Octavo is
highly parameterized, allowing us to explore trade-offs in datapath
and memory width, memory depth, and number of supported thread
contexts.

Categories and Subject Descriptors

C.1.3 [Processor Architecture]: Other Architecture Styles—Adapt-

able Architectures; C.4 [Performance of Systems]: Measurement
Techniques, Design Studies

General Terms

Design Performance Measurement

Keywords

FPGA, soft processor, multithreading, microarchitecture

1. INTRODUCTION
Making FPGAs easier to program for non-experts is a challenge

of increasing interest and importance. One approach is to enable
FPGAs to be programmed using software via overlay architectures,
for example conventional soft processors such as Altera’s NIOS
and Xilinx’s Microblaze, or more aggressive designs such as soft
vector processors [5, 18, 19]. Prior soft processor designs have
mainly inherited the architecture of their ASIC-based predecessors
with some optimization to better fit the underlying FPGA. How-
ever, FPGAs provide a much different substrate than raw tran-
sistors, including lookup tables (LUTs), block RAMs (BRAMs),
multipliers/DSPs, and various routing resources—all of which have
predefined widths, depths, maximum operating frequencies, and
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other discretizations and limits [1]. The existence of these artifacts
and their characteristics suggests that an FPGA-centric processor
architecture, one that is built from the “ground-up” with FPGA
capabilities in mind, will differ from a conventional architecture
in compelling ways, mainly by using the FPGA resources more
efficiently.

1.1 How do FPGAs Want to Compute?
In this work we ask the fundamental question: How do FPGAs

want to compute? A more exact (but less memorable) phrasing
of this question is: What processor architecture best fits the un-

derlying structures and discretizations of an FPGA? This question
alone is still too broad for the scope of a single research paper, so
we narrow our investigation by striving for the following goals for
a processor design.

1. To support a highly-threaded data-parallel programming model,
similar to OpenCL.

2. To run at the maximum operating frequency allowed by the
particular FPGA resources used (e.g.: BRAMs).

3. To have high performance—i.e, not only high-frequency but
also reasonable instruction count and processor-cycles-per-
instruction.

4. To never stall due to hazards (such as control or data depen-
dences).

5. To strive for simplicity and minimalism, rather than inherit
all of the features of an existing processor design/ISA.

6. To match underlying FPGA structures; for example, to dis-
cover the most effective width for data elements for both
datapaths and storage, as opposed to defaulting to the con-
ventional 32-bit width.

This paper describes the process and results of developing an
FPGA-based processor while striving for these goals.

1.2 Octavo
As a starting point, we show the simplest processor design we

could imagine in Figure 1, which is composed of at least one
multi-ported memory connected to an ALU, supplying its operands
and control and receiving its results. We argue that separate data
cache and register file storage is unnecessary: on an FPGA both
are inevitably implemented using the same BRAMs. We eliminate
separate memory and registers, reducing the data and instruction
memories and the register file into a single entity directly addressed
by the instruction operand fields. For this reason our final architec-
ture is indeed not unlike the simple one pictured, having only a
single logical storage component (similar to the scratchpad mem-
ory proposed by Chou et al. [5]). We demonstrate that this single
logical memory eliminates the need for immediate operands and



ALU
B

A
R

BRAMs

I

Figure 1: An overview of the architecture of Octavo, composed

of a Memory (BRAMs) providing operands (A and B) and

instructions (I) to an ALU which writes back its results (R) to

the same Memory.

load/store operations, but for now requires writing to instruction
operands to synthesize indirect memory accesses.

Via the technique of self-loop characterization, where we con-
nect a component’s outputs to its inputs to take into account the
FPGA interconnect, we determine for memories and ALUs the
pipelining required to achieve the highest possible operating fre-
quency. This leads us to an overall eight-stage processor design
that operates at up to 550MHz on a Stratix IV FPGA, limited by
the maximum operating frequency of the BRAMs. To meet the
goals of avoiding stalls and maximizing efficiency, we multithread
the processor such that an instruction from a different thread re-
sides in each pipeline stage [7, 8, 12, 14, 15], so that all stages are
independent with no control or data hazards or result forwarding
between them.

We name our processor architecture Octavo1, for nominally
having eight thread contexts. However, Octavo is really a processor
family since it is highly parameterizable in terms of its datapath and
memory width, memory depth, and number of supported thread
contexts. This parameterization allows us to search for optimal
configurations that maximize resource utilization and clock fre-
quency.

1.3 Related Work
Many prior FPGA-based soft processors designs have been pro-

posed, although these have typically inherited the architectures
of their ASIC predecessors, and none have approached the clock
frequency achieved by Octavo. Examples include soft uniproces-
sors [3, 17], multithreaded soft processors [6–8, 12, 14, 15], soft
VLIW processors [4, 10, 16], and soft vector processors [5, 18, 19].
Jan Gray has studied the optimization of processors specifically
for FPGAs [9], where synthesis and technology mapping tricks
are applied to all aspects of the design of a processor from the
instruction set to the architecture.

1.4 Contributions
In future work we plan to extend Octavo to support SIMD/vector

datapaths, multicore interconnection, connection to an OpenCL
framework (for its abundance of thread and data parallelism), and
evaluation of full applications. In this paper we focus on the
architecture of a single Octavo core and provide the following four
contributions:

1. we present the design process leading to Octavo, an 8-
stage multithreaded processor family that operates at up to
550MHz on a Stratix IV FPGA;

2. we demonstrate the utility of self-loop characterization for
reasoning about the pipelining requirements of processor
components on FPGAs;

1An octavo is a booklet made from a printed page folded three
times to produce eight leaves (16 pages).

3. we present a design for a fast multiplier, consisting of two
half-pumped DSP blocks, which overcomes hardware timing
and CAD limitations;

4. we present the design space of Octavo configurations of
varying datapath and memory widths, memory depths, and
number of pipeline stages.

2. EXPERIMENTAL FRAMEWORK
We evaluate Octavo and its components on Altera Stratix IV

FPGAs, although we expect proportionate results on other FPGA
devices given suitable tuning of the pipeline.

Test Harness We place our circuits inside a synthesis test harness
designed to both: (i) register all inputs and outputs to ensure an
accurate timing analysis, and (ii) to reduce the number of I/O
pins to a minimum as larger circuits will not otherwise fit on the
FPGA. The test harness also avoids any loss of circuitry caused by
I/O optimization. Shift registers expand single-pin inputs, while
registered AND-reducers compact word-wide signals to a single
output pin.

Synthesis We use Altera’s Quartus 10.1 to target a Stratix IV
EP4SE230F29C2 FPGA device of the highest available speed
grade. For maximum portability, we implement the design in
generic Verilog-2001, with some LPM2 components. We config-
ure the synthesis process to favor speed over area and enable all
relevant optimizations. To confirm the intrinsic performance of a
circuit without interference from optimizations—such as register
retiming, which can blur the distinction between the circuit under
test and the test harness—we constrain a circuit to its own log-
ical design partition and restrict its placement to within a single
rectangular area (LogicLock area) containing only the circuit under
test, excluding the test harness. Any test harness circuitry remains
spatially and logically separate from the actual circuit under test.

Place and Route We configure the place and route process to
exert maximal effort at fitting with only two constraints: (i) to
avoid using I/O pin registers to prevent artificially long paths that
would affect the clock frequency, and (ii) to set the target clock
frequency to 550MHz, which is the maximum clock frequency
specified for M9K BRAMs. Setting a target frequency higher
than 550MHz does not improve results and could in fact degrade
them: for example, a slower derived clock would aim towards an
unnecessarily high target frequency, causing competition for fast
routing paths.

Frequency We report the unrestricted maximum operating fre-
quency (Fmax) by averaging the results of ten place and route runs,
each starting with a different random seed for initial placement. We
construct the average from the worst-case Fmax reports over the
range of die temperatures between 0 to 85◦ at a supply voltage
of 900mV. Note that minimum clock pulse width limitations in
the BRAMs restrict the actual operating frequency to 550MHz,
regardless of actual propagation delay. Reported Fmax in excess
of this limit indicates timing slack available to the designer.

Area Area does not vary significantly between place and route
runs, so we report the first computed result. We measure area as
the count of Adaptive Lookup Tables (ALUTs) in use. We also
measure the area efficiency as the percentage of ALUTs actually in
use relative to the total number of ALUTs within the rectangular
LogicLock area which contains the circuit under test, including any
BRAMs or DSP Blocks.

2Library of Parametrized Modules (LPM) is used to describe hard-
ware that is too complex to infer automatically from behavioral
code.
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Figure 2: Self-loop characterization of memories reveal that

different numbers of pipeline stages absorb the propagation

delays depending on their internal configurations. Each of

(a)-(d) lists the theoretical maximum frequency of the design,

although the BRAM limit of 550MHz is the true limit.

3. STORAGE ARCHITECTURE
We begin our exploration of FPGA-centric architecture by focus-

ing on storage. Since modern mid/high-end FPGAs provide hard
block RAMs (BRAMs) as part of the substrate, we assume that the
storage system for our architecture will be composed of BRAMs.
Since we are striving for a processor design of maximal frequency,
we want to know how the inclusion of BRAMs will impact the
critical paths of our design. As already introduced, we use the
method of self-loop characterization, where we simply connect
the output of a component under study to its input, to isolate (i)
operating frequency limitations and (ii) the impact of additional
pipeline stages.

Figure 2 shows four 32-bit-wide memory configurations: 256-
word memories using one BRAM with one (2(a)) and two (2(b))
pipeline stages, and 1024-word memories using four BRAMs with
two (2(c)) and three (2(d)) pipeline stages. The result for a sin-
gle BRAM (2(a)) is surprising: without additional pipelining, the
Fmax reaches only 398MHz out of a maximum of 550MHz (lim-
ited by the minimum-clock-pulse-width restrictions of the BRAM).
This delay stems from a lack of direct connection between BRAMs
and the surrounding logic fabric, forcing the use of global routing
resources. However, two pipeline stages (2(b)) increases Fmax to
656MHz, and four pipeline stages (not shown) absorb nearly all
delay and increase the achievable Fmax up to 773MHz. Increasing
the memory depth to 1024 words (2(c)) requires 4 BRAMs, addi-
tional routing, and some multiplexing logic—and reduces Fmax

to 531MHz. Adding a third pipeline stage (2(d)) absorbs the
additional delay and increases Fmax to 710MHz.

These results indicate that pipelining provides significant timing
slack for more complex memory designs. In Octavo we exploit
this slack to create a memory unit that collapses the usual reg-
ister/cache/memory hierarchy into a single entity, maps all I/O
as memory operations, and still operates at more than 550MHz.
To avoid costly stalls on memory accesses, we organize on-chip
memory as a single scratchpad [5] such that access to any external
memory must be managed explicitly by software. Furthermore,
since an FPGA-based processor typically implements both caches
and register files out of BRAMs, we pursue the simplification of
merging caches and register file into a single memory entity and
address space. Hence Octavo can be viewed as either being (i)
registerless, since there is only one memory entity for storage, or
(ii) registers-only, since there are no load or store instructions, only
operations that directly address the single operand storage.

4. INSTRUCTION SET ARCHITECTURE
The single-storage-unit architecture decided in the previous sec-

tion led to Octavo’s instruction set architecture (ISA) having no

Table 1: Octavo’s Instruction Word Format.
Size: 4 bits a bits a bits a bits

Field: Opcode (OP) Destination (D) Source (A) Source (B)

Table 2: Octavo’s Instruction Set and Opcode Encoding.

Mnemonic Opcode Action

Logic Unit

XOR 0000 D = A XOR B
AND 0001 D = A AND B
OR 0010 D = A OR B
SRL 0011 D = A » 1 (zero ext.)
SRA 0100 D = A » 1 (sign ext.)
ADD 0101 D = A + B
SUB 0110 D = A - B
— 0111 (Unused, for expansion)

Multiplier

MLO 1000 D = A * B (Lower Word)
MHI 1001 D = A * B (Upper Word)

Controller

JMP 1010 PC = D
JZE 1011 if (A == 0) PC = D
JNZ 1100 if (A != 0) PC = D
JPO 1101 if (A >= 0) PC = D
JNE 1110 if (A < 0) PC = D
— 1111 (Unused, for expansion)

loads or stores: each operand can address any location in the
memory. Immediate values are implemented by placing them in
memory and addressing them. Subroutine calls and indirect mem-
ory addressing are implemented by synthesizing code, explained in
detail later in Section 9. Despite its frugality, we believe that the
Octavo ISA can emulate the MIPS ISA.

Table 1 describes Octavo’s instruction word format. The four
most-significant bits hold the opcode, and the remaining bits en-
code two source operands (A and B) and a destination operand
(D). The operands are all the same size (a address bits), and the
width of the operands dictates the amount of memory that Octavo
can access. For example, a 36-bit instruction word has a 4-bit
opcode, three 10-bit operand fields, and 2 bits unused—allowing
for a memory space of 210 (1024) words. Table 2 shows Octavo’s
instruction set and opcode encoding, with ten opcodes allocated
to ALU instructions and the remaining six allocated to control
instructions. The Logic Unit opcodes are chosen carefully so that
they can be broken into sub-opcodes to minimize decoding in the
ALU implementation.

5. MEMORY
Having decided the storage architecture and ISA for Octavo, we

next describe the design and implementation of Octavo’s memory
unit. In particular, we describe the implementation of external I/O,
and the composition of the different memory unit components.

I/O Support Having only a single memory/storage and no sepa-
rate register file eliminates the notion of loads and stores, which
normally implement memory-mapped I/O mechanisms. Since sig-
nificant timing slack exists between the possible and actual Fmax

of FPGA BRAMs, we can use this slack to memory-map I/O
mechanisms without impacting our high clock frequency. We map
word-wide I/O lines to the uppermost memory locations (typically
2 to 8 locations), making them appear like ordinary memory and
thus accessible like any operand. We interpose the I/O ports in
front of the RAM read and write ports: the I/O read ports override
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mapped word-wide I/O ports. The RAM component is implemented using BRAMs. Note that both A/B read and writes complete in

two cycles, but overlap only for one cycle at RD0/WR1. The I Memory has no I/O and thus reads and writes in a single cycle.

the RAM read if the read address is in the I/O address range,
while the I/O write ports pass through the write address and data
to the RAM. This architecture provides interesting possibilities for
future multicore arrangements of Octavo: any instruction can now
perform up to two I/O reads and one I/O write simultaneously; also,
an instruction can write its result directly to an I/O port and another
instruction in another CPU can directly read it as an operand.
Similarly, having I/O in instruction memory could enable the PC
to point to I/O to execute an external stream of instructions sent
from another CPU (although we do not yet support this feature).

Implementation Figure 3 shows the connections of Octavo’s
memory units and details the construction of the A and B Mem-
ories. Each memory behaves as a simple dual-port (one read
and one write) memory, receiving a common write value R (the
ALU’s result), but keeping separate read and I/O ports. The I
Memory contains only BRAMs, while the A and B Memories
additionally integrate a number of memory-mapped word-wide I/O
ports (typically two or four). For the A and B memories, reads or
writes take 2 cycles each but overlap for only 1 at RD0/WR1.
A write (Figure 3(b)) spends its first cycle registering the address
and data to RAM, activating one of the I/O write port write-enable
lines based on the write address, and registering the write data to
all I/O write ports. The data write to the RAM occurs during the
second cycle.3 A read (Figure 3(c)) sends its address to the RAM
during the first cycle and simultaneously selects an I/O read port
based on the Least-Significant Bits (LSB) of the address. Based
on the remaining Most-Significant Bits (MSB) of the address, the
second read cycle returns either the data from the RAM or from the
selected I/O read port. Our experiments showed that we can add
up to about eight I/O ports per RAM read/write port pair before the
average operating speed drops below 550MHz.

6. ALU
In this section we describe the development and design of Oc-

tavo’s ALU components, including the Multiplier, the Adder/Sub-
tractor, the Logic Unit, and their combination to form the ALU.

Multiplier Unit To support multiplication for a high-performance
soft processor it is necessary to target the available DSP block

3We implemented the RAM using Quartus’ auto-generated BRAM
write-forwarding circuitry, which immediately forwards the write
data to the read port if the addresses match. This configuration
yields a higher Fmax since there is a frequency cost to the Stratix
IV implementation of BRAMs set to return old data during si-
multaneous read/write of the same location [1]. However, since
pipelining delays the write to a BRAM by one cycle, a coincident
read will return the data currently contained in the BRAM instead
of the data being written.

clk/2
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clk
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Figure 4: A detailed view of the Multiplier unit, which over-

comes the minimum clock pulse width limit of a single mul-

tiplier by operating two word-wide multipliers on alternate

edges of a half-rate clock clk/2, with the correct double-word

product P selected by a single state bit driven by the system

clock clk.

multipliers. Although Stratix IV DSP blocks have a sufficiently-
low propagation delay to meet our 550MHz target frequency, they
have a minimum-clock-pulse-width limitation (similar to BRAMs)
restricting their operating frequency to 480MHz for word-widths
beyond 18 bits 4.

Figure 4 shows the internal structure of Octavo’s Multiplier and
our solution to the clocking limitation: we use two word-wide DSP
block multipliers5 in alternation on a synchronous half-rate clock

4For widths ≤18 bits, it might be possible to implement the mul-
tiplier with a single DSP block, but current CAD issues prevent
getting results consistent with the published specifications [1] for
high-frequency implementations.
5We implement each multiplier using an LPM instance generated
by the Quartus MegaWizard utility. Although the Altera DSP
blocks have input, intermediate, and output registers, a designer
can only specify the desired number of pipeline stages that begin
at the input to the DSP block—hence we cannot specify to use
only the input and output registers to absorb the delay of the
entire DSP block. We bypass this limitation by instantiating a
one-stage-pipelined multiplier and feeding its output into external
registers. Later register-retiming optimizations eventually place
these external registers into the built-in output registers of the DSP
block, yielding a two-stage pipelined multiplier with only input and
output registers.
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(clk/2), such that we can perform two independent word-wide
multiplications, staggered but in parallel, and produce one double-
word product every cycle. In detail, the operands A and B are
de-multiplexed into the two half-rate datapaths on alternate edges
of the half-rate clock. A single state bit driven by the system clock
(clk) selects the correct double-word product (P ) at each cycle.

Adder/Subtractor and Logic Unit We also carefully and thor-
oughly studied adder/subtractors and logic units while building Oc-
tavo, again using the method of self-loop characterization described
in Section 3. We experimentally found that an unpipelined 32-bit
ripple-carry adder/subtractor can reach 506MHz, and that adding
4 pipeline stages increases Fmax up to 730MHz. An unpipelined
carry-select implementation only reaches 509MHz due to the ad-
ditional multiplexing delay, but requires only two stages to reach
766MHz. Due to the 550MHz limitation imposed by BRAMs, a
simple two-stage ripple-carry adder reaching 600MHz is sufficient.

The Logic Unit (&|~) performs bit-wise XOR, AND, OR, SRL,
and SRA operations (Table 2). It also acts as a pass-through for the
result of the Adder/Subtractor, which avoids an explicit multiplexer
and allows us to separate and control the implementation of the
Adder/Subtractor from that of the Logic Unit. The Logic Unit
efficiently maps to a single ALUT per word bit: 3 bits for the
opcode, plus one bit from the Adder/Subtractor result, and 2 bits
for the A and B operands of the bit-wise operations, totaling 6 bits
and naturally mapping to a single Stratix IV 6-LUT per output bit.

Combined ALU Design Figure 5 shows the block-level struc-
ture of the entire ALU, which combines the Multiplier, Adder/-
Subtractor, and Logic Unit. All operations occur simultaneously
during each cycle, with the correct result selected by the output
multiplexer after four cycles of latency. We optimized each sub-
component for speed, then added extra pipeline registers to balance
the path lengths. We use the Logic Unit as a pipeline stage and
multiplexer to reduce the delay and width of the final ALU result
multiplexer. The combined ALU runs at an average of 595MHz for
a width of 36 bits.

7. CONTROLLER
Figure 6 shows the design of the Octavo Controller. The Con-

troller provides the current Program Counter (PC) value for each
thread of execution and implements flow-control. A Program
Counter Memory (PCM ) holds the next value of the PC for each
thread of execution. We implement the PCM using one MLAB6

6Memory Logic Array Blocks (MLABs) are small (e.g., 32 bits
wide by 20 words deep) memories found in Altera FPGAs.
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Figure 6: The Controller, which provides the Program Counter

(PC) value for each thread of execution and implements flow-

control. A Program Counter Memory (PCM ) holds the next

value of the PC for each thread of execution. Based on the

opcode (OP ) and the fetched value of operand A (if applicable),

the controller may update the PC of a thread with the target

address stored in the destination operand D.

instead of a BRAM, given a typically narrow PC (< 20 bits) and
a relatively small number of threads (8 to 16)—this also helps im-
prove the resource-diversity of Octavo and will ease its replication
in future multicore designs. A simple incrementer and register pair
perform round-robin reads of the PCM , selecting each thread in
turn. At each cycle, the current PC of a thread is incremented by
one and stored back into the PCM . The current PC is either the
next consecutive value from the PCM , or a new jump destination
address from the D instruction operand.

The decision to output a new PC in the case of a jump instruc-
tion is based on the instruction opcode OP and the fetched value
of operand A. A two-cycle pipeline determines if the value of A is
zero (0?) or positive (+?), and based on the opcode OP decides
whether a jump in flow-control happens (JMP ?)—i.e., outputs
the new value of the PC from D, instead of the next consecutive
value from the PCM . A Controller supporting 10-bit PCs for 8
threads can reach an average speed of 618MHz, though the MLAB
implementing the PCM limits Fmax to 600MHz.

8. COMPLETE OCTAVO HARDWARE
In this section we combine the units described in the previous

three sections to build the complete Octavo datapath shown in Fig-
ure 7, composed of an instruction Memory (I), two data Memories
(A and B), an ALU, and a Controller (CTL).

We begin by describing the Octavo pipeline from left to right. In
Stage 0, Memory I is indexed by the current PC and provides
the current instruction containing operand addresses D, A, and
B, and the opcode OP . Stages 1-3 contain only registers and
perform no computation. Their purpose is to separate the BRAMs
of Memory I from those of Memories A/B by a suitable number
of stages to maintain a 550MHz clock: as shown by the self-loop
characterization in Section 3, we must separate groups of BRAMs
with at least two stages—having only a single extra stage between
the I and A/B memories would yield an Fmax of only 495MHz
for a 36-bit, 1024-word Octavo instance. We insert three stages
to avoid having an odd total number of stages. Across stages 4
and 5, the A and B memories provide the source operands (of the
same name). The ALU spans stages 6-9 and provides the result
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Figure 7: The complete Octavo system: an instruction Memory (I), two data Memories (A and B), an ALU, and a Controller (CTL).

R which is written back at address D to both Memories A and B
(across stages 4 and 5 again), as well as Memory I (at stage 0).
The Controller (CTL) spans stages 6 and 7 and writes the new
PC back to Memory I in stage 0. The controller contains the PC
memory for all threads, and for each thread decides whether (i) to
continue with the next consecutive PC value, or (ii) to branch to
the new target address D.

There are three main hazards/loops in the Octavo pipeline. The
first hazard exists in the control loop that spans stages 0-7 through
the controller (CTL)—hence Octavo requires a minimum of eight
independent threads to hide this dependence. The second hazard
is the potential eight-cycle Read-After-Write (RAW) data hazard
between consecutive instructions from the same thread: from
operand reads in stages 4-5, through the ALU stages 6-9, and the
write-back of the result R through stages 4-5 again (recall that
writing memories A/B also takes two stages)—this dependence
is also hidden by eight threads. The third hazard also begins at the
operand reads in stages 4-5 and goes through the ALU in stages
6-9, but writes-back the result R to Memory I for the purpose of
the instruction synthesis introduced in Section 4 and described in
detail in the next section. This loop spans ten stages and is thus not
covered by only eight threads. Rather than increase thread contexts
beyond eight to tolerate this loop, we instead require a delay slot

instruction between the synthesis of an instruction and its use.

9. OCTAVO SOFTWARE
As described in Section 4, the Octavo ISA supports only register-

direct addressing, since all operands are simple memory addresses—
hence the implementation of displacement, indirect, or indexed
addressing requires two instructions: a first instruction reads the
memory location containing the indirect address or the displace-
ment/index, and stores it into the source or destination operand
of a second instruction that performs the actual memory access
using the modified operand address. The remainder of this section
provides examples of indirection implemented using the Octavo
ISA, including pointer dereference, arrays, and subroutine calls.

9.1 Pointer Dereference
The C code in Figure 8(a) performs an indirect memory access

by dereferencing the pointer b and storing the final value into
location a. In the MIPS ISA (Figure 8(b)), this code translates into
a pair of address loads (we use the common ’la’ assembler macro
for brevity) followed by a displacement addressing load/store pair.
Since the value of b is known at compile time, we assume that the

1 i n t a = 4 2 ;
2 i n t c = 8 8 ;
3 i n t *b = &c ;
4 . . .
5 a = *b ;

(a) C code

1 a : 42
2 c : 88
3 b : c
4 . . .
5 l a r1 , a
6 l a r2 , c
7 . . .
8 lw r3 , 0 ( r2 )
9 sw r3 , 0 ( r1 )

(b) Optimized MIPS code

1 Z : 0
2 a : 42
3 c : 88
4 b : c
5 . . .
6 or T , T , b
7 nop
8 T : add a , Z , 0

(c) Octavo code (pre-execution)

1 Z : 0
2 a : 88

3 b : c
4 c : 88
5 . . .
6 or T , T , b
7 nop
8 T : add a , Z , c

(d) Octavo code (post-execution)

Figure 8: Pointer dereference example.

compiler optimizes-away the dereference and uses the address of c
directly.

In the Octavo ISA we synthesize indirect addressing at run-time
by placing the address stored in b into a source operand of a later
instruction that stores into a the contents of the address taken from
b. Without load/store operations, we instead use an ADD with
“register zero” as one of the operands. Figure 8(c) shows the initial
conditions of the Octavo code and begins with a memory location
defined as “register zero” (Z) and others containing the same
initialized variables (a, b, and c) as the C code. Line 6 contains an
instruction that OR’s a target instruction T (line 8) with the contents
of b (line 3)—note that T ’s second source operand initially contains
zero. A NOP or other independent instruction must exist between
the generating instruction and its target due to the 1-cycle RAW
hazard when writing to Memory I (Section 8) if executing less
than 10 threads. Figure 8(d) shows the result of executing from
line 6 onwards, that replaces the zero source operand in T with
the contents of b, and later executes T with the modified operand,
storing the contents of c into a. If the compiler knows the value
of the pointer b, it can perform these steps at compile-time and



1 i n t A[ ] = { 42 , . . . } ;
2 i n t B [ ] = { 23 , . . . } ;
3 i n t C [ ] = { 88 , . . . } ;
4 . . .
5 *A = *B + *C;
6 A++;
7 B++;
8 C++;

(a) C code

1 A : 42
2 A’ : . . .
3 B : 23
4 B ’ : . . .
5 C : 88
6 C ’ : . . .
7 . . .
8 l a r1 , A
9 l a r2 , B

10 l a r3 , C
11 . . .
12 lw r5 , 0 ( r2 )
13 lw r6 , 0 ( r3 )
14 add r4 , r5 , r6
15 sw r4 , 0 ( r1 )
16 a d d i r1 , r1 , 1
17 a d d i r2 , r2 , 1
18 a d d i r3 , r3 , 1

(b) MIPS code

1 A : 42
2 A’ : . . .
3 B : 23
4 B ’ : . . .
5 C : 88
6 C ’ : . . .
7 I : 0 1 , 1 , 1
8 . . .
9 T : add A, B , C

10 add T , T , I

(c) Octavo code (pre-execution)

1 A : 111

2 A’ : . . .
3 B : 23
4 B ’ : . . .
5 C : 88
6 C ’ : . . .
7 I : 0 1 , 1 , 1
8 . . .
9 T : add A’ , B’ , C’

10 add T , T , I

(d) Octavo code (post-execution)

Figure 9: Array access example.

synthesize the final instruction—avoiding the run-time overhead.
To traverse a linked list or any other pointer-based structure, the
target instruction T instead can update the pointer b itself.

9.2 Iterating over Arrays
Despite the apparent inefficiency of needing to synthesize code

to perform indirect memory accesses, manipulating the operands
of an instruction can also have advantages. For example, the C
code in Figure 9(a) describes the core of a loop summing two
arrays. Figure 9(b) shows a straightforward translation to MIPS
assembly: the same letters as in the C code denote consecutive
array locations. After a 3-instruction preamble to load the array
addresses into registers r1, r2, and r3, the next four instructions
(lines 12-15) load the B and C array element values, sum them,
and store them back into the corresponding A element. The last
three instructions increment the array pointers.

The equivalent Octavo assembly code in Figure 9(c) works in the
same way, but using synthesized code: after directly performing
the array element sum at T on line 9, we add 1 to each address
operand using a word-wide value I on line 7. This increment value
I contains the increment of each array pointer, each shifted to align
with the corresponding address field, and a zero value aligned with
the opcode field. Adding I to T yields the updated code for the
next loop iteration in Figure 9(d). Compared to the MIPS code in
Figure 9(b), Octavo requires only two instructions instead of seven
to compute the same loop body.

Synthesized code does however increase the size of loop pream-
bles. Octavo’s loop preamble overhead could become significant

1 Z : 0
2 RET1 : jmp X, 0 , 0
3 RET2 : jmp R, 0 , 0
4
5 sub :
6 . . .
7 E : jmp X, 0 , 0
8
9 c a l l e r :

10 . . .
11 add E , Z , RET2
12 jmp sub , 0 , 0
13 R: . . .

(a) pre-execution

1 Z : 0
2 RET1 : jmp X, 0 , 0
3 RET2 : jmp R, 0 , 0
4
5 sub :
6 . . .
7 E : jmp R , 0 , 0
8
9 c a l l e r :

10 . . .
11 add E , Z , RET2
12 jmp sub , 0 , 0
13 R : . . .

(b) post-execution

Figure 10: Call/return example, in Octavo code.

with many short nested loops, but compiler optimizations such
as loop coalescing would reduce it. Similarly, induction variable
elimination would reduce the amount of synthesized code required
for more complex array access patterns.

9.3 Synthesizing Subroutine Calls
Without call stack hardware support, Octavo must synthesize

code to implement subroutine linkage using a method previously
described by Knuth [11]. While somewhat awkward, having to
synthesize CALL and RET instructions saves two scarce opcodes
for other uses and enables conditional calls and returns at no extra
cost.

Figure 10(a) shows a synthesized CALL and RET pair example.
Lines 2 and 3 contain return jumps RET1 and RET2 that act as
the “RET” for specific “CALLs” to sub (lines 5-7). These return
jumps get placed by callers at the exit point E of sub, that currently
contains a copy of RET1 placed there by a previous caller. Before
jumping to sub at line 12, the caller will change sub’s return
jump target from X to R, the return point in the caller at line 13.
Figure 10(b) shows the updated code after line 11 executes, with the
exit point E updated to return to R. Using JNZ, JZE, JPO, or JNE
instead of JMP at line 3 implements a conditional subroutine return.
Doing the same at line 12 implements a conditional subroutine call.

This subroutine linkage scheme does not allow re-entrancy:
threads cannot intersect in the call graph, including with themselves
(i.e., recursive calls must be converted to iterative ones). The
compiler must create private copies of the subroutine in such cases.

10. SPEED AND AREA
In this section we examine many varying instances of Octavo

as instantiated on a Stratix IV EP4SE230F29C2 device. In
particular we measure maximum operating frequency (Fmax), area
usage, and area density over a range of configurations, varying
word width, memory depth, and number of pipeline stages. We
perform these experiments to confirm that Octavo achieves our
stated goals for a processor design (Section 1.1) over a wide range
of configurations.

10.1 Maximum Operating Frequency
Our first experiments address whether Octavo’s high Fmax will

hold for non-trivial and unconventional word widths and increasing
memory depths. We find that, over a range of word widths from 8
to 72 bits, Fmax remains high and degrades smoothly.

Figure 11 shows the maximum operating frequency Fmax of
Octavo for word widths ranging from 8 to 72 bits, and for Octavo
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Figure 12: Maximum operating frequency (Fmax) for a 16-

stage Octavo design over addressable memory depths ranging

from 2 to 32,768 words, for word widths from 8 to 72 bits.

instances with 8 to 16 pipeline stages. The dashed line indicates the
550MHz Fmax upper limit imposed by the BRAMs. As a rough
comparison we plot the 32-bit NiosII/f soft processor, reported
to be 230MHz for our target FPGA [2]. For this experiment we
limited memory depth to a maximum of 256 words so that each
memory fits into a single BRAM, avoiding any effect on Fmax

from memory size and layout.
For all pipeline depths, Fmax degrades slowly from about

625MHz down to 565MHz when varying word width from 8 to
36 bits. For 12 to 16 pipeline stages Fmax decreases only 28%
over a 9x increase in width from 8 to 72 bits, and still reaches
just over 450MHz at 72 bits width. Word widths beyond 36 bits
exceed the native capacity of the DSP blocks, requiring additional
adders (implemented with ALUTs) to tie together multiple DSP
blocks into wider multipliers. Adding more pipeline stages to the
Multiplier absorbs the delay of these extra adders but increases
total pipeline depth. Increasing pipeline depth by 4 stages up to
12 absorbs the delay of these extra adders.

Unfortunately a CAD anomaly occurs for widths between 38
and 54 bits (inclusive), where Quartus 10.1 cannot fully map the
Multiplier onto the DSP blocks, forcing the use of yet more adders

implemented in FPGA logic. Increasing the pipelining to 14 stages,
again by adding stages in the Multiplier, overcomes the CAD
anomaly. Increasing the pipelining to 16 stages has no further
effect on Octavo, whose critical path lies inside the Multiplier.
The CAD anomaly affects Octavo in two ways: the affected word-
widths must pipeline the Multiplier further than normally necessary
to overcome the extra adder delay, and also show a discontinuously
higher Fmax than the wider, unaffected word-widths (56 to 72 bits),
regardless of the number of pipeline stages. Unfortunately this
CAD anomaly hides the actual behavior of Octavo at the interesting
transition point at widths of 36 to 38 bits, where the native width of
both BRAMs and DSP blocks is exceeded.

Figure 12 shows the maximum operating frequency (Fmax) for
a 16-stage Octavo design over addressable memory depths ranging
from 2 to 32,768 words and plotted for word widths from 8 to 72
bits. We also mark the 550MHz actual Fmax upper limit imposed
by the BRAMs. We use 16 stages instead of 8 to avoid the drop in
performance caused by the CAD anomaly.

The previously observed discontinuous Fmax drop in Figure 11
for Octavo instances with widths of 56 to 72 bits is especially
visible here in the cluster of dashed and dotted lines lying below
500MHz for depths of 256 to 4096 words. Similarly, the cluster of
dashed lines above 500MHz spanning 256 to 4096 words depth
contains the word widths (38 to 54 bits) affected by the CAD
anomaly.

A memory requires twice as many BRAMs to implement widths
exceeding the native BRAM maximum width of 36 bits. Unfortu-
nately, the CAD anomaly masks the initial effect on Fmax of dou-
bling the number of BRAMs for the same depth when exceeding a
word width of 36 bits.

For depths up to 256 words, which all fit in a single BRAM,
and widths below where the CAD anomaly manifests (8 to 36 bits),
Fmax decreases from 692MHz down to 575MHz, a 16.9% decrease
over a 4.5x increase in word width and 128x increase in memory
depth (2 to 256 words). For depths greater than 256 words, if we
take as example the narrowest width (50 bits) which can address
up to 32,768 words, Fmax decreases 49.8% over a 64x increase in
depth (512 to 32,768 words). The decrease changes little as width
increases: 42.1% at 72 bits width over the same memory depths.
Overall, an increase in memory depth affects Fmax much more
than an increase in width, with the effect becoming noticeable past
1024 words of depth.

Summary We summarize with two main observations: (i) widths
greater than 36 bits require additional logic and pipelining, and
(ii) a CAD anomaly forces longer pipelines and hides the actual
curves for less than 14 pipeline stages. We also found that at least
12 pipeline stages are necessary for widths greater than 56 bits,
modulo the CAD anomaly, and that memory depth has a greater
effect onFmax than word width, becoming significant beyond 1024
words.

10.2 Area Usage
Our next experiments tests if Octavo’s area scales practically

as word width and memory depth increase. Figure 13 shows the
area used in ALUTs, excluding BRAMs and DSP blocks, over
word widths ranging from 8 to 72 bits, for an 8-stage Octavo
design. Where possible, for each width, we plot multiple points
each representing an addressable memory depth ranging from 2 to
32,768 words. We also mark the reported 1,110 ALUT area usage
of the 32-bit NiosII/f soft processor on the same FPGA family [2].

For small memories having less than 256 words, the area used
varies roughly linearly, increasing 11.4x in area over a 9x increase
in width. The CAD anomaly causes two small discontinuous
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increases in the ALUT usage: +24.2% while increasing from 36
to 38 bits width, and +16.5% from 54 to 56 bits, both cases for a
memory depth of 256 words. Increasing memory depth has little
effect on the amount of logic used: at a width of 72 bits, the area
increases from 2478 to 3339 ALUTs (+37.5%) when increasing the
memory depth from 256 to 32,768 (128x).

Summary We found that area varies roughly linearly with word
width, varies little with memory depth, and is also affected by the
CAD anomaly.

10.3 Density
Our final experiments seek to find if some Octavo configurations

are “denser” than others, leaving fewer ALUTs, BRAMs, or DSP
blocks unused within their rectangular area. Figure 14 shows the
density, measured as the percentage of ALUTs in actual use within
the rectangular area containing an 8-stage Octavo instance, over
word widths ranging from 8 to 72 bits and plotted for each address-

(a) 1024 Words (b) 4096 Words

Figure 15: Physical layout of an 8-stage, 72-bit wide Octavo

instance with (a) 1024 and (b) 4096 memory words. The large

shaded rectangular area contains only the ALUTs used by

Octavo, any outside ALUTs belong to a test harness and do not

count; the darker columns contain the BRAMs implementing

the Memory; the pale columns contain DSP blocks implement-

ing the Multiplier and are part of Octavo despite protruding

below the rectangular area in one instance; the remaining small

blocks denote groups of ALUTs, with shade indicating the

relative number of ALUTs used in each group.

able memory depth ranging from 2 to 32,768 words. BRAMs and
DSP block do not count towards ALUT count. Word width has no
clear effect, but density drops sharply for depths exceeding 1024
words due to the BRAM columns needing a larger rectangular area
to contain them than would compactly contain the processor logic
implemented using ALUTs.

Figures 15(a) and 15(b) illustrate the effect of the layout of
BRAMs on the density. Each show an 8-stage, 72-bit wide Octavo
instance with a memory of 1024 and 4096 words respectively. The
large colored rectangular area contains only the ALUTs used by
Octavo. Any outside ALUTs belong to a test harness and are
ignored. The columns contain the DSP blocks which implement
the Multiplier, and the BRAMs for the Memory. The remaining
small block denote groups of ALUTs, with shade indicating the
relative number of ALUTs in use in each group. When increasing
from a 1024 to 4096 word memory, the number of ALUTs used to
implement Octavo increases only 15.3%, but the density drops from
65% to 26% due to the unused ALUTs enclosed by the required
number of BRAMs.

For memories deeper than 1024 words, we could recover the
wasted ALUTs by allowing non-Octavo circuitry to be placed
within its enclosing rectangular area, but this choice may negatively
affect Fmax due to increased routing congestion, and prevents
the FPGA CAD tools from placing and routing multiple Octavo
instances (or other modules) in parallel, lengthening the design
cycle. Further work may lead us to create vector/SIMD versions
of Octavo to reclaim unused resources.

Summary Our experiments confirm our original intuition that
there exists a “sweet spot”—where the number of BRAMs used
fits most effectively within the area of the CPU—at approximately
1024 words of memory depth, regardless of word width.

11. CONCLUSIONS
In this paper we presented initial work to answer the question

“How do FPGAs want to compute?”, resulting in the Octavo



FPGA-centric soft-processor architecture family. Octavo is a ten-
pipeline-stage, eight-threaded processor that operates at the BRAM
maximum of 550MHz on a Stratix IV FPGA, is highly parameteriz-
able, and behaves well under a wide range of datapath and memory
width, memory depth, and number of supported thread contexts:

• Fmax decreases only 28% (625 to 450MHz) over a 9x in-
crease in word width (8 to 72 bits);

• Fmax decreases 49.8% over a 64x increase in memory depth
(512 to 32,768 words), and does so almost independently of
word width;

• the amount of logic used is almost unaffected by memory
depth: at a width of 72 bits, the usage increases from 2478 to
3339 ALUTs (+37.5%) when increasing the memory depth
from 256 to 32,768 (128x);

• the amount of logic used varies linearly with word width,
increasing 11.4x in area over a 9x increase in width (8 to 72
bits);

• and the area density is unaffected by word width, but drops
sharply for memory depths exceeding 1024 words due to the
BRAM columns needing a larger rectangular area to contain
them than would compactly contain the processor logic.

12. FURTHER WORK
Our FPGA-centric architecture approach led us to Octavo, a fast

but unconventional architecture. We will next attempt to push
more standard processor features back into Octavo to determine
whether a high Fmax can be maintained with more conventional
architecture support. For example, we will attempt to provide
some support for indirect memory access and possibly eliminate
the need for code synthesis and non-re-entrant code. We will also
investigate the possibility of allowing fewer threads than pipeline
stages via cheap methods for hazard detection and thread schedul-
ing [13]. Beyond a single Octavo datapath, other important avenues
of research include scaling Octavo to have multiple datapaths with
vector/SIMD support, and to have interconnect, communication,
and synchronization between multiple cores. We will also work
towards connecting to a data parallel and highly-threaded high-
level programming model such as OpenCL. Finally, we hope to
explore the applicability of Octavo and its descendants to other
FPGA devices.
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