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ABSTRACT
Support for optimistic parallelism such as thread-level spec-
ulation (TLS) and transactional memory (TM) has been
proposed to ease the task of parallelizing software to ex-
ploit the new abundance of multicores. A key requirement
for such support is the mechanism for tracking memory ac-
cesses so that conflicts between speculative threads or trans-
actions can be detected; existing schemes mainly track ac-
cesses at a single fixed granularity—i.e., at the word level,
cache-line level, or page level. In this paper we demonstrate,
for a hardware implementation of TLS and corresponding
speculatively-parallelized SpecINT benchmarks, that the coars-
est access tracking granularity that does not incur false vi-
olations varies significantly across applications, within ap-
plications, and across ranges of memory—from word-size to
page size. These results motivate a variable-granularity ap-
proach to access tracking, and we show that such an ap-
proach can reduce the number of memory ranges that must
be tracked and compared to detect conflicts can be reduced
by an order of magnitude compared to word-level track-
ing, without increasing false violations. We are currently
developing variable-granularity implementations of both a
hardware-based TLS system and an STM system.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: parallel programming

General Terms
Performance
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1. INTRODUCTION
As most future processors will likely be multicore, the

computer systems community is faced with the daunting
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challenge of parallelizing all software. A great deal of re-
cent research on easing the task of parallelization has fo-
cused on optimistic parallelism, including support for thread-

level speculation (TLS) [7, 11, 23] and transactional memory
(TM) [6, 17, 18]. Both TLS and TM, whether supported in
software, hardware, or a combination, require two key fea-
tures: (i) the ability to buffer optimistic modifications from
the regular memory system; and (ii) the ability to track
memory accesses and detect conflicts between speculative
threads or transactions.

Focusing on implementations of memory access tracking,
there are two conflicting goals: (i) to minimize overheads,
including both performance and space overheads; and (ii)
to minimize false conflicts. A common approach taken to
reduce overhead is to track accesses at coarse granularities.
For example, in hardware tracking accesses at a cache-line
granularity, or in software tracking accesses at an object
or page granularity. Tracking at such coarse granularities
saves the prohibitive traffic and latency overheads of track-
ing at word or sub-word granularities, but has the trade-off
of incurring false conflicts. False conflicts can be equally
prohibitive to obtaining good performance, as many opti-
mistic parallelization systems are very sensitive to any con-
flicts. Furthermore, most optimistic parallelization systems
track accesses at a single fixed granularity (cache-line, ob-
ject, page) that may work well on average across different
applications, but rarely matches the access patterns of every
application or parts of an application. In fact, the portions
of applications that have been selected for optimistic paral-
lelization are likely biased to match the granularity of access
tracking supported by the underlying system, forgoing opti-
mistic parallelism requiring other granularities that may be
available elsewhere in the application.

1.1 Variable-Granularity Access Tracking
We propose that systems for optimistic parallelism should

consider supporting variable-granularity access tracking. There
are two ways that the access tracking granularity can vary.
The simplest is to vary the tracking granularity uniformly
for the entire system, perhaps per application or part of an
application: for example, all accesses are tracked at either
word, cache-line, or page granularity. A more aggressive
approach would be to vary the tracking granularity across
memory: for example, some ranges of memory are tracked
at a word granularity while others are tracked at a page
granularity. Ideally such a scheme will have less space and
latency overhead than a fine-grain approach, since accesses
are tracked at a fine granularity only when necessary, and at
a very coarse granularity otherwise—reducing the storage to



track accesses, as well as the number of items that must be
compared to detect conflicts. Such a scheme can also reduce
or eliminate false conflicts, since the tracking granularity
can vary to match that of the underlying access patterns of
the application. Finally, if an implementation of variable-
granularity access tracking is dynamic, it can potentially
discover the proper granularity required to minimize false
conflicts for a given portion of an application. Of course, for
such a scheme to be beneficial the overheads of managing
variable granularity would have to be minimized.

In this paper we present preliminary results demonstrat-
ing the potential for variable-granularity access tracking in
an optimistic parallelization system—specifically for a hardware-
based TLS system running speculatively-parallelized SpecINT
applications. We show that the largest access tracking gran-
ularity that does not incur false violations varies significantly
across applications, within applications, and across ranges of
memory—from word-size to page size. We also show that if
variable-granularity access tracking is supported, the num-
ber of memory ranges that must be tracked and compared
to detect conflicts can be reduced by an order of magnitude
compared to word-level tracking, without increasing false
violations.

2. RELATED WORK
Proposed hardware and software support for TLS and TM

perform access tracking at a variety of different fixed gran-
ularities.

Hardware TLS and TM Many hardware schemes for
TLS [7, 23, 24] and TM [1, 8, 18, 21] track accesses at the
granularity of the cache-line size of the underlying cache hi-
erarchy (typically 32, 64, or 128 bytes). Others demonstrate
the necessity of tracking at finer granularities to reduce false
violations [11, 23].

Software TLS The software approach to TLS proposed
by Cintra et al. [3] tracks accesses at a word granularity,
but they show improved performance only for applications
with few or no conflicts, having eliminated false conflicts.
The software approach to TLS in a Java runtime proposed
by Pickett et al. [20] tracks accesses at an object granu-
larity. While objects do vary in size, there are cases when
object-granularity tracking is unnecessary, and others where
tracking at a finer-grain than object-level would be benefi-
cial. Early work by Papadimitriou and Mowry [19] explored
a software TLS system that builds on a DSM-like environ-
ment, and they experimented with support for a range of
access-tracking granularities. They found that the granular-
ity for detecting dependences is a critical performance factor,
and demonstrate the necessity of tracking memory at a fine
granularity—however they agree that this would result in
unacceptable overhead.

Software TM Some software approaches to TM (STMs)
maintain read and write sets for each transaction at a word
granularity [15, 22]. In contrast, Manassiev et al. [13] use a
page-level granularity to detect conflicts in their STM sys-
tem; while the actual page size can be configured for this
system, it remains fixed for the duration of an application’s
execution. Some implementations such as RSTM [14] and
DSTM [10] use object-based conflict detection, which as dis-
cussed above is indeed a form of variable-granularity access

tracking but not necessarily the granularity that matches the
access patterns of the application. Other STMs are imple-
mented by locking shared data [5, 9, 10]—in such cases the
entities that can be locked can also be done so at a variety
of fixed granularities. While our main focus in this paper is
on variable-granularity access tracking, the general concept
is also applicable to the granularity of locking in lock-based
STMs.

Hybrid TM Some TM systems are built on a combination
of hardware and software. They use a mixture of the tech-
niques mentioned above, detecting conflicts at the cache-line
level [16], word level [4], or a combination of both cache-line
level (in the hardware) and object level (in the software) [12].

Bulk Disambiguation Ceze et al. [2] propose hashing the
read and write addresses of speculative accesses into a rep-
resentative signature. They demonstrate that a signature-
based approach can reduce the traffic resulting from conflict
detection, but at the cost of an increase in false conflicts due
to the conservative nature of signatures. In future work we
will be obligated to demonstrate that any variable granular-
ity approach out-performs a signature-based approach.

3. EXPERIMENTAL FRAMEWORK
For this study we use the benchmark and simulation in-

frastructure developed by Steffan et al. [23] for TLS. Sev-
eral SpecINT benchmarks are profiled for execution time
and dependences, then selected loops are transformed for
speculative execution. The compiler outputs C source code
which is then compiled with gcc v2.95.2 using the “-O3”
flag to produce optimized, fully-functional MIPS binaries.
A full description of the compilation process can be found
in a previous publication [23]. We use a simple in-order
single-CPI multiprocessor simulator to analyze the memory
access patterns of the benchmark applications. To main-
tain reasonable simulation time, we truncate the execution
of all appropriate benchmarks by fast-forwarding the initial-
ization portion of execution and simulating up to the first
billion instructions.

It is important to understand that we are measuring re-
gions of code that were selected for speculative execution
based on profile information that assumed a 32-byte granu-
larity for tracking reads and word-level granularity (4-bytes)
for tracking writes. Also, we limit this study to only mea-
suring “true” (i.e., Read-After-Write) dependences between
speculative threads.

4. THE PROBLEM WITH A UNIFORM
COARSE GRAIN APPROACH

To illustrate the problems of tracking accesses at a fixed,
uniform, coarse granularity, Figure 1 shows the increase in
false conflicts detected relative to a word-level tracking gran-
ularity (4-bytes) when tracking at typical cache-line granu-
larities of 32, 64, and 128 bytes. For all applications except
for ijpeg the amount of false conflicts increases significantly
with grain-size, with parser suffering the most. Further-
more, recall that the regions of code that were selected for
speculative parallelization were done so with a tracking gran-
ularity of 32-byte cache line size in mind—hence these results
are conservative since these levels of false conflicts could be
tolerated while still improving performance. These results
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Figure 1: Increase in false conflicts detected relative
to word-level tracking granularity (4-bytes) when
tracking at typical cache-line granularities of 32, 64,
and 128 bytes.

indicate that cache-line granularity access tracking is non-
ideal for most applications, and that word-level tracking is
desired in at least part of nearly every application.

5. VARIANCE IN IDEAL GRANULARITY
To measure the potential for varying access tracking gran-

ularity, we compute the ideal granularity—meaning the coars-
est granularity which does not incur any false violations. We
begin by measuring the ideal granularity across all speculatively-
parallelized code regions in our benchmarks, as shown in
Figure 2. Access tracking granularities vary from word-level
(4 bytes, or 2 on the y-axis) to page level (4k bytes, or 12
on the y-axis). Each bar represents a code region; to save
space, the code regions for which the coarsest granularity
(212 bytes, page-level) is ideal are not shown but are instead
counted by the numbers in parentheses beside each bench-
mark. To clarify, a bar with height 4 represents a speculative
code region for which the ideal granularity is 24 bytes, mean-
ing that there is at least one range in memory for that region
for which a tracking granularity of 25 bytes would result in a
false conflict. Hence for this experiment we are picking only
one common ideal granularity per code region.

It is apparent from the figure that no application prefers a
single granularity. Most applications have at least one code
region that requires the finest granularity access tracking
(22, 4 bytes) to avoid false conflicts; in particular, go has a
large number of code regions requiring the finest granularity.
Tracking accesses at typical cache-line sizes (25, 26, 27 bytes,
i.e., 32, 64, or 128 bytes) is sufficient for some code regions,
but many require finer-granularity. There are a significant
number of code regions that require only page-granularity
access tracking, i.e., the region counts shown in parentheses;
in particular, parser and twolf each have a large number
of such code regions. This observed high variance in ideal
granularity across applications and speculatively parallelized
code regions clearly motivates an approach that at least al-
lows the access tracking granularity to vary per code region.

Given that ideal granularity varies widely per code region,
we are motivated to further investigate how ideal granularity
varies across accessed ranges of memory. Figure 3 shows the
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Figure 2: Ideal granularity for all speculatively-
parallelized code regions—each bar represents a
code region, and the numbers in parentheses count
the code regions for which the coarsest granularity
(212 bytes, page-level) is ideal.

distribution of ideal granularities across accessed ranges of
memory, across all code regions for each benchmark—hence
each segment labeled “grain X”represents an access-tracking
granularity of 2X bytes. To clarify, we have determined the
coarsest access tracking granularity for all accessed ranges
of memory such that (i) no false conflicts are incurred and
(ii) no two tracking elements overlap.

Again we find that ideal granularity varies widely. The
fraction of memory ranges that require finest grain access
tracking (4 bytes) is surprisingly small: less than 10% for all
benchmarks except for crafty which is 23%. The fraction
of memory ranges that can tolerate the coarsest grain access
tracking (212 bytes, page-level) significant: more than 70%
of tracking elements for crafty and ijpeg, and more than
20% for mcf, perlbmk, and twolf. Typical cache-line size
granularities (25, 26, 27 bytes, i.e., 32, 64, or 128 bytes)
are the ideal granularity for significant fractions of tracking
elements for some applications such as li and mcf, but are
an insignificant fraction of others such as crafty and ijpeg.
The distribution of ideal granularities varies widely across
benchmarks (and also across code regions according to data
we do not show here), motivating an approach that can vary
the granularity of access tracking across memory.

6. THE POTENTIAL FOR REDUCING
OVERHEAD

Access tracking at a variable granularity for speculative
optimization systems can potentially reduce overheads with-
out increasing false conflicts. In particular, using a variable-
granularity approach can reduce the number of tracking ele-
ments used, which in turn can reduce tracking storage, and
the traffic and latency between speculative threads or trans-
actions resulting from conflict detection.

To provide a preliminary measure of this potential ben-
efit, in Figure 4 we provide an estimate of how a variable-
granularity access tracking approach can dramatically re-
duce the number of tracking elements required. In partic-
ular we plot the reduction in number of tracking elements
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Figure 3: Distribution of ideal granularities across all memory ranges across all speculative code regions for
each benchmark. “grain X” means an access-tracking granularity of 2X bytes.
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Figure 4: Reduction in number of tracking elements
when tracking granularity can vary across accessed
ranges of memory (at the ideal granularity), rela-
tive to the number of tracking elements for uniform,
fixed granularities of 4, 32, 64, and 128 bytes.

when tracking granularity can vary across accessed ranges
of memory (at the ideal granularity), relative to the number
of tracking elements for uniform, fixed granularities of 4, 32,
64, and 128 bytes (the finest granularity as well as typical
cache-line sizes).

Relative to the finest-granularity case (4 bytes), the re-
duction factor is at least an order of magnitude for every
benchmark; For ijpeg, mcf, and perlbmk the reduction
factor is even more dramatic at 458, 51, and 51 times fewer
tracking elements respectively (these bars are cropped in the
figure). Compared to a 32-byte tracking granularity the re-

duction factor is still more than 3x for every benchmark. For
coarser granularities the reduction factor is still significant,
but tracking at these granularities will result in undesirable
increases in false conflicts as shown previously in Figure 1.
These results are very encouraging, and motivate us to fur-
ther research implementations of variable-granularity access
tracking for speculative optimization systems.

7. IMPLEMENTATION ISSUES
The results in the previous section motivate a variable

granularity approach to dependence tracking for speculative
parallelism systems. Such an approach could apply to TM
or TLS systems, and either hardware or software implemen-
tations. We are currently developing variable-granularity
implementations of both a hardware-based TLS system and
an STM system. For the hardware-based TLS system, a
variable-granularity approach promises to reduce conflict-
detection traffic, the latency of conflict detection (a key
serialization in TLS), and possibly power consumption as
well. For the STM system, which is lock-based, a variable-
granularity approach promises to greatly reduce the number
of locks required saving both space and lock lookup time,
while at the same time reducing unnecessary lock-contention
for locks that are overly coarse-grain. In both cases, the
variable-granularity approach allows the speculative paral-
lelization system to match the access patterns of the appli-
cation.

In our future work we plan to address the following re-
search questions. Should granularity be determined by mem-
ory location or by the code location of the access (i.e., load or
store PC)? Can granularity be decided on-the-fly through a
dynamic, adaptive system based on iterative sampling? Can
a compiler can help by identifying fine or coarse grain ac-
cesses? What is the best way to incorporate profile informa-



tion while limiting its intensity? We will address these ques-
tions in our implementations of variable-granularity TLS
and STM systems.

8. CONCLUSIONS
In this paper we demonstrated that optimistic paralleliza-

tion systems that support only a coarse and fixed granularity
can suffer a significant number of false conflicts. In contrast,
we also showed that systems that support a more variable
access tracking granularity can potentially reduce or elimi-
nate false conflicts while at the same time reducing tracking
overheads. Different optimistically-parallelized code-regions
within an application are amenable to different access track-
ing granularities ranging from 4 bytes to page-size. The ideal
granularity similarly varies widely across ranges of accessed
memory. We have shown that using variable granularity
for access tracking for optimistic parallelism has significant
potential for reducing overhead: in particular, that for ev-
ery benchmark a variable-granularity approach can reduce
the number of tracking elements by an order of magnitude
over tracking at a fixed granularity. We believe that these
results strongly motivate variable-granularity approaches to
access tracking for optimistic parallelization systems, and
we are currently developing variable-granularity implemen-
tations of both a hardware-based TLS system and an STM
system.
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