
A Dynamic Instrumentation Approach to Software
Transactional Memory

by

Marek Olszewski

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2007 by Marek Olszewski

Abstract

A Dynamic Instrumentation Approach to Software Transactional Memory

Marek Olszewski

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2007

With the advent of chip-multiprocessors, we are faced with the challenge of paral-

lelizing performance-critical software. Transactional memory has been proposed as a

promising programming model, with software transactional memory (STM) being espe-

cially compelling for today’s use. However, in addition to high overheads, existing STMs

are limited to either managed languages or intrusive APIs. Furthermore, transactions

in STMs cannot normally contain calls to unobservable code such as shared libraries or

system calls.

In this dissertation we present JudoSTM, a novel dynamic binary-rewriting approach

to implementing STM that supports C and C++ code. By using value-based conflict

detection, JudoSTM additionally supports the transactional execution of both (i) irre-

versible system calls and (ii) code that contains locks. We lower overhead through several

novel optimizations that improve invisible-reader and validate/commit performance. We

show that our approach performs comparably to RSTM—demonstrating that a dynamic

binary-rewriting approach to implementing STM is an interesting alternative.

ii

Acknowledgements

I am deeply grateful to everyone that made this dissertation possible. I am

especially thankful to Professor J. Gregory Steffan for offering to take me

on mid-year, and for patiently providing guidance, feedback, and engaging

conversations. I would also like to thank my family for their continued sup-

port and inspiration. Additionally, I must thank Natalia Borecka and my

close friends who have been an invaluable source of encouragement. Lastly,

I would like to acknowledge The Edward S. Rogers Sr. Department of Elec-

trical & Computer Engineering for its financial support.

iii

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Software Transactional Memory Through Dynamic Binary Rewriting . . 4

1.2 Research Goals . 5

1.3 Organization . 6

2 Background and Related Work 7

2.1 Parallel Programming . 7

2.2 Transactional Memory . 11

2.3 The STM Design Space . 14

2.4 Closely Related Work . 19

2.5 Dynamic Binary Rewriting . 23

2.6 Summary . 27

3 The Judo Dynamic Binary Rewriting System 28

3.1 Design . 28

3.1.1 System Overview . 29

iv

3.1.2 The Dispatcher . 30

3.1.3 The JIT Compiler . 30

3.1.4 Register and Eflags Liveness Analysis 35

3.1.5 Instrumentation Inlining . 35

3.1.6 Memory Allocator . 37

3.1.7 Multi-threaded Considerations . 37

3.2 Evaluation of Judo . 37

3.2.1 Experimental Framework and Benchmarks 37

3.2.2 Performance . 38

3.3 Summary . 39

4 The Judo Software Transactional Memory System 40

4.1 Overview of Desirable Features . 40

4.2 Design Decisions . 42

4.3 Implementation . 44

4.3.1 System Overview . 44

4.3.2 Defining a Transaction . 46

4.3.3 Read and Write-buffering . 47

4.3.4 Sandboxing . 51

4.3.5 Commit . 51

4.3.6 Supporting System Calls . 54

4.3.7 Efficient Validation and Commit 54

4.3.8 Transactional Memory Management 57

4.4 Summary . 57

5 Evaluation 59

5.1 STM Feature Comparison . 59

v

5.2 Experimental Framework . 60

5.3 Performance . 62

5.4 Examining Execution . 65

5.5 Summary . 67

6 Conclusions and Future Work 68

6.1 Contributions . 69

6.2 Future Work . 69

6.2.1 Support for Strong Atomicity . 69

6.2.2 Application to Hybrid Transactional Memory Systems 70

Bibliography 72

vi

List of Tables

5.1 Comparison of RSTM and JudoSTM features. 60

5.2 Benchmark performance comparisons. 64

vii

List of Figures

2.1 Atomicity violations on an STM system. 18

2.2 Potentially unsafe privatization of node in linked list. 18

2.3 A brief look at the JIT process. 25

3.1 Judo’s software architecture. 29

3.2 Predicated indirect branch chaining in Judo. 33

3.3 Dynamic binary rewriting performance comparison. 38

4.1 JudoSTM software architecture. 46

4.2 Definition of JudoSTM’s atomic macro used to specify transactions. . . . 47

4.3 Read-buffering motivational example. 48

4.4 Example of read/write-buffer lookup instrumentation. 49

4.5 Potential for incorrect transaction commit. 52

4.6 Example of emitted transaction-instance-specific read-set validation code. 55

4.7 Example of emitted transaction-instance-specific commit code. 56

5.1 Benchmark performance comparisons. 63

5.2 Execution breakdown on 4 processors. 66

viii

Chapter 1

Introduction

The continued proliferation of chip-multiprocessor (CMP) computer architectures will

make multiprocessor workstations ubiquitous. Like traditional multiprocessors, CMPs

can improve program performance if applications are parallelized appropriately. There-

fore, in the interest of remaining competitive, software companies are left with the daunt-

ing task of parallelizing many of their general purpose applications. In the hope of helping

to expedite this transition, researchers are rapidly searching for ways to make it easier

to write parallel programs that can leverage the new hardware. Using today’s parallel

programming models, software developers writing parallel applications rely on lock-based

synchronization to protect accesses to shared data. Unfortunately, parallel programming

with locks requires considerable expertise. To obtain scalable performance, programmers

must employ fine-grained locking strategies, which are both tedious and difficult to im-

plement correctly. In addition to the usual race conditions common in lock-based code,

fine-grained locking is highly susceptible to deadlock and priority inversion. Finally, since

lock-based code is not composable, programmers must often access locks across compo-

nent boundaries, breaking software abstractions and leaving sound software engineering

practices behind.

1

Chapter 1. Introduction 2

Transactional memory (TM) has emerged as a promising solution to the parallel

programming problem by simplifying synchronization to shared data structures in a

way that is scalable and composable, while still safe and easy to use. When program-

ming an application with TM, a programmer encloses any code that accesses shared

data in a coarse-grain transaction that executes atomically; the underlying TM sys-

tem executes transactions optimistically in parallel while remaining deadlock-free. Op-

timistic concurrency is supported through mechanisms for isolation, conflict detection,

and commit/abort, which comprise the foundation of TM systems. These mechanisms

have been the subject of continued research in hardware [2, 6, 17, 30, 31, 36], soft-

ware [11, 12, 15, 20, 27, 28, 37, 41], and hybrid [9, 24, 39] approaches. While hardware

transactional memory systems (HTMs) will most likely prevail, software-only systems

(STMs) are especially compelling today, since they can be used with current commodity

hardware and provide an early opportunity to gain experience using real TM systems and

programming models. Furthermore, STMs comprise a key component of many hybrid

TMs (HyTMs), which leverage HTM hardware if available, but fall back on the STM

should a need arise. Such HyTMs are appealing because they allow future HTMs to be

integrated incrementally, reducing risk and development costs.

STMs have several challenges remaining, the most significant being the large over-

heads associated with a software-only approach; however, the following additional chal-

lenges have so far received little attention.

Support for Unmanaged/Arbitrary Code: Many STM designs [16, 20, 27] target

managed programming languages such as Java and C# to reduce overheads by leverag-

ing the availability of objects, type safety, garbage collection, and exceptions. However,

these systems do nothing to support TM for the majority of software developers who

work in unmanaged languages such as C and C++. Fortunately there has been a growing

Chapter 1. Introduction 3

interest in supporting these languages: both OSTM [15] and RSTM [28] provide a library

that developers can use to hand-port object oriented C or C++ source code for transac-

tional execution. However, only recently has a fully-automatic solution, which targets

arbitrary (i.e., non-object oriented) C and C++, been proposed [41]. Unfortunately, the

design requires programmers to hand-annotate all functions that might be called within

a transaction, precluding support for calls to pre-compiled code.

Support for Library and System Calls: For TM to achieve wide adoption, software

developers must be able to use modular software components, including the crucial ability

to use pre-compiled and legacy libraries—without such support, programmers must re-

implement STM-friendly versions of any required library code at great development and

verification cost. The development of STM-capable libraries will be slowed by the lack

of STM standards in programming model, API, and hardware interface (if applicable).

Furthermore, in the likely event that the library code contains system calls, current

research proposes the use of open-nesting transactions, which requires that libraries be

hand-modified to follow the complicated (non-serializable) semantics that open-nesting

designs dictate [29].

Support for Legacy Locks: Current STM systems have yet to make an effort in

supporting transactions that contain code operating on legacy locks. Such transactions

can easily arise when porting legacy code that calls existing thread-safe code, e.g.: the

libc malloc(). If an STM ignores legacy locks it will incur false conflicts every time two

concurrent transactions acquire or release a lock. Allowing such false conflicts to occur

effectively serializes the transactions at the lock boundaries irrespective of whether true

contention is actually present. If the legacy locking strategy employed is coarse-grained,

aborting transactions on such conflicts will lead to detrimental performance.

Chapter 1. Introduction 4

1.1 Software Transactional Memory Through Dynamic

Binary Rewriting

In an effort to address these challenges, this dissertation proposes the use of dynamic

binary rewriting (DBR) to instrument applications with software checkpointing, rollback

and conflict detection mechanisms, which are needed to enable transactional execution.

With DBR, the STM instrumentation is added to a compiled binary application on-the-

fly at run-time—hence DBR intrinsically supports arbitrary unmanaged code as well as

static and dynamic shared libraries. Concurrent with our work, preliminary research

by Ying et al. has demonstrated that DBR can be used to augment a compiler-based

STM to support legacy library code [42]. With a DBR-based STM, programmers can

immediately enjoy the software engineering benefits of transactional memory even when

programming with existing legacy component binaries.

Unfortunately, DBR can introduce additional overheads. As with any dynamic instru-

mentation, there is a cost to rewriting the application during its execution. Furthermore,

the rewritten code often becomes inferior in quality, even when not instrumented, re-

sulting in overhead that cannot be amortized. On the other hand, DBR has desirable

properties that can benefit the performance of an STM system. Since the DBR system

must maintain control over the target application at all times, DBR provides a level of

sandboxing that allows an STM to optimistically schedule transactions in parallel, with-

out requiring each transaction to incrementally verify that it is working on valid data

after each load from memory. Currently, incremental validation is necessary to ensure

that the application does not accidentally perform an illegal operation such as a segfault,

or an arithmetic error.

To support system calls and legacy locks, we propose detecting conflicts by com-

paring the values of memory locations accessed by each transaction, ensuring that they

Chapter 1. Introduction 5

have not been modified after they were originally read within that transaction. We call

this approach value-based conflict detection [13, 18, 35]. Since value-based conflict de-

tection allows each transaction to independently verify its read-set without posing any

requirements on concurrent transactions, it can be used to detect conflicts caused by

other threads, even if they are executing system calls, which cannot be directly observed

through dynamic instrumentation. Additionally, we show that value-based conflict de-

tection can efficiently ignore existing lock acquisitions in legacy software, allowing it to

optimistically execute lock-protected code across multiple concurrent transactions.

1.2 Research Goals

The focus of this dissertation is to develop an STM system that uses dynamic binary

rewriting and value-based conflict detection to support transactions that contain arbi-

trary C or C++ code, calls to pre-compiled libraries, system calls, and legacy locks. To

this end, we have the following goals:

1. To develop a dynamic binary rewriting system efficient enough to support STM;

2. To demonstrate that DBR can feasibly implement an automatic STM system, and

perform comparably to existing STM systems;

3. To leverage value-based conflict detection to address the shortcomings of previous

STMs; and

4. To identify and optimize the key bottlenecks in performance.

To satisfy the first of these goals, we have developed the Judo dynamic instrumenta-

tion framework—a highly optimized dynamic binary rewriting system capable of outper-

forming existing dynamic instrumentation tools. Judo emits code at a trace granularity

Chapter 1. Introduction 6

to minimize the introduction of superfluous instructions which degrade the quality of the

instrumented code. Additionally, Judo introduces a novel optimization to dramatically

reduce the cost of translating addresses targeted by indirect control instructions, such

as indirect jumps or returns. To address the second goal, we built on Judo to develop

JudoSTM, a prototype STM system that dynamically rewrites transactions to contain

the necessary instrumentation needed for transactional execution. Despite the overheads

of performing dynamic binary rewriting, we show that JudoSTM is competitive to cur-

rent STMs by comparing it to the Rochester Software Transactional Memory (RSTM)

system. With the third goal in mind, we developed JudoSTM to use value-based conflict

detection. As a result, JudoSTM is the first STM that can efficiently support transac-

tions containing system calls and/or legacy locks. Finally, we thoroughly profiled and

optimized JudoSTM to reduce performance bottlenecks, as reported in this dissertation.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a background

in parallel programming, transactional memory and dynamic binary rewriting, and dis-

cusses the relevant related work. Chapter 3 describes the design of the Judo dynamic

binary rewriting framework and evaluates its performance. Chapter 4 provides a detailed

description of the design and implementation of the JudoSTM system. Chapter 5 com-

pares the performance of JudoSTM to RSTM, and takes a closer look at JudoSTM’s

execution breakdown. Finally, Chapter 6 concludes by summarizing the dissertation,

listing its contributions, and describing potential extensions for the future.

Chapter 2

Background and Related Work

In this chapter, we present the background material and related work in the areas of

parallel programming, transactional memory and dynamic binary rewriting. The chapter

is organized as follows: Section 2.1 discusses the main challenges of parallel programming

with locks. We focus exclusively on programming of shared memory parallel architectures

since this is the communication paradigm chosen for chip-multiprocessors; Section 2.2

introduces transactional memory and explains how it reduces many parallel programming

challenges; Section 2.3 describes the design decisions and trade-offs made by designers of

software transactional memory systems; Section 2.4 summarizes research which is related

to our work; and finally, Section 2.5 introduces the reader to instrumentation through

dynamic binary rewriting.

2.1 Parallel Programming

With the advent of the chip-multiprocessor era, software engineers are left with little

choice but to start developing parallel applications that can run efficiently on today’s

parallel processors. While parallel computing has long been regarded as a feasible way

of extracting additional performance beyond what a single microprocessor can provide,

7

Chapter 2. Background and Related Work 8

little progress has been made at making it easier to develop software that can effectively

utilize the additional processor cores present in parallel machines. As such, program-

ming parallel applications with today’s programming models is both tedious and error

prone. The programmer starts by correctly identifying parallelism within an algorithm,

and creates code that leverages it by distributing independent work across the parallel

machine, usually, using one thread per processor. For work that must be performed se-

quentially (e.g.: an update to a shared resource such as a queue), the programmer must

use synchronization constructs to coordinate between threads to ensure that the work

is never performed concurrently. Typically, programmers use mutual exclusion locks, or

mutexes, to create critical sections of code, which may be entered by only one thread at

a time. To ensure that the programmer’s shared data structures are always protected

from concurrent accesses, he must associate all data accessed within the critical section

with the lock used to specify the critical section, and must preserve this association when

constructing other critical sections. Since critical sections may only be entered by one

thread at a time, they can be used to guarantee linearizability[22]: all changes made to

memory from within a critical section will appear to occur instantly, or atomically, to

other threads so long as their accesses are also contained within critical sections pro-

tected by the same lock. If however, a sequence of code accessing shared memory is

mistakenly left unprotected, it may incorrectly observe an intermediate state resulting

in a race condition that often causes a bug. Such bugs can be hard to fix because their

nondeterministic nature makes them difficult to reproduce.

Critical sections can be protected by either a single or multiple locks, and more than

one critical section can reference the same lock. The number and size of the critical

sections referencing a single lock determines the coarseness of the locking strategy em-

ployed. Coarser strategies are generally easier to program but suffer from poor scalability

since more code is executed sequentially. Better performance can be obtained using a

Chapter 2. Background and Related Work 9

fine grained strategy. Fine grained locking improves performance without sacrificing lin-

earizability by carefully allowing non-conflicting operations on shared data structures to

execute in parallel. Unfortunately, fine-grained locking is notoriously difficult to get right

and can be onerous to debug. Furthermore, fine-grained locking introduces additional

synchronization overhead which may offset some, if not all, of the performance benefits

gained from any increased level of concurrency. Choosing the appropriate locking strategy

for any given problem is both difficult and time consuming, and is further complicated by

the following additional problems and challenges of the lock-based programming model.

Deadlock: Deadlock occurs when two or more threads each hold locks that are required

by other threads to proceed, causing a circular dependence which cannot be satisfied.

Since each thread waits until another releases its lock, no threads can make progress

and the application hangs. Deadlock can easily arise when using fine-grained locking if

a strict order of lock acquisitions is not enforced. If such an ordering cannot be ensured

deadlock detection and resolution schemes can act as a backup measure; however, such

schemes are difficult to implement and susceptible to livelock—where threads repeatedly

interfere with each other preventing progress.

Convoying: Convoying occurs when a thread is de-scheduled while holding a lock.

While sleeping, other threads execute until they need the lock, eventually causing many

threads to wait on the same lock. When the lock is released, the waiting threads will all

contend for the lock causing excessive context-switching and/or cache-coherence traffic.

Unlike under deadlock, the application will continue to make progress, though at a slower

pace.

Priority Inversion: Priority inversion is a scenario where a lower priority thread holds

a lock required by a higher priority thread. Since the higher priority thread cannot

continue to execute until the lower priority thread releases the lock, it is effectively

Chapter 2. Background and Related Work 10

demoted to the priority level of the second thread temporarily. If an additional thread

of medium priority is present, it can delay the low priority thread and therefore the

high priority thread as well, thus inverting the medium and high priorities. Priority

inversion poses a problem for realtime systems since the higher priority thread may be

prevented from meeting its response time guarantees. For general purpose computing,

high priority threads are often used in user interaction tasks. While not critical for

program correctness, a reduction in priority can impact the perceived performance of an

application.

Composability: Lock-based code is not composable. In other words, it is often im-

possible to combine lock-protected atomic operations into larger operations that remain

atomic. This can be easily appreciated by considering the following example originally

presented by Harris et al. [19]. Suppose we have a hash table with thread-safe insert and

delete operations, and assume that given two instances of the hash table, we would like

to atomically transfer an element from one to another. Unless the hash table provides

a means to manually lock and unlock each of the tables, there is no way to ensure that

both tables are protected for the duration of both operations. Protecting both tables is

required to prevent other threads from observing the intermediate state, which, in this

case, occurs when neither table contains the element being moved. While exposing the

hash table’s locks can help solve the problem, it is undesirable because it breaks the hash

table’s abstraction, and opens the door to deadlock and race condition bugs.

Fault Tolerance: Finally, lock based code is vulnerable to failures and faults. If a

single thread fails while holding a lock, all other threads will eventually fail to make

progress once they require the lock. As the number of processors available in parallel

machines continues to grow, failures become increasingly likely.

Due to these problems, lock-based parallel programming does not appear to be a

Chapter 2. Background and Related Work 11

viable paradigm suitable for the average programmer. If chip-multiprocessors are to

succeed, we have to make them easier to program efficiently.

2.2 Transactional Memory

Transactional memory (TM) has been proposed as a promising alternative to lock-based

programming. Under the transactional memory model, programmers enclose multiple

statements accessing shared memory into transactions. As with lock-based critical sec-

tions, changes made within the transactions appear to occur instantly to other trans-

actions; however, unlike lock-based code, atomicity is not guaranteed through mutual

exclusion, but rather through optimistic concurrent execution that can be rolled back

in the event of concurrent non-linearizable operations. Therefore, transactional memory

synchronizes concurrent operations only when they conflict, as opposed to when they

may conflict.

To support optimistic execution, transactional memory systems implement the fol-

lowing mechanisms: isolation, conflict detection, and commit/abort. Isolation allows

transactions to execute concurrently without interfering with one another. The conflict

detection mechanism monitors all concurrent transactions to determine whether the com-

bined modifications are linearizable. If not, a conflict is said to occur and the conflicting

transaction is aborted and must be re-executed. Aborting requires that all changes made

by a transaction are undone. Finally, when a transaction finishes executing and ensures

that it is not in conflict with any other, it atomically commits to make its modifications

visible to all other threads.

Programming with transactions provides several benefits over lock-based code. The

programmer does not have to associate data with different locks: the transactional mem-

ory system will ensure that all shared data accessed within any transaction is protected

Chapter 2. Background and Related Work 12

correctly. Perhaps most importantly, transactional memory’s optimistic concurrency

model can efficiently execute coarse-grained transactions without loss of scalability. Thus,

programmers using transactional memory need not worry about choosing an optimal lock-

ing granularity for their application, but are instead free to create transactions that best

match their application’s software architecture and abstraction barriers. Additionally,

transactions can abort and re-execute at any moment, thus deadlock prevention is easily

supported. Furthermore, because each transaction can execute without waiting for an-

other to complete, convoying is avoided. Likewise, priority inversion is avoided since a

lower priority thread cannot block a higher priority thread; additionally, if a lower priority

thread causes a higher priority thread to abort, the higher priority thread can re-execute

quickly without further delays. Transactional memory can support transaction nesting

allowing programmers to compose multiple transactions by wrapping them into a new

outer transaction. Thus, programmers are able to control atomicity in a modular manner

that respects abstraction barriers. Finally, transactions provide a much higher degree of

fault tolerance as compared to lock-based code, since transactions can roll back in the

event of an error.

While many agree on the benefits of transactional memory, the underlying mecha-

nisms used to implement TM systems continue to be the subject of research and devel-

opment. Many proposed systems exist, ranging from full hardware approaches [6, 17, 30]

to full software solutions [12, 15, 20, 27, 28, 37, 41]. In between these two are systems

implemented in both hardware and software, which are known as hybrid TMs [9, 24, 39].

Hardware TMs offer exceptional performance but often lack generality. Bounded

HTMs enforce strict limits on transaction working set sizes, guaranteeing that only trans-

actions with working sets under a certain size will be able to commit. The original HTM

proposal followed this approach, using a fixed-size associative memory to temporarily

store a transaction’s memory writes [21]. Best-effort HTMs, on the other hand, isolate

Chapter 2. Background and Related Work 13

writes by leveraging available memory already present in L1 or L2 caches. Such HTMs are

easy to implement by making simple modifications to cache-coherence protocols; however,

since data caches are never fully-associative, best-effort HTMs can offer no guarantees as

to whether a transaction will be able to fully execute. More recently, HTMs supporting

unbounded transactions have been proposed; however, such systems are significantly more

complex. The cost of this additional complexity is difficult to justify, given the general

lack of experience in using transactional memory within a large body of software.

Software transactional memory systems implement TM mechanisms in software with-

out imposing any hardware requirements. Since all mechanisms are implemented entirely

in software, STMs can offer good flexibility and generality. STMs are free to adapt to

different workloads, using whichever software implementation best matches the target

application’s execution patterns and levels of contention. Additionally, support for un-

bounded transactions comes naturally with STMs, since software is not limited by the size

of data caches or other on-chip resources. Unfortunately, since STMs implement all com-

munication and low-level TM mechanisms in software, they incur significant overheads

which cannot be eliminated. Despite this disadvantage, they remain of great interest

to researchers as they offer an excellent platform to experiment with TM programming

models on today’s hardware. Furthermore, STMs are used extensively in hybrid transac-

tional memory systems [10, 24]. When combined with best-effort HTMs they can be used

to provide support for unbounded transactions without the need for additional complex

hardware. On such systems, small transactions benefit from the low overhead of HTMs,

while less common larger transactions fall back onto the slower but unbounded STM. This

model of execution is especially appealing since it allows new hardware to be introduced

incrementally, with lower development and testing costs and reduced risk. As a result,

STMs can provide a crucial foundation upon which future more-efficient HTMs can build

on. For these reasons, we have chosen to focus on STM systems in this dissertation.

Chapter 2. Background and Related Work 14

2.3 The STM Design Space

In this section we describe several STM design decisions and trade-offs that have been

explored in the literature.

Transaction Granularity: Software transactional memory systems can detect con-

flicts at various granularities. Detecting conflicts at a word-level granularity offers the

highest accuracy, but incurs excessive communication and bookkeeping costs. By in-

creasing the granularity of the conflict detection strategy, these overheads can be re-

duced, though at the risk of incurring false conflicts. Introducing false conflicts can

be undesirable because they degrade performance by making transactions abort when

no real conflict occurred. One method of increasing the conflict detection granularity,

is to divide memory addresses into a finite set of strips. In this approach, a carefully

constructed hash function maps memory locations to separate strips which have their

accesses monitored to track whether transactions conflict. Alternatively, for STMs that

target object oriented applications, the granularity can be increased by tracking con-

flicts at the object-level. Under this approach, false conflicts occur when two transactions

concurrently modify different member fields within the same object.

Concurrency Control: To make a persistent change to memory, transactions must

first acquire the object, strip, or word location associated with the memory they need to

modify. An STM has the choice of letting transactions acquire these locations at the time

of a first write, or at commit-time. The former is known as eager acquire, while the latter

is referred to as lazy acquire [27]. Since acquisitions announce a transaction’s intention

to modify memory, they are used for conflict detection. Therefore, eager acquire allows

transactions to detect contention sooner; however, since eager acquire eagerly detects

conflicts between all transactions irrespective of whether they will complete, it detects

Chapter 2. Background and Related Work 15

conflicts that may not materialize: for example, if a transaction causing a conflict fails

to commit for some other reason.

Reader Visibility: In addition to communicating writes through location acquisitions,

transactions can opt to communicate their reads to others as well. With this approach,

referred to as visible-readers, transactions can quickly determine whether a store will

cause a conflict between themselves and another concurrent transaction. By rolling back

on such stores, STMs guarantee that no transaction will operate on inconsistent data.

Such a guarantee is necessary for software transactional memory systems, as it prevents

threads from mistakingly performing illegal operations such as a segfault or divide-by-

zero error, or worse yet, jumping to code that cannot be undone because it was not

compiled for transactional execution. With invisible-readers reads are not reported to

others and are instead stored locally to verify against location acquisitions. Perform-

ing reads invisibly drastically reduces communication overheads, but allows transactions

to operate on inconsistent data. Consequently, STMs employing invisible-readers incre-

mentally validate their transactions after each load. Validation is performed by either

expensive full read-set verification [27, 28], or by looking up a centralized global commit

counter to ensure that all data being read was updated before the transaction began

executing [11, 41].

Undo-logging and Write-buffering: To implement rollback support, STMs have the

option of one of two logging mechanisms: write-buffering or undo-logging. Under write-

buffering, each transaction caches its stores into a software write-buffer. Upon commit,

the data within the buffer is copied to its required locations throughout memory. If

the transaction aborts, rolling back is as easy as clearing the buffer and restoring the

architectural state of the processor. With undo-logging, transactions directly modify

shared memory, and keep a log saving the contents of the overwritten memory so that

Chapter 2. Background and Related Work 16

it can be restored in the event of an abort. Since each transaction executes in place,

committing is cheap: the undo-log is simply discarded; however, the cost of rolling back

increases since all writes have to be undone. Write-buffering incurs slightly more runtime

overhead than undo-logging since all loads must lookup the write-buffer to ensure that

they never read stale data. This check is typically performed by a hash table lookup or

bloom filter, which when performed repeatedly can significantly degrade performance.

Write-buffering is sufficient to completely isolate transactions from one another, allowing

multiple transactions that write to the same location to execute with higher concurrency.

When combined with lazy acquire, write-buffering allows certain combinations of con-

flicting transactions to execute concurrently and commit successfully, so long as their

commits are sequential with an order that satisfies the dependencies violated by the con-

flicts. Undo-logging, on the other hand, must always be combined with eager acquire to

ensure that transactions do not interfere with one another while executing. The general

rule of thumb is that undo-logging performs better when few conflicts are expected, while

write-buffering is more desirable for high contention workloads.

Synchronization: An important trade-off made by today’s STM designers is the live-

ness vs. performance trade-off. For an STM to offer all of transactional memory’s robust-

ness benefits, it must be implemented with non-blocking synchronization. Two variants

of non-blocking STMs have been proposed: lock-free and obstruction-free [15, 20]. With

lock-freedom, the STM system guarantees that one thread can always make progress in

a finite amount of time, even in the case of contending concurrent operations or thread

failure. Lock-freedom is implemented by allowing threads to help others commit their

results. Obstruction-freedom is weaker than lock-freedom. It guarantees progress in the

presence of thread failures, provided that no contention exists. Under this approach,

transactions are able to abort other transactions preventing deadlock, but risking live-

Chapter 2. Background and Related Work 17

lock. While the benefits of non-blocking STMs are extremely desirable, their overheads

limit their application. Blocking STMs offer superior performance but risk deadlock in

the presence of thread failure and are susceptible to convoying and priority inversion.

Blocking transactions were originally championed by Ennals [14] who argued that con-

voying and priority inversion will be rare for multi-threaded applications executing on

chip-multiprocessor hardware, since each thread executes privately on a processor with

minimal context switching. Therefore, if a programmer is willing to exchange some de-

gree of fault-tolerance for substantially better performance, blocking can be desirable.

Such a trade-off can be acceptable for now to allow programmers to gain experience with

transactional memory.

Atomicity: Whether or not a transaction appears to complete atomically to non-

transactional code determines the level of atomicity employed by an STM system. Strongly

atomic systems guarantee atomicity between transactional and non-transactional code,

while systems that provide atomicity between transactions only are said to offer weak

atomicity [5, 38]. To date, most STMs implement weak atomicity due to the large cost

of supporting the stronger consistency model, which can be considered equivalent to a

weakly atomic system with all non-transaction instructions placed in their own single-

instruction transactions.

Under weakly atomic systems, simple single instruction accesses to shared data from

outside of a transaction can lead to unexpected, implementation dependent behaviour.

Figure 2.1 (adapted from [38]) presents a number of such accesses. In Figure 2.1(a),

Thread 1 will be unable to detect the write performed by Thread 2 and will fail to abort

and re-execute, thus, potentially allowing Thread 1 to observe two different values for x.

In Figure 2.1(b), Thread 1 will once again fail to detect the conflict created by Thread 2

allowing x to be assigned the value of 1. This result cannot occur if both snippets of code

Chapter 2. Background and Related Work 18

Assume that initially x==0

// Thread 1 // Thread 2
atomic { ...
t1=x; ...
... x=100;
t2=x; ...

} ...

t1 might not equal t2

(a) Non-repeatable reads

// Thread 1 // Thread 2
atomic { ...
t=x; ...
... x=100;
x=t+1; ...

} ...

x might equal 1

(b) Lost updates

// Thread 1 // Thread 2
atomic { ...
x+=1; ...
x+=1; t=x;

} ...
... ...

t might equal 1

(c) Dirty reads

Figure 2.1: Atomicity violations on an STM system.

// Thread 1 // Thread 2
Node* priv; atomic {
atomic { Node* n = head;
priv = head; while (n != NULL) {
if (head != NULL) n->val += 1;
head = head->next; n = n->next;

} }
if (priv) { }
t1 = priv->val;
t2 = priv->val;

}

can t1!=t2?

Figure 2.2: Potentially unsafe privatization of node in linked list.

were executed sequentially. Finally, in Figure 2.1(c), Thread 2 may incorrectly observe

the intermediate state of x==1, which would be unobservable if both threads executed

one after another. While these examples will also cause unexpected results when using

lock-based synchronization, next we show that this need not necessarily be the case.

Figure 2.2 (adapted from [9]) presents code where a node in a linked list is privatized

by a transaction (Thread 1), while the node’s value is incremented by another (Thread

2). Once privatized, Thread 1 reads the privatized node’s value multiple times outside

of the transaction, assuming that it is safe to do so. Indeed, when using lock-based

critical sections to protect the privatization and increment code, the privatization works

Chapter 2. Background and Related Work 19

as expected; however, when using a weak atomicity TM, Thread 1 may commit its

transaction without noticing that Thread 2 is operating concurrently on the values of

the linked list’s nodes. Since Thread 1 does not read the val field of its privatized node

inside its transaction, it cannot detect the conflict introduced by Thread 2. Furthermore,

since Thread 2 may have started executing before Thread 1 updated the head pointer,

it can potentially reach the privatized node and increment its value, even after Thread

1 commits its transaction1. As a result, a weakly atomic TM cannot guarantee that

multiple reads operating on the privatized node’s value will yield the same result. This

result is especially troubling for transactional research as it implies that weakly atomic

TMs can at times be less reliable than lock-based code. Strong atomicity offers a solution

to this problem but at significantly greater implementation complexity and, in the case

of STMs, significantly more overhead.

2.4 Closely Related Work

In this section, we examine the closely related work in the field of transactional memory.

Specifically, we focus on STM systems that target C or C++ code, since such TMs are

most applicable to the majority of programmers. We start with STMs that require

programmers to hand modify their existing code, and end with systems that are either

already fully automatic, or designed with automatic compilation in mind. Lastly, we

examine an HTM that can execute system calls.

OSTM: Fraser and Harris proposed OSTM [15], a highly efficient STM that targets

object-oriented C code. To use OSTM, programmers are required to manually wrap

all objects that they would like to access from within a transaction into special object

handles, which they must explicitly allocate and deallocate. Next, they must inform

1The exact order of events depends on whether the TM implements write-buffering or undo-logging.

Chapter 2. Background and Related Work 20

the STM of all reads and writes that they intend to make to their objects, by using

OSTMOpenForReading() and OSTMOpenForWriting() accessor functions. OSTM tracks

and communicates these accesses through a transaction record, which operates at an

object granularity. All writes to objects are write-buffered using object clones, which

are announced to other transactions only at commit time (lazy acquire), while reads are

never communicated (invisible-readers). OSTM uses the level of indirection provided by

the object handles to support efficient atomic commit. Cloned objects are committed

by simply swapping them in using a compare-and-swap (CAS) operation on the object

pointer in each object handle. Finally, OSTM is non-blocking, offering lock-freedom by

allowing transactions to help other transactions commit their write-buffers, in the event

of thread-error or thread de-scheduling.

While OSTM provides an interesting tool for software engineers to test the transac-

tional memory programming model, it suffers from a number of drawbacks that make it

unsuitable for real use. First, as a result of the explicit level of indirection required, the

API is cumbersome and verbose. Second, OSTMs lock-free approach incurs substantial

overhead, for perhaps less gain than benefit. Finally, in an effort to reduce overheads,

OSTM does not incrementally validate its read-set after each read, thus it permits trans-

actions to operate on inconsistent data. In light of this problem, OSTM registers a signal

handler with the OS to catch and recover from segmentation faults. While this approach

is very efficient, it is not completely safe since transactions may still accidentally jump to

non-transactional code: for example, by executing an indirect branch that had its target

accidentally overwriting, or by executing a return instruction that had its return address

overwritten by code writing to a stack allocated array while using an incorrect index.

RSTM: In an effort to improve on these drawbacks, Marathe et al. developed Rochester

STM (RSTM) [28]: a flexible and robust STM targeting object oriented C++ code. As

Chapter 2. Background and Related Work 21

with OSTM, RSTM requires that programmers wrap their objects in object headers.

Specifying reads and writes is simpler than with OSTM, due to the use of C++. Addition-

ally, allocating new shared objects is easy thanks to a mandatory transactional object

base class, which overloads the new and delete operators to automatically allocate ob-

ject headers. Like OSTM, RSTM tracks conflicts at an object granularity; however

unlike OSTM, RSTM supports both lazy and eager acquire, as well as both invisible and

visible readers. When executing with invisible readers, RSTM incrementally validates

each transaction’s read-set, guaranteeing that transactions never execute with inconsis-

tent data. Interestingly, Marathe et al. find that despite the O(n2) cost of incremental

validation, invisible-readers outperformed visible-readers in most cases that they tested.

Finally, RSTM reduces complexity and overheads by offering an obstruction-free non-

blocking design, which allows transactions to abort—but not help—others, in the event

of thread failures or stalls.

RSTM provides an excellent and robust STM that programmers can use to develop

transactional memory applications that run on today’s computers; however, while greatly

simplified, RSTM’s API is still considerably involved. Furthermore, due to the fact that

RSTM is restricted to object oriented code, it offers little benefit for porting legacy

non-object oriented code.

TL: Dice and Shavit introduced Transactional Locking (TL) [12], an STM that targets

arbitrary C and C++ code. While not an automatic STM compiler, TL is designed with

automatic STM code generation in mind. As the name suggest, TL uses locks to im-

plement the transactional memory mechanisms, and is therefore blocking. TL supports

conflict detection at word, strip, and object (if available) granularities, with the use of

versioned locks that are associated with each transactional shared variable (word, range

of memory, or object). TL supports two modes: (i) an eager acquire, undo-logging mode

Chapter 2. Background and Related Work 22

called encounter mode, and (ii) a lazy acquire, write-buffering mode referred to as commit

mode. Unfortunately, both modes use invisible-readers with no read-set validation, thus

permitting transactions to operate on inconsistent data.

TL2: Under a slightly newer design, Dice et al. propose the use of a centralized global

version-counter to reduce the cost of incrementally validating the read-set after each load.

With this approach, all writing transactions increment a global version-counter and store

its value in the versioning locks associated with each updated shared variable. Subsequent

transactions simply save the global version number when they begin, and verify that

each shared variable that they read from has a version number that is less than or equal

to the version number saved. This approach greatly reduces the cost of incrementally

validating a read-set, since each validation takes constant time. Unfortunately, it does

so with the introduction of a highly contended centralized counter. Regardless, TL2

exhibits impressive performance, and we look forward to when it will be integrated into

an STM-capable compiler.

McRT STM Compiler: Extending the McRT STM [37], Wang et al. were the first to

develop a fully-automatic STM compiler [41]. The modified version of Intel’s icc compiler

is able to mechanically rewrite C or C++ code to include calls to their McRT STM runtime,

enabling transactional execution. The McRT STM supports only one mode of execution,

which is most similar to TL2’s “encounter mode”. It uses undo-logging with eager acquire,

invisible-readers, and maintains a global version-counter for faster read-set validation.

Programming with the STM compiler is easy—developers simply enclose transactions

in code blocks that have been demarcated with a new #pragma tm atomic construct.

Additionally, the programmer annotates all functions that might be called from within

a transaction with the tm function pragma. Unfortunately, since the STM can only

Chapter 2. Background and Related Work 23

execute functions that have been rewritten by the compiler to support transactional

execution, it does not permit transactions to call pre-compiled legacy libraries. Such

libraries comprise a critical building component to many of today’s applications, and

their exclusion limits the applicability of the compiler.

Concurrent with this research, Ying et al. have performed preliminary work to aug-

ment the McRT STM runtime with a dynamic binary rewriter [42]. Their system can

dynamically rewrite pre-compiled legacy binaries to execute with transactional seman-

tics; however, it sidesteps the problem of supporting system calls, citing open-nesting as

a possible solution to this difficult problem.

Unrestricted TM: We believe that support for system calls within transactions is

absolutely necessary for the long term success of transactional memory. We are joined

in this opinion by Blundel et al. [6] who argue that support for system calls is critical,

since programmers are typically unaware of when their code may make such calls. They

state that this is especially the case when compiling and linking system components and

libraries separately. Blundel et al. propose a hardware TM design that allows a single

unrestricted transaction (i.e., one which is allowed to make system calls) to execute

concurrently with simpler restricted ones. We find this approach inspiring.

2.5 Dynamic Binary Rewriting

In this section, we introduce the reader to dynamic binary rewriting, a key process that

enables us to support pre-compiled legacy libraries in our transactional memory system.

Dynamic binary rewriting (DBR) is a well established method of transforming ap-

plications to include new code, or instrumentation, to observe or slightly modify the

behaviour of the application. DBR has numerous applications. It is used by VMware

Chapter 2. Background and Related Work 24

to virtualize operating systems, allowing them to execute in user-space under a second

host operating system. VMware dynamically rewrites the guest operating system so that

protected instructions are replaced by instructions that call the host operating system, re-

questing that the protected operations be performed on the guest’s behalf. Alternatively,

DBR provides an excellent means to debug or profile applications. Users can select from

a number of instrumentation tools such as Pin [26], DynamoRIO [8], or Valgrind [32],

which provide easy to use APIs that can be used to specify arbitrary instrumentation.

Dynamic binary rewriting offers a number of advantages over its static counterpart.

Most importantly, DBR does not need to determine static basic block boundaries and

control flow graphs to determine where it is safe to insert instrumentation. Doing so

statically can be very difficult for low level machine code, due to an abundance of indirect

branches. DBR discovers basic blocks and indirect branch targets at runtime, by following

the application’s execution. Detecting code at runtime is crucial for applications that

dynamically generate code, or call dynamically-loaded shared libraries. Furthermore,

since DBR never modifies the original code, applications that make assumptions about

the original structure of the binary will continue to execute correctly. This is especially

important for applications that patch or self-modify themselves.

At the heart of any dynamic binary rewriting system is the just-in-time compiler, or

JIT for short. A binary rewriting JIT works much like a Java bytecode JIT (e.g., Sun’s

HotSpot [34] or IBM’s Jalapeno [1]), or the JIT in a dynamic binary translator (e.g.,

QEMU [3]). A Java JIT translates bytecode to native code to improve performance,

and binary translators typically translate from one ISA to another for a host of reasons,

such as running legacy binaries on new hardware. The binary rewriting JIT, in contrast,

produces code in the same ISA as its input, but with additional instrumentation instruc-

tions inserted. A JIT can compile at various granularities; a Java JIT typically compiles

at a method granularity, while instrumentation tools and binary translators prefer basic

Chapter 2. Background and Related Work 25

Figure 2.3: A brief look at the JIT process. Step 1 shows the initial state. Step 2 shows
the result of copying the first basic block into the code cache. Step 3 shows how the branch
targets of existing cached blocks are updated as destination blocks are brought into the
code cache. Step 4 shows the final result, with all three basic blocks now instrumented
and executing from the code cache.

block or trace granularities. The resulting instrumented basic blocks are stored in a code

cache, from whence they are dispatched instead of the original code.

Figure 2.3 shows the dynamic binary rewriting process for a simple graph of three

basic blocks. Initially, in Step 1, no code has been instrumented and the code cache is

empty. When execution reaches BB1, it is redirected into the JIT. The JIT makes a copy

of BB1, inserting the required instrumentation and modifying the final instructions to

first record the original destination, BB2, and to then redirect execution back to the JIT

at the end of the block. The new block is then placed into the code cache, as shown in

Chapter 2. Background and Related Work 26

Step 2 of Figure 2.3. When control returns to the JIT after executing the instrumented

BB1, the JIT sees that the next block to execute is not in the code cache. Therefore,

the JIT copies BB2 into the code cache, transforming it as with BB1. Additionally, the

JIT updates BB1 to branch directly to the instrumented copy of BB2, rather than the

JIT. The result is shown in Step 3 of Figure 2.3. This process continues in Step 4 as

BB3 is discovered, instrumented, and placed in the code cache. Note that had control

flowed directly from BB1 into BB3, through the dotted branch marked with a * in Step 4,

then BB2 would never enter the code cache at all; this is the nature of dynamic binary

rewriting—only executed code is instrumented.

Since the resulting instrumented code is stored and executed from a new location,

the JIT must modify all control instructions to account for this change, as shown in the

simple example of Figure 2.3. Direct control instructions can be updated to point straight

to their code cache equivalent targets, if present. Indirect control instructions such as

indirect jumps, calls, and return instructions have targets that cannot be resolved at

JIT-time, and therefore must be translated at runtime. These instructions are modified

to point to a translation function or stub code, which invokes the JIT if the target is not

in the code cache. Since the binary rewriting systems always ensures that it gains control

before executing new code, it offers a degree sandboxing which can be used to prevent

the application from accidentally executing unintended code.

To initiate binary rewriting, an entry point from which control can be redirected to

the JIT is required. After that point, all further execution occurs within the JIT engine.

A number of methods exist for gaining control. One approach, taken by Pin, is to gain

control using ptrace: the library that is used by debuggers to attach themselves to

target applications and to insert breakpoints. Pin injects its JIT into the address space

of the application (using the same primitives used to insert breakpoints), and modifies the

application program counter to point to it. Alternatively, application developers with

Chapter 2. Background and Related Work 27

access to source code can compile and link their applications with a binary rewriting

system. With this approach, available as an option in DynamoRIO, programmers can

call start and exit functions to transition between native and DBR execution.

2.6 Summary

This chapter introduced the reader to the problem of parallel programming with locks,

and presented transactional memory as a possible solution. We motivated our interest

in software—as opposed to hardware—transactional memory, and introduced the reader

to the terminology and basic concepts in the area of STMs. We also surveyed the re-

lated STM research that focuses on the popular, but difficult to support, C and C++

programming languages. Finally, we concluded with a brief introduction to the process

of dynamic binary rewriting. The next chapter will describe the design and implemen-

tation of our dynamic binary rewriting system that we used to develop our software

transactional memory system.

Chapter 3

The Judo Dynamic Binary

Rewriting System

In this chapter we present Judo: our x86 dynamic binary rewriting framework. Like other

DBR systems, Judo lazily rewrites target applications just-in-time (i.e., right before the

code is about to execute) into a code cache from where they are executed. Within the

code cache, Judo is free to augment rewritten code with arbitrary instrumentation for a

variety of purposes. Judo was originally developed by Olszewski et al. for JIFL [33]: a

dynamic binary instrumentation framework for kernel-space; however, it has since grown

into a high performance user-space instrumentation tool.

3.1 Design

In this section, we take a closer look at the design and implementation of our binary

rewriting framework.

28

Chapter 3. The Judo Dynamic Binary Rewriting System 29

Target Application

Judo Dynamic Binary Rewriting System

Heap

Code Cache

Address Space

Dispatcher

Memory Allocator

Judo Instrumentation Plugin

Instrumentation API

JIT Compiler

Runtime System

Figure 3.1: Judo’s software architecture.

3.1.1 System Overview

Figure 3.1 illustrates Judo’s software architecture. At the highest level, Judo consists of a

runtime engine, a private heap, a code cache and an instrumentation API for interfacing

with Judo instrumentation plugins that dictate what instrumentation to insert into the

rewritten application. The runtime engine contains the JIT compiler, dispatcher, and a

custom memory allocator.

To execute the target application through the dynamic binary rewriting system, Judo

must load itself into the application’s address space and obtain control of the thread. Judo

achieves this in one of two ways: 1) It can be compiled as a Pin instrumentation plugin (or

pintool), and have Pin perform the address space injection using ptrace. Once loaded,

Chapter 3. The Judo Dynamic Binary Rewriting System 30

Judo requests that Pin instrument the application’s first instruction with a call to a

routine that takes control of the thread and hands it to Judo. 2) Alternatively, Judo can

be built as a static library that developers can link with directly. Under this approach,

programmers call judo start() and judo stop() functions to transition between native

and instrumented code. Finally, since Judo instrumentation plugins are compiled as

separate binaries, they too must be loaded into the target application’s address space.

Upon initialization, Judo uses the Unix dlopen() function to load and link the plugin

binary.

In the rest of this section, we take a closer look at Judo’s runtime engine. Specifically,

we describe the design of the dispatcher, JIT compiler, and memory allocator, and present

a number of optimizations that improve the quality of the rewritten code.

3.1.2 The Dispatcher

The dispatcher is responsible for saving and restoring the processor’s architectural state,

as well as locating (via a hash table) and redirecting control to the code cache version

of the next instruction to be executed. If the required code does not exist in the code

cache, the JIT compiler is invoked to insert it there. Due to the fact that some of these

tasks are low level, the dispatcher is written in assembly.

3.1.3 The JIT Compiler

The JIT compiler copies the target application’s machine code into the code cache, while

instrumenting it as specified by the Judo plugin. Similar to both Pin [26] and HD-

Trans [40], Judo JIT compiles (or JITs) at a trace granularity. These traces should not

be confused with DynamoRIO’s dynamically profiled hot traces [8]—instead, Judo selects

traces statically at JIT time, although their selection can be indirectly influenced by pre-

Chapter 3. The Judo Dynamic Binary Rewriting System 31

viously executed code through the current contents of the code cache. Many trade-offs

exist when deciding trace sizes. JITing at a basic block granularity will reduce the size

of the code cache, since only code that is guaranteed to execute is rewritten and cached.

However, basic block JITing can introduce new branches between basic blocks that were

previously connected with fall-through edges and place basic blocks according to their

first execution order which may be unrepresentative of future executions. Alternatively,

JITing large traces will likely reduce code cache locality by JITing superfluous code that

will never execute.

In Judo we attempt to balance these trade-offs by creating small traces that follow the

original basic block layout. Judo JITs a small number of adjacent basic blocks together

and connects them with the normal fall-through edges of conditional branches and call

instructions. A trace is terminated early if an indirect branch/call, or return instruction

is encountered, or if a fall-through target is already in the code cache. Judo will not

create traces that span unconditional branches; however, it will combine unconditionally

linked traces if they are JITed consecutively (and therefore placed adjacent to one an-

other). Of related schemes, this trace selection strategy is the most similar to that of

HDTrans [40], except that HDTrans does not restrict the number of basic blocks within a

trace. We found that imposing a limit can significantly improve the performance of cer-

tain applications through improved code cache locality and reduced pollution in unified

upper-level caches. Finally, if the instrumentation plugin does not specify basic block

level instrumentation, Judo minimizes code duplication by allowing branches to target

the mid-points of JITed traces.

When JITing a trace, all control instructions have to be modified to point to their

equivalent code cache targets. Direct branches, such as the x86 jcc, loopcc, and jmp

instructions, are modified so that control is redirected to the dispatcher. Call instructions

are converted to push and jmp instructions. To preserve the contents of the stack,

Chapter 3. The Judo Dynamic Binary Rewriting System 32

the original non-instrumented return address is pushed to the stack. This serves two

purposes. First, it enables Judo to detach itself at any time (in the event of an error)

by returning control to the original non-instrumented code. Second, it ensures that

any code that depends on the value of this return address will continue to function

correctly. For example, call instructions can be used to push the value of the program

counter to the stack so that it can be read. Any code depending on this method for

retrieving the contents of the program counter will continue to function correctly since

the original return address is still pushed to the stack. Indirect jmp and call instructions

are modified in a similar fashion to their direct counterparts, however the address of the

next instruction passed to the dispatcher is no longer a constant but rather calculated at

runtime. Return instructions are handled like indirect jumps. Their branch targets are

also runtime dependent and are obtained by popping the return address off the stack.

As an optimization, the Judo JIT attempts to directly link compiled traces whenever

possible. Judo checks if the branch or fall-through target of a control instruction is

already in the code cache, and if so, it emits a jump instruction to jump directly to

the existing trace. Additionally, while JITing a new trace, Judo patches all previous

control instructions that target the trace so that their subsequent invocations avoid the

dispatcher. For indirect control instructions (such as the indirect branch pictured in

Figure 3.2(a)), we apply predicated indirect branch chaining, a popular method of linking

commonly-occurring indirect targets. Under this approach, a sequence of target address

comparisons is built incrementally at runtime. Each comparison checks whether the

current target address is equal to one observed previously. If the comparison succeeds,

the code jumps to the code cache version of the target, otherwise, the next comparison

is executed. If all comparisons fail, the dispatcher is called to locate the desired trace.

Additionally, the dispatcher keeps track of the number of times that each target is taken.

If a threshold is reached, a new comparison check is added to the sequence.

Chapter 3. The Judo Dynamic Binary Rewriting System 33

0x08000000:

jmp (%eax)

(a) Original indirect
branch

0xB7000000:

mov %edx, edx_save
mov %ecx, ecx_save
mov (%eax), %edx
lea 0x498689F0(%edx), %ecx
jecxz 1
lea 0x49868AF0(%edx), %ecx
jecxz 2
jmp indirect_dispatcher

1: mov edx_save, %edx
jmp 0xB6F97610

2: mov edx_save, %edx
mov ecx_save, %ecx
jmp 0xB6797510

..
.

(b) Translated branch when
only few targets have been de-
tected

0xB7000000:

mov %edx, edx_save
mov %ecx, ecx_save
mov (%eax), %edx
movzx %dl, %ecx
jmp buckets(,%ecx,4)

0xB8000000

buckets:

..
.

..
.

0xB8000000:

lea 0x498689F0(%edx), %ecx
jecxz 1
lea 0x49868AF0(%edx), %ecx
jecxz 2
jmp indirect_dispatcher

1: mov edx_save, %edx
jmp 0xB6F97610

2: mov edx_save, %edx
mov ecx_save, %ecx
jmp 0xB6797510

..
.

(c) Translated branch when many targets have been detected

Figure 3.2: Predicated indirect branch chaining in Judo.

Judo performs the comparisons using the widely adopted lea/jecxz approach origi-

nally used in DynamoRIO [8] that does not affect the condition flags. Each comparison

requires two registers which Judo frees-up by spilling the resident values to global vari-

Chapter 3. The Judo Dynamic Binary Rewriting System 34

ables (edx save and ecx save), and later restoring them only for targets where they

are live. Like Pin and HDTrans, Judo incrementally inserts new comparisons as new

hot targets are detected. However, unlike previous systems, Judo does not insert the

new comparison instructions into dynamically allocated memory, which requires that the

checks be linked together with jump instructions. Instead, the new instructions are emit-

ted adjacent to one another in pre-allocated memory (as shown in Figure 3.2(b)), thus

improving code cache locality and eliminating the cost of the extra jump instructions.

Luk et al., state that the dynamic chains are desirable because they allow new target

comparisons to be inserted in any order [26]. We have been unable to verify this claim in

our own experiments. In fact, we found that the linear pre-allocated memory approach

outperforms predicated chains of dynamically allocated memory, even when elements are

periodically reordered using information obtained from dynamic branch target profiling.

If a substantial number of unique hot targets are encountered for a specific branch,

Judo reduces the number of comparisons required to quickly translate the target addresses

by rewriting the predicated indirect chaining code into a local executable hash table lookup

(shown in Figure 3.2(c)), which partly resembles the global sieve used in HDTrans [40].

Like the sieve approach, we use the movzx (move and zero-extend) instruction, which

does not overwrite the condition flags, as a hash function to convert an original branch

target into a per-branch 256-entry table index that is used to indirectly branch to a

shorter sequence of lea/jecxz comparisons.

While compiling traces, the JIT will also emit any desired instrumentation, which

is often as easy as inserting call instructions to the instrumentation routines into the

traces. However, instrumentation routines may modify the state of the processor, and

therefore, Judo must emit instructions that save and restore register and condition code

states as well. As an optimization, Judo performs register and eflags (x86’s condition

code flags) liveness analysis to reduce the number of such instructions. Further, if the

Chapter 3. The Judo Dynamic Binary Rewriting System 35

instrumentation routine is small enough, the JIT will attempt to inline it into the trace.

The following sections describe these optimizations in detail.

3.1.4 Register and Eflags Liveness Analysis

To eliminate redundant state-saving instructions, liveness analysis is performed on the

target applications binary code to determine the minimum set of condition code flags

(eflags) and registers that need to be saved. Liveness analysis proceeds by disassembling

instructions following the desired position of instrumentation and checking whether regis-

ters or eflags are overwritten (i.e., killed) before being used as input. Those that are used

before being killed are live, and are considered vulnerable if the instrumentation modifies

them. If a direct control instruction is encountered, its target basic block is analyzed in

the same fashion. Repeated analysis of the same basic block is avoided by entering the

address of an already-analyzed basic block in a dedicated hash table. Indirect control

instructions are treated conservatively and assumed to lead to a basic block that uses all

registers and eflags. The set of vulnerable registers (including the eflags register) must

be saved before, and restored after, the instrumentation routine.

When performing instrumentation with basic block granularity, the JIT is free to

insert instrumentation anywhere in the basic block. In this case, the JIT will use the

liveness analysis results to find the position where the least amount of state needs to be

saved.

3.1.5 Instrumentation Inlining

For small instrumentation routines, Judo is able to automatically inline them directly

into the JITed traces. While inlining, Judo can also specialize the instrumentation for

any parameters that will not change at runtime. For example, when instrumenting the

Chapter 3. The Judo Dynamic Binary Rewriting System 36

direction of individual branches, the per branch counter address passed to an instrumen-

tation routine will remain constant for all invocations of each branch and can therefore

be propagated into the inlined routine.

To achieve these optimizations, standard compiler optimizations such as constant

propagation, constant folding, copy propagation and dead-code elimination are applied.

To reduce the complexity of the compiler code, we take the approach of Pin by using

architecture-specific optimizations that operate directly on machine code. Inlining be-

gins by placing all instrumentation instructions into a linked list so that they can be

better manipulated. Next, Judo generates the static control flow graph—if any indirect

jumps are encountered, inlining is aborted since Judo cannot determine the targets of

these jumps. Judo propagates constant parameters by converting all move instructions

that read constant parameters from the stack, into equivalent moves with immediates as

their operands. If all accesses to a parameter are removed, the parameter is also removed

and all stack accesses are modified to account for the change. Next, copy propagation is

performed to eliminate any needless moves. Dead-code elimination is used to remove the

remaining copies if all references to the copied register have been propagated out. Since

Judo currently lacks a data-flow solver, these two steps are only performed if the instru-

mentation routine is composed of a single basic block. Finally, the specialized routine

is laid out as a continuous sequence of instructions in memory. Since the sizes of basic

blocks most likely will have changed, special care must be taken to patch up the relative

branch target offsets of control instructions. Return instructions must also be either

removed, or converted to relative jumps that point to the end of the inlined code. The

resulting code is cached so that it can be reused if subsequent instrumentation inlining

needs to be performed for the same instrumentation routine with the same parameter

values.

Chapter 3. The Judo Dynamic Binary Rewriting System 37

3.1.6 Memory Allocator

Judo often needs to allocate dynamic memory while performing JIT compilation or ana-

lyzing code. Since memory allocators are often not reentrant, Judo must avoid using the

target application’s allocator as it might be operating on behalf of a thread currently ex-

ecuting its own memory allocation request. Doing so risks deadlock or a corrupt system

state. Instead, Judo preallocates and manages its own memory with a custom memory

allocator. We found that a simple, slightly optimized, implicit next-fit memory allocator

was sufficient for our needs. If at any time Judo becomes low on preallocated memory, it

sets a flag to flush its code cache and hash tables to free up more memory the next time

the dispatcher is called.

3.1.7 Multi-threaded Considerations

Judo supports multi-threaded target applications through the use of private code caches

and heaps. Despite the additional memory pressure, we believe that private code caches

are desirable for applications that use modest thread counts since they enable the JIT

to specialize instrumentation per thread and almost entirely avoid contention. Each

processor also requires a private dispatcher so that it can save state to global memory

without needing to check what thread it is running on.

3.2 Evaluation of Judo

In this section, we examine Judo’s performance.

3.2.1 Experimental Framework and Benchmarks

We evaluate Judo by comparing it to DynamoRIO when running SpecINT2000 bench-

marks. DynamoRIO dynamically detects and optimizes hot traces, making it one of the

Chapter 3. The Judo Dynamic Binary Rewriting System 38

1.
26

1.
06

1.
04

1.
03

1.
41

0.
95

1.
25

1.
53

1.
15

1.
03

2.
20

1.
11

1.
05 1.
07

1.
50

1.
05

1.
41

1.
31

1.
26

0.
93

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

mcf gcc vpr gzip bzip2 vortex twolf crafty eon Geometric
Mean

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
Judo DynamoRIO

Figure 3.3: Dynamic binary rewriting performance comparison.

fastest DBR systems currently available. To demonstrate best-case performance, we exe-

cuted all benchmarks without applying any instrumentation, thus we measure the cost of

simply enabling instrumentation. Each of the benchmarks were compiled with gcc v3.3.6

at the -O2 optimization level, and executed with the largest input file. All experiments

were performed on an Intel Xeon 2.8GHz processor, containing a 12K µOps instruction

trace cache, an 8KB L1 data cache, and 512MB L2 and 2MB L3 unified caches, executing

with 4GB of main memory.

3.2.2 Performance

Figure 3.3 presents the performance comparison of the two dynamic binary rewriting

systems. As is inevitable with any dynamic binary rewriting system, both Judo and

DynamoRIO incur considerable overheads. On average, Judo incurs a 15% loss in per-

formance over native non-DBR execution, while DynamoRIO suffers a drop of 26%.

Since the cost of JITing can be quickly amortized we find that JITing alone is not the

most significant component of total overhead. Instead, much of it can be attributed to (i)

inferior code layout that results in extra branch instructions and code duplication, and

(ii) the cost of indirect branch target translation that must be performed at runtime for

Chapter 3. The Judo Dynamic Binary Rewriting System 39

each indirect branch, call, and return instruction. Judo’s careful trace selection, along

with its novel use of an executable hash table for predicated indirect chaining, helps

reduce the cost of executing the rewritten code.

In rare cases (mcf and twolf), Judo can speed up the execution of an application

(by up to 7%). We attribute these speedups to improved spatial code locality of the code

cache which results in a smaller instruction working set and in turn less pollution in the

unified caches. Both the benchmarks benefit from the increased available cache space

due to their memory intensive nature.

3.3 Summary

This chapter described the design and implementation of the Judo dynamic binary

rewriting framework. Judo reduces overheads by rewriting target applications at a

trace granularity, and uses a novel optimization to reduce the cost of indirect branch

target translation. Consequently, Judo incurs only modest slowdowns when executing

SpecINT2000 benchmarks, and can outperform DynamoRIO, a highly optimized dynamic

binary rewriting system. These promisingly-low overheads are what originally inspired

us to build on Judo to develop JudoSTM.

Chapter 4

The Judo Software Transactional

Memory System

In this chapter we present the design of JudoSTM, our dynamic binary rewriting software

transactional memory system. JudoSTM uses the Judo DBR framework to automatically

instrument transaction binaries with STM instrumentation. Since the instrumentation

is applied to the application binary, JudoSTM supports calls to statically linked legacy

libraries. Furthermore, since the instrumentation occurs at runtime, JudoSTM can in-

strument, and thus support calls to, dynamically linked libraries as well.

4.1 Overview of Desirable Features

In addition to the benefits described above, JudoSTM offers the following desirable fea-

tures.

Privileged Transactions: Similar to the Unrestricted Transactional Memory design

by Blundel et al. [6], JudoSTM supports a single transaction that can perform system

calls. We call such a transaction a privileged transaction. Since system calls may perform

40

Chapter 4. The Judo Software Transactional Memory System 41

I/O (which cannot be undone), a privileged transaction cannot be rolled back once it

makes a system call. Instead, JudoSTM ensures that other non-privileged transactions

abort should a conflict be detected. Since system calls escape the control of Judo’s DBR

framework, we cannot instrument their memory writes to verify the read-sets of other

transactions. Therefore, JudoSTM cannot detect conflicts by comparing the version num-

bers (as used by [12]) of the data accessed by each transaction or by access timestamps

(used in [11, 41]). Instead, JudoSTM detects conflicts by using value-based conflict detec-

tion, which detects conflicting operations between transactions by comparing the values

of the memory locations accessed by each transaction, ensuring that they have not been

modified since they were read during transaction execution. Since this strategy allows

each transaction to verify its read-set without requiring any information from concurrent

transactions, it can be used to detect conflicts even when caused by system calls.

Efficient Invisible-Readers: Invisible-readers have been shown to improve perfor-

mance by reducing inter-processor communication [28, 37]. If a transaction executes

using invisible-readers, it must perform expensive read-set validation after each and ev-

ery memory load to prevent it from operating on inconsistent data. By executing with

inconsistent data, a transaction may perform illegal loads or arithmetic operations, or,

worse yet, make control-flow decisions that lead execution to a region of code which

has not been transformed for transactional execution—execution of such code cannot be

rolled back and is therefore unsafe. Some degree of safety can be obtained with sup-

port from trap handlers [15] or with safe load instructions [12]; however, only a truly

sandboxed transaction can execute safely when operating on inconsistent data. Since Ju-

doSTM transforms all transactional code at runtime, it can prevent illegal control-flow

which, when combined with trap handlers, is sufficient to safely support invisible-readers

without the need for expensive incremental read-set validation.

Chapter 4. The Judo Software Transactional Memory System 42

Legacy Lock Elision: A store that does not change the contents of the overwritten

memory location is called a silent store. These types of stores have been shown to be

quite common in general-purpose applications [25]. For a TM system that employs write-

buffering, any sequence of stores to a single address that ends with a store of the original

value becomes a single silent store at commit time. A compelling example of such a

sequence can occur during the acquisition and release of a test-and-set or compare-and-

exchange lock that maintains its state using two values, such as 1 and 0, to represent

locked and unlocked states. If a transaction were to execute legacy code containing such

a lock, it would first acquire it by writing a 1, assuming the lock is un-contended, and

later free it by writing a 0. When this transaction commits, the original value of the

lock location (0) is overwritten with the final value (0), and therefore the modification

is silent. Hence by performing value-based conflict detection, JudoSTM can efficiently

ignore existing lock acquisitions in legacy software, allowing it to optimistically execute

any lock-protected code across multiple concurrent transactions instead of detecting false

conflicts. For locks that are coarse-grained, eliding them in this way can dramatically

reduce transaction aborts.

Thanks to these benefits, JudoSTM permits developers to program transactional

memory applications without imposing any restrictions on what can be placed within a

transaction. To the best of our knowledge, JudoSTM is the first software transactional

memory system to offer such freedom.

4.2 Design Decisions

JudoSTM’s design is succinctly described as a write-buffering, blocking, lazy acquire,

invisible-reader STM using word-granularity value-based conflict detection. The choice

of operating at a word-granularity and using write-buffering stem from the decision to

Chapter 4. The Judo Software Transactional Memory System 43

use value-based conflict detection, while the use of blocking synchronization is required

for supporting system calls. The following describes our rationale for choosing this point

in the STM design space.

Value-Based Conflict Detection: Value-based conflict detection was chosen because

it is critical for allowing unobservable code, such as system calls, to execute safely in par-

allel with other speculative transactions. Furthermore, it efficiently ignores silent stores

which has the nice benefit of allowing JudoSTM to elide legacy locks within transac-

tions. Finally, value-based conflict detection is especially attractive for ordered transac-

tions, since the oldest transaction need not execute with instrumentation for this conflict

detection scheme. However, value-based conflict detection can be expensive: unlike loca-

tion based conflict detection, its overheads cannot be reduced by grouping multiple ac-

cesses to adjacent regions of memory to verify them simultaneously (strip and object-level

granularity). Instead, a compare instruction must be executed for each word accessed.

To reduce this overhead, we present a novel technique that emits custom transaction-

instance-specific read-set validation code to reduce the number of instructions and data

accesses required to verify a read-set. This same technique is also used to reduce the cost

of committing write-buffered data.

Invisible-Readers: Since Judo can effectively sandbox arbitrary code, JudoSTM can

sandbox transactions and hence safely implement invisible-readers without having to

verify the read-set after each load. Since invisible-readers have already been shown to

perform more efficiently than visible-readers even without sandboxing, we decided not to

implement and evaluate a version of JudoSTM that uses visible-readers.

Write-Buffering: We chose to use the write-buffer rollback mechanism instead of an

undo-log approach because of the write-buffer’s compatibility with value-based conflict

detection. While undo-logging has been shown to exhibit impressive results for low

Chapter 4. The Judo Software Transactional Memory System 44

contention applications [14, 41], it suffers significantly in high contention scenarios where

many conflicts trigger expensive rollbacks [12]; under these conditions, write-buffering

fairs better. Additionally, since write-buffering permits the use of lazy acquire, it can

exhibit fewer false non-materializing conflicts than undo-logging. Finally, recent studies

comparing the two have shown that write-buffer can remain competitive with undo-

logging, even in scenarios with little contention [12].

Lazy Acquire: Judo implements lazy acquire in the hope of improving concurrency

and limiting the number of rollbacks caused by false conflicts. Support for eager acquire

is planned as future work.

Blocking: To support system calls, which cannot be rolled back, JudoSTM requires a

blocking design. Unfortunately, blocking does reduce dependability, by allowing deadlock

in the case of thread failure. Recent work by Ennals argues that this cost is worth the

performance benefits of blocking STMs [14], and many recent STMs [12, 37, 41] have

since implemented blocking designs.

4.3 Implementation

In this section, we describe how we built on the Judo DBR framework to implement

JudoSTM.

4.3.1 System Overview

JudoSTM is implemented as a self-contained static library which can be linked with any

application that desires transactional memory constructs. When creating transactions,

the programmer writes regular C or C++ code, without annotations or calls to an STM

runtime. Furthermore, he is free to compile the program using the compiler of his choice.

Chapter 4. The Judo Software Transactional Memory System 45

Once compiled, transactions will not execute correctly unless they are dynamically instru-

mented by JudoSTM at runtime. To achieve this, transactions use the judostm start()

and judostm stop() functions to switch between native and dynamically instrumented

execution, when they start and finish. Since non-transactional code need not be instru-

mented, it does not have to execute through the Judo DBR system, and thus, is not

affected by DBR overhead.

When a thread first enters judostm start, it is assigned a unique thread ID which

it writes to a thread-local global variable. This thread ID is used to uniquely identify

the transaction while it executes, allowing it to access any per-thread data it requires.

It is also used to jump to a per-thread privatized transaction start routine that saves

the contents of the stack and frame pointer registers and enables a per-thread fault

handler. Finally, execution is handed-off to the Judo runtime system which instruments

and executes the transaction in a per-thread private code-cache. Despite some inefficiency

due to code duplication, we claim that private code-caches are desirable for DBR-based

STMs since they enable efficient thread-private instrumentation, and since it will likely

not be beneficial to have more threads than processors.

JudoSTM introduces a number of changes to the Judo software architecture (illus-

trated in Figure 4.1). Since Judo does not yet perform full specialization when inlining

instrumentation routines consisting of more than one basic block, we chose to directly

augment the Judo JIT compiler with the JudoSTM instrumentation plugin. The plugin

specifies the changes that are needed to transform the transaction so that it executes

through a write-buffer, saving its reads, and later validating and committing what it

saved. For instrumentation that is expected to execute often, the plugin directly emits

the instructions into the transaction instruction stream; otherwise, it emits call or jump

instructions to redirect control into an STM runtime library, which contains the bulk of

the STM logic.

Chapter 4. The Judo Software Transactional Memory System 46

Native
Non-Transactional

Code

Judo Software Transactional Memory System

Heap

Code Cache
(Transactional Code)

Address Space

Dispatcher

Memory Allocator

STM Instrumentation
Plugin

JIT Compiler

STM Runtime Library

Figure 4.1: JudoSTM software architecture.

4.3.2 Defining a Transaction

To specify transactions, JudoSTM supports the commonly-used atomic{} syntax. Since

JudoSTM does not have compiler support, it defines the atomic keyword using the macro

definition shown in Figure 4.2. To insert calls to our runtime system both before and

after the transaction statement block, the macro is defined as a for loop that executes its

body once, after a call to judostm start and before a call to judostm stop. We find that

the loop is typically eliminated by the compiler even at low optimization settings. The

macro also contains GAS advanced inline assembly to specify that all of the registers may

be clobbered, thus forcing the compiler to automatically checkpoint live input registers

to the stack. We do not checkpoint live local input variables which have been spilled to

the stack, and therefore encourage programmers not to create transactions that write to

input variables in case they do not get checkpointed; doing so is easy and does not limit

program expressibility. However, this limitation could be easily overcome with compiler

Chapter 4. The Judo Software Transactional Memory System 47

#define atomic \
int __atomic_count = 0;\
asm volatile ("":::"eax", "ecx", "edx", "ebx",\

"edi", "esi", "flags", "memory");\
judostm_start();\
for (; __atomic_count < 1; judostm_stop(),\

__atomic_count++)

Figure 4.2: Definition of JudoSTM’s atomic macro used to specify transactions.

support, for example by using a comprehensive checkpointing algorithm such as the one

presented in [41].

4.3.3 Read and Write-buffering

JudoSTM instruments transaction code to execute through both a read-buffer and write-

buffer. The read-buffer is used to store the initial values read by the transaction during its

execution so that they can be verified as unchanged during commit, while the write-buffer

isolates the transaction’s modifications from others until validated. While a transaction

is executing, all accesses to previously-written or read locations must be redirected into

one of the two buffers. For locations that have been written, a quick lookup in the write-

buffer ensures that a subsequent read operates on correct data. The need for the same

level of indirection for locations that have been previously read seems unnecessary at

first, but it is required to prevent a transaction from reading a value that is not used to

validate the read-set. The problem is illustrated by the following example.

Consider the situation presented in Figure 4.3 where a transaction (Transaction 1) is

executing concurrently with a second privileged transaction that has made a system call

(Transaction 2)—since Transaction 2 is privileged its writes are not buffered. Assume

that both transactions are operating on the same global variable x, which is initially

set to 0. First Transaction 1 reads x and copies it to the read-buffer for eventual read-

set validation. Next Transaction 2 writes 100 into x, and Transaction 1 reads it again

Chapter 4. The Judo Software Transactional Memory System 48

Assume that initially x==0

// Transaction 1 // Transaction 2 (privileged)
atomic { ...
t1=x; ...
... x=100;
t2=x; ...
... x=0;

} ...

Figure 4.3: Read-buffering motivational example. Unless Transaction 1 performs read-
buffering, the conflict created by Transaction 2 may go undetected.

directly from memory. If Transaction 2 modifies x back to its original value before

Transaction 1 performs read-set validation, Transaction 1 will fail to detect the conflict.

To solve this problem, the second read is instead redirected to the read-buffer—this way

Transaction 1 will still commit but will have executed with a consistent view of x (i.e.,

the original value of x before Transaction 2 modified it). Therefore JudoSTM must

introduce this level of indirection for all memory accesses that may conflict. While we

used a privileged transaction to demonstrate this problem, it can be reproduced with

non-privileged transactions as well.

To redirect reads and writes into the buffers, JudoSTM rewrites all instructions that

access global memory so that they perform a lookup in both buffers before executing.

JudoSTM identifies such instructions using a simple heuristic which assumes that all

instructions that implicitly or explicitly use the stack or frame pointers do not access

global memory. We found this assumption to hold for any code that we tested; however,

ensuring that this is the case is essential to making JudoSTM robust. Ying et al. describe

a number of methods for determining when this assumption might be broken [42], which

we plan to investigate in future work.

To quickly lookup an address in a buffer, we use a linear-probed open-address hash

Chapter 4. The Judo Software Transactional Memory System 49

// Original instruction // Instrumented instruction
add (%eax,%ebx,4),$1 lea (%eax,%ebx,4), %edx

movzx %dx, %ecx
cmp 0x119A20A0(,%ecx,8), %edx
jnz probe_more
mov 0x119A20A4(,%ecx,8), %edx
add (%edx),$1

Figure 4.4: Example of read/write-buffer lookup instrumentation.

table. JudoSTM inlines the first portion of the lookup directly into the transaction code

so that a hit in the hash table requires as little as five extra instructions. Figure 4.4

presents the instrumentation code, in assembly, for an add instruction that operates on

an effective address specified by the %eax and %ebx registers. The instrumentation starts

by computing this effective address using the load effective address instruction (lea).

Next, the move short and zero-extend instruction performs a mod 64K1 to compute an

initial lookup index, which is used by a compare instruction to check the address against

what is in the table. If the addresses match, a move instruction loads the buffered address

into a register, which is subsequently used to specify the effective address for the original

add instruction. If the comparison fails, control is redirected to another basic block which

calls the STM runtime library to probe the hash table some more, and save the value in

the buffer if the probing fails.

To minimize the number of registers required to perform the lookup, JudoSTM spec-

ifies the effective address for the compare and move instructions with x86’s scaled index

addressing mode, using a static per-transaction hash table base address, and an index

scaled by 8 bytes (each entry in the table stores a 4 byte address and the corresponding 4

byte buffered address). Unfortunately, since this addressing mode supports a maximum

scaling of 8 bytes, this approach prevents JudoSTM from storing additional information

1For transactions with working sets that are greater than 64K, JudoSTM creates a hash function out
of a mov and an and instruction.

Chapter 4. The Judo Software Transactional Memory System 50

in the table. Most importantly, JudoSTM must distinguish between memory locations

that have been read from ones that have been written, so that it can determine whether

the location should be read or write-buffered, or both. As a solution, JudoSTM main-

tains two hash tables: a read and a write table, which are used separately by read-only

instructions and ones that write. JudoSTM subsequently uses the following algorithm:

If a read instruction fails to find its address in the read hash table, the address is saved

in the read-buffer, and the read hash table is updated to hold an entry pointing to the

read-buffer. If a write instruction fails to to find its address in the write hash table, the

address is saved in the write-buffer and both read and write hash tables are updated to

point to the write-buffer.

If the %ecx, %edx, or eflags (condition flags) registers are live after the instrumented

instruction, Judo additionally emits instructions to save and restore the registers to per-

transaction private memory. Rather than using the pushf and popf instructions for

saving and restoring the eflags register, which stalls the processor pipeline, we follow the

approach taken in [7] and emit lahf, seto/sahf, add instructions which can save and

restore only the arithmetic flags without requiring a pipeline flush.

For instructions that operate on a sub word granularity, JudoSTM emits instrumen-

tation that first truncates the target address to one that is 4 byte aligned, performs the

lookup, and finally adds back the truncated bytes. This ensures that overlapping ac-

cesses of different granularities to the same word are redirected to the same word in the

write/read-buffer.

Finally, arbitrary C/C++ code can often alias stack variables and access them with

pointers other than the frame and stack pointers. Like regular stack accesses, these

need not be write-buffered since they can be rolled back implicitly along with the stack.

In fact, write-buffering is undesirable in this case since it can lead to stack corruption

during commit time [41], and can make regular stack instructions—that use frame or stack

Chapter 4. The Judo Software Transactional Memory System 51

pointers—access stale data since they are not redirected to the read/write-buffers. Hence,

JudoSTM must check all newly-discovered effective addresses to ensure that they are not

on the stack before redirecting them to the read/write-buffers. Finally, we currently do

not support sharing of stack local data between threads; however, such sharing can be

detected using a page protection mechanism [42].

4.3.4 Sandboxing

Since Judo can effectively sandbox arbitrary code, JudoSTM can sandbox transactions

and hence safely implement invisible-readers without having to verify the read-set after

each load. We additionally use trap handler support to detect and recover when faults

such as invalid pointer dereferencing occur. We currently exploit custom light-weight per-

thread fault handler support that we added to our Linux Kernel; however, this support

can alternatively be implemented using standard unix signal handlers, though possibly

at a small performance cost.

Since JudoSTM does not insert read-set validations after each memory read, trans-

actional threads that have read inconsistent data can sometimes enter infinite loops. To

handle such unfortunate cases, JudoSTM inserts instrumentation to validate the transac-

tion’s read-set on every backward branch edge; to reduce overhead, this instrumentation

is guarded by inc and jne instructions which increment a byte counter and jump over

the instrumentation until the branch is encountered 256 times2.

4.3.5 Commit

JudoSTM implements two different commit modes: coarse and fine-grained. In coarse-

grained commit, a single global lock is used to synchronize transaction validation and

2We found that 256 worked well in practice as it did not require an extra compare instruction. A full
study in search of the optimal value is beyond the scope of this dissertation

Chapter 4. The Judo Software Transactional Memory System 52

Assume that initially x==0 and y==1 and that x + y must always equal 1

// Transaction 1 // Transaction 2 // Transaction 3
... ... atomic {
... ... t1=x;
atomic {
x=1;
y=0;

}
... ... t2=y;
... atomic { ...
... x=0; ...
... y=1; ...
... } }

Figure 4.5: Potential for incorrect transaction commit. Transaction 3 may fail to detect
the conflict if it validates its read-set while Transaction 2 is committing its write-buffer.

commit to enforce that transactions atomically either succeed or abort. When a trans-

action is ready to commit, it must acquire the commit lock, verify its read-buffer, and

if successful, commit its write-buffer before finally releasing the lock. While read-only

transactions do not need to acquire the lock to commit, they must ensure that they do

not validate their read-buffers against memory that is in an inconsistent or intermediate

state, which can occur while another transaction is busy committing its write-buffer.

Figure 4.5 presents an example where such a case can lead to an incorrect validation.

Assume that x and y are initially set to 0 and 1, respectively, and that the following

invariant must always be true: x + y == 1. Transaction 3 starts by reading the value

of x (0), saving it into t1. Next, Transaction 1 swaps the values of x and y such that

they now equal 1 and 0, respectively. Transaction 3 reads the value of y (0) but does

not notice the inconsistent state of memory since it is executing using invisible reads,

without performing any incremental validation. Transaction 2 starts executing, swapping

the values of x and y again, and begins to commit the changes. If Transaction 3 validates

its read-buffer while Transaction 2 is in the middle of committing its write-buffer, after

Chapter 4. The Judo Software Transactional Memory System 53

the store to x but before the store to y, Transaction 3 will compare its read-buffer (of

two zeros) to the two zeros temporarily present in memory, and thus incorrectly validate

itself. Forcing Transaction 3 to acquire the commit lock can prevent this problem at

the cost of increased contention. Alternatively, to reduce contention, it is sufficient for

Transaction 3 to repeatedly validate its read-buffer stopping only once it is certain that

the lock was not held by anyone during the coarse of its validation. JudoSTM achieves

this by versioning the commit lock, storing a commit version number in the upper 31 bits

of the lock word. When a writing transaction commits its write-buffer, it releases the

lock by incrementing the upper 31 bits and setting the lower bit to 0. Thus, read-only

transactions need only check that the lock is not acquired before proceeding with vali-

dation, and that it did not change after validation. Additional, load fence instructions

are inserted to prevent the comparisons from executing out-of-order with the read-set

validation.

For fine-grained commit, JudoSTM uses a hash to map the address space into 8192

strips and associates a lock with each of them. To commit, a transaction acquires the

locks associated with the strips that it will write to. Similarly, a transaction verifies that

the locks associated with the strip being validated are not acquired by other transactions

during read-set validation. To prevent deadlock, we follow the common approach of

relying on bounded spin-wait times, rather than sorting the locks to maintain an order

to the acquisitions. Our fine-grained commit algorithm is most similar to that of the

one described by Harris et al. in their STM implementation for Haskell [18]; however,

rather than associating a lock with each variable, we associate each lock with a strip.

Additionally, we verify that the locks have not be acquired during a read-set validation

by comparing the sum of the lock version numbers before and after a validation rather

than individually comparing each of the locks.

Finally, in the event that a validation fails, JudoSTM resolves the conflict differently

Chapter 4. The Judo Software Transactional Memory System 54

depending on which commit variant is used. For coarse-grained commit, JudoSTM re-

runs the failed transaction by executing its native (un-rewritten) code while holding

the commit lock. Doing so is desirable because it prevents livelock and eliminates an

extra (costly) lock acquisition while still allowing other transactions to execute (but not

commit) concurrently. For fine-grained commit, JudoSTM must acquire all locks to

execute a transaction natively. Given the number of locks, this is a costly endeavor and

is therefore only performed after 1000 failed attempts3.

4.3.6 Supporting System Calls

JudoSTM allows a single privileged transaction to execute system calls and be executed

concurrently with other non-privileged transactions; however, since the privileged trans-

action cannot rollback, no other transaction can commit until the privileged transaction is

complete. Therefore, JudoSTM rewrites all system call traps (int80 instructions) with

jumps to its own system call handler. This handler acquires either the single coarse-

grained commit lock or all fine-grained commit locks, validates the read-set, and finally

jumps to the original trap instruction (in the original code). This ensures that the sys-

tem call and the remainder of the transaction execute while the commit lock(s) are held,

ensuring that no conflict can occur. Other transactions can continue to execute and

detect conflicts (using value-based conflict detection) concurrently with the privileged

transaction; however, they must still await the commit lock(s) before they can complete.

4.3.7 Efficient Validation and Commit

When a transaction completes its execution, it acquires the commit locks (either the

single coarse-grain commit lock or the appropriate fine-grain commit locks), verifies its

3We found that a large number like this performed well for the micro-benchmarks we tested; however,
further experimentation is necessary to find a robust and efficient contention heuristic that works for a
greater set of benchmarks

Chapter 4. The Judo Software Transactional Memory System 55

...
cmp $0x256, 0x80B10CFC
jne,pn judostm_trans_abort
cmp $0x1, 0x80B10CA4
jne,pn judostm_trans_abort
cmp $0x80B10CFC, 0x80B10BB8
jne,pn judostm_trans_abort
cmp $0x80B10CA4, 0x80B10BCC
jne,pn judostm_trans_abort
ret

Figure 4.6: Example of emitted transaction-instance-specific read-set validation code.

read-set, copies its write-set to main memory, and then releases the commit lock(s).

Minimizing the duration of this critical section is therefore crucial, and JudoSTM does

so by emitting transaction-instance-specific code that performs read-set validation and

the commit operation. This code is emitted incrementally in straight-line sequences as

the transaction executes. Time spent in the commit-time critical section is minimized

because the sequences are emitted ahead of time specifically for the dynamic instance of

each transaction, and the emitted code contains only the bare-minimum of control flow

instructions.

For read-set validation, a straight-line sequence of cmp and jne instructions (as in

Figure 4.6) is emitted to compare all values read by the transaction with the contents of

their original locations in memory. Should any comparison fail, the corresponding jne

instruction jumps to an abort handler that flushes the read and write-buffers, unrolls the

stack, and restarts execution. To improve ILP we statically hint each jne branch with a

branch not taken prefix, which instructs the processor to fetch and speculatively execute

the fall-through basic block. In addition, to minimize L1 data cache traffic, we store the

values and their corresponding effective addresses as immediates in the cmp instruction.

Finally, this list of immediates actually constitutes our read-buffer and are emitted each

time a new read address is discovered. We call the result an executable read-buffer.

Chapter 4. The Judo Software Transactional Memory System 56

...
movl $0x0, 0x80B10CA4
movl $0x80B10CFC, 0x80B10BCC
movl $0x80B10CA4, 0x80B10BB8
movl $0x54, 0x80B10AB0
ret

Figure 4.7: Example of emitted transaction-instance-specific commit code.

We use a similar approach for commit code for which we emit a straight-line sequence

of mov instructions (as in Figure 4.7) that directly copy the contents of the write-buffer

to their corresponding memory locations. Again, the write-buffer is comprised of the

list of immediates encoded directly in the mov instructions, resulting in an executable

write-buffer.

To expedite the creation of validation and commit code, a large buffer of each se-

quence is pre-allocated and initialized with the appropriate instructions so that only the

immediate values need be filled in during transaction execution. Immediates are written

into the instructions in reverse order as the transaction executes—this way JudoSTM

can track the top-most instruction as the sequence fills, and can later use an indirect

call to jump directly to the start of the sequence. Each pre-allocated sequence ends with

a ret instruction so that execution properly returns at the end of the sequence. While

executing this frequently-emitted code will increase instruction cache misses, this cost is

expected to be quickly amortized for large read and write-sets. Furthermore, JudoSTM

prefetches these instructions while waiting for the commit lock by executing the vali-

dation code, and by executing an incorrectly hinted branch instruction that targets the

start of the commit code but is never taken.

Finally, it is important to note that even though it relies on emitting code, this

technique is not limited to DBR frameworks, and could be easily used by a compiler-

based STM to expedite committing the write-buffer to memory.

Chapter 4. The Judo Software Transactional Memory System 57

4.3.8 Transactional Memory Management

Since JudoSTM supports shared libraries, it can also dynamically instrument the gnu

libc malloc() and free() functions, enabling them to execute optimistically via the

write-buffer. Furthermore, since JudoSTM supports system calls, malloc() will con-

tinue to execute correctly even when it needs to extend the heap via a call to sbrk()

or mmap(). Supporting the native malloc() implementation eliminates the need for

custom transaction-aware allocators [23], garbage collectors, or quiescing [12]. Through

JudoSTM, malloc() and free() execute with full transaction semantics: memory allo-

cations or frees will only be externally visible upon successful completion of a transaction.

This prevents the heap from “blowing up”4 in the case of frequent failed transactions, and

eliminates any risk of accessing stale pointers. In addition, memory that is dynamically

allocated within a transaction can be freed outside of a transaction, and vice-versa.

Unfortunately, the gnu libc malloc() has yet to be optimized for scalable concurrent

execution. As a result, we found that a significant portion of transaction aborts were

caused by conflicts related to concurrent memory allocation requests. As a temporary

solution, we recommend whenever possible to link with a dynamic memory allocation

library that is designed for scalable parallel execution. In this dissertation we use the

Hoard highly scalable parallel memory allocator [4]. Since JudoSTM eliminates all lock

prefixes in the re-written code, the JITed version of Hoard becomes a highly-efficient

optimistic transactional memory allocator.

4.4 Summary

In this chapter we presented the design of JudoSTM, our dynamic binary rewriting

software transactional memory system. JudoSTM instruments transactions with STM

4For the heap to “blow up” means for it to grow exceedingly larger than necessary because of poor
memory recycling.

Chapter 4. The Judo Software Transactional Memory System 58

instrumentation at runtime, while they execute, and thus supports transactions with calls

to static and dynamic pre-compiled libraries. Furthermore, to the best of our knowledge

JudoSTM is the first software TM that supports system calls within transactions. As

a result, JudoSTM lets developers program transactional memory applications without

imposing any restrictions on what can be placed within a transaction.

Chapter 5

Evaluation

In this chapter we provide a preliminary comparison of the performance of JudoSTM to

both a conventional lock-based execution and also to the RSTM 2.0 system [28] on a set

of micro-benchmarks. The purpose of this evaluation is to show that JudoSTM can be

competitive with an existing library-based STM.

5.1 STM Feature Comparison

Table 5.1 outlines the most significant difference between the RSTM and JudoSTM sys-

tems. RSTM operates on an object-granularity requiring the use of object-oriented C++

code. Additionally, since RSTM offers no compiler support, programmers must manu-

ally rewrite their code to include calls to the STM runtime library. JudoSTM, on the

other hand, operates at a word-level granularity and can automatically instrument arbi-

trary C and C++ code specified within atomic blocks. RSTM provides obstruction-free

synchronization while JudoSTM must be blocking due to its support for system calls.

Unfortunately, RSTM’s use of obstruction-freedom affects the conclusions that can be

drawn from this study since their is an additional cost to supporting non-blocking syn-

59

Chapter 5. Evaluation 60

RSTM JudoSTM

Language C++ C/C++

Programming Model Library API, rewrite code atomic {…}

Conflict Detection Object-level location-based Word-level value-based

Synchronization Obstruction-free Blocking

Commit Object-cloning & pointer-
switching Executable write-buffer

Memory Allocation Custom “Hoard” scalable parallel
allocator

Table 5.1: Comparison of RSTM and JudoSTM features.

chronization; however, at the time of this evaluation, we were unable to obtain a suitable

copy of a blocking STM that could execute on x86. Finally, RSTM’s lack of system call

support requires that it use a custom memory allocator, while JudoSTM allows the use

of any allocator, regardless of whether it performs system calls. For this study, we chose

the Hoard scalable memory allocator.

5.2 Experimental Framework

We measure the performance of JudoSTM on a multiprocessor machine with four 2.8GHz

Intel Xeon MP processors and 16GB of main memory. Each processor implements a

12K µOps instruction trace cache, 8KB L1 data cache, 512MB L2 and 2MB L3 unified

cache. JudoSTM and the lock-based implementations are wrapped in the RSTM C++

API framework to ensure fair comparisons. Each system was built with the compiler

that gave the highest performance at the -O3 optimization level: the RSTM and lock-

Chapter 5. Evaluation 61

based systems were compiled using g++ v4.1.2, while for JudoSTM g++ v.3.3.6 was used.

We measure throughput in transactions-per-second over a period of 10 seconds for each

benchmark, and vary the number of threads from one to four. All results are averaged

over a set of 10 test runs. In all experiments involving RSTM, the default settings were

used: Polka contention manager, eager acquire, invisible-readers, and the epoch-based

RSTM memory allocator. JudoSTM was linked with Hoard 3.6.2.

Micro-benchmarks: We evaluate using a subset of micro-benchmarks available with

the RSTM API. These include a simple counter (Counter), as well as three different

integer benchmarks: a sorted linked list (LinkedList), a hash table with 256 buckets

(HashTable) and a red-black tree (RBTree). For the integer benchmarks each thread

performs an equal mix of insert, remove, and lookup operations. The Counter bench-

mark comprises short transactions that simply increment a single shared counter—for

this reason we only consider coarse-grained locking for Counter (which in this case is

equivalent to fine-grained locking). Counter provides a base comparison for the perfor-

mance of each parallelization method in the case of high contention. In the LinkedList

benchmark, transactions traverse a sorted list to locate an insertion or removal point;

when found, either a new node is inserted or an existing node is removed, and the relevant

pointers are updated. The HashTable benchmark is implemented using 256 buckets

with linked list overflow chains and a simple modulus hash function; as there are roughly

an equal number of insertion and removal operations in our experiments, the hash table is

maintained at roughly 50% capacity during execution. Finally, in the RBTree bench-

mark, insert and remove operations generate one or more modifications to other tree

nodes during the height-balancing phase. For RBTree a fine-grained locking solution

is non-trivial and is not provided by RSTM.

While micro-benchmarks offer only a partial picture of the STM’s performance, they

Chapter 5. Evaluation 62

are a good starting point for validating the feasibility of this work. Additionally, since

transactional memory is still in its infancy, few representative benchmarks exist. A

comprehensive evaluation of the JudoSTM system is left as work for the future, when

TM benchmark suites become readily available.

5.3 Performance

Figure 5.1 and Table 5.2 present the throughput results for each of the four micro-

benchmarks. Note that the y-axes are in a log-scale. In every scenario JudoSTM performs

competitively with RSTM.

Counter: In Counter, high contention causes all synchronization methods to perform

poorly as more threads are added. Both versions of JudoSTM perform relatively strongly

in this worst case scenario, degrading less than RSTM with additional threads. Little

can be done to improve performance as this micro-benchmark produces the worst-case

access patterns for optimistic concurrency.

LinkedList: In LinkedList, the coarse-grained lock outperforms all other synchro-

nization methods by a fair margin, though its performance degrades with the addition of

threads. JudoSTM’s coarse grained implementation, on the other hand, scales close to

linearly, obtaining a throughput of 3.5x its single threaded performance at four threads.

LinkedList exhibits a relatively large number of conflicts due to the constant number

of node insertions and deletes which interfere with other transactions searching for their

nodes. As a result, JudoSTM benefits from the coarse-grained contention heuristic which

causes the transaction to execute natively after a rollback, thus reducing synchronization

overhead and guaranteeing progress while still allowing other transactions to execute con-

Chapter 5. Evaluation 63

1 2 3 4
Threads

1x106

1x107

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks

(a) Counter

1 2 3 4
Threads

1x105

1x106

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks
Fine-Grained Locks

(b) LinkedList

1 2 3 4
Threads

1x106

1x107

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks
Fine-Grained Locks

(c) HashTable

1 2 3 4
Threads

1x106

1x107

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks

(d) RBTree

Figure 5.1: Benchmark performance comparisons (Note the log scale).

currently. JudoSTM’s fine-grained commit implementation performs less well, achieving

a throughput improvement of 2.2x over its single threaded performance for four threads.

In this case, the cost of enabling parallel commits does not pay off since the benchmark

seldom sees two concurrent threads reading and writing to disjoint data. Regardless, it

is still able to outperform RSTM at all thread counts, as well as fine-grained locking at

three and four threads.

It is interesting to note that unlike in other benchmarks, RSTM achieves a lower

Chapter 5. Evaluation 64

Threads RSTM

Coarse-
Grained
Locking

Fine-Grained
Locking

Judo
(Fine)

Judo
(Course)

1 2398757 17635467 N/A 2524132 2620580

2 1149535 3539219 N/A 1768498 1565075

3 755196 3311706 N/A 1007939 1219980

C
O

U
N

TE
R

4 627860 2962575 N/A 810889 1176341

1 79307 3517271 276963 126326 151462

2 108247 2084858 204884 192982 304033

3 110438 1674203 223107 246973 441079

LI
N

K
ED

LI
ST

4 110869 1456085 254688 275080 533479

1 2084262 6269103 8546620 1188223 1675981

2 2231088 2933995 5201553 1923082 2072826

3 2765749 2399992 6008633 2596054 2269789

H
A

SH
TA

B
LE

4 3203580 2124495 6679233 3099031 2317034

1 745066 5988545 N/A 530518 740911

2 712254 2906314 N/A 861225 1134857

3 770287 2230442 N/A 1131581 1451182 R
B

TR
EE

4 771991 1863915 N/A 1344401 1656253

Table 5.2: Benchmark performance comparisons. Results presented in number of trans-
actions completed per second.

single threaded performance than both versions of JudoSTM for LinkedList. This is

despite the fact that the JudoSTM transactions are instrumented at runtime, with more

expensive word-granularity instrumentation. The lower performance can be attributed

to the large amount of read operations performed by the transactions (O(n)), which

are required to find a desired node in the linked list. Since RSTM verifies its read-set

after each read, its invisible reader strategy causes high overhead for this benchmark.

JudoSTM, on the other hand, does not need to incrementally validate its read-set, and

can therefore obtain better single threaded performance.

Chapter 5. Evaluation 65

HashTable: The HashTable micro-benchmark is perhaps the most interesting as it

represents a low contention scenario. Here we begin to see the benefit of using JudoSTM’s

fine-grained commit, which performs up to 34% better than coarse-grained commit. At

four threads, JudoSTM’s fine-grained commit achieves a speedup of 2.6x over its single

threaded performance, beating coarse-grained locking by 46% while performing similarly

to RSTM despite having significantly more single threaded overhead. Fine-grained lock-

ing outperforms all other synchronization techniques, with an initial drop in performance

at two threads followed by a steady increase.

RBTree: In RBTree, both versions of JudoSTM scale fairly well, with four processor

speedups of 2.2x and 2.5x. Coarse-grained commit on the other hand, starts strong on a

single thread but exhibits a rapid degradation in performance as threads are added. At

four threads, the coarse-grained version of JudoSTM is within 13% of the performance

of coarse-grained locking and appears on track to pass coarse-grained locking if more

processors were added. In contrast RSTM fails to scale with more threads added, per-

forming over 2x slower than the coarse-grained version of JudoSTM at four threads. This

is despite starting with virtually the same performance at one thread.

5.4 Examining Execution

To obtain insight into the various overheads incurred by the JudoSTM instrumentation,

we used the oprofile sampling-based system-wide profiling tool to determine the average

execution breakdown of a transaction. The results were used to discover and identify

potential performance bottlenecks which lead to a number of improvements. To provide

oprofile with the symbols it needs for our dynamically generated code, we statically

defined large functions in assembly and used the space to store dynamically emitted code.

Chapter 5. Evaluation 66

0ns

50ns

100ns

150ns

200ns

250ns

300ns

350ns

400ns

450ns

HashTable (Coarse) HashTable (Fine)

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

pe
r T

ra
ns

ac
tio

n

Transaction Initialization
Transaction (Native Code)
Transaction (Code Cache)
Buffering
Synchronization
Validation
Commit

(a) HashTable

0ns
50ns

100ns
150ns
200ns
250ns
300ns
350ns
400ns
450ns
500ns
550ns
600ns
650ns
700ns
750ns
800ns
850ns
900ns

RBTree (Coarse) RBTree (Fine)
Av

er
ag

e
Ex

ec
ut

io
n

Ti
m

e
pe

r T
ra

ns
ac

tio
n

Transaction Initialization
Transaction (Native Code)
Transaction (Code Cache)
Buffering
Synchronization
Validation
Commit

(b) RBTree

Figure 5.2: Execution breakdown on 4 processors.

Figure 5.2 shows the results of our profiling for both the fine and coarse-grained com-

mit variations of JudoSTM when running either HashTable or RBTree. In all cases,

JudoSTM spends the majority of its time buffering reads and writes, and synchronizing

commits with other transactions. As a result of per-transaction-instance emitted vali-

dation and commit code, JudoSTM spends only 3.7% of its time, on average, validating

and committing read and write-sets.

For HashTable, the coarse-grained commit implementation spends 53% of its time

attempting to acquire the single commit lock (Synchronization). Due to the large amount

of parallelism in HashTable, fine-grained JudoSTM is able to reduce its synchronization

time by 28.5% through acquiring more locks which are each less contended, despite the

additional time needed to compute the set of locks that need to be acquired. However, in

the higher contention case represented by RBTree, the overhead of fine-grained commit

increases the time spent on synchronization by 49.2%. Furthermore, the increased chance

Chapter 5. Evaluation 67

of deadlock further degrades performance by triggering more transaction re-executions

reflected by the greater amount of time spent executing the transaction and buffering its

reads and writes.

While it is unlikely that the synchronization overheads can be reduced further, the ex-

ecution breakdown results show that substantial performance improvements can be made

by reducing the buffering overhead. We expect that a significant amount of this over-

head can be attributed to cost of maintaining two hash tables (both read and write hash

tables) when inserting new entries into the write-buffer. We plan to examine alternatives

in future work.

5.5 Summary

In this chapter we presented a preliminary evaluation of the JudoSTM system. We

described the significant differences between JudoSTM and RSTM, after which we com-

pared the performance of the two systems on a number of micro-benchmarks and demon-

strated that JudoSTM can perform comparably. Additionally, we examined the execution

breakdown of JudoSTM where we discovered that the majority of JudoSTM’s overheads

can be attributed to buffering and synchronization.

Chapter 6

Conclusions and Future Work

As transactional memory systems move closer to mainstream use, we must make them

easier to integrate into typical programming environments. Hence, it is important that

software transactional memory systems (STMs) support arbitrary C and C++ code, as

well as library functions that may themselves contain system calls and locking code. We

have presented JudoSTM, an STM system based on Judo, our dynamic binary-rewriting

framework. Judo implements several key optimizations including trace-level JITing and

highly efficient indirect branch chaining, allowing it to incur only a modest overhead,

and thus serve as a feasible base for an STM system. JudoSTM is a write-buffering,

blocking, invisible-reader STM that uses value-based conflict detection; is programmed

using only a simple atomic{} macro; and allows the programmer to use the compiler

of his choice. JudoSTM supports several desirable features including sandboxing, ef-

ficient invisible-readers, legacy lock elision, and transactions that can execute system

calls. We have demonstrated that JudoSTM performs comparably to Rochester’s RSTM

library-based implementation—demonstrating that a dynamic binary-rewriting approach

to implementing STM is a compelling alternative.

68

Chapter 6. Conclusions and Future Work 69

6.1 Contributions

This dissertation makes the following contributions:

1. Presents a novel STM system based on dynamic binary rewriting that supports

both statically and dynamically linked arbitrary C and C++ code;

2. Demonstrates the feasibility of such an approach by comparing a prototype to the

Rochester Software Transactional Memory (RSTM) system;

3. Proposes the use of value-based conflict detection to efficiently support the trans-

actional execution of already thread-safe library code and unobservable and irre-

versible code such as system calls;

4. Introduces a new technique for improving the performance of software write buffer-

ing and conflict detection by emitting and executing custom transaction-instance-

specific verification and write buffer commit code; and

5. Presents the Judo and JudoSTM frameworks for use in future research.

6.2 Future Work

There are many avenues that may be pursued for building on top of this work. Optimiz-

ing JudoSTM’s performance and evaluating it on real benchmarks are evident choices;

however, the following two extensions are also of particular interest.

6.2.1 Support for Strong Atomicity

JudoSTM does not currently provide strong atomicity, and therefore programmers must

be cautious not to write or call functions that operate on shared memory, concurrently

Chapter 6. Conclusions and Future Work 70

from both inside and outside of atomic blocks, even if they are thread safe (e.g. malloc).

While JudoSTM’s use of value-based conflict detection does enable transactions to detect

conflicts between themselves and non-atomic code, non-transaction conflicts introduced

after a transaction validates its read-set but, before or during write-set commit, will go

unnoticed. Furthermore, since JudoSTM cannot commit its buffered changes instan-

taneously, non-transactional threads may observe inconsistent state. Finally, while Ju-

doSTM does correctly support privatization when using a single commit lock, JudoSTM’s

distributed lock version cannot correctly protect non-transactional accesses to privatized

memory from accesses within concurrent transactions.

Extending JudoSTM to provide a stronger level of safety is interesting work for the

future. Strong atomicity is especially compelling in the presence of code containing

legacy locks as it allows legacy lock-protected code to execute safely in parallel with

the same code rewritten for optimistic execution within a transaction. Unlike most

STMs, JudoSTM can be extended to provide strong atomicity without requiring that

non-transactional threads be rewritten with STM instrumentation. Instead, each non-

transactional thread can quiesce while a transaction commits so that the transaction’s

changes appear to occur instantly. Quiescing also prevents conflicts caused by non-atomic

code from occurring after a transaction validates its read-set, thus enabling transactions

to safely detect conflicts caused by arbitrary non-transactional code.

6.2.2 Application to Hybrid Transactional Memory Systems

JudoSTM is particularly well suited for use in a hybrid transactional memory system

composed of a best-effort HTM and a backup unbounded STM that re-executes failed

transactions which run out of resources on the HTM. JudoSTM’s ability to execute arbi-

trary machine code, regardless of how it was compiled or linked, matches that of an HTM.

Chapter 6. Conclusions and Future Work 71

Furthermore, since JudoSTM uses value-based conflict detection, it can detect conflicts

caused by hardware transactions without requiring explicit communication between the

HTM and STM. Such communication incurs overhead on transactions executing in hard-

ware, thus limiting performance. As a result, JudoSTM can be easily used to augment a

simple best-effort HTM to support large transactions and system calls without affecting

the performance of the small common-case transactions that execute on the HTM. We

plan to investigate such an extension in the future.

Bibliography

[1] Bowen Alpern, Dick Attanasio, John Barton, Michael Burke, Perry Cheng, Jong-

Deok Choi, Anthony Cocchi, Stephen Fink, David Grove, Michael Hind, Susan Flynn

Hummel, Derek Lieber, Vassily Litvinov, Ton Ngo, Mark Mergen, Vivek Sarkar,

Mauricio Serrano, Janice Shepherd, Stephen Smith, VC Sreedhar, Harini Srinivasan,

and John Whaley. The Jalapeno virtual machine. 39(1), 2000.

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded transactional memory. In Proceedings of the Eleventh

International Symposium on High-Performance Computer Architecture, pages 316–

327. Feb 2005.

[3] Fabrice Bellard. QEMU: a fast and portable dynamic translator. In Proc. of USENIX

2005 Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[4] Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson. Hoard: A

scalable memory allocator for multithreaded applications. Technical report.

[5] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Subtleties of trans-

actional memory atomicity semantics. Computer Architecture Letters, 5(2), Nov

2006.

[6] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Unrestricted trans-

72

BIBLIOGRAPHY 73

actional memory: Supporting i/o and system calls within transactions. Technical

Report CIS-06-09, Department of Computer and Information Science, University of

Pennsylvania, Apr 2006.

[7] Derek Bruening. Efficient, Transparent, and Comprehensive Runtime Code Ma-

nipulation. Ph.d. thesis, Massachusetts Institute of Technology, Cambridge, MA,

September 2004.

[8] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for

adaptive dynamic optimization. In Proceedings of the International Symposium on

Code Generation and Optimization, Washington, DC, USA, 2003.

[9] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan

Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hy-

brid transactional memory system with strong isolation guarantees. In Proceedings

of the 34th Annual International Symposium on Computer Architecture. Jun 2007.

[10] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan

Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hy-

brid transactional memory system with strong isolation guarantees. In Proceedings

of the 34th Annual International Symposium on Computer Architecture. Jun 2007.

[11] O. Shalev D. Dice and N. Shavit. Transactional locking ii. In Proc. of the 20th

International Symposium on Distributed Computing (DISC 2006), pages 194–208,

2006.

[12] Dave Dice and Nir Shavit. Understanding tradeoffs in software transactional mem-

ory. In Proceedings of the International Symposium on Code Generation and Opti-

mization, Mar 2007.

BIBLIOGRAPHY 74

[13] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang

Zhang. Software behavior oriented parallelization. In PLDI ’07: Proceedings of the

2007 ACM SIGPLAN conference on Programming language design and implemen-

tation.

[14] Robert Ennals. Software transactional memory should not be obstruction-free. Tech-

nical Report IRC-TR-06-052, Intel Research Cambridge Tech Report, Jan 2006.

[15] Keir Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer

Laboratory, 2003.

[16] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention. Management

in sxm. In Proceedings of the 19th International Sympposium on Distributed Com-

puting, Sep 2005.

[17] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben

Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle

Olukotun. Transactional memory coherence and consistency. In ISCA ’04: Proceed-

ings of the 31st annual International Symposium on Computer Architecture, pages

102–113, June 2004.

[18] Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a shared-memory

multiprocessor. In Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop

on Haskell, pages 49–61, New York, NY, USA, 2005. ACM Press.

[19] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable

memory transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages 48–60, New

York, NY, USA, 2005. ACM Press.

BIBLIOGRAPHY 75

[20] Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer. Software

transactional memory for dynamic-sized data structures. pages 92–101, Jul 2003.

[21] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support

for lock-free data structures. In ISCA ’93: Proceedings of the 20th annual interna-

tional symposium on Computer architecture, pages 289–300, New York, NY, USA,

1993. ACM Press.

[22] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition

for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[23] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C.

Hertzberg. Mcrt-malloc: a scalable transactional memory allocator. In Proceedings

of the International Symposium on Memory management, New York, NY, USA,

2006.

[24] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional

memory. in proceedings of the 11th. In ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPOPP), Mar 2006.

[25] Kevin M. Lepak and Mikko H. Lipasti. On the value locality of store instructions. In

Proceedings of the International Symposium on Computer Architecture, New York,

NY, USA, 2000.

[26] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geof

f Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. In Proceedings of

the Conference on Programming Language Design and Implementation, New York,

NY, USA, 2005.

BIBLIOGRAPHY 76

[27] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive soft-

ware transactional memory. In Proceedings of the International Symposium on Dis-

tributed Computing, Cracow, Poland, Sep 2005.

[28] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David

Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering the overhead

of software transactional memory. Technical Report TR 893, Computer Science

Department, University of Rochester, Mar 2006.

[29] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Hassan

Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for practi-

cal transactional memory. SIGARCH Comput. Archit. News, 34(2):53–65, 2006.

[30] Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Brian D. Carl-

strom, Lance Hammond, Christos Kozyrakis, and Kunle Olukotun. Characterization

of tcc on chip-multiprocessors. In Proceedings of the 14th International Conference

on Parallel Architectures and Compilation Techniques. Sept 2005.

[31] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.

Wood. Logtm: Log-based transactional memory. In Proceedings of the 12th Inter-

national Symposium on High-Performance Computer Architecture, pages 254–265.

Feb 2006.

[32] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-

work. Electronic Notes in Theoretical Computer Science, 89(2):1–23, October 2003.

[33] Marek Olszewski, Keir Mierle, Adam Czajkowski, and Angela Demke Brown. Jit

instrumentation—a novel approach to dynamically instrument operating systems.

In EuroSys 2007, Mar 2007.

BIBLIOGRAPHY 77

[34] Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpotTM server

compiler. In USENIX Java Virtual Machine Research and Technology Symposium,

pages 1–12, April 2001.

[35] Christopher J. F. Pickett, Clark Verbrugge, and Allan Kielstra. libspmt: A library

for speculative multithreading. Technical Report SABLE-TR-2007-1, Sable Research

Group, School of Computer Science, McGill University, Montréal, Québec, Canada,

2007.

[36] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional memory.

In Proceedings of the 32nd Annual International Symposium on Computer Architec-

ture, pages 494–505. IEEE Computer Society, Jun 2005.

[37] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben-

jamin Hertzberg. Mcrt-stm: a high performance software transactional memory

system for a multi-core runtime. In Proceedings of the Symposium on Principles and

Practice of Parallel Programming. Mar 2006.

[38] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan

Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing

isolation and ordering in stm. SIGPLAN Not., 42(6):78–88, 2007.

[39] Arrvindh Shriraman, Virendra Marathe, Sandhya Dwarkadas, Michael L. Scott,

David Eisenstat, Christopher Heriot, William N, Scherer III, and Michael F. Spear.

Hardware acceleration of software transactional memory. Technical Report 887,

Department of Computer Science, University of Rochester, Dec 2005.

[40] Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, and Prashanth P. Bungale.

Hdtrans: an open source, low-level dynamic instrumentation system. In Proc. of

BIBLIOGRAPHY 78

the International Conference on Virtual Execution Environments, New York, USA,

2006.

[41] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai.

Code generation and optimization for transactional memory constructs in an unman-

aged language. In Proceedings of the International Symposium on Code Generation

and Optimization, Mar 2007.

[42] Victor Ying, Cheng Wang, and Youfeng Wu. Dynamic binary translation and opti-

mization of legacy library code in an stm compilation environment. In Proceedings

of the Workshop on Binary Instrumentation and Applications. Oct 2006.

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Software Transactional Memory Through Dynamic Binary Rewriting
	1.2 Research Goals
	1.3 Organization

	2 Background and Related Work
	2.1 Parallel Programming
	2.2 Transactional Memory
	2.3 The STM Design Space
	2.4 Closely Related Work
	2.5 Dynamic Binary Rewriting
	2.6 Summary

	3 The Judo Dynamic Binary Rewriting System
	3.1 Design
	3.1.1 System Overview
	3.1.2 The Dispatcher
	3.1.3 The JIT Compiler
	3.1.4 Register and Eflags Liveness Analysis
	3.1.5 Instrumentation Inlining
	3.1.6 Memory Allocator
	3.1.7 Multi-threaded Considerations

	3.2 Evaluation of Judo
	3.2.1 Experimental Framework and Benchmarks
	3.2.2 Performance

	3.3 Summary

	4 The Judo Software Transactional Memory System
	4.1 Overview of Desirable Features
	4.2 Design Decisions
	4.3 Implementation
	4.3.1 System Overview
	4.3.2 Defining a Transaction
	4.3.3 Read and Write-buffering
	4.3.4 Sandboxing
	4.3.5 Commit
	4.3.6 Supporting System Calls
	4.3.7 Efficient Validation and Commit
	4.3.8 Transactional Memory Management

	4.4 Summary

	5 Evaluation
	5.1 STM Feature Comparison
	5.2 Experimental Framework
	5.3 Performance
	5.4 Examining Execution
	5.5 Summary

	6 Conclusions and Future Work
	6.1 Contributions
	6.2 Future Work
	6.2.1 Support for Strong Atomicity
	6.2.2 Application to Hybrid Transactional Memory Systems

	Bibliography

