
NetFPGA-based Precise Traffic Generation

Geoffrey Salmon, Monia Ghobadi,
Yashar Ganjali

Department of Computer Science
University of Toronto

{geoff, monia, yganjali}@cs.toronto.edu

Martin Labrecque, J. Gregory Steffan
Department of Electrical and Computer

Engineering
University of Toronto

{martinl,steffan}@eecg.toronto.edu

ABSTRACT
Generating realistic network traffic that reflects different
network conditions and topologies is crucial for performing
valid experiments in network testbeds. Towards this goal,
this paper presents Precise Traffic Generator (PTG), a new
tool for highly accurate packet injections using NetFPGA.
PTG is implemented using the NetThreads platform, an
environment familiar to a software developer where mul-
tithreaded C programs can be compiled and run on the
NetFPGA. We have built the PTG to take packets gener-
ated on the host computer and transmit them onto a gigabit
Ethernet network with very precise inter-transmission times.
Our evaluations show that PTG is able to exactly reproduce
packet inter-arrival times from a given, arbitrary distribu-
tion. We demonstrate that this ability addresses a real prob-
lem in existing software network emulators — which rely on
generic Network Interface Cards for packet injections — and
predict that the integration of PTG with these emulators
would allow valid and convincing experiments which were
previously difficult or impossible to perform in the context
of network testbeds.

1. INTRODUCTION
Making any changes to the current Internet infrastructure is
extremely difficult, if possible at all. Any new network com-
ponent, protocol, or design implemented on a global scale
requires extensive and accurate testing in sufficiently real-
istic settings. While network simulation tools can be very
helpful in understanding the impact of a given change to a
network, their predictions might not be accurate due to their
simplified and restricted models and settings. Real network
experiments are extremely difficult too: network operators
usually do not like any modifications to their network, un-
less the proposed changes have been tested exhaustively in
a large scale network. The only remaining option for testing
the impact of a given change is using testbeds for network
experiments.

To have meaningful experiments in a testbed, one must have

realistic traffic. Generating high volumes of traffic is intrinsi-
cally difficult for several reasons. First, it is not always pos-
sible to use real network traces, as traces do not maintain the
feedback loop between the network and traffic sources (for
example the TCP closed-loop congestion feedback). Second,
using a large number of machines to generate the required
traffic is usually not an option, as it is extremely costly, and
difficult to configure and maintain. Finally, depending on
the purpose of the experiment, the generated traffic might
have different sensitivity requirements. For example, in the
context of testing routers with tiny buffers (e.g. 10-20 pack-
ets of buffering) even the slightest change in packet injection
patterns can have major implications for the results of the
experiment [1], whereas in the study of capacity planning
techniques, the results are only sensitive to the aggregate
bandwidth over relatively coarse timescales [2].

Commercial traffic generators are very useful for some exper-
iments, but they have their own drawbacks. They are usu-
ally very expensive and their proprietary nature makes them
very inflexible for research on new techniques and protocols.
Also, it has been shown that their packet injection times are
not accurate enough for time-sensitive experiments [3]. Ad-
ditionally, commercial traffic generators do not always im-
plement network protocols accurately: for example, Prasad
et al. [4] describe differences observed between a TCP Reno
packet sequence generated by a commercial traffic genera-
tor and the expected behavior of the standard TCP Reno
protocol.

An alternative to a commercial traffic generator is open
source packet generation software, where a small number
of machines are used to generate high volumes of realistic
traffic [2, 5]. These tools usually rely on generic hardware
components that, depending on the vendor and model, can
vary in their behavior; therefore, the output traffic might be
inaccurate. For example, generic Network Interface Cards
(NICs) usually provide little or no guarantees on the exact
packet injection times. As a result, the actual traffic pattern
depends on the NIC model and, depending on what model
is used, significant differences in the generated traffic can be
observed [1, 3].

Researchers at Stanford University have developed a packet
generator that is capable of generating more precise traf-
fic [6] (hereafter referred to as SPG), addressing the prob-
lems described above. The Stanford system is based on
NetFPGA, a PCI-based programmable board containing an

FPGA, four gigabit Ethernet ports, and memory. The SPG
system generates more accurate traffic by precisely repli-
cating the transmission times recorded in a pcap trace file,
similar to the operation of the tcpreplay software program;
this method eliminates the dependence between the gener-
ated traffic and the NIC model.

While the traffic that SPG generates is more realistic than
many prior approaches, it has several limitations. Because
the trace files are based on past measurements, the closed-
loop feedback for TCP sources (and any other protocol that
depends on the feedback from the system) is not accurately
captured. Furthermore, replaying a prerecorded trace on a
link with different properties (such as capacity and buffer
size) does not necessarily result in realistic traffic. Finally,
SPG can only (i) replay the exact packet inter-arrival times
provided by the trace file, or (ii) produce fixed inter-arrival
times between packets (i.e., ignoring the variation of packet
timings from the original trace).

In this paper, we introduce Precise Traffic Generator (PTG),
a NetFPGA-based packet generator with highly-accurate
packet injection times that can be easily integrated with
various software-based traffic generation tools. PTG has
the same accuracy level as SPG, but provides two key ad-
ditional features that make it useful in a larger variety of
network experiments: (i) packets in PTG are created dy-
namically and thus it can model the closed-loop behavior of
TCP and other protocols; (ii) PTG provides the ability to
follow a realistic distribution function of packet inter-arrival
times such as the probability distributed functions presented
by Katabi et al. [7]1.

PTG is built on NetThreads [8], a platform for developing
packet processing applications on FPGA-based devices and
the NetFPGA in particular. NetThreads is primarily com-
posed of FPGA-based multithreaded processors, providing
a familiar yet flexible environment for software developers:
programs are written in C, and existing applications can be
ported to the platform. In contrast with a PC or NIC-based
solution, NetThreads is similar to a custom hardware solu-
tion because it allows the programmer to specify accurate
timing requirements.

2. PRECISE TRAFFIC GENERATOR
In this section we present PTG, a tool which can precisely
control the inter-transmission times of generated packets. To
avoid implementing a packet generator in low-level hardware-
description language (how FPGAs are normally programmed),
we use NetThreads instead. We generate packets on the host
computer and send them to the NetFPGA over the PCI bus.
NetThreads provides eight threads that prepare and trans-
mit packets. This configuration is particularly well-suited
for packet generation: (i) the load of the threads’ execu-
tion is isolated from the load on the host processor, (ii) the
threads suffer no operating system overheads, (iii) they can
receive and process packets in parallel, and (iv) they have
access to a high-resolution system clock (much higher than
that of the host clock).

1Here, we assume the distribution of different flows and the
packet injection times are known a priori, and our goal is
to generate traffic that is as close as possible to the given
distribution.

In our traffic generator, packets are sent out of a single
Ethernet port of the NetFPGA, and can have any speci-
fied sequence of inter-transmission times and valid Ethernet
frame sizes (64-1518 bytes). PTG’s main objective is to pre-
cisely control the transmission times of packets which are
created in the host computer, continually streamed to the
NetFPGA, and transmitted on the wire. Streaming pack-
ets is important because it implies the generator can im-
mediately change the traffic in response to feedback. By
not requiring separate load and send phases for packets, the
PTG can support closed-loop traffic. PTG can easily be
integrated with existing traffic generators to improve their
accuracy at small time scales.

Let us start by going through the life cycle of a packet
through the system, from creation to transmission. First
a userspace process or kernel module on the host computer
decides a packet should be sent at a particular time. A
description of the packet, containing the transmission time
and all the information necessary to assemble the packet
is sent to the NetFPGA driver. In the driver, multiple
packet descriptions are combined together and copied to
the NetFPGA. Combining descriptions reduces the number
of separate transfers required and is necessary for sending
packets at the line rate of 1Gb/s. From there, the packet
descriptions are each given to a single thread. Each thread
assembles its packet in the NetThreads’ output memory.
Next, another thread sends all of the prepared packets in
the correct order at the requested transmission times. Fi-
nally, the hardware pipeline of the NetFPGA transmits the
packets onto the wire.

In the rest of this section we explain each stage of a packet’s
journey through the PTG in greater detail. We also describe
the underlying limitations which influence the design.

Packet Creation to Driver: The reasons for and context
of packet creation are application-specific. To produce re-
alistic traffic, we envision a network simulator will decide
when to send each packet. This simulation may be running
in either a userspace process, like ns-2 [9], or a Linux ker-
nel module, as in ModelNet [10]. To easily allow either ap-
proach, we send packets to the NetFPGA driver using Linux
NetLink sockets, which allow arbitrary messages to be sent
and received from either userspace or the kernel. In our tests
and evaluation, we create the packets in a userspace process.

At this stage, the messages sent to the NetFPGA driver
do not contain the entire packet as it will appear on the
wire. Instead, packets are represented by minimal descrip-
tions which contain the size of the packet and enough infor-
mation to build the packet headers. Optionally, the descrip-
tions can also include a portion of the packet payload. The
parts of the payload that are not set will be zeroes when the
packet is eventually transmitted. In Section 4, we mention a
work-around that may be useful when the contents of packet
payloads are important to an experiment.

Driver to NetThreads: We modified the driver provided
with NetFPGA to support the PTG. Its main task is to copy
the packet descriptions to the NetFPGA card using DMA
over the PCI bus. It also assembles the packet headers and
computes checksums.

Sending packets to the NetFPGA over the PCI bus intro-
duces some challenges. It is a 33MHz 32-bit bus with a top
theoretical transfer rate of 1056 Mb/s, but there are signif-
icant overheads even in a computer where the bus is not
shared. Most importantly, the number of DMA transfers
between the driver and NetFPGA is limited such that the
total throughput is only 260Mb/s when individually trans-
ferring 1518 byte packets. Limitations within the NetFPGA
hardware pipeline mean we cannot increase the size of DMA
transfers to the NetFPGA enough to reach 1 Gb/s. Instead
we settle for sending less than 1 Gb/s across the PCI bus
and rebuilding the packets inside the NetFPGA. Currently,
the packet payloads are simply zeroed, which is sufficient
both for our evaluation and for many of the tests we are
interested in performing with the PTG.

To obtain the desired throughput, the driver combines the
headers of multiple packets and copies them to the NetFPGA
in a single DMA transfer. Next, the NetFPGA hardware
pipeline stores them into one of the ten slots in the input
memory of the NetThreads system. If there is no empty
slot in the memory then the pipeline will stall, which would
quickly lead to dropped packets in the input queue of the
NetFPGA. To avoid this scenario, the software running on
the NetThreads platform sends messages to the driver con-
taining the number of packets that it has processed. This
feedback allows the driver to throttle itself and to avoid over-
running the buffers in the NetFPGA.

NetThreads to Wire: The PTG runs as software on the
NetThreads platform inside the NetFPGA. The driver sends
its messages containing the headers of multiple packets and
their corresponding transmission times, and the PTG needs
to prepare these packets for transmission and send them at
the appropriate times.

To achieve high throughput in NetThreads, it is important
to maximize parallelism and use all eight threads provided
by NetThreads. In the PTG, one thread is the sending
thread. By sending all packets from a single thread we can
ensure packets are not reordered and can easily control their
transmission time. Each of the other seven threads contin-
ually pop a job from a work queue, performs the job and
returns to the queue for another job. There are currently
two types of jobs: 1) receive and parse a message from the
driver and schedule further jobs to prepare each packet, and
2) prepare a packet by copying its header to the output
memory and notifying the sending thread when complete.

When preparing outgoing packets, most of the work per-
formed by the threads involves copying data from the input
memory to the output memory. As described in [8], the
buses to the input and output memories are arbitrated be-
tween both processors. For example, in a single clock cycle
only one of the processors can read from the input memory.
Similarly only one processor can write to the output memory
in a given cycle. Fortunately, these details are hidden from
the software, and the instructions squashed by an arbiter will
be retried without impacting the other threads [11]. At first,
it may appear that only one processor can effectively copy
packet headers from the input memory to the output mem-
ory at any given time. However, the instructions that im-
plement the memcpy function contain alternating loads and

stores. Each 32-bit value must be loaded from the input
memory into a register and then stored from the register
into the output memory. Therefore, if two threads are copy-
ing packet headers, their load and store instructions will
naturally interleave, allowing both threads to make forward
progress.

3. EVALUATION
In this section we evaluate the performance of PTG by fo-
cussing on its accuracy and flexibility and also present mea-
surements of an existing network emulator which clearly
demonstrate the need that PTG fulfills. By contrast, previ-
ous works presenting traffic generators usually evaluate the
realism of the resulting traffic [2,12]. While their evaluations
present large test runs and often attempt to replicate the
high-level properties seen in an existing network trace, our
evaluation of PTG reflects its intended use; PTG is meant
to complement existing traffic generators by allowing them
to precisely control when packets are transmitted. Thus, we
present relatively simple experiments where the most impor-
tant metric is the accuracy of packet transmission times.

We perform our evaluations using Dell Power Edge 2950
servers running Debian GNU/Linux 5.0.1 (codename Lenny)
each with an Intel Pro/1000 Dual-port Gigabit network card
and a NetFPGA. In each test, there is a single server sending
packets and a single server receiving packets and measur-
ing their inter-arrival times. In the experiment described in
Section 3.2, there is an additional server running a software
network emulator which routes packets between the sender
and receiver. The servers’ network interfaces are directly
connected – there are no intermediate switches or routers.

Since PTG’s main goal is to transmit packets exactly when
requested, the measurement accuracy is vital to the eval-
uation. As we discussed before, measuring arrival times
in software using tcpdump or similar applications is impre-
cise; generic NICs combined with packet dumping software
are intrinsically inaccurate at the level we are interested in.
Therefore, we use a NetFPGA as the NIC to measure packet
inter-arrival times at the receivers. Those receiving NetFP-
GAs are configured with the“event capturing module”of the
NetFPGA router design [1] which provides timestamps of
certain events, including when packets arrive at the router’s
output queues. To increase the accuracy of the timestamps,
we removed two parts of the router pipeline that could add
a variable delay to packets before they reach the output
queues. This simplification is possible because we are only
interested in measuring packets that arrive at a particular
port and the routing logic is unnecessary. The timestamps
are generated in hardware from the NetFPGA’s clock and
have a granularity of 8ns. We record these timestamps and
subtract successive timestamps to obtain the packet inter-
arrival times.

3.1 Sending Packets at Fixed Intervals
The simplest test case for the PTG is to generate pack-
ets with a fixed inter-transmission time. Comparing the
requested inter-transmission time with the observed inter-
arrival times demonstrates PTG’s degree of precision.

As explained in Section 2, PTG is implemented as software
running on what has previously been a hardware-only net-

work device, the NetFPGA. Even executing software, Net-
Threads should provide sufficient performance and control
for precise packet generation. To evaluate this, we compare
PTG’s transmission times against those of SPG, which is
implemented on the NetFPGA directly in hardware.

Requested
Inter-arrival PTG mean error SPG mean error

(ns) (ns) (ns)

1000000 8.57 8.46
500000 4.41 5.12
250000 3.89 3.27
100000 3.87 1.49
50000 1.87 0.77
25000 1.04 0.42
20000 0.82 0.35
15000 0.62 0.35
13000 0.54 0.27

Table 1: Comparing the mean error in ns between
the Precise Traffic Generator (PTG) and Stanford’s
packet generator (SPG)

Table 1 shows the mean absolute error between the observed
inter-arrival times and the requested inter-transmission times
for various requested intervals. For each interval, we trans-
mit 100000 packets of size 1518 bytes with both PTG and
SPG. For inter-transmission times less than 50µs, the aver-
age absolute error is less than 2ns for both packet generators.
Note that clock period of 1000BASE-T gigabit Ethernet is
8ns, so an average error of 2ns implies most of the inter-
transmission times are exactly as requested. This shows
that even though NetThreads is executing software, it still
allows precise control of when packets are transmitted.

Although both packet generators are of similar accuracy,
SPG has a limitation that makes it unsuitable for the role
we intend for the PTG. The packets sent by SPG must first
be loaded onto the NetFPGA as a pcap file before they can
be transmitted. This two-stage process means that SPG
can only replay relatively short traces that have been pre-
viously captured2. Although it can optionally replay the
same short trace multiple times to generate many packets,
it can not continually be instructed to send packets by a
software packet generator or network emulator using a se-
ries of departure times that are not known a priori. PTG,
on the other hand, can be used to improve the precision of
packet transmissions sent by any existing packet generation
software.

3.2 Accuracy of Software Network Emulators
The goal of network emulators is to allow arbitrary networks
to be emulated inside a single machine or using a small num-
ber of machines. Each packet’s departure time is calculated
based on the packet’s path through the emulated network
topology and on interactions with other packets. The result
of this process is an ordered list of packets and corresponding
departure times. How close the actual transmission times

2The largest memory on the board is 64MB which is only
about 0.5 seconds of traffic at the 1 Gb/s line rate.

are to these ideal departure times is critical for the precision
of the network emulator.

Existing software network emulators have been built on Linux
and FreeBSD [10, 13, 14]. To minimize overhead, all three
process packets in the kernel and use a timer or interrupt
firing at a fixed interval to schedule packet transmissions.
They effectively divide time into fixed-size buckets, and all
packets scheduled to depart in a particular bucket are col-
lected and sent at the same time. Clearly, the bucket size
controls the scheduling granularity; i.e., packets in the same
bucket will essentially be sent back-to-back.

 0

 0.2

 0.4

 0.6

 0.8

 1

T 0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Observed Inter-arrival Time (µs)

Empirical CDF

PTG
NIST Net

Figure 1: Effect of NIST Net adding delay to packets
sent 70 µs apart. T = 12.304µs is the time it takes to
transmit a single 1518-byte packet at 1 Gb/s: pack-
ets with that inter-arrival are effectively received
back-to-back.

 0

 0.2

 0.4

 0.6

 0.8

 1

 450 500 550 600 650 700 750 800

P
er

ce
nt

ag
e

Observed Inter-arrival Time (µs)

Empirical CDF

PTG
NIST Net

Figure 2: Effect of NIST Net adding delay to packets
sent 640 µs apart.

To quantify the scheduling granularity problem, we focus
on the transmission times generated by NIST Net [13], a
representative network emulator. Here, we generate UDP
packets with 1472 byte payloads at a fixed arrival rate us-
ing the PTG. The packets are received by a server run-

 0

 0.2

 0.4

 0.6

 0.8

 1

 450 500 550 600 650 700 750 800

P
er

ce
nt

ag
e

Observed Inter-arrival Time (µs)

Empirical CDF

PTG
NIST Net

Figure 3: Effect of NIST Net adding delay to packets
sent 700 µs apart.

ning NIST Net, pass through the emulated network, and
are routed to a third server which measures the resulting
packet inter-arrival times. NIST Net is configured to add
100ms of delay to each packet. Although adding a delay to
every packet is a simple application of a network emulator,
by varying the input packet inter-arrival times, NIST Net’s
scheduler inaccuracy is clearly visible.

Figure 1 is a CDF of the measured intervals between packet
arrivals in NIST Net’s input and output traffic. To measure
the arrival times of the input traffic we temporarily connect
the generating server directly to the measuring server. Here
a packet is sent by the PTG to NIST Net, and thus should
depart from NIST Net, every 70µs. This interval is smaller
than the fixed timer interval used by NIST Net, which has a
period of 122µs [13], so NIST Net will either send the packet
immediately or in the next timer interval. Consequently, in
Figure 1, 40% of the packets are received back-to-back if we
consider that it takes just over 12µs to transmit a packet
of the given size on the wire (the transmission time of a
single packet is marked with a “T” on the x-axis). Very few
packets actually depart close to the correct 70µs interval
between them. Most of the remaining intervals are between
100µs and 140µs.

Even when the interval between arriving packets is larger
than NIST Net’s bucket size, the actual packet transmission
times are still incorrect. Figures 2 and 3 show the measured
arrival intervals for 640µs and 700µs arrivals, respectively.
Note that in both figures, most of the intervals are actually
either 610µs or 732µs, which are multiples of NIST Net’s
122µs bucket size. It is only possible for NIST Net to send
packets either back-to-back or with intervals that are mul-
tiples of 122µs. When we vary the inter-arrival time of the
input traffic between 610µs and 732µs, it only varies the
proportion of the output intervals that are either 610µs or
732µs.

The cause of the observed inaccuracies is not specific to
NIST Net’s implementation of a network emulator. Any
software that uses a fixed-size time interval to schedule packet

transmissions will suffer similar failures at small time scales,
and the generated traffic will not be suitable for experiments
that are sensitive to the exact inter-arrival times of packets.
The exact numbers will differ, depending on the length of
the fixed interval. To our knowledge, Modelnet [10] is the
software network emulator providing the finest scheduling
granularity of 100µs with a 10KHz timer. Although higher
resolution timers exist in Linux that can schedule a single
packet transmission relatively accurately, the combined in-
terrupt and CPU load of setting timers for every packet
transmission would overload the system. Therefore, our con-
clusion is that an all-software network emulator executing
on a general-purpose operating system requires additional
hardware support (such as the one we propose) to produce
realistic traffic at very small time scales.

3.3 Variable Packet Inter-arrival Times
Another advantage of PTG is its ability to generate packets
with an arbitrary sequence of inter-arrival times and sizes.
For example, Figure 4 shows the CDFs of both the requested
and the measured transmission times for an experiment with
4000 packets with inter-arrival times following a Pareto dis-
tribution. Interestingly, only a single curve is visible in the
figure since the two curves match entirely (for clarity we
add crosses to the figure at intervals along the input distri-
bution’s curve). This property of PTG is exactly the com-
ponent that the network emulators mentioned in Section 3.2
need. It can take a list of packets and transmission times
and send the packets when requested. The crucial differ-
ence between PTG and SPG is that SPG has a separate
load phase and could not be used by the network emulators.

As another example, Figure 5 shows the CDFs of the re-
quested and the measured transmission times when the re-
quested inter-arrival of packets follows the spike bump pat-
tern probability density function observed in the study on
packet inter-arrival times in the Internet by Katabi et al. [7].
Here 10000 packets are sent with packet sizes chosen from a
simple distribution: 50% are 1518 bytes, 10% are 612 bytes,
and 40% are 64 bytes. Note that, again, PTG generates
the traffic exactly as expected and hence only one curve is
visible.

4. DISCUSSION
In this section, we describe the limitations of PTG’s current
implementation. As PTG is intended to be integrated into
existing traffic generators and network emulators, we also
briefly describe a prototype we are developing that allows
packets from the popular network simulator ns-2 [9] to be
sent on a real network using PTG.

Limitations: The limitations of the PTG stem from copy-
ing packets between the host computer and the NetFPGA
over the 32 bit, 33 MHz PCI bus, which has a bandwidth of
approximately 1Gb/s. As explained in Section 2, the pay-
loads of packets sent by the PTG are usually all zeros, which
requires sending only the packet headers over the PCI bus.
This is sufficient for network experiments that do not in-
volve packet payloads. A larger body of experiments ignore
most of the packet payloads except for a minimal amount
of application-layer signaling between sender and receiver.
To support this, arbitrary custom data can be added to the
start of any packet payload. This additional data is copied

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Inter-arrival Time (µs)

Empirical CDF

Input
Output

Figure 4: CDF of measured inter-arrival times com-
pared with an input pareto distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 4000 6000 8000 10000 12000 14000

P
er

ce
nt

ag
e

Inter-arrival Time (µs)

Empirical CDF

Input
Output

Figure 5: CDF of measured inter-arrival times com-
pared with an input distribution.

to the NetFPGA card and is included in the packet. In the
future, we plan to allow a number of predefined packet pay-
loads to be copied to the NetFPGA in a preprocessing phase.
These payloads could then be attached to outgoing packets
without the need to repeatedly copy them over the PCI bus.
We envision this feature would support many experiments
where multiple flows send packets with the same or similar
payloads.

The current PTG software implementation does not yet han-
dle received packets from the network. For experiments with
a high traffic volume, it would not be possible to transfer all
of the received packet payloads from the 4 Gigabit Ethernet
ports of the NetFPGA to the host computer over the PCI
bus. Only a fraction of the packets could be transfered or
the packets could be summarized by the NetFPGA.

Integration with ns-2: Because many researchers are al-
ready familiar with ns-2, this is a useful tool to test real net-

work devices together with simulated networks. Compared
to previous attempts to connect ns-2 to a real network [15],
the integration of PTG with ns-2 will enable generating real
packets with transmission times that match the ns-2 simu-
lated times even on very small time scales. For example, a
particular link in ns-2’s simulated network could be mapped
to a link on a physical network and when simulated packets
would arrive at this link, they would be given to the PTG
to be transmitted based on the requested simulated time.

5. CONCLUSION
Generating realistic traffic in network testbeds is challeng-
ing yet crucial for performing valid experiments. Software
network emulators schedule packet transmission times in
software, hence incurring unavoidable inaccuracy for inter-
transmission intervals in the sub-millisecond range. Thus,
they are insufficient for experiments sensitive to the inter-
arrival times of packets. In this paper we present NetFPGA-
based Precise Traffic Generator (PTG) built on top of the
NetThreads platform. NetThreads allows network devices
to be quickly developed for the NetFPGA card in software
while still taking advantage of the hardware’s low-level tim-
ing guarantees. The PTG allows packets generated on the
host computer to be sent with extremely accurate inter-
transmission times and it is designed to integrate with ex-
isting software traffic generators and network emulators. A
network emulator that uses PTG to transmit packets can
generate traffic that is realistic at all time scales, allowing
researchers to perform experiments that were previously in-
feasible.

Acknowledgments
This work was supported by NSERC Discovery, NSERC RTI
as well as a grant from Cisco Systems.

6. REFERENCES
[1] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown,

and G. Salmon, “Experimental study of router buffer
sizing,” in IMC’08: Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, 2008.

[2] K. V. Vishwanath and A. Vahdat, “Realistic and
responsive network traffic generation,” in
SIGCOMM’06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols
for computer communications, 2006.

[3] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown,
J. Naous, and G. Salmon, “Performing time-sensitive
network experiments,” in ANCS’08: Proceedings of the
4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, 2008.

[4] R. Prasad, C. Dovrolis, and M. Thottan., “Evaluation
of Avalanche traffic generator,” 2007.

[5] A. Rupp, H. Dreger, A. Feldmann, and R. Sommer,
“Packet trace manipulation framework for test labs,”
in IMC’04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, 2004.

[6] G. A. Covington, G. Gibb, J. Lockwood, and
N. McKeown, “A packet generator on the NetFPGA
platform,” in FCCM’09: Proceedings of the 17th
annual IEEE symposium on field-programmable
custom computing machines, 2009.

[7] D. Katabi and C. Blake, “Inferring congestion sharing
and path characteristics from packet interarrival
times,” Tech. Rep., 2001.

[8] M. Labrecque, J. G. Steffan, G. Salmon, M. Ghobadi,
and Y. Ganjali, “NetThreads: Programming
NetFPGA with threaded software,” in NetFPGA
Developers Workshop’09, submitted.

[9] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker, “Scalability and
accuracy in a large-scale network emulator,” SIGOPS
Operating Systems Review archive, vol. 36, no. SI, pp.
271–284, 2002.

[11] M. Labrecque, P. Yiannacouras, and J. G. Steffan,
“Scaling soft processor systems,” in FCCM’08:

Proceedings of the 16th annual IEEE symposium on
field-programmable custom computing machines, April
2008.

[12] J. Sommers and P. Barford, “Self-configuring network
traffic generation,” in IMC’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet
measurement, 2004.

[13] M. Carson and D. Santay, “NIST Net: a Linux-based
network emulation tool,” SIGCOMM Computer
Communication Review, vol. 33, no. 3, pp. 111–126,
2003.

[14] Dummynet.
http://info.iet.unipi.it/ luigi/ip dummynet/.

[15] “Network emulation in the Vint/NS simulator,” in
ISCC’99: Proceedings of the The 4th IEEE Symposium
on Computers and Communications, 1999, p. 244.

