
Improving Cache Locality for

Thread-Level Speculation Systems

by

Stanley Lap Chiu Fung

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

c© Copyright by Stanley Lap Chiu Fung, 2005

Stanley Lap Chiu Fung

Master of Applied Science, 2005

Graduate Department of Electrical and Computer Engineering

University of Toronto

Abstract

With the advent of chip-multiprocessors (CMPs), Thread-Level Speculation (TLS) remains a

promising technique for exploiting this highly multithreaded hardware to improve the perfor-

mance of an individual program. However, with such speculatively-parallel execution the cache

locality once enjoyed by the original uniprocessor execution is significantly disrupted: for TLS

execution on a four-processor CMP, we find that the data-cache miss rates are nearly four-times

those of the uniprocessor case, even though TLS execution utilizes four private data caches.

We break down the TLS cache locality problem into instruction and data cache, execution

stages, and parallel access patterns, and propose methods to improve cache locality in each of

these areas. We find that for parallel regions across 13 SPECint applications our simple and

low-cost techniques reduce data-cache misses by 38.2%, improve performance by 12.8%, and

significantly improve scalability—further enhancing the feasibility of TLS as a way to capitalize

on future CMPs.

ii

Acknowledgements

First and foremost, I would like to extend my thanks to my supervisor,

Greg Steffan, for providing the guidance and support I so much needed

in pursuit of this degree. His thoughtful and insightful feedback has

improved the quality of my research and my writing. These two years

in graduate school have been a wonderful learning experience. I would

also like to thank Cristiana Amza, Andreas Moshovos and Lacra Pavel

for being on my thesis committee.

My family has been a continual support throughout the years and

deserve most of the credit. My parents and my sister Joyce have

always been encouraging over the phone and internet. I thank Stella

for her constant understanding and love.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Thread Level Speculation Basics . 2

1.2 The TLS Cache Locality Problem . 4

1.3 Research Goals . 6

1.4 Overview . 6

2 Thread Level Speculation 8

2.1 Software Only Approaches . 8

2.1.1 The LRPD Test . 9

2.2 Hardware Only Approaches . 10

2.2.1 The Speculative Multithreaded Processor 10

2.2.2 The Dynamic Multithreading Processor 11

2.3 Hybrid Approaches . 12

2.3.1 The Multiscalar Architecture . 12

2.3.2 The Hydra Chip-Multiprocessor . 13

2.3.3 The Stampede Approach . 14

iv

3 Experimental Framework 18

3.1 The STAMPede TLS Compiler . 18

3.2 Simulation Environment . 19

3.3 Benchmark Applications . 21

3.4 Summary . 23

4 The TLS Cache Locality Problem:

A Closer Look 24

4.1 Related Work . 24

4.2 Evidence of Disrupted Locality . 29

4.3 Breakdown of the Cache Locality Problem . 31

4.4 Private Cache and Shared-Cache Architectures 32

4.5 Execution Stages . 33

4.6 Data and Instruction Cache . 36

4.7 Data Cache Miss Patterns in Parallel Regions 37

4.8 Summary . 44

5 Techniques for Improving TLS Cache Locality 45

5.1 Scheduling the Sequential Region . 45

5.2 Exploiting Read-Based Sharing Patterns . 48

5.2.1 Broadcasting for all Load Misses . 49

5.2.2 Throttling Broadcast . 51

5.3 Exploiting Write-Based Sharing Patterns . 53

5.4 Exploiting Strided Miss Patterns . 60

5.5 Summary . 62

6 Combining the Techniques 64

v

6.1 Performance Impact of Combining all Techniques 64

6.2 Impact of Re-selecting Parallel Regions . 70

6.3 Impact on Scalability . 71

7 Conclusions 74

7.1 Contributions . 74

7.2 Future Work . 76

Bibliography 78

vi

List of Figures

1.1 TLS program execution, when the original sequential program (S) is divided into

two epochs (E1 and E2). 2

1.2 Example of broken locality in the speculative execution of the iterations of a

simple for-loop. 5

2.1 Using cache coherence to detect a RAW dependence violation. 15

4.1 The TLS cache locality problem: (a) comparing data cache miss rates for the

original sequential execution and the speculatively-parallel TLS execution; (b)

the fraction of data cache misses during parallel regions where the missing cache

line is currently resident in another processor’s data cache (we call these locality

misses). 30

4.2 Our investigation of the cache locality problem. 31

4.3 Private and shared cache CMP architectures . 32

4.4 Execution stages exhibited by a TLS program. 34

4.5 Impact of duplicating the entire sequential data cache to all private caches at the

beginning of parallel regions. 35

4.6 The impact of ideal instruction and data caches where misses have no latency on

TLS execution. I is the ideal instruction cache model; D is the ideal data cache

model; I/D is both the ideal instruction and data cache model. 37

vii

4.7 Read-based sharing misses:: full-broadcast involves reads to the same cache line

from all four processors, while partial-broadcast only requires two or three proces-

sors to read the same data. 39

4.8 Write-based sharing misses: producer-consumer involves a producer processor

that writes a data, followed by one or more consumer processors read the same

data. Multiple processors writing to the same cache line are considered to be

migratory pattern. These two patterns are the most common ones in write-based

sharing, while there are other cases. 39

4.9 Strided pattern that occurs over different processors. 40

4.10 Other access patterns: when there is no other access from any processor to the

same cache line within the window, we consider those misses as random accesses;

same dcache accesses are consecutive misses to the same cache line from the same

processor, these are mainly conflict misses. 40

4.11 Miss pattern breakdown averaged across all benchmarks with varies window size

(1000 - 16000 cycles). 41

4.12 Data cache miss patterns within parallel regions. 42

5.1 TLS execution with a floating and fixed sequential processor. In (a), the processor

which executed the last speculative thread of the parallel region goes on to execute

the sequential region. In (b), one processor (P0) is elected to execute all sequential

regions. 46

5.2 Performance impact of a fixed sequential processor relative to floating. 47

5.3 Impact of broadcasting all load misses on parallel regions. 50

5.4 Impact of throttling broadcasting with profiling on parallel regions, relative to

the full broadcast scheme. 52

viii

5.5 A mechanism for detecting cache lines involved in write-based sharing, and ag-

gressively invalidating and forwarding them to the next cache. Each processor

maintains a recent store table, push required buffer, and an invalidation PC list. . 54

5.6 Impact of our technique for exploiting write-based sharing patterns on parallel

regions. 56

5.7 Performance impact of varying the size of the recent store table, invalidation PC

list and push required buffer from 4 to 32 entries with a bus interconnect. 58

5.8 Impact of stride-based prefetching on parallel regions. 61

6.1 Impact on the number of data cache misses within parallel regions of combining

the three techniques, relative to the baseline model: exploiting read-based sharing

(RB), write-based sharing (WB), and strided prefetching (ST). 65

6.2 Impact on the performance of parallel regions of combining the three techniques,

relative to the baseline model: exploiting read-based sharing (RB), write-based

sharing (WB), and strided prefetching (ST). 66

6.3 Summary of all our techniques, showing average program speedup of 13 SpecInt

benchmarks relative to sequential execution. Float shows the performance of a

“floating” sequential processor, Baseline includes a fixed sequential processor, RB

exploits read-based sharing, WB exploits write-based sharing, and ST performs

strided prefetching. 67

6.4 Impact on data cache misses of all our techniques within parallel regions, showing

number of misses relative to the baseline. Baseline includes a fixed sequential

processor, RB exploits read-based sharing, WB exploits write-based sharing, and

ST performs strided prefetching. 68

ix

6.5 Impact of re-selecting parallel regions after applying our techniques with a bus

interconnect, showing program speedup relative to the sequential execution: B

is the baseline, B/RW implements both broadcast all load misses and aggressive

writeback techniques, and R/RW reselects parallel regions after applying those

techniques. 71

6.6 Impact of our techniques for improved locality on the scalability of parallel re-

gions, as we vary the number of processors from 2 to 8. The improvement is most

pronounced for bzip2 comp and vpr place, but is also significant on average

across all benchmarks. 72

x

List of Tables

3.1 Simulation parameters. 20

3.2 Benchmark descriptions and inputs used. 22

3.3 Benchmark statistics (based on a 4-processor CMP with baseline TLS support). 23

xi

Chapter 1

Introduction

The chip multiprocessor revolution has begun: all major processor vendors have announced

chip multiprocessor (CMP) designs, including Intel’s “Smithfield” (dual-core Pentium IV’s),

AMD’s Opteron (dual-core), IBM’s Power 4/5 (dual-core), and Sun Microsystems’ Niagara (8

cores). While it is relatively straightforward to improve the throughput of a workload using these

CMPs, to improve the performance of an individual program it must somehow be parallelized

into threads. Parallelizing a program can be done either by hand or by using a parallelizing

compiler. Doing it by hand is tedious and is prone to errors. It is also difficult for a parallelizing

compiler to parallelize a general purpose program due to ambiguous memory pointers and possi-

ble data dependences. One promising possibility for automatically-parallelizing general-purpose

programs is Thread-Level Speculation (TLS) [2, 3, 6, 12, 17, 18, 25, 29, 33, 35–38, 41] which allows

the compiler to create parallel threads even in the presence of ambiguous memory references,

relying on the underlying hardware support to detect dependence violations and recover from

failed speculation.

1

1.1. Thread Level Speculation Basics 2

tim
e

... = *q ... = *q

*p = ...

(b) Successful
 TLS execution
 (p != q)

... = *q

E2E1 E2E1

... = *q

*p = ...

(a) Sequential execution
 TLS execution
 (p == q)

(c) Failed

*p = ...

S

and
redo

recover

Figure 1.1: TLS program execution, when the original sequential program (S) is divided into
two epochs (E1 and E2).

1.1 Thread Level Speculation Basics

Thread-Level Speculation (TLS) allows the compiler to automatically parallelize general-purpose

programs by supporting parallel execution of threads, even in the presence of statically ambigu-

ous data dependences. The underlying hardware ensures that speculative threads do not violate

any dynamic data dependence and buffers the speculative data until it is safe to be committed.

When a dependence violation occurs, all the speculative data will be invalidated and the violated

threads will be re-executed with correct data. Figure 1.1 demonstrates a simple TLS example.

The sequential program, S in Figure 1.1(a), is carved into two chunks of work, labeled as E1 and

E2 in Figure 1.1(b) and (c). They are then executed speculatively in parallel, even though the

addresses of the pointers p and q are not known until runtime. Hence, TLS allows us to extract

any potentially available thread-level parallelism.

1.1. Thread Level Speculation Basics 3

A read-after-write (true) data dependence happens when p and q both point to the same

memory location. Since the store produces data that will be read by the dependent load, these

store and load instructions need to be executed in the original sequential program order. In

Figure 1.1(b), p and q do not point to the same location. Speculation is successful and both

speculative threads can commit their results at the end of execution. However, as shown in

Figure 1.1(c), when both pointers point to the same location, a true data dependence between

the two speculative threads is detected. Speculation fails because it leads to an out-of-order ex-

ecution of the dependent load-store, which violates the sequential program order. The offending

thread is then violated and re-executed with proper data.

There are various proposed thread-level speculation systems that aim at exploiting thread-

level parallelism in sequential programs by using parallel speculative threads. Among all different

types of thread-level speculation systems that have been proposed, there are three common key

components: (i) breaking sequential program into speculative threads—this task has to be done

efficiently to maximize thread-level parallelism and minimize the overhead; (ii) tracking data

dependences—since the threads are executed speculatively in parallel, the system has to be able

to determine whether the speculation is successful; (iii) recovering from failed speculation—in

the case when speculation has failed, the system has to repair the incorrect architectural states

and data, and discard the speculative work. Different TLS systems have different implementa-

tions of these three components. Chapter 2 describes several previously-proposed TLS systems in

detail. In this thesis, we focus on one particular flavour of TLS: the STAMPede [37,38] approach.

1.2. The TLS Cache Locality Problem 4

1.2 The TLS Cache Locality Problem

Under TLS, a sequential application is divided into speculative threads, which are in turn ex-

ecuted on the processors of the underlying CMP. In a typical CMP, the processors will share

a unified second-level cache, but will each have private first-level data and instruction caches.

While the original sequential program would have executed on a single processor using only

one data and instruction cache, with TLS that program is divided across several processors and

will therefore use several data and instruction caches. Although the main motivation of TLS

is to allow a single program to exploit distributed resources, spreading the memory accesses

of a program across multiple caches can dramatically disrupt the cache locality enjoyed by the

original sequential execution.

Figure 1.2 shows a simple example of broken locality during parallel execution. Inside the

for loop, as shown in Figure 1.2(a), variable x loads in a new value from an array in every

iteration. Since the cache line size is 32 bytes and each array element is 8 bytes, four array

elements share the same cache line. Figure 1.2(b) shows the sequential execution of the loop.

There is only one miss every four accesses. When a miss occurs, the entire 32-byte cache line

is loaded into the cache and each line contains four array elements: the first one is used by the

current iteration and the rest are used by the next three iterations. Therefore, the next three

accesses to the array are cache hits since the array elements being accessed are already in the

cache. On the other hand, when the loop is executed in parallel on four processors, all the cache

accesses will result in misses, as shown in Figure 1.2(c). Since each processor only loads the

data into its own private data cache, the system no longer benefits from locality.

To quantify the scope of the cache locality problem for TLS, we compare the data cache miss

rate for each sequential SPECint application with that of the speculatively-parallel version on a

1.2. The TLS Cache Locality Problem 5

for (index = 0; index < N; index++){

...

}

unsigned long long array[N];

...

x = array[index];

(a) pseudo code

tim
e

load a[0] − miss
load a[1] − hit
load a[2] − hit
load a[3] − hit

P0

load a[7] − hit
load a[6] − hit
load a[5] − hit
load a[4] − miss

(b) sequential execution

load a[0]
 − miss load a[3]

 − miss
load a[2]
 − miss

load a[7]
 − miss

tim
e

P0 P2 P3P1

 − miss

load a[5]
 − miss − miss load a[6]

 − miss

load a[1]

load a[4]

(c) parallel execution

Figure 1.2: Example of broken locality in the speculative execution of the iterations of a simple
for-loop.

4-processor CMP with 32KB first-level data caches (the details of our experimental framework

are available in Chapter 3). Overall, the average data cache miss rate for the TLS versions is

nearly four times that of the original sequential versions. One metric that demonstrates the

problem is locality misses: a locality miss is a cache miss for a line that is currently resident

in another cache. Locality misses account for 61.1% of the cache misses during TLS execution,

indicating that locality has indeed been disrupted.

1.3. Research Goals 6

1.3 Research Goals

The goal of this research is to provide hardware techniques to improve cache locality and hence

performance of TLS systems. We first perform a thorough classification of the cache locality

problem for TLS. Based on this classification, we propose hardware optimizations to address

each class of locality problem. Our techniques must be both:

1) Cost-effective:—we want to minimize the amount of extra hardware and modification to

the existing hardware. We focus on techniques with low cost and avoid any optimization that

requires complex hardware support.

2) Scalable:—we want our techniques to scale well to CMPs with up to eight processors. We

focus on techniques that are distributed and do not require any centralized mechanisms.

We evaluate our techniques with detailed simulation on a wide variety of benchmark appli-

cations, and demonstrate the corresponding performance improvements of on an existing TLS

system.

1.4 Overview

The remainder of this dissertation is organized as follows. In Chapter 3 we describe the under-

lying support for TLS on which we base our evaluation, including benchmark applications and

simulation infrastructure. In Chapter 4 we classify the TLS execution stages and the resulting

cache locality problems, and identify the most important categories of cache misses to address.

Guided by this classification, in Chapter 5.1 we investigate options for scheduling the stages of

execution, and in Chapters 5.2, 5.3, and 5.4 we evaluate techniques for exploiting read-only and

write-based sharing patterns, and strided miss patterns respectively. In Chapter 6 we quantify

1.4. Overview 7

the impact of the combination of all techniques, demonstrate the importance of reselecting par-

allel regions, and show the impact on scalability. Finally we conclude in Chapter 7.

Chapter 2

Thread Level Speculation

This chapter presents the background material and related work in the area of thread-level spec-

ulation that is necessary for the rest of the dissertation. Speculative thread-level parallelism

has recently been proposed to boost performance in addition to instruction-level parallelism.

Thread-level speculation has significant potential in speeding up applications where indepen-

dent threads are difficult to find. The main idea is to split the sequential program into threads,

which are then executed speculatively in parallel. Data dependences among speculative threads

are checked at runtime, and when speculation fails the system recovers and re-executes the vio-

lated speculative work. There are many different TLS systems that have been proposed. Based

on their implementations, we group them into three categories: software-only, hardware-only

and hybrids that use both hardware and software.

2.1 Software Only Approaches

Most of the early work on software-only speculation [23, 34] involves a combination of compile-

time and runtime parallelization on loops that iterate over arrays. The main advantage is

8

2.1. Software Only Approaches 9

that these approaches do not require extra hardware beyond generic multiprocessor support.

However, most of the software approaches are limited to arrays and have very large overhead.

Since we are concerned with improving TLS for hardware-based approaches, here we only briefly

describe one of the earliest works on software speculation.

2.1.1 The LRPD Test

Rauchwerger el al [34] proposed a complete software approach for speculatively parallelizing

loops in the presence of ambiguous data dependences for array accesses. The target loop is

parallelized as if it were completely parallelizable. During speculative execution, shadow arrays

are used to keep track of all read and write accesses of the shared variables. These arrays

are examined at the end of the loop execution to ensure that the memory accesses of different

iterations did not overlap. When speculation fails, the entire loop is re-executed sequentially.

There are a few shortcomings to this pure software speculation scheme. First, it requires the

creation of shadow arrays for all shared data. These shadow arrays take up large amount of

storage. Second, this approach is only applicable to loops with arrays, but not applicable to

modern pointer-based applications. Third, data dependences are only checked after the entire

loop finishes execution. There is no mechanism to detect failed speculation while the loop is

running. Fourth, if the loop is not entirely parellizable, LRPD test is not able to extract partial

parallelism and the loop is re-executed sequentially. However, since this approach targets array-

based loops, traditional compiler optimizations to improve cache locality may be applicable,

although such optimizations are beyond the scope of this thesis.

2.2. Hardware Only Approaches 10

2.2 Hardware Only Approaches

Several microarchitectures [2,29,33] have been proposed for supporting thread-level speculation.

The hardware provides the mechanisms to decide where and when to create threads and ensure

program correctness. The major advantages of these approaches are: i) they have the ability

to handle pointer-based applications and; ii) programs do not need to be re-compiled to take

advantage of the hardware speculation support. However, without high-level knowledge of the

program structure, it is difficult for the hardware to find to right spot to create threads for specu-

lation. Although these hardware approaches have no software overheads, they are generally more

complex compared to approaches that exploit software, since all the optimizations and trans-

formations must be implemented in hardware, including thread selection, runtime dependence

checks and failed speculation recovery. In this section we describe two major hardware-only

TLS projects.

2.2.1 The Speculative Multithreaded Processor

Speculative Multithreaded Processor [29, 33] uses hardware to identify loops at runtime and

creates speculative threads of successive iterations of the same loop. The identified loop is not

necessarily an innermost loop and the loop iterations do not need to be independent. The

sequential program is partitioned into threads dynamically by the hardware and does not re-

quire any compiler intervention. The processor consists of several thread-units that execute

multiple iterations of the loop simultaneously. The thread-units are arranged in a ring topology

and threads are assigned to the thread-units following the original sequential execution order.

Each thread-unit has its own physical register file and register map table. When a speculative

thread is created, its local register file and register map table are copied from its predecessor.

The instruction and data caches are shared among all thread-units. Data dependences through

2.2. Hardware Only Approaches 11

memory are tracked with a multi-value cache. This centralized cache structure stores for each

address as many different data words as the number of thread-units. Misspeculation is detected

by broadcasting each store’s effective address to the succeeding threads and each thread checks

in its load/store queue for any matching load. If there is a load that matches the broadcasted

store address, the offending thread and all its dependent threads are re-executed. The cache hi-

erarchy of the Speculative Multithreaded Processor is the same as a sequential processor, where

all the speculative threads share the same set of caches. Therefore, cache locality is naturally

preserved among different threads. However, the shared-cache approach requires support for

storing multiple versions of the same cache line in the shared-cache, which involves complex

hardware and increases the latency of cache accesses.

2.2.2 The Dynamic Multithreading Processor

The Dynamic Multithreading Processor (DMT) [2] has hardware to create threads at procedure

and loop boundaries and executes the threads speculatively on a simultaneous multithreaded

pipeline. Each thread has its own PC, rename tables, trace buffer and load/store queues. The

control logic keeps a list of the thread order in the program and the start PC of each thread. A

thread stops when its PC reaches the start of the next thread in the order list. A new thread uses

the register context from its parent thread as input for speculative execution. When it retires,

the speculative register inputs are compared to the final values at the end of the prior thread.

Speculation fails if these two sets of register values are different. The load/store queues are used

to track memory data dependences; any out-of-order execution of a dependent load/store pair

results in failed speculation. Failed speculation recovery is organized using a large trace buffer

that stores all speculative instructions and data. DMT supports partial recovery: only those

threads that violated the original data dependences are re-executed, and instructions and data

2.3. Hybrid Approaches 12

in the trace buffer that are not affected by the mispredicted data are re-used. Similar to the

Speculative Multithreaded Processor, the DMT processor uses only one set of caches and hence

locality is preserved with speculative execution.

2.3 Hybrid Approaches

Hybrid TLS systems are more popular than pure software or hardware approaches, since they

can take advantage of both the compiler and hardware. Thread selection can be done easier

and better by the compiler with the knowledge of program structure. Transformation and opti-

mization can also be done by the compiler to improve parallelism, while the hardware takes care

of performance critical operations such as runtime data dependence checks and recovery from

failed speculation. This section describes three hybrid TLS system: (1) The Multiscalar—the

earliest hybrid TLS system; (2) The Hydra; (3) STAMPede—the TLS system on which this

dissertation is based.

2.3.1 The Multiscalar Architecture

In the Multiscalar architecture [14, 16, 41], the compiler is responsible for breaking up a single-

threaded program into small tasks, which might possibly have data or control dependences

between them. These small tasks are then distributed to a collection of parallel processing

units under the control of a centralized hardware sequencer. Each of these processing units

fetches and executes the assigned tasks simultaneously, exploiting thread-level parallelism. The

processing units are arranged in a ring, of which the head processing unit is executing the earliest

thread while the tail processing unit is executing the latest thread. This ring arrangement

makes tracking data dependences easier as the tasks are ordered by the processing units in the

ring. The hardware sequencer keeps track of the control flow of the program and when control

2.3. Hybrid Approaches 13

speculation fails, the violated thread and all the later speculative threads are squashed. To

support data speculation, the Multiscalar architecture includes the Address Resolution Buffer

(ARB) [13] which is used to store speculative data and to track data dependences. All memory

accesses issued by the processing units are filtered by the ARB before reaching the cache system.

The ARB buffers speculative modifications and commits them to the cache only when these

modifications become non-speculative. The ARB increases the latency for all memory accesses

and can easily become the bottleneck of the system. The Speculative Versioning Cache (SVC)

[17] is a follow-up work on the ARB. The SVC operates on distributed caches with a snooping

bus-based coherence scheme, eliminating the latency and bandwidth problems of the ARB.

However, it results in a lower cache hit-rate because data is spread across multiple private

caches. Our hardware locality techniques for improving cache locality would be applicable to

the SVC implementation of the Multiscalar as well.

2.3.2 The Hydra Chip-Multiprocessor

The speculation support on the Hydra chip multiprocessor [18, 19] is the most similar to the

Stampede approach to TLS, which we will describe in the next section. Both schemes use a

combined hardware/software approach. In the Hydra framework, the compiler marks the po-

tential parallel loops and the hardware distributes the iterations among the processor cores.

The hardware also spawns threads when there is a subroutine call. The original processor ex-

ecutes the subroutine call while another processor executes the code following the subroutine

call speculatively. To track data dependences and recover from violations, additional bits are

added to each cache line tag to record speculation states and there is a secondary cache buffer

which buffers all writes to the shared second-level cache during speculation. In the Hydra archi-

tecture each processor has its own private cache, hence data is spread among all private caches,

reducing locality. Therefore, the Hydra would also benefit from our cache locality optimizations.

2.3. Hybrid Approaches 14

2.3.3 The Stampede Approach

We describe Stampede TLS [3, 4, 37–39] in more detail since it is the foundation of this work.

Stampede TLS uses both software and hardware to perform speculation. It relies on the com-

piler to decide which part of the program to speculatively parallelize, and uses hardware support

to track data dependences and recover from failed speculation.

The STAMPede compiler divides the program into speculatively parallel units of work called

epochs and inserts special TLS instructions to tell the hardware when to execute speculatively.

During speculative execution, each epoch spawns the next epoch through a lightweight fork

mechanism. The spawn mechanism forwards initial parameters and the program counter to the

appropriate processor. To track data dependences, each epoch is timestamped with an epoch

number, which indicates the original sequential ordering of the program. Epochs can only com-

mit their result when it becomes non-speculative. The commit order is tracked by passing the

homefree token, which indicates that all previous epochs have already committed their results

to memory. After an epoch commits all its speculative modifications, it passes the homefree

token to the next epoch. Upon receiving the homefree token, an epoch becomes non-speculative

since all the earlier epochs have already completed their speculative work and committed the

results back to memory. At this point, the speculative cache lines of this non-speculative epoch

can transition to the corresponding non-speculative states and speculation is considered to be

successful for this epoch. On the other hand, when speculation fails all the speculatively modi-

fied lines are invalidated and the speculatively loaded lines transition to non-speculative states.

After the recovery is done, the violated epoch is re-executed with proper data.

2.3. Hybrid Approaches 15

Figure 2.1: Using cache coherence to detect a RAW dependence violation.

2.3. Hybrid Approaches 16

Stampede TLS does not use any special buffer for storing speculative data. Instead, both

speculative and permanently committed data are stored in the cache system and an extended

invalidation based cache coherence scheme is used to track the speculative state of the cache

lines [37]. To illustrate the basic idea behind the STAMPede hardware coherence scheme, we

show an example of how it detects a read-after-write (RAW) dependence violation in Figure 2.1.

Recall that a speculative load violates a RAW dependence if its memory location is subsequently

modified by another epoch such that the store should have preceded the load in the original

sequential program. To track speculative data, the state of each cache line is augmented to in-

dicate whether the cache line has been speculatively loaded (SL) and/or speculatively modified

(SM). For each cache, the epoch number indicates the sequential ordering of that epoch with re-

spect to all other epochs, and a flag indicates whether a data dependence violation has occurred.

In the example, epoch 6 performs a speculative load, so the corresponding cache line is marked

as speculatively loaded. Epoch 5 then stores to that same cache line, generating an invalidation

containing its epoch number. When the invalidation is received, three things must be true for

this to be a RAW dependence violation. First, the target cache line of the invalidation must be

present in the cache. Second, it must be marked as having been speculatively loaded. Third,

the epoch number associated with the invalidation must be from a logically-earlier epoch. Since

all three conditions are true in the example, a RAW dependence has been violated; epoch 6 is

notified by setting the violation flag.

To avoid failed speculation caused false sharing, the TLS hardware tracks the speculative

state for writes at a per-word level. It allows disjoint portions of a line to be read and written

speculatively by different epochs without causing speculation to fail. This scheme reduces the

number of data dependence violations due to false sharing significantly and has great impact on

performance.

2.3. Hybrid Approaches 17

More details of the simulation framework of STAMPede TLS, and the benchmarks that we

use for evaluating our locality techniques are discussed in the next Chapter.

Chapter 3

Experimental Framework

Before we investigate the cache locality problem, in this chapter we describe the infrastructure

for evaluating TLS that this work is based on, including both hardware simulation and com-

piler support. While this study is within the context of a particular TLS implementation, the

techniques that we suggest for improving cache locality are applicable to other TLS systems as

well [17, 18,38], such as discussed in Chapter 2.

3.1 The STAMPede TLS Compiler

STAMpede TLS relies on the compiler to define where to speculate. Performing this task with-

out the use of detailed profile information is an open research problem. For the evaluations in

this dissertation, the compiler uses profile information to decide which loops in a program to

speculatively parallelize.

The compiler infrastructure developed at CMU [3, 4] is based on the Stanford SUIF 1.3

compiler system. The benchmarks are first converted to SUIF format by using the SUIF C

18

3.2. Simulation Environment 19

compiler. At this stage, the TLS compiler uses profile information to decide which loops in

a program to speculatively parallelize. First, every loop in every benchmark application are

measured by instrumenting the start and end of each potential speculative region (loop) and

epoch (iteration). Second, those loops that are unlikely to contribute to improved performance

are removed from consideration. Third, each loop is unrolled by 1, 2, 4 and 8 to generate several

versions of each benchmark to measure. Then the performance of each loop and unrolling are

measured when running speculatively in parallel with the baseline hardware support for TLS.

The set of loops and unrolling that maximize overall performance of the benchmark are selected.

Once speculative regions are selected, the TLS compiler inserts TLS instructions to tell the

hardware where to speculate. Optimization for data forwarding and synchronization is also

performed at this stage [39]. The compiler identifies the computation chain of the data to be

synchronized, and uses dataflow analysis to schedule the synchronization in the earliest safe

location. Synchronization allows us to speculatively parallelize the program even though there

are known data dependences. At the end, the compiler outputs C code that has embedded TLS

instructions, and the resulting C code is then compiled with gcc to produce a MIPS executable.

3.2 Simulation Environment

We evaluate our support for TLS through detailed simulation. Our simulator models 4-way

issue, out-of-order, superscalar processors similar to the MIPS R14000 [44], but modernized to

have a 128-entry reorder buffer. We simulate systems with multiple processing cores, where

each has its own physically private data and instruction caches, connected to a unified second

level cache by either a bus or a crossbar interconnect which are modeled as follows: The bus

is shared among all processors and only one processor can use the bus at anytime. When

3.2. Simulation Environment 20

Table 3.1: Simulation parameters.

Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Interconnect 8B per cycle
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

3.3. Benchmark Applications 21

the bus is occupied, requests are queued in a buffer and are served on a first-come-first-serve

basis. With the crossbar, each processor may connect directly to one bank of the unified-cache

at a time, and contending requests for a bank or processor are queued. Register renaming,

the reorder buffer, branch prediction, instruction fetching, branching penalties, and the memory

hierarchy (including bandwidth and contention) are all modeled, and are parameterized as shown

in Table 3.1.

3.3 Benchmark Applications

We report results for all of the SPECint95 and SPECint2000 benchmarks [9] except for the fol-

lowing: 252.eon, which is written in C++ and therefore not handled by our compiler; 126.gcc,

which is similar to 176.gcc; 147.vortex, which is identical to 255.vortex; and 134.perl,

which is similar to 253.perlbmk; for 129.compress, 254.gap, 164.gzip, and 300.twolf,

the region selection algorithm has opted to select no regions at all and we exclude them from

our main study (although we revisit them later in Chapter 6.2). We do not claim that there

is no speculative parallelism available in these applications, but that they at least require more

advanced compiler and/or support for TLS than we investigate in this dissertation. A brief

description of each benchmark and the input data set used is given in Table 3.3—we use the ref

input set for every benchmark. To maintain reasonable simulation time, we truncate the exe-

cution of all appropriate benchmarks by fast-forwarding the initialization portion of execution

and simulating up to the first billion instructions, beginning simulation with a “warmed-up”

memory system loaded from a pre-saved snapshot. Since the sequential and TLS versions of

each benchmark are compiled differently, the compiler instruments them to ensure that they

terminate at the same point in their executions relative to the source code so that the execu-

tions are comparable.

3.3. Benchmark Applications 22

Table 3.2: Benchmark descriptions and inputs used.

Benchmark Description Input

S
P
E
C
20
00

bzip2 comp compression input.source from ref, comp phase
crafty chess board solver ref
gcc compiler expr.i from ref
mcf combinatorial optimization ref
parser natural language parsing ref
perlbmk perl interpreter diffmail.pl from ref
vortex OO database bendian1.raw from ref
vpr place place and route for FPGAs place portion of ref input
vpr route place and route for FPGAs route portion of ref input

S
P
E
C
95

go game playing, AI, plays against itself 9stone21.in from ref
ijpeg image processing vigo.ppm from ref
li lisp interpreter ref
m88ksim microprocessor simulator ref

Table 3.3 shows some detail on the benchmarks studied. Note that we have separated

the compression phase of Bzip2, and the place and route phases of Vpr. The fraction of

execution which has been parallelized ranges from 4% (Vortex) to 97% (Mcf), and averages

35%, through a number of different parallel regions per application. Many of these applications

spend most of the execution time in regions other than loops, for example in recursion. The

speedups of baseline TLS are reported with respect to the original executable, without any TLS

instructions or overhead. Except for perlbmk, all the benchmarks have improved performance

in parallel regions with the TLS baseline hardware, over sequential execution. The speedup of

speculatively-parallelized regions, ranging from 6% to 205%. Looking at program performance,

ijpeg and m88ksim are 77% and 56% faster respectively, and four other applications improve

by at least 8%. Four other applications show more modest improvement, while vortex and

perlbmk perform slightly worse than the original sequential version. This is mainly because

the performance of non-parallelized regions is reduced for the TLS versions, due to inserted TLS

instructions (for code transformation and compiler optimizations) and decreased cache locality

3.4. Summary 23

Table 3.3: Benchmark statistics (based on a 4-processor CMP with baseline TLS support).

Portion
of Dynamic Baseline
Execution Parallel Baseline
Parallelized Region Program

Benchmark (Coverage) Speedup Speedup

Bzip2 comp 28% 1.22 1.08
Crafty 9% 1.25 1.00
Gcc 11% 1.48 1.01
Go 17% 1.30 1.03
Ijpeg 84% 2.12 1.77
Li 8% 1.06 1.00
M88ksim 57% 3.05 1.56
Mcf 97% 1.16 1.15
Parser 7% 1.31 1.02
Perlbmk 10% 0.97 0.99
Vortex 4% 1.18 0.99
Vpr place 76% 1.19 1.10
Vpr route 48% 1.06 1.02

average 35.1% 1.41 1.13

(data is spread to multiple caches). On average across all applications we achieve a program

speedup of 13%.

3.4 Summary

In this chapter, we provided the details of our compiler, simulator and benchmarks. Our simu-

lation infrastructure for the STAMPede TLS system is detailed and realistic. The TLS baseline

hardware achieves a significant parallel region speedup, but a more modest program speedup

due to coverage. In the next chapter, we begin our investigation into improving cache locality

for TLS.

Chapter 4

The TLS Cache Locality Problem:

A Closer Look

The previous chapters introduced the STAMPede approach to TLS and our simulation environ-

ment. In this chapter, we investigate the cache locality problem for TLS to understand more

about this problem before proposing any solution. First, we describe some related cache locality

work, although most of the previous related work focused on generic multiprocessor systems

without the support for thread-level speculation. Next, we show evidence of broken cache local-

ity during TLS execution by comparing the cache behaviour of sequential programs and their

speculatively-parallelized counterparts. Then, we systematically break down the problem and

address each category individually.

4.1 Related Work

To the best of our knowledge, there has been no significant work on improving cache locality

for TLS execution of general-purpose programs. In contrast, there has been a great deal of

24

4.1. Related Work 25

work on improving locality for array-based, scientific programs [8, 43], in particular employing

software transformations that adjust access patterns and data layout to improve locality. Since

TLS involves speculative execution beyond just array accesses, traditional compiler transfor-

mations are not applicable to TLS. Thereis previous research on improving cache locality for

multiprocessor systems [1,10,22], however there are two major differences between TLS systems

and traditional multiprocessor systems: First, most TLS systems are proposed for small scale

chip-multiprocessors which have less than eight processing units and hance communication is

within a single chip. In contrast, traditional multiprocessor systems usually focus on building

larger systems and involve processors on multiple chips connected by off-chip interconnects. Sec-

ond, TLS aims at exploiting the thread-level parallelism on general-purpose programs, which

are difficult to be statically parallelized by parallelizing compilers due to their extensive use of

pointers. However, large-scale multiprocessor systems aims at improving execution time of those

highly-parallelizable scientific applications. Therefore cache locality techniques that were pro-

posed for traditional multiprocessor systems are not applicable to TLS directly. Furthermore,

in this thesis we consider only hardware techniques for exploiting parallel access patterns to re-

duce cache misses and improve locality, although interesting future work would further consider

potential compiler techniques—but that is beyond the scope of this work.

Several hardware techniques for improving locality in multiprocessor systems have been pro-

posed, including works on detecting data sharing patterns [1, 10, 22] and self-invalidating cache

lines [26,27]. In [22], Kaxiras et al. showed that widely shared data in parallel programs occurs

frequently and there is considerable performance benefit in providing hardware support to re-

duce access time for those widely shared data. Three schemes for detecting which data is widely

shared were evaluated. The first scheme observes all coherence requests in the interconnect; the

second scheme uses the directory to discover shared data; the third scheme is based on the load

instruction program-counter (PC) value. If a load instruction accessed widely-shared data in the

4.1. Related Work 26

past, then it is likely to access widely shared data in the future. Whether a load accessed widely

shared data is judged by its miss latency: large miss latency is interpreted as an access to widely

shared data. This performs the best of all three proposed shared data detection schemes. How-

ever, the major drawback is that all the PCs of the load instructions have to be known outside the

processor core, thus requiring each miss request to carry the PC of the miss instruction. In [1],

Abdel-Shafi et al. evaluated the performance of two remote-write operations: WriteThrough

and WriteSend. With WriteThrough, the producer processor updates the memory at the same

time as it writes the data to its cache, while WriteSend updates the cache of a specified pro-

cessor. The remote-writes operations are inserted by hand based on the algorithm proposed

by Mowry [31]. This work demonstrated that remote writes provide significant performance

benefits in cache-coherence shared memory multiprocessors on scientific benchmarks. In our

work, we also found that it is beneficial to use the PC for detecting sharing patterns in TLS and

write-based sharing misses results in long coherence latency. We designed a hardware prediction

mechanism for detecting write-based sharing patterns that does not require carrying PC values

in cache miss requests. Since our scheme is implemented completely in hardware, it does not

require any modification to the program nor any compile-time support. Our prediction scheme

and its performance impact on general-purpose program under TLS are presented in Section 5.3.

A last-touch predictor [26] predicts the last access to a memory block by one processor before

the block is accessed and subsequently invalidated by another processor. It aims at reducing the

coherence overhead for invalidating remote cache lines in a distributed shared memory system.

Similar to last-touch prediction, dead-block prediction [27] is a technique that predicts when a

cache block is dead, meaning that there will not be any future access to this cache line before it is

evicted from the cache. When a cache line is predicted to be dead, the prefetcher is triggered to

replace the dead cache line with a potentially useful prefetched line. It enhances the timeliness of

prefetching since the prefetching mechanism is started as early as the replaced line is predicted

4.1. Related Work 27

to be dead, usually soon after the last access to that line. These self-invalidation techniques are

proven to perform well for a uniprocessor or even generic multiprocessor system, however TLS

cache coherence schemes require speculative cache lines to remain in the private caches until

commit time, and hence self-invalidation can only be performed after each speculative thread

has completed. To improve the locality of write-based sharing accesses in Section 5.3, we pro-

pose a technique that involves self-invalidating cache blocks for TLS.

Memory latency can be tolerated through prefetching [5, 11, 15, 21, 30], however most of the

previous prefetching work was developed for sequential execution on a single processor. While

prefetching can be supported in both hardware or software, we will briefly discuss a few pure

hardware prefetching schemes as well as schemes that make use of the compiler. Most hardware

prefetching mechanisms work by recording the history of program counter values and memory

addresses. A stride prefetcher [5, 11, 15] has proven to work well for loads whose addresses fol-

low an arithmetic progression. However, most general purpose programs use dynamic memory

allocation and linked data structures, which lead to irregular memory access patterns. An alter-

native mechanism is to try to find a correlation between miss addresses in an attempt to predict

future miss addresses [20, 21]. The Markov prefetcher [21] is an example of such correlation

prefetching. Other prefetchers rely on the compiler to provide prefetch hints [42, 45]. These

software based techniques are good at predicting misses due to pointer de-references. Most

of the proposed prefetching schemes prefetch from off-chip memory to on-chip cache, while our

locality schemes focus on improving locality within a chip for a CMP. These schemes for prefetch-

ing from off chip should be complementary with our on-chip locality techniques for TLS systems.

In most CMPs, either the level-two or level-three cache is shared among all processors. Dur-

ing parallel execution when one thread accesses a cache line, this line is brought into the shared

cache where all other threads have access to it. This cache sharing property allows TLS itself

4.1. Related Work 28

to have prefetching effects. Many schemes have been proposed to speculatively execute helper

threads which prefetch or speculatively precompute for a main thread [24, 28, 46]. The main

idea of speculative precomputation is to use the idle hardware contexts on a simultaneous mul-

tithreaded architecture (SMT) to execute helper threads. These threads run ahead of the main

thread and trigger future cache misses in advance. Previous research has shown that speculative

precomputation can speed up memory-intensive sequential programs significantly on SMT archi-

tectures. However, since each processor core on a CMP has its own private level-one data cache

while sharing a level-two cache, speculative threads can only prefetch data up to the shared

cache but not the level-one private caches. Therefore speculative precomputation prefetching

schemes are not as effective on CMPs as for an SMT processor. In this work, we focus on

improving cache locality for CMPs with private caches, and our techniques could potentially

help speculative precomputation on CMPs as well.

Most closely-related to this work, Brown et al. [7] proposed two schemes to improve the

performance of speculative precomputation on a CMP. The first scheme is broadcasting load

misses: when any of the processors has a load miss, the cache line will be loaded to the private

cache of all other processor cores, as well as the shared caches. This scheme artificially models a

shared-cache architecture, like the SMT architecture. We find that similar support works well to

improve locality and performance for TLS. The second proposed scheme requires the processors

to snoop on the data bus: when other peer cores miss a load and issue a request to the shared

cache, each processor has to check if the data is in its private cache. If any processor has the

data ready to share, it sends the data to the requesting processor. The shortcoming of this peer-

sharing scheme is that each processor core essentially has to do a look-up in its private cache

whenever a load miss occurs in any of the cores, therefore the number of look-ups increases as

there are more processor cores in the system. This increases the pressure on the private caches

and can potentially delay other critical cache requests. We use a similar technique to eliminate

4.2. Evidence of Disrupted Locality 29

read misses in TLS parallel execution, however our technique does not require a look-up in the

private caches for each access, and hence it is more scalable.

4.2 Evidence of Disrupted Locality

To demonstrate the TLS cache locality problem, in Figure 4.1(a) we compare the data cache

miss rate for each sequential SPECint application with that of the speculatively-parallel version

on a 4-processor CMP with 32KB first-level data caches and a bus interconnect (the details of

our experimental framework are available in Chapter 3). We observe that the miss rate increases

significantly in every case. M88ksim, Perlbmk, and Vpr route suffer the most, with more

than 800% increase in miss rate. There are three benchmarks that have less than 20% increase

in miss-rate: Li, Parser and Vortex. One reason for the low percentage of locality misses is

that the threads tend to share less data compared to other benchmarks; the other reason is that

they have relatively low parallel region coverages (see Table 3.3). As shown in Figure 4.1(a),

overall the average data cache miss rate for the TLS versions is nearly four times that of the

original sequential versions.

As further evidence that the culprit is reduced cache locality, in Figure 4.1(b) we show the

fraction of data cache misses during parallel regions for which the missing cache line is currently

resident in another processor’s data cache. On average 61.1% of all misses are such locality

misses, indicating that locality has indeed been significantly disrupted. OnlyMcf has less than

10% locality misses. Although Mcf suffers significantly from its poor cache performance, most

of the cache misses are also misses to the second-level cache, which are not considered to be

locality misses. In five benchmarks, Crafty, Go, Ijpeg, Perlbmk and Vortex, more than

75% of cache misses are locality misses. This high percentage of locality misses results in huge

4.2. Evidence of Disrupted Locality 30

D-Cache Miss Rate
Application Seq. TLS Increase

Bzip2 comp 0.025 0.048 93.4%
Crafty 0.015 0.034 129.8%

Gcc 0.016 0.028 72.4%
Go 0.014 0.043 209.8%

Ijpeg 0.007 0.030 306.9%
Li 0.009 0.010 9.3%

M88ksim 0.004 0.039 808.9%
Mcf 0.277 0.383 37.9%

Parser 0.031 0.037 19.1%
Perlbmk 0.012 0.124 934.2%
Vortex 0.012 0.014 22.7%

Vpr place 0.049 0.104 110.3%
Vpr route 0.016 0.145 788.2%

Average 272.5%

(a) Comparing program miss rates.

|0

|20

|40

|60

|80

|100

 P
er

ec
en

ta
g

e
L

o
ca

lit
y

M
is

se
s

44
.4

bz
ip

2_
co

m
p

93
.6

cr
af

ty

68
.5

gc
c

81
.3

go

78
.6

ijp
eg

24
.0

li

37
.5

m
88

ks
im

7.
6

m
cf

43
.5

pa
rs

er

88
.7

pe
rlb

m
k

92
.2

vo
rt

ex

65
.8

vp
r_

pl
ac

e

69
.1

vp
r_

ro
ut

e

61
.1

av
er

ag
e

(b) Percentage locality misses in parallel regions.

Figure 4.1: The TLS cache locality problem: (a) comparing data cache miss rates for the
original sequential execution and the speculatively-parallel TLS execution; (b) the fraction of
data cache misses during parallel regions where the missing cache line is currently resident in
another processor’s data cache (we call these locality misses).

4.3. Breakdown of the Cache Locality Problem 31

Cache Locality Problem

Shared cache architecturePrivate cache architecture

Data cache

Sequential regionsParallel regions

Instruction cache

Investigate miss patterns Investigate region transitions

Figure 4.2: Our investigation of the cache locality problem.

increases in overall cache miss-rate, except for Vortex: although Vortex has 92.2% locality

misses in parallel regions, it only has 22.7% increase in cache miss rate with TLS execution. As

we have seen in Table 3.3, the parallel regions in Vortex only covers 4% of the entire program,

hence limits the impact of broken cache locality in parallel regions on the overall cache miss

rate. The results clearly illustrates the cache locality problem for TLS.

4.3 Breakdown of the Cache Locality Problem

Since the cache locality problem for TLS systems is quite broad, in this section we systematically

break the problem down so we can focus on the most important opportunities for improvement,

as illustrated in Figure 4.2. We consider shared cache architectures, such as when an SMT [40]

4.4. Private Cache and Shared-Cache Architectures 32

P

L1

P

L1

P

L1

Shared L2 Cache

���
���
���
���

���
���
���
���

P

L1

Interconnect

(a) Private cache architecture

P P P P

Shared L1 Cache

Shared L2 Cache

���
���
���

���
���
���

Interconnect

(b) Shared cache architecture

Figure 4.3: Private and shared cache CMP architectures

processor supports TLS [2, 33], although the more substantial locality problems are the result

of private cache TLS support. Similarly, we consider instruction cache locality for TLS, but

find that instruction cache misses are overshadowed by the impact of data cache misses. We

divide data cache miss behaviour temporally, into regions where (i) the program executes se-

quentially and (ii) those where it executes speculatively in parallel. We further classify the data

cache misses observed during the execution of parallel regions into several categories based on

the observed patterns of misses. The results of this classification suggest several techniques for

improving TLS cache locality which we evaluate later in this dissertation.

4.4 Private Cache and Shared-Cache Architectures

TLS support has been proposed for both shared [2, 37] and private [17, 19, 38] cache architec-

tures, and both have interesting cache behaviour. For a shared cache architecture, as shown in

4.5. Execution Stages 33

Figure 4.3(a), the hardware-supported threads of execution (such as independent processors or

the contexts of a simultaneously-multithreaded processor (SMT) [40]) all share the same cache

hierarchy. In this case the cache locality of the original sequential program is relatively preserved

for the TLS execution, since only the one cache hierarchy is used. Although the TLS execution

does suffer from speculative versioning conflicts [37] (the need to store multiple speculative ver-

sions of the same cache line in a single cache), this problem is beyond the scope of this work

and has been addressed previously [37].

For current CMPs, architectures where each processor has its own private first-level data

and instruction caches, as shown in Figure 4.3(b), are more common than shared-cache archi-

tectures. In the private-cache case, the cache locality enjoyed by the original sequential program

has definitely been disrupted (as demonstrated in Figure 4.1), hence we focus our efforts on this

area.

4.5 Execution Stages

A TLS program, like any parallel program, is divided into regions of code which are executed

either sequentially or in parallel. The cache behaviour of a TLS program will therefore change

significantly as the program transitions from sequential to parallel execution and back again,

hence we further divide the problem into the different stages of execution that occur: startup,

steady-state, and wind-down, as shown in Figure 4.4. These stages are repeated throughout the

execution of the program, occurring for each dynamic parallel region instance, and exhibiting

the following behaviour.

4.5. Execution Stages 34

Sequential
Region

Sequential
Region

Parallel
Region

...

...

P2 P3P0 P1

tim
e Startup

Steady−state

Wind−down

Figure 4.4: Execution stages exhibited by a TLS program.

Startup: In the initial transition from sequential to parallel execution, it is expected that

certain data which will be used by every speculative thread will result in locality misses for every

processor, with the possible exception of the processor which executed the preceding sequential

region. We define startup misses as those that occur for the first speculative thread per processor

at the beginning of a parallel region. In order to investigate the potential of eliminating these

startup misses, we conducted an experiment where all processors copy the entire private data

cache from the processor that runs the previous sequential region (at no cost); therefore, every

processor starts executing the parallel region with a warm cache. The copying process is mod-

eled to be instantaneous and does not generate any traffic. Figure 4.5 shows the performance

of this model relative to the baseline. The results are mixed: five benchmarks have more than

1% speedup; five benchmarks have within 1% performance impact; three benchmarks have more

4.5. Execution Stages 35

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.5

bz
ip

2_
co

m
p

98
.1

cr
af

ty

10
7.

8
gc

c

98
.2

go

97
.7

ijp
eg

10
4.

8
li

10
7.

3
m

88
ks

im

99
.8

m
cf

96
.0

pa
rs

er

99
.2

pe
rlb

m
k

10
0.

5
vo

rt
ex

95
.9

vp
r_

pl
ac

e

10
0.

1
vp

r_
ro

ut
e

10
0.

4
av

er
ag

e

Figure 4.5: Impact of duplicating the entire sequential data cache to all private caches at the
beginning of parallel regions.

than 4% slowdown. On average, warming up the private caches by duplicating the sequential

cache improves performance by less than 0.5%, which is negligible. Although startup misses

exist in parallel regions, addressing them directly is not worth it.

Steady-state: In a parallel region, after suffering any startup misses, execution enters a

steady-state where we expect the majority of locality misses to occur. This stage of execution is

our main focus, and we further classify its data cache misses in Section 4.7.

Wind-down: At the end of a parallel region we transition back to sequential execution, and

expect that this sequential region will initially suffer a significant number of locality misses for

data resident in the caches of temporarily inactive processors. In Chapter 5.1 we demonstrate

how scheduling the sequential region can impact the number of locality misses observed during

this wind-down stage.

4.6. Data and Instruction Cache 36

4.6 Data and Instruction Cache

Access patterns for instructions and data are quite different: instruction references are normally

read-only and exhibit high locality, while data references are read/write and can show a broad

range of behaviour. Hence the memory hierarchy typically has separate first level caches for

instructions and data, and we are obliged to investigate them separately.

To clarify the potential benefits of improving cache locality for TLS execution, we model

ideal instruction and data caches where every reference is considered to be a hit. As shown

in Figure 4.6, we found that the ideal data cache (D) improved the performance of parallel

regions by 19% on average, which indicates there is a good potential in eliminating data cache

misses. Most benchmarks have within 30% performance gain with an ideal data cache, while

Mcf has a huge 65% reduction in execution time. As we mentioned before,Mcf’s performance

is limited by the large amount of misses at the shared level-two cache. Since our work mainly

focuses on improving cache locality in the private caches, we would not expect Mcf to have

a significant amount of speedup with our proposed techniques. However, existing work that

involves prefetching from off-chip memory for uniprocessors should be applicable to Mcf, and

is expected to have a complementary effect with our techniques.

On average, The ideal instruction cache (I) provides 0.1% improvement. This result is intu-

itive, since so far only loops have been speculatively parallelized in our benchmark applications;

loops will have very good instruction cache locality, with the exception of possible cold misses

during the startup stage of each parallel region. We also evaluate the case with both ideal in-

struction and data cache (I/D), however it only yields a tiny 0.3% performance gain compared to

having an ideal data cache only. Since instruction references involve only reads, simple methods

such as broadcasting all references, or having a shared instruction cache would eliminate this

4.7. Data Cache Miss Patterns in Parallel Regions 37

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 10
0.

0
I

76
.7

D
76

.7
I/D

bzip
2_

co
m

p

10
1.

2
I

85
.9

D
83

.9
I/D

cr
af

ty

10
0.

4
I

92
.6

D
91

.2
I/D

gcc

10
0.

7
I

93
.9

D
88

.9
I/D

go
10

1.
3

I
93

.1
D

92
.9

I/D

ijp
eg

96
.5

I
86

.6
D

93
.3

I/D

li

98
.3

I
95

.7
D

95
.4

I/D

m
88

ks
im

10
0.

2
I

34
.6

D
34

.5
I/D

m
cf

10
0.

3
I

80
.4

D
80

.2
I/D

par
se

r

10
0.

9
I

75
.2

D
75

.7
I/D

per
lb

m
k

98
.4

I
89

.3
D

87
.1

I/D

vo
rte

x

10
1.

1
I

70
.1

D
70

.1
I/D

vp
r_

plac
e

99
.9

I
71

.2
D

71
.2

I/D

vp
r_

ro
ute

99
.9

I
80

.4
D

80
.1

I/D

av
er

ag
e

Figure 4.6: The impact of ideal instruction and data caches where misses have no latency on
TLS execution. I is the ideal instruction cache model; D is the ideal data cache model; I/D is
both the ideal instruction and data cache model.

small overhead. However, we do not evaluate these solutions further because there is limited

performance gain, and instead focus on improving cache locality for data.

4.7 Data Cache Miss Patterns in Parallel Regions

To guide our efforts to improve cache locality for parallel regions, we analyzed traces of data

cache misses. We collect a trace of all the data cache misses that occur within parallel regions.

For each of these misses, we record: (i) the cycle-time when it happens; (ii) the program-counter

value of the load/store instruction; (iii) the target memory address of the miss; (iv) the ID of

the processor that generates the request; (v) the type of the cache request (speculative/non-

speculatively, read/write); and (vi) whether it is a L2 miss.

After we obtain the trace of cache misses from our simulator, we feed the trace into our

classifier which observes the following five patterns of miss:

4.7. Data Cache Miss Patterns in Parallel Regions 38

1. Second-level cache (L2) misses

2. Read-based sharing misses, where a cache line is read by multiple processors. Figure 4.7

shows two types of read-only sharing misses: full-broadcast and partial broadcast. Full-

broadcast involves reads to the same cache line from all four processors, while partial-

broadcast only requires two or three processors to read the same data.

3. Write-based sharing misses, where a cache line is written (and possibly read) by multiple

processors. While there are many cases of write-based sharing, two most common cases

include producer-consumer and migratory pattern, and are demonstrated in Figure 4.8.

Producer-consumer involves a producer processor that writes a data, followed by one or

more consumer processors read the same data. Multiple processors writing to the same

cache line results in migratory pattern.

4. Strided miss patterns, where the addresses of missing cache lines progress by a fixed stride,

as shown in Figure 4.9.

5. The remaining misses (other), which apparently have no observable pattern and are likely

conflict and capacity misses, as shown in Figure 4.10.

Since we are tracking misses at the cache line level, instead of the actual addresses of the

load/store, false sharing is included in our sharing miss pattern and is one of the major causes

of locality misses.

Some misses fit under multiple categories—for example, a strided miss may also be a L2

miss; a read-based miss can also be a write-based miss when the same cache line is written

by one processor and read by multiple processors. To ensure that categories are disjoint, we

4.7. Data Cache Miss Patterns in Parallel Regions 39

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

load X

load X

load X

load X

(a) full broadcast

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

load X

load Y

load Y

load X

(b) partial broadcast

Figure 4.7: Read-based sharing misses:: full-broadcast involves reads to the same cache line from
all four processors, while partial-broadcast only requires two or three processors to read the same
data.

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

write X

write X

write X

write X

(a) migratory access

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

write X

read X

read X

read X

(b) producer consumer pattern

Figure 4.8: Write-based sharing misses: producer-consumer involves a producer processor that
writes a data, followed by one or more consumer processors read the same data. Multiple
processors writing to the same cache line are considered to be migratory pattern. These two
patterns are the most common ones in write-based sharing, while there are other cases.

4.7. Data Cache Miss Patterns in Parallel Regions 40

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

load a[0]

load a[1]

load a[2]

load a[3]

(a) stride access

Figure 4.9: Strided pattern that occurs over different processors.

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

read X

write Z

read Y

(a) random access

tim
e

Processor 0 Processor 1 Processor 2 Processor 3

read X

read X

(b) same dcache access

Figure 4.10: Other access patterns: when there is no other access from any processor to the
same cache line within the window, we consider those misses as random accesses; same dcache
accesses are consecutive misses to the same cache line from the same processor, these are mainly
conflict misses.

4.7. Data Cache Miss Patterns in Parallel Regions 41

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
D

at
a

C
ac

h
e

M
is

se
s

10
00

20
00

40
00

80
00

16
00

0

 L2 Misses

 Read-based sharing

 Write-based sharing

 Strided

 Other

Figure 4.11: Miss pattern breakdown averaged across all benchmarks with varies window size
(1000 - 16000 cycles).

attempt to fit each miss within the described categories in priority order. Figure 4.12(a) lists

the percentage of misses for each category (which are in this priority order), averaged across

all benchmark applications. We also show the breakdown for each individual application in

Figure 4.12(b).

Classifying miss patterns based on a trace must be done carefully. To decide whether a set of

misses belong in a given category, we analyze all of the misses within a fixed-size sliding window

of 1000 cycles of the trace. Figure 4.11 shows the miss breakdown averaged cross all benchmarks

with different window sizes. As the window size changes from 1000 cycles to 16000 cycles, the

breakdown does not vary significantly. The portion of L2 misses stays unchanged, while there

are tiny increases in read-based, write-based and stride categories. These results indicate that

1000-cycle window size is large enough to capture most of the recognizable miss patterns.

4.7. Data Cache Miss Patterns in Parallel Regions 42

Data Cache Miss Pattern Percentage

L2 misses 15.7%
Read-based sharing 53.7%
Write-based sharing 11.4%

Strided 6.2%
Other 13.0%

(a) Miss pattern breakdown averaged across all bench-

marks.

|0

|20

|40

|60

|80
|100

 P
er

ce
n

ta
g

e
o

f
D

at
a

C
ac

h
e

M
is

se
s

bz
ip

_c
om

p

cr
af

ty

gc
c

go

ijp
eg

li

M
cf

m
88

ks
im

pa
rs

er

pe
rlb

m
k

vo
rt

ex

vp
r_

pl
ac

e

vp
r_

ro
ut

e

av
er

ag
e

 L2 Misses

 Read-based sharing

 Write-based sharing

 Strided

 Other

(b) Detailed miss pattern breakdown

Figure 4.12: Data cache miss patterns within parallel regions.

4.7. Data Cache Miss Patterns in Parallel Regions 43

From the figure, we observe that data cache misses within parallel regions exhibit interesting

behaviour. L2 Misses, which comprise an average of 15.7% of all misses, are given the highest

priority: an L2 miss cannot also be a locality miss (since our system enforces the inclusion

property) hence we do not want to target these misses. L2 misses are an equivalent problem

for both the sequential version of a program and its TLS counterpart, and can be potentially

addressed with known techniques for prefetching [5, 11, 15, 32]. More than about 60% of the

data cache misses in Mcf and M88ksim are L2 misses, which limits the potential performance

improvement of our locality techniques.

Cache lines that exhibit read-based sharing are the most common, representing 53.7% of all

misses. This is promising, since under TLS read-based cache lines are much easier to deal with

than those which are modified. In particular, Parser has 86% of read-based sharing misses,

indicating that most of the misses are shared among the processors. However, as shown in Fig-

ure 4.1(a), it only has 43% locality misses: most of the misses in Parser are partial-broadcast

which involves two processors sharing the same data. We address this category of misses in

Section 5.2. In contrast, cache lines involved in write-based sharing represent 11.4% of misses,

but are still worth addressing—hence we do so in Section 5.3. Strided accesses comprise another

6.2% of misses, and so we address those in Section 5.4. Among all 13 benchmarks, Li has the

most stride misses, which account for 46% of the total cache misses—hence we expect that Li

would perform well with our stride prefetching technique. Finally, cache lines in the other cate-

gory represent the remaining 13.0% of misses. Although our locality techniques do not directly

address these misses (since eight out of thirteen benchmarks have only less than 10% of misses

in this category), our techniques are sufficient to target the majority, 71.3%, of the data cache

misses in parallel regions.

4.8. Summary 44

4.8 Summary

In this chapter we described previous work on improving cache locality and provided a thorough

investigation into the TLS cache locality problem. We systematically decomposed the problem

and decided to focus mainly on data cache locality within parallel regions. In the remainder

of this dissertation we propose techniques to address the transitions between sequential and

parallel regions, as well as the sharing and strided miss categories which combined constitute

more than 70% of all cache misses in parallel regions.

Chapter 5

Techniques for Improving TLS Cache

Locality

Having motivated the TLS locality problem, this chapter describes techniques that target differ-

ent areas of the locality problem. We present four locality techniques which cover both sequential

regions and parallel regions, and also different categories of data cache access patterns in parallel

regions. We evaluate our proposed techniques with detailed simulation across 13 benchmarks

and compare the results with the baseline STAMPede TLS hardware.

5.1 Scheduling the Sequential Region

In the wind-down stage (as illustrated in Figure 4.4), we expect that the sequential region will

suffer locality misses for cache lines that are resident in the caches of now inactive processors. In

this chapter we investigate the impact of the different possibilities for scheduling which processor

executes the sequential region. In particular we consider two options, as illustrated in Figure 5.1.

First, we consider a “floating” sequential processor, where the processor which executed the last

45

5.1. Scheduling the Sequential Region 46

Parallel

Sequential

6 threads

P2 P3P0 P1

Sequential

Sequential

Parallel
3 threads

tim
e

(a) Floating sequential processor.

Parallel

Sequential

6 threads

P2 P3P0 P1

Sequential

Sequential

Parallel
3 threads

tim
e

(b) Fixed sequential processor.

Figure 5.1: TLS execution with a floating and fixed sequential processor. In (a), the processor
which executed the last speculative thread of the parallel region goes on to execute the sequential
region. In (b), one processor (P0) is elected to execute all sequential regions.

speculative thread of the parallel region goes on to execute the sequential region. Intuitively, this

scheme assumes that there is potential cache locality between the last speculative thread and

the sequential region. Second, we consider a “fixed” sequential processor, where one processor is

elected to execute all sequential regions. This scheme assumes the potential benefit of cache lo-

cality between sequential regions, for cache lines which are not evicted during the parallel region.

In Figure 5.2(a) and 5.2(b) we show the performance of sequential regions only for the fixed

sequential processor scheme relative to floating. Evidently the cache locality between sequential

regions is much more prevalent than the locality between the last speculative thread of a parallel

5.1. Scheduling the Sequential Region 47

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.6

bz
ip

2_
co

m
p

94
.9

cr
af

ty

96
.8

gc
c

88
.8

go

91
.7

ijp
eg

99
.6

li

82
.1

m
88

ks
im

99
.1

m
cf

99
.3

pa
rs

er

97
.4

pe
rlb

m
k

10
0.

0
vo

rt
ex

86
.6

vp
r_

pl
ac

e

10
1.

8
vp

r_
ro

ut
e

95
.2

av
er

ag
e

(a) Sequential Regions (bus).

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.6

bz
ip

2_
co

m
p

96
.0

cr
af

ty

97
.5

gc
c

90
.1

go

93
.9

ijp
eg

99
.2

li

87
.2

m
88

ks
im

99
.2

m
cf

99
.4

pa
rs

er

99
.3

pe
rlb

m
k

99
.2

vo
rt

ex

86
.9

vp
r_

pl
ac

e

97
.1

vp
r_

ro
ut

e

95
.8

av
er

ag
e

(b) Sequential Regions (crossbar).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.9

bz
ip

2_
co

m
p

95
.5

cr
af

ty

95
.7

gc
c

88
.7

go

98
.7

ijp
eg

10
4.

8
li

10
0.

1
m

88
ks

im

99
.8

m
cf

99
.3

pa
rs

er

97
.7

pe
rlb

m
k

96
.5

vo
rt

ex

99
.1

vp
r_

pl
ac

e

10
0.

1
vp

r_
ro

ut
e

98
.1

av
er

ag
e

(c) Parallel Regions (bus).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.7

bz
ip

2_
co

m
p

97
.2

cr
af

ty

96
.5

gc
c

92
.1

go

99
.0

ijp
eg

10
5.

9
li

10
1.

3
m

88
ks

im

99
.8

m
cf

99
.5

pa
rs

er

96
.9

pe
rlb

m
k

93
.0

vo
rt

ex

10
0.

1
vp

r_
pl

ac
e

10
0.

0
vp

r_
ro

ut
e

98
.5

av
er

ag
e

(d) Parallel Regions (crossbar).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.6

bz
ip

2_
co

m
p

95
.0

cr
af

ty

96
.7

gc
c

88
.8

go

96
.5

ijp
eg

10
0.

0
li

87
.0

m
88

ks
im

99
.8

m
cf

99
.3

pa
rs

er

97
.3

pe
rlb

m
k

99
.9

vo
rt

ex

94
.8

vp
r_

pl
ac

e

10
1.

6
vp

r_
ro

ut
e

96
.6

av
er

ag
e

(e) Overall Program (bus).

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.7

bz
ip

2_
co

m
p

96
.1

cr
af

ty

97
.5

gc
c

90
.4

go

97
.4

ijp
eg

99
.7

li

90
.9

m
88

ks
im

99
.8

m
cf

99
.4

pa
rs

er

99
.1

pe
rlb

m
k

98
.9

vo
rt

ex

95
.4

vp
r_

pl
ac

e

98
.4

vp
r_

ro
ut

e

97
.1

av
er

ag
e

(f) Overall Program (crossbar).

Figure 5.2: Performance impact of a fixed sequential processor relative to floating.

5.2. Exploiting Read-Based Sharing Patterns 48

region and the subsequent sequential region: on average the fixed sequential processor scheme

performs nearly 5% better with a bus interconnect, and nearly 4% better with a crossbar. For

both architectures, three applications (Go, M88ksim, and Vpr place) perform more than

10% better in sequential regions. Figures 5.2(c) and 5.2(d) show the performance within par-

allel regions; on average the fixed sequential processor scheme outperforms by 1.9% and 1.5%

with a bus and a crossbar respectively. Parallel regions also benefit since all the threads are

guaranteed to execute on the same processor since the fixed processor always runs the first

thread of every parallel region and speculative threads are assigned in a round-robin fashion.

This decision also has a significant impact on program performance, as shown in Figure 5.2(e)

and 5.2(f) where three applications perform more than 5% better, and all benchmarks perform

on average 3.4% and 2.9% better for bus and crossbar respectively. In the bus architecture, since

all the processors share the same bus, they benefit directly from the reduced contention in the

bus; while there are multiple connections in a crossbar interconnect, reducing the contention in

one link will not directly benefit all processors.

While the improvement with a fixed sequential processor is not tremendous, proper schedul-

ing of the sequential region is essentially free and therefore worth doing. Hence we use the fixed

sequential processor scheme for the remainder of our investigation and consider it to be part

of our “baseline” measurement when comparing with other schemes for improving cache locality.

5.2 Exploiting Read-Based Sharing Patterns

Our classification of miss patterns within parallel regions shows that read-only sharing miss

patterns dominate all other access patterns, comprising more than half of all cache misses. In

other words, a large number of misses are for data which multiple speculative threads read.

5.2. Exploiting Read-Based Sharing Patterns 49

Therefore, for any given load miss it is highly likely that other processors will soon suffer a load

miss for the same cache line. This observation motivates a technique which, for a given load

miss, “pushes” the resulting cache line to caches other than the one which originally suffered

the load miss.

5.2.1 Broadcasting for all Load Misses

The simplest scheme for addressing read-based sharing patterns is for every load miss to result

in a broadcast of that cache line to all data caches. For a CMP with a bus interconnect between

the first-level data caches and unified second-level cache, such as we model in this work, such

broadcasting is fairly trivial to implement and does not generate additional traffic. All data

caches simply snoop on the bus for any read requests serviced by the unified cache and fill their

caches with the resulting cache line, so long as doing so does not replace a cache line that is

currently in a speculative or modified state (if this occurs then the broadcast cache line is simply

dropped). Implementing such broadcasting with a crossbar interconnect is less efficient, since

pushing data to each private cache requires a separate connection.

We do not expect this scheme to eliminate all of the cache misses involved in read-only

sharing patterns (50% of all misses) since we require at least one miss to trigger the broadcast

mechanism for every such cache line. Figures 5.3(a) and 5.3(c) show the performance of this

broadcasting scheme relative to our baseline model. On average across all benchmarks, this

simple broadcasting scheme eliminates 27.7% and 23.9% of the data cache misses in speculative

regions, for bus and crossbar architectures respectively. This technique also improves execution

time for every application with a bus interconnect, by 7.3% on average, as shown in Figure 5.3(b).

Three applications, Parser, Vpr place, and Vpr route have more than 10% reduction in

5.2. Exploiting Read-Based Sharing Patterns 50

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

74
.0

bz
ip

2_
co

m
p

54
.7

cr
af

ty

65
.9

gc
c

66
.4

go

60
.7

ijp
eg

89
.7

li

80
.4

m
88

ks
im

97
.8

m
cf

66
.1

pa
rs

er

89
.4

pe
rlb

m
k

81
.9

vo
rt

ex

63
.6

vp
r_

pl
ac

e

49
.6

vp
r_

ro
ut

e

72
.3

av
er

ag
e

(a) Number of data cache misses (bus).

|0

|20

|40

|60
|80

|100

 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e 91

.8
bz

ip
2_

co
m

p

91
.7

cr
af

ty

96
.4

gc
c

92
.7

go

95
.0

ijp
eg

92
.7

li

98
.9

m
88

ks
im

97
.6

m
cf

86
.2

pa
rs

er

96
.1

pe
rlb

m
k

97
.4

vo
rt

ex

80
.9

vp
r_

pl
ac

e

87
.3

vp
r_

ro
ut

e

92
.7

av
er

ag
e

(b) Normalized execution time (bus).

|0
|50

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

78
.0

bz
ip

2_
co

m
p

55
.2

cr
af

ty

71
.4

gc
c

69
.4

go

68
.7

ijp
eg

90
.1

li

74
.5

m
88

ks
im

98
.0

m
cf

71
.3

pa
rs

er

89
.5

pe
rlb

m
k

10
3.

4
vo

rt
ex

66
.9

vp
r_

pl
ac

e

52
.3

vp
r_

ro
ut

e

76
.1

av
er

ag
e

(c) Number of data cache misses (crossbar).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 10
0.

5
bz

ip
2_

co
m

p

96
.4

cr
af

ty

98
.2

gc
c

98
.1

go

99
.7

ijp
eg

11
0.

0
li

98
.0

m
88

ks
im

99
.1

m
cf

93
.3

pa
rs

er

96
.9

pe
rlb

m
k

10
3.

8
vo

rt
ex

92
.3

vp
r_

pl
ac

e

92
.6

vp
r_

ro
ut

e

98
.4

av
er

ag
e

(d) Normalized execution time (crossbar).

Figure 5.3: Impact of broadcasting all load misses on parallel regions.

5.2. Exploiting Read-Based Sharing Patterns 51

parallel region execution time since most of the data cache misses are read-based sharing, which

benefit most from this broadcasting scheme. In the case of a crossbar interconnect, although

this scheme reduces the number of misses, performance does not improve as much as it does

with a bus interconnect. On average, broadcasting gives 1.6% speedup across all benchmarks, as

demonstrated in Figure 5.3(d), with three benchmarks having a slowdown ranging from 0.5% to

10%. The main reason is due to the inefficiency of broadcasting with a crossbar which requires

an additional interconnect transaction to send data to each other processor, hence increasing the

contention of the crossbar. One example is Li which has 7.3% performance improvement with

a bus interconnect, but 10% slowdown with a crossbar. The additional broadcasting traffic is

clearly the cause of the slowdown for crossbar in this case, since in both cases (bus and crossbar)

broadcast reduces data cache misses by roughly 10%.

5.2.2 Throttling Broadcast

Although the scheme proposed above for broadcasting the cache line for each load miss to every

cache seems to have worked well, a potential overhead of this scheme is the pollution created

when a cache line is “pushed” to a cache which does not use the cache line, possibly evicting

a useful cache line in the process. To investigate whether such cache pollution is a significant

overhead, we attempted to throttle the amount of broadcasting, narrowing the broadcast cache

lines to those which are truly needed by multiple caches. Before designing an efficient imple-

mentation of throttled broadcast, we began by modeling an unrealistic but aggressive scheme

by feeding our profile of read-only sharing misses (from our trace of execution described in

Section 4.7) into a second simulation run which would then only broadcast cache lines that

were pre-identified as showing this pattern. We found that aggressively throttling broadcast in

this manner does not further improve performance with a bus interconnect, as shown in Fig-

5.2. Exploiting Read-Based Sharing Patterns 52

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

11
2.

6
bz

ip
2_

co
m

p

11
2.

7
cr

af
ty

11
8.

7
gc

c

11
8.

3
go

12
9.

5
ijp

eg

97
.2

li

11
3.

4
m

88
ks

im

96
.0

m
cf

12
6.

1
pa

rs
er

10
0.

3
pe

rlb
m

k

10
3.

7
vo

rt
ex

12
9.

0
vp

r_
pl

ac
e

19
1.

4
vp

r_
ro

ut
e

11
5.

7
av

er
ag

e

(a) Number of data cache misses (bus).

|0

|50

|100

 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e 10

8.
5

bz
ip

2_
co

m
p

10
2.

5
cr

af
ty

10
1.

0
gc

c

10
5.

5
go

10
3.

5
ijp

eg

10
0.

0
li

98
.2

m
88

ks
im

99
.4

m
cf

11
1.

5
pa

rs
er

10
0.

7
pe

rlb
m

k

10
0.

4
vo

rt
ex

10
7.

2
vp

r_
pl

ac
e

11
0.

8
vp

r_
ro

ut
e

10
3.

6
av

er
ag

e

(b) Normalized execution time (bus).

|0
|50

|100

|150

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

11
2.

0
bz

ip
2_

co
m

p

12
0.

2
cr

af
ty

11
5.

0
gc

c

11
9.

7
go

12
1.

0
ijp

eg

10
2.

6
li

12
9.

1
m

88
ks

im

10
1.

1
m

cf

12
7.

7
pa

rs
er

10
6.

1
pe

rlb
m

k

91
.7

vo
rt

ex

12
8.

0
vp

r_
pl

ac
e

18
9.

4
vp

r_
ro

ut
e

11
6.

8
av

er
ag

e

(c) Number of data cache misses (crossbar).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 99
.8

bz
ip

2_
co

m
p

10
1.

4
cr

af
ty

10
0.

8
gc

c

10
2.

1
go

10
0.

9
ijp

eg

92
.3

li

10
2.

3
m

88
ks

im

10
0.

3
m

cf

10
4.

8
pa

rs
er

10
2.

0
pe

rlb
m

k

96
.6

vo
rt

ex

98
.0

vp
r_

pl
ac

e

10
7.

9
vp

r_
ro

ut
e

10
0.

6
av

er
ag

e
(d) Normalized execution time (crossbar).

Figure 5.4: Impact of throttling broadcasting with profiling on parallel regions, relative to the
full broadcast scheme.

5.3. Exploiting Write-Based Sharing Patterns 53

ures 5.4(a) and 5.4(b), indicating that pollution is not a problem for broadcast load misses in

that case. Besides pollution, the increased traffic of broadcast could be a problem for the cross-

bar interconnect; for such a system a more throttled broadcast may be beneficial. We model the

profile-base broadcast with a crossbar and the results are shown in Figures 5.4(c) and 5.4(d). On

average the throttled broadcast scheme does not perform better than the full broadcast scheme.

In the case where broadcasting is detrimental, such as in Li and Vortex, throttling successfully

eliminates bad broadcasts to preserve interconnect bandwidth for other useful traffic, and hence

outperforms the full broadcast scheme. However in the case when broadcasting is beneficial

due to large amount of data sharing, throttling reduces good broadcasts and limits the poten-

tial performance gain by broadcasting. We do not recommend throttling broadcasting since it

does not give any performance gain over the simple full broadcast scheme in most benchmarks

and performing throttling at runtime requires expensive hardware to distinguish good and bad

broadcasts. Compiler techniques for recognizing broadcasting patterns are an interesting pos-

sibility, however this is out of the scope of this work since we focus solely on hardware techniques.

5.3 Exploiting Write-Based Sharing Patterns

The underlying coherence scheme for supporting TLS execution that we use is necessarily a

write-back scheme, since only the first-level data caches may hold speculative modifications;

in other words, any speculatively-modified cache line must remain in the first-level data cache

until the corresponding speculative thread is committed, at which point that cache line simply

transitions to a normal modified state. When such a modified (and non-speculative) cache line

is read or written by another processor, or if it is replaced, then that cache line must be written

back to the second-level cache and propagated to the requesting processor’s data cache.

5.3. Exploiting Write-Based Sharing Patterns 54

...

Extended Tag

...
8 entries
max

8 entries
max

8 entries

blockindextagAddress

RST Index

RST Index
store PC

store PC

store PC

store PC

Invalidation PC List (IPCL)

store PC

store PC

store PC

store PC

extended tag

etag

etag

etag

Use RST index to lookup PC in RST, add PC to IPCL

Add PC to Recent Store Table(RST)

On commit:

For each extended tag in PRB, invalidate and writeback that cache line, push to next cache

On a store:

On a coherence request requiring writeback:

If PC is in Invalidation PC List(IPCL), add to Push Required Buffer(PRB)

Recent Store Table (RST) Push Required Buffer (PRB)

Figure 5.5: A mechanism for detecting cache lines involved in write-based sharing, and aggres-
sively invalidating and forwarding them to the next cache. Each processor maintains a recent
store table, push required buffer, and an invalidation PC list.

In Chapter 4, we showed that write-based sharing misses are significant, hence we endeavor

to reduce them. Ideally, any cache line which is written by one processor and then accessed by

another could be aggressively propagated ahead of time. One scheme would be to broadcast

all modified cache lines at commit-time—but this scheme would generate too much traffic, and

would increase the amount of time to acquire exclusive ownership when writing a cache line

(since the broadcast would have created so many copies). Instead we prefer a more selective

scheme which predicts when a cache line is involved in write-based sharing, and at commit time

writes-back, self-invalidates, and pushes that cache line to the next processor—eliminating the

cache miss, and expediting the acquisition of exclusive access.

5.3. Exploiting Write-Based Sharing Patterns 55

We propose a mechanism for predicting cache lines involved in write based sharing, which

consists of maintaining the following three components per processor—as illustrated in Fig-

ure 5.5. First, a recent store table (RST) which is direct-mapped, indexed by the last 3 bits of

the set-index of a store address, and tracks the PCs of recent stores. Second, a push required

buffer (PRB) which saves a list of extended cache tags (tag plus set index) which are to be

invalidated, written back, and pushed to another cache when the speculative thread commits.

This list can simply overflow when it is full, since correctness is not an issue for this technique.

Finally, we require an invalidation PC list (IPCL)—a FIFO queue of store PCs.

The operation of our technique is as follows. When a store executes, the store PC is saved

in the RST (using three bits of the store address as an index). If that PC is currently in the

IPCL, then it has been identified as being involved in write-based sharing in the past, and hence

the extended tag for that cache line is added to the PRB. For every external coherence request

that generates a writeback, such as a read, read-exclusive, or invalidation request, we lookup the

corresponding store PC in the RST, and add that PC to the IPCL. Finally, when the speculative

thread commits, for each entry in the PRB we self-invalidate and write back the corresponding

cache line, and “push” it to the next processor’s data cache. For this dissertation, we assume

that speculative threads are assigned to processors in round-robin order, and hence the “next

processor” is easily predictable. If this were not the case, one could easily add a processor ID

to each entry of the IPCL to track which other processor is involved in the write-based sharing

and should be the target of the push.

The effect of our technique is similar to that of dynamic self-invalidation [27], although

our technique does not need to implement versioning numbers to decide which blocks to self-

invalidate and we also attempt to push the cache line to the next cache.. Furthermore, last-touch

prediction [26] cannot be used in our approach since modified cache lines may not be propagated

5.3. Exploiting Write-Based Sharing Patterns 56

|0

|50

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

59
.4

bz
ip

2_
co

m
p

59
.4

cr
af

ty

84
.7

gc
c

82
.2

go

91
.1

ijp
eg

92
.8

li

10
0.

4
m

88
ks

im

97
.1

m
cf

63
.5

pa
rs

er

98
.7

pe
rlb

m
k

68
.2

vo
rt

ex

70
.3

vp
r_

pl
ac

e

77
.1

vp
r_

ro
ut

e

80
.4

av
er

ag
e

(a) Normalized data cache misses (bus).
|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

83
.2

bz
ip

2_
co

m
p

90
.1

cr
af

ty

94
.9

gc
c

92
.5

go

93
.0

ijp
eg

90
.5

li

10
0.

8
m

88
ks

im

96
.1

m
cf

88
.2

pa
rs

er

93
.1

pe
rlb

m
k

91
.3

vo
rt

ex

87
.3

vp
r_

pl
ac

e

92
.1

vp
r_

ro
ut

e

91
.8

av
er

ag
e

(b) Normalized execution time (bus).

|0

|50

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

56
.6

bz
ip

2_
co

m
p

59
.3

cr
af

ty

83
.9

gc
c

82
.1

go

90
.6

ijp
eg

93
.0

li

10
1.

1
m

88
ks

im

97
.1

m
cf

65
.9

pa
rs

er

98
.1

pe
rlb

m
k

81
.2

vo
rt

ex

73
.3

vp
r_

pl
ac

e

77
.1

vp
r_

ro
ut

e

81
.5

av
er

ag
e

(c) Normalized data cache misses (crossbar).

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 t
im

e

78
.2

bz
ip

2_
co

m
p

92
.1

cr
af

ty

95
.7

gc
c

92
.7

go

95
.1

ijp
eg

90
.3

li

99
.7

m
88

ks
im

96
.6

m
cf

88
.6

pa
rs

er

98
.9

pe
rlb

m
k

90
.2

vo
rt

ex

91
.6

vp
r_

pl
ac

e

93
.6

vp
r_

ro
ut

e

92
.6

av
er

ag
e

(d) Normalized execution time (crossbar).

Figure 5.6: Impact of our technique for exploiting write-based sharing patterns on parallel
regions.

until the speculative thread commits.

Figure 5.6 shows the performance of our write-based sharing technique relative to our base-

line model. With a bus interconnect, this scheme eliminates 19.6% of the data cache misses in

speculative regions and improves execution time for most applications, by 7.8% on average, as

shown in Figure 5.6(a) and 5.6(b). This technique also performs well on a crossbar intercon-

nect: the number of data cache misses is decreased by 18.5% while execution time is improved

5.3. Exploiting Write-Based Sharing Patterns 57

by 7.4%, as shown in Figure 5.6(c) and 5.6(d). This scheme has similar performance on both

bus and crossbar for all benchmarks. It reduces data cache misses by more than 40% in two

applications, Bzip2 comp and Crafty, while four other applications have more than 20%

reduction in misses.

Our scheme significantly decreases the number of data cache misses by an average of nearly

20%, however there is only 11.4% of write-based sharing misses according to our classification

results presented in Table 4.12(a). One reason is that we assigned higher priority to read-based

sharing over write-based sharing misses to avoid overlapping between categories, cache misses

that are both read-based sharing and write-based sharing will be only counted as read-based

sharing misses. One example is that when a write-miss is followed by two read-misses to the

same address: the read-misses are read-based sharing misses since they are consecutive reads,

and at the same time they are also write-based sharing misses since the cache line is produced

by a recent write. Another reason for our write-based technique to have more miss reduction

than the number of write-based sharing misses recorded by the trace is that we only record

cache misses, but not cache hits. In the case when a speculative thread has a read miss followed

by a write hit to the same cache line, the write hit is not recorded. If this pattern repeats

over threads, we would record a series of read misses to the same address and hence consider

them as read-based sharing misses. Indeed, this access pattern benefits most from our proposed

techniques for write-based sharing misses, since writes are followed by other writes from other

processors.

We investigated the sensitivity of our write-based scheme to the size of the three proposed

hardware structures, recent store table, invalidation PC list and push required buffer. Since our

design space consists of three variables, in all our experiments when we evaluate the sensitivity

of the scheme to the size of one structure, we keep the size of the other two structures to be

5.3. Exploiting Write-Based Sharing Patterns 58

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

88
.2

4
83

.2
8

83
.2

16
83

.3
32

bzip
2_

co
m

p

92
.1

4
90

.1
8

90
.2

16
90

.2
32

cr
af

ty

96
.6

4
94

.9
8

94
.7

16
95

.0
32

gcc

92
.9

4
92

.5
8

92
.9

16
92

.8
32

go

93
.1

4
93

.0
8

93
.0

16
93

.1
32

ijp
eg

93
.7

4
90

.5
8

91
.8

16
91

.8
32

li

10
0.

1
4

10
0.

8
8

99
.7

16
10

0.
1

32

m
88

ks
im

96
.0

4
96

.1
8

96
.0

16
95

.9
32

m
cf

88
.9

4
88

.2
8

88
.1

16
88

.2
32

par
se

r

94
.8

4
93

.1
8

93
.2

16
93

.6
32

per
lb

m
k

93
.2

4
91

.3
8

86
.9

16
87

.3
32

vo
rte

x

92
.9

4
87

.3
8

87
.2

16
88

.4
32

vp
r_

plac
e

92
.3

4
92

.1
8

92
.1

16
76

.4
32

vp
r_

ro
ute

93
.5

4
91

.8
8

91
.6

16
90

.5
32

av
er

ag
e

(a) Varying the size of the recent store table.

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

86
.9

4
83

.2
8

83
.4

16
83

.6
32

bzip
2_

co
m

p

92
.9

4
90

.1
8

90
.3

16
90

.3
32

cr
af

ty

95
.9

4
94

.9
8

95
.1

16
95

.1
32

gcc

92
.8

4
92

.5
8

92
.1

16
91

.9
32

go

93
.2

4
93

.0
8

93
.2

16
93

.1
32

ijp
eg

93
.8

4
90

.5
8

90
.5

16
90

.5
32

li

10
0.

7
4

10
0.

8
8

99
.6

16
99

.2
32

m
88

ks
im

96
.4

4
96

.1
8

96
.1

16
96

.0
32

m
cf

89
.2

4
88

.2
8

88
.3

16
87

.9
32

par
se

r

97
.2

4
93

.1
8

93
.7

16
94

.6
32

per
lb

m
k

94
.2

4
91

.3
8

90
.5

16
89

.8
32

vo
rte

x

91
.9

4
87

.3
8

87
.2

16
88

.1
32

vp
r_

plac
e

92
.9

4
92

.1
8

92
.1

16
92

.3
32

vp
r_

ro
ute

93
.7

4
91

.8
8

91
.7

16
91

.7
32

av
er

ag
e

(b) Varying the size of the invalidation PC list.

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

88
.6

4
83

.2
8

82
.6

16
82

.2
32

bzip
2_

co
m

p

92
.3

4
90

.1
8

90
.1

16
90

.1
32

cr
af

ty

95
.3

4
94

.9
8

94
.9

16
95

.2
32

gcc

93
.0

4
92

.5
8

92
.4

16
92

.2
32

go

93
.1

4
93

.0
8

92
.9

16
93

.0
32

ijp
eg

91
.5

4
90

.5
8

92
.5

16
91

.2
32

li

10
0.

0
4

10
0.

8
8

10
0.

3
16

10
0.

1
32

m
88

ks
im

96
.2

4
96

.1
8

96
.0

16
96

.0
32

m
cf

89
.0

4
88

.2
8

88
.5

16
87

.9
32

par
se

r

95
.2

4
93

.1
8

92
.4

16
93

.1
32

per
lb

m
k

91
.7

4
91

.3
8

91
.3

16
91

.1
32

vo
rte

x

89
.1

4
87

.3
8

87
.3

16
87

.3
32

vp
r_

plac
e

95
.5

4
92

.1
8

92
.1

16
86

.2
32

vp
r_

ro
ute

93
.1

4
91

.8
8

91
.8

16
91

.2
32

av
er

ag
e

(c) Varying the size of the push required buffer.

Figure 5.7: Performance impact of varying the size of the recent store table, invalidation PC list
and push required buffer from 4 to 32 entries with a bus interconnect.

5.3. Exploiting Write-Based Sharing Patterns 59

eight entries.

As we see in Figure 5.7(a), increasing the size of the RST from 4 to 8 entries improves parallel

regions performance by 1.7% on average, with four applications having more than 2% speedup.

Further increasing the RST to 16 and 32 entries does not have much performance impact, with

the exception that Vpr route has a dramatic 16% reduction in execution time when switching

from a 16-entry RST to a 32-entry RST. As we will see, Vpr route also benefits from having

a huge PRB, while all other benchmarks are insensitive to size of PRB. We conclude that an

8-entry RST is sufficient to capture most of the mappings of recent store PCs and addresses.

In Figure 5.7(b) we show the parallel region performance as we vary the size of the IPCL

from 4 to 32 entries. Five applications, Bzip2 comp, Li, Perlbmk, Vortex and Vpr place,

have more than 3% performance gain when the size of the IPCL is increased from 4 to 8 entries,

with an average of 1.9% gain across all benchmarks. However, increasing the size of the IPCL

beyond 8 entries does not have any significant performance improvement. This result indicates

that an 8-entry IPCL is big enough to hold all the recent PCs of the store instructions that

would potentially produce write-based sharing misses, and a IPCL bigger than 8 entries tends

to keep more old information that is no longer useful. It is also important to keep the IPCL

small in order to allow fast lookup since it is fully-associative and is accessed whenever a store

occurs.

Figure 5.7(c) illustrates the performance in parallel regions with varying PRB size. On av-

erage increasing the size of the PRB from 4 to 8 entries yield 1.3% performance gain. Most

applications are not sensitive to the size of the PRB beyond 8-entry, however Vpr route

performs much better with the 32-entry PRB than the 8-entry one. The speculative threads in

Vpr route have relatively more writes than all benchmarks that we study, therefore it benefits

5.4. Exploiting Strided Miss Patterns 60

from a bigger RST and PRB. We found a small, 8-entry, PRB is sufficient for most applications,

mainly because threads in TLS tend to be small (to avoid failed speculation) and modify only

a small number of cache lines during speculative execution.

Since the additional hardware structures required for this technique are both small and de-

centralized, we expect it to scale well to CMPs with larger numbers of processors.

5.4 Exploiting Strided Miss Patterns

In the previous sections we focussed on techniques for exploiting read-only and write-based

sharing miss patterns. According to our classification of data cache miss patterns in Section 4.7,

the third major category of misses are strided misses, which comprise more than 6% of all

data cache misses within parallel regions. As opposed to sharing misses which involve a single

cache line, strided misses involve different cache lines with addresses that are separated by a

constant distance. While schemes for prefetching based on such strided access patterns have

been well studied [5, 11, 15, 32], there has been relatively little investigation into how stride-

based prefetching interacts with TLS execution. Our stride prefetcher is to prefetch data from

the shared level-two cache to the private level-one caches, but not from off-chip to on-chip caches.

To evaluate the potential impact of stride-based prefetching on TLS execution, we model

an aggressive adaptive stride prefetcher [11] in each processor. In our implementation we use

a history table with 512 entries, each of which consists of (i) the PC of the instruction that

generates the miss, (ii) the miss address, (iii) the stride distance, and (iv) the state of this entry.

This fully-associative history table is indexed by the PC and uses an LRU replacement policy.

A stride is successfully identified after three cache misses are associated with the same PC, with

5.4. Exploiting Strided Miss Patterns 61

|0

|50

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s 97
.1

bz
ip

2_
co

m
p

95
.5

cr
af

ty

94
.4

gc
c

98
.6

go

81
.7

ijp
eg

46
.9

li

97
.3

m
88

ks
im

91
.6

m
cf

79
.9

pa
rs

er

10
1.

0
pe

rlb
m

k

92
.2

vo
rt

ex

96
.4

vp
r_

pl
ac

e

93
.9

vp
r_

ro
ut

e

89
.7

av
er

ag
e

(a) Normalized data cache misses (bus).
|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 10
1.

2
bz

ip
2_

co
m

p

99
.8

cr
af

ty

10
0.

3
gc

c

10
1.

3
go

10
8.

8
ijp

eg

90
.5

li

99
.5

m
88

ks
im

98
.9

m
cf

10
0.

1
pa

rs
er

10
2.

2
pe

rlb
m

k

98
.1

vo
rt

ex

99
.0

vp
r_

pl
ac

e

99
.0

vp
r_

ro
ut

e

99
.9

av
er

ag
e

(b) Normalized execution time (bus).

|0

|50

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s 96
.2

bz
ip

2_
co

m
p

95
.7

cr
af

ty

93
.9

gc
c

97
.9

go

76
.3

ijp
eg

44
.6

li

98
.3

m
88

ks
im

89
.7

m
cf

76
.3

pa
rs

er

10
0.

2
pe

rlb
m

k

10
4.

8
vo

rt
ex

97
.0

vp
r_

pl
ac

e

93
.0

vp
r_

ro
ut

e

89
.5

av
er

ag
e

(c) Normalized data cache misses (crossbar).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 10
0.

0
bz

ip
2_

co
m

p

99
.5

cr
af

ty

99
.3

gc
c

10
0.

7
go

10
3.

8
ijp

eg

83
.5

li

10
0.

1
m

88
ks

im

98
.9

m
cf

97
.7

pa
rs

er

10
1.

5
pe

rlb
m

k

99
.4

vo
rt

ex

99
.2

vp
r_

pl
ac

e

98
.9

vp
r_

ro
ut

e

98
.6

av
er

ag
e

(d) Normalized execution time (crossbar).

Figure 5.8: Impact of stride-based prefetching on parallel regions.

the consecutive referenced addresses differing by the same stride distance. When the prefetcher

recognizes a stride, we queue 16 prefetches that continue the stride pattern and then reset the

corresponding entry. The issuing of these prefetches is throttled to avoid unwanted bursts of

interconnect traffic.

Figures 5.8(a) and 5.8(c) show the reduction in data cache misses in parallel regions for

strided prefetching. For both bus and crossbar, data cache misses have been reduced by nearly

20% or more for three applications, Li, Ijpeg and Parser, and by an average of 10% across

5.5. Summary 62

all applications—indicating that we have successfully eliminated most stride-based misses as

identified in Section 4.7.

In Figures 5.8(b) and 5.8(d) we see mixed results for the corresponding performance when

prefetching strided accesses. With a bus interconnect, Li, and Vortex improve somewhat

while Ijpeg performs significantly worse. Although there is a significant decrease in the number

of misses, strided prefetching produces bursts of traffic that hurt performance. On average,

strided prefetching has no significant performance impact overall, indicating that the benefits

of reduced cache misses are overwhelmed by the increase in interconnect traffic. Indeed, during

parallel execution we find that interconnect contention increases eight-fold over that of sequen-

tial execution (even without strided prefetching) due to the increase in active processors running

the parallel region, decreased locality, and the effects of failed speculation. Strided prefetching

performs better with a crossbar, where it has 1.4% performance improvement on average across

all benchmarks. The reason is that strided accesses usually involve cache lines that are located

in different banks of the shared cache, and therefore the prefetching traffic is spread across all

connections in the crossbar, hence reducing the performance impact of this extra traffic. To

conclude, we do not recommend to use stride prefetching with a bus where extra traffic is pro-

hibited, however stride prefetching is beneficial with a crossbar interconnect.

5.5 Summary

In this Chapter, we proposed four techniques for improving cache locality for TLS, and evaluated

their impact on data cache misses and performance with both bus and crossbar interconnects.

We found that using a fixed sequential processor is beneficial to both types of interconnect and

implementing it is essentially free. The other three techniques target the three major categories

5.5. Summary 63

of data cache misses in parallel regions, as described in Chapter 4.

1. Read-based sharing—Broadcasting read misses eliminates 27.7% of data cache misses and

improves performance by 7.3% with a bus; reduces 23.9% of misses and improves perfor-

mance by 2.6% with a crossbar. Throttling broadcast avoids bad broadcasts and benefits

a few benchmarks which fewer read-based sharing misses, however it yields little perfor-

mance on average.

2. Write-based sharing—We proposed a scheme to predict which cache lines are involved

in write based sharing at runtime, and at commit time we write-back, self-invalidate

and push the cache line to the next processor. Our prediction scheme introduces only

a small amount of extra hardware and does not require any modification to the existing

hardware or coherence protocol. This technique reduces data cache misses by nearly 20%

and improves parallel region performance by more than 7% with both bus and crossbar

interconnects.

3. Strided access—We implement an adaptive stride prefetcher which can recognize 16 strides

with arbitrary stride distance simultaneously. The stride prefetcher successfully eliminates

most of the strided misses in parallel regions and reduces data cache misses by more than

10% in both bus and crossbar, however it does not have much impact on performance:

0.1% speedup with a bus and 1.4% speedup with a crossbar, due to the excess amount of

traffic.

In the next Chapter we investigate the combination of all three techniques and evaluate their

impact on scalability and parallel region selection.

Chapter 6

Combining the Techniques

In the previous chapter we proposed three techniques for improving cache locality for TLS exe-

cution that target the three important categories of data cache misses identified in Section 4.7.

In this chapter we evaluate the impact of combining all three techniques and compare the

performance against running the benchmarks sequentially. Then we investigate the impact of

re-selecting parallel regions after applying our locality techniques. Finally, we show that our

techniques enhance the scalability of TLS on up to 8-core CMPs.

6.1 Performance Impact of Combining all Techniques

In Figure 6.1 we show the reduction in data cache misses in parallel regions for all combinations

of the three techniques: exploiting read-based sharing by broadcasting all load misses (RB),

exploiting write-based sharing through our technique for cache line self-invalidation and pushing

(WB), and strided prefetching (ST).

Both bus and crossbar have 28% cache miss reduction with WB/ST, however crossbar has

nearly 5% more misses than bus in three other cases due to the inefficiency of broadcasting with

64

6.1. Performance Impact of Combining all Techniques 65

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

57
.7

W
B

/S
T

73
.1

R
B

/S
T

51
.5

R
B

/W
B

50
.9

R
B

/W
B

/S
T

bzip
2_

co
m

p

60
.7

W
B

/S
T

55
.1

R
B

/S
T

45
.7

R
B

/W
B

46
.4

R
B

/W
B

/S
T

cr
af

ty

78
.1

W
B

/S
T

64
.9

R
B

/S
T

57
.3

R
B

/W
B

56
.7

R
B

/W
B

/S
T

gcc

82
.4

W
B

/S
T

64
.4

R
B

/S
T

56
.7

R
B

/W
B

56
.6

R
B

/W
B

/S
T

go

76
.3

W
B

/S
T

56
.6

R
B

/S
T

56
.0

R
B

/W
B

54
.7

R
B

/W
B

/S
T

ijp
eg

32
.2

W
B

/S
T

37
.9

R
B

/S
T

85
.4

R
B

/W
B

32
.4

R
B

/W
B

/S
T

li

97
.7

W
B

/S
T

74
.5

R
B

/S
T

75
.9

R
B

/W
B

79
.5

R
B

/W
B

/S
T

m
88

ks
im

89
.1

W
B

/S
T

90
.9

R
B

/S
T

96
.4

R
B

/W
B

90
.9

R
B

/W
B

/S
T

m
cf

47
.2

W
B

/S
T

57
.1

R
B

/S
T

42
.5

R
B

/W
B

36
.7

R
B

/W
B

/S
T

par
se

r

98
.4

W
B

/S
T

90
.5

R
B

/S
T

88
.5

R
B

/W
B

88
.9

R
B

/W
B

/S
T

per
lb

m
k

80
.0

W
B

/S
T

73
.5

R
B

/S
T

60
.3

R
B

/W
B

61
.2

R
B

/W
B

/S
T

vo
rte

x

69
.9

W
B

/S
T

63
.9

R
B

/S
T

47
.1

R
B

/W
B

46
.8

R
B

/W
B

/S
T

vp
r_

plac
e

72
.2

W
B

/S
T

53
.9

R
B

/S
T

39
.6

R
B

/W
B

43
.3

R
B

/W
B

/S
T

vp
r_

ro
ute

72
.4

W
B

/S
T

65
.9

R
B

/S
T

61
.8

R
B

/W
B

57
.3

R
B

/W
B

/S
T

av
er

ag
e

(a) Normalized data cache misses (bus).

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 D
at

a
C

ac
h

e
M

is
se

s

54
.0

W
B

/S
T

76
.5

R
B

/S
T

57
.5

R
B

/W
B

56
.3

B
R

/W
B

/S
T

bzip
2_

co
m

p

60
.4

W
B

/S
T

55
.7

R
B

/S
T

46
.3

R
B

/W
B

47
.3

B
R

/W
B

/S
T

cr
af

ty

77
.9

W
B

/S
T

70
.5

R
B

/S
T

62
.9

R
B

/W
B

62
.3

B
R

/W
B

/S
T

gcc

83
.4

W
B

/S
T

67
.4

R
B

/S
T

58
.3

R
B

/W
B

59
.1

B
R

/W
B

/S
T

go

75
.1

W
B

/S
T

67
.3

R
B

/S
T

70
.4

R
B

/W
B

67
.7

B
R

/W
B

/S
T

ijp
eg

38
.6

W
B

/S
T

50
.9

R
B

/S
T

85
.8

R
B

/W
B

47
.6

B
R

/W
B

/S
T

li

99
.8

W
B

/S
T

74
.2

R
B

/S
T

76
.6

R
B

/W
B

75
.7

B
R

/W
B

/S
T

m
88

ks
im

88
.8

W
B

/S
T

90
.5

R
B

/S
T

96
.4

R
B

/W
B

90
.6

B
R

/W
B

/S
T

m
cf

46
.4

W
B

/S
T

60
.3

R
B

/S
T

53
.2

R
B

/W
B

44
.5

B
R

/W
B

/S
T

par
se

r

98
.5

W
B

/S
T

89
.6

R
B

/S
T

88
.5

R
B

/W
B

89
.0

B
R

/W
B

/S
T

per
lb

m
k

80
.4

W
B

/S
T

88
.3

R
B

/S
T

69
.4

R
B

/W
B

80
.2

B
R

/W
B

/S
T

vo
rte

x

68
.8

W
B

/S
T

64
.0

R
B

/S
T

49
.0

R
B

/W
B

51
.9

B
R

/W
B

/S
T

vp
r_

plac
e

72
.0

W
B

/S
T

56
.3

R
B

/S
T

41
.7

R
B

/W
B

45
.7

B
R

/W
B

/S
T

vp
r_

ro
ute

72
.6

W
B

/S
T

70
.1

R
B

/S
T

65
.8

R
B

/W
B

62
.9

R
B

/W
B

/S
T

av
er

ag
e

(b) Normalized data cache misses (crossbar).

Figure 6.1: Impact on the number of data cache misses within parallel regions of combining the
three techniques, relative to the baseline model: exploiting read-based sharing (RB), write-based
sharing (WB), and strided prefetching (ST).

6.1. Performance Impact of Combining all Techniques 66

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

83
.8

W
B

/S
T

92
.9

R
B

/S
T

79
.0

R
B

/W
B

79
.6

R
B

/W
B

/S
T

bzip
2_

co
m

p

90
.3

W
B

/S
T

91
.9

R
B

/S
T

87
.1

R
B

/W
B

87
.3

R
B

/W
B

/S
T

cr
af

ty

95
.8

W
B

/S
T

96
.5

R
B

/S
T

92
.9

R
B

/W
B

93
.1

R
B

/W
B

/S
T

gcc

94
.4

W
B

/S
T

93
.5

R
B

/S
T

87
.7

R
B

/W
B

88
.3

R
B

/W
B

/S
T

go

99
.1

W
B

/S
T

10
6.

9
R

B
/S

T
90

.3
R

B
/W

B
96

.4
R

B
/W

B
/S

T

ijp
eg

83
.7

W
B

/S
T

85
.6

R
B

/S
T

89
.3

R
B

/W
B

85
.6

R
B

/W
B

/S
T

li

99
.5

W
B

/S
T

97
.8

R
B

/S
T

97
.9

R
B

/W
B

97
.1

R
B

/W
B

/S
T

m
88

ks
im

95
.2

W
B

/S
T

97
.2

R
B

/S
T

94
.9

R
B

/W
B

94
.4

R
B

/W
B

/S
T

m
cf

89
.6

W
B

/S
T

88
.6

R
B

/S
T

77
.6

R
B

/W
B

81
.7

R
B

/W
B

/S
T

par
se

r

10
0.

5
W

B
/S

T
97

.2
R

B
/S

T
95

.2
R

B
/W

B
96

.2
R

B
/W

B
/S

T

per
lb

m
k

93
.6

W
B

/S
T

97
.4

R
B

/S
T

88
.1

R
B

/W
B

88
.1

R
B

/W
B

/S
T

vo
rte

x

87
.1

W
B

/S
T

81
.6

R
B

/S
T

74
.6

R
B

/W
B

74
.4

R
B

/W
B

/S
T

vp
r_

plac
e

92
.2

W
B

/S
T

89
.8

R
B

/S
T

78
.6

R
B

/W
B

82
.6

R
B

/W
B

/S
T

vp
r_

ro
ute

92
.7

W
B

/S
T

93
.6

R
B

/S
T

87
.2

R
B

/W
B

88
.1

R
B

/W
B

/S
T

av
er

ag
e

(a) Normalized execution time (bus).

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

78
.2

W
B

/S
T

10
0.

2
R

B
/S

T
81

.3
R

B
/W

B
81

.4
R

B
/W

B
/S

T

bzip
2_

co
m

p

92
.3

W
B

/S
T

96
.4

R
B

/S
T

91
.4

R
B

/W
B

91
.6

R
B

/W
B

/S
T

cr
af

ty

95
.3

W
B

/S
T

98
.0

R
B

/S
T

94
.5

R
B

/W
B

95
.4

R
B

/W
B

/S
T

gcc

93
.7

W
B

/S
T

98
.3

R
B

/S
T

90
.9

R
B

/W
B

91
.4

R
B

/W
B

/S
T

go

96
.9

W
B

/S
T

10
4.

2
R

B
/S

T
95

.7
R

B
/W

B
97

.3
R

B
/W

B
/S

T

ijp
eg

79
.9

W
B

/S
T

83
.9

R
B

/S
T

90
.5

R
B

/W
B

82
.4

R
B

/W
B

/S
T

li

99
.2

W
B

/S
T

98
.5

R
B

/S
T

98
.3

R
B

/W
B

97
.5

R
B

/W
B

/S
T

m
88

ks
im

95
.9

W
B

/S
T

98
.4

R
B

/S
T

96
.5

R
B

/W
B

96
.1

R
B

/W
B

/S
T

m
cf

87
.7

W
B

/S
T

93
.0

R
B

/S
T

84
.3

R
B

/W
B

84
.8

R
B

/W
B

/S
T

par
se

r

99
.2

W
B

/S
T

97
.7

R
B

/S
T

96
.3

R
B

/W
B

96
.6

R
B

/W
B

/S
T

per
lb

m
k

89
.9

W
B

/S
T

10
0.

7
R

B
/S

T
90

.7
R

B
/W

B
95

.0
R

B
/W

B
/S

T

vo
rte

x

90
.8

W
B

/S
T

90
.5

R
B

/S
T

84
.0

R
B

/W
B

84
.4

R
B

/W
B

/S
T

vp
r_

plac
e

93
.2

W
B

/S
T

94
.8

R
B

/S
T

83
.9

R
B

/W
B

87
.8

R
B

/W
B

/S
T

vp
r_

ro
ute

91
.7

W
B

/S
T

96
.5

R
B

/S
T

90
.6

R
B

/W
B

90
.9

R
B

/W
B

/S
T

av
er

ag
e

(b) Normalized execution time (crossbar).

Figure 6.2: Impact on the performance of parallel regions of combining the three techniques,
relative to the baseline model: exploiting read-based sharing (RB), write-based sharing (WB),
and strided prefetching (ST).

6.1. Performance Impact of Combining all Techniques 67

|0

|5

|10

|15

 P
er

ce
n

ta
g

e
P

ro
g

ra
m

 S
p

ee
d

u
p

9.
2

Floa
t

13
.4

Bas
eli

ne

16
.7

RB
16

.2
W

B

13
.0

ST

18
.9

RB/W
B

18
.1

RB/W
B/S

T

(a) Bus
|0

|5

|10

|15

 P
er

ce
n

ta
g

e
P

ro
g

ra
m

 S
p

ee
d

u
p

12
.7

Floa
t

16
.3

Bas
eli

ne

16
.7

RB

18
.7

W
B

16
.2

ST

19
.3

RB/W
B

19
.1

RB/W
B/S

T

(b) Crossbar

Figure 6.3: Summary of all our techniques, showing average program speedup of 13 SpecInt
benchmarks relative to sequential execution. Float shows the performance of a “floating” sequen-
tial processor, Baseline includes a fixed sequential processor, RB exploits read-based sharing,
WB exploits write-based sharing, and ST performs strided prefetching.

a crossbar interconnect.

Broadcast is the most effective miss-reduction technique for nine of the applications with

a bus and eight with a crossbar. When our write-based technique is applied with a bus in-

terconnect, Bzip2 comp and Parser have more than 20% decrease in cache misses. Three

applications perform best with the invalidation scheme with a crossbar: Bzip2 comp, Parser

and Vortex. Strided prefetching provides a significant benefit for Li and Mcf: Li has a huge

50% drop in the number of cache misses when stride prefetching is enabled(RB/WB/ST), while

Mcf has 4% less misses. Since the broadcast and stride schemes each target independent groups

of misses, we expect that their respective impacts will be complementary. While previously we

observed an average reduction in data cache misses in parallel regions of 27.7% for broadcast

alone and 10.3% for stride alone, we see a 34.1% reduction when both are combined (RB/ST)

as evidence of their complementary behaviour. This result is less than the sum of the indi-

vidual reductions, indicating that some cache lines are impacted by both schemes over the full

6.1. Performance Impact of Combining all Techniques 68

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
D

at
a

C
ac

h
e

M
is

se
s

10
0.

0
B

as
el

in
e

72
.3

R
B

80
.4

W
B

89
.7

S
T

61
.8

R
B

/W
B

57
.3

R
B

/W
B

/S
T

 L2 Misses

 Read-based sharing

 Write-based sharing

 Strided

 Other

Figure 6.4: Impact on data cache misses of all our techniques within parallel regions, showing
number of misses relative to the baseline. Baseline includes a fixed sequential processor, RB
exploits read-based sharing,WB exploits write-based sharing, and ST performs strided prefetch-
ing.

execution (as opposed to our limited-window classification in Section 4.7). Since the technique

for exploiting write-based sharing reduces traffic, it enables the traffic-limited strided prefetcher

to further reduce misses. This is demonstrated by the 5% improvement of all three techniques

(RB/WB/ST) over broadcast and strided prefetching alone (RB/ST).

Looking at the performance impact of combining the techniques, as shown in Figure 6.2, we

see that the combination of read and write-based techniques (RB/WB) performs the best for

eight applications for both bus and crossbar, with the combination of all three schemes perform-

ing the best for three applications. Unfortunately, it is evident that while the combination of

all three schemes eliminates the most cache misses, the read/write-based combination actually

performs the best on average. This indicates that the read/write-based schemes were unable to

reduce traffic enough for the strided prefetcher to be effective. However, the read/write-based

combination has still significantly improved the performance of parallel regions. With a bus

6.1. Performance Impact of Combining all Techniques 69

interconnect, performance is improved by nearly 10% or more for nine applications, and by an

average of 12.8% across all applications. In the case with a crossbar interconnect, the perfor-

mance of WB/ST, RB/WB and RB/WB/ST are indeed very close and are within around 1%.

However RB/ST is 5% worse than the other three combinations, indicating that WB is most

important for crossbar in which broadcasting does not yield any significant gain.

Figure 6.3 summarizes the performance impact on overall program of our locality techniques.

The results are shown as program speedup relative to the original sequential execution of the

un-modified binary. Our best scheme, RB/WB adds 5.5% program speedup to the baseline

TLS hardware with a bus, and 3.3% in the case of crossbar. TLS baseline hardware has 13.4%

and 16.3% speedup relative to sequential execution with a bus and a crossbar interconnect re-

spectively, indicating that TLS performs better with a crossbar without our locality techniques.

After applying our techniques, both bus and crossbar yield nearly 19% program speedup since

cache locality is improved and hence interconnect contention is reduced.

In Figure 6.4 we show data cache miss patterns within parallel regions after applying our

locality techniques with a bus interconnect. RB significantly reduces read-based sharing misses,

while WB eliminates both read-based and write-based misses. ST reduces most of the strided

misses. RB reduces some of the write-based misses since broadcasting also benefits any write

miss that follows a read miss (the cache line is broadcasted to all processors after the read miss).

As shown in Figure 6.2(a), RB/WB is the scheme that gives most performance gain and it elim-

inates a large amount of read-based and write-based miss. Although adding stride prefetching

does not yield additional performance speedup, RB/WB/ST has the smallest number of data

cache misses among all our schemes since it targets all three major miss categories. L2 cache

misses have not been significantly reduced as our locality techniques do not intend to prefetch

into the level-two cache.

6.2. Impact of Re-selecting Parallel Regions 70

6.2 Impact of Re-selecting Parallel Regions

So far, we have evaluated our techniques for improving cache locality on applications whose par-

allel regions were chosen based on their measured performance on baseline hardware support:

the parallel regions which contribute the greatest product of speedup and coverage (which we

call gain) are selected, as described in Chapter 3. However, it is possible that our techniques

themselves could change the relative gains of parallel regions, resulting in an even better poten-

tial selection of parallel regions and enhanced performance. To the best of our knowledge, this

crucial step in the evaluation of optimizations for TLS has not been taken previously.

In Figure 6.5 we show the impact of reselecting regions with a bus interconnect, showing

only those applications for which the selection has changed significantly (as measured by the

coverages of the changed parallel regions). We show program speedup relative to the sequential

execution where B is the baseline, B/RW improves on the baseline by supporting both read and

write-based techniques, and R/RW reselects parallel regions after applying those techniques.

Note that the versions of the benchmarks used in this experiment are slightly different than

those used in the rest of the thesis, because they allow us to easily change the selection of par-

allel regions through guarded code (rather than recompiling).

Applying our techniques to the original selection of parallel regions (B/RW) improves the

program performance of Bzip2 comp by 5%. Reselecting parallel regions for this application

(R/RW) further improves program performance by 4%. For Compress, Li and Twolf, rese-

lecting parallel regions makes the difference between achieving no speedup at all and achieving

modest program speedups of 5%, 3% and 5% respectively. However, reselecting parallel re-

6.3. Impact on Scalability 71

|0

|10

|20

|30

|40

 P
er

ce
n

ta
g

e
P

ro
g

ra
m

 S
p

ee
d

u
p

6.
3

B

11
.8

B
/R

W

14
.2

R
/R

W

bzip
2_

co
m

p

0.
0

B

0.
0

B
/R

W

5.
2

R
/R

W

co
m

pre
ss

0.
4

B

1.
0

B
/R

W

3.
4

R
/R

W

li

0.
7

B

0.
7

B
/R

W

5.
6

R
/R

W

tw
olf

18
.7

B

47
.0

B
/R

W

47
.1

R
/R

W

vp
r_

plac
e

Figure 6.5: Impact of re-selecting parallel regions after applying our techniques with a bus
interconnect, showing program speedup relative to the sequential execution: B is the baseline,
B/RW implements both broadcast all load misses and aggressive writeback techniques, and
R/RW reselects parallel regions after applying those techniques.

gions has no performance impact on Vpr place, even though the selection itself did change

significantly (by coverage). Overall, these results confirm that reselecting parallel regions can

offer compelling additional performance improvements when evaluating an optimization of TLS

execution.

6.3 Impact on Scalability

With baseline TLS hardware support, as we increase the number of processors the cache local-

ity problem is exacerbated: more processors means more caches which in turn means decreased

cache locality when compared with the original sequential execution. This trend is evident in

Figure 6.6, where we show the region execution time for a varying number of processors (from

two to eight). Looking at the average of all benchmarks for the baseline TLS support with a

6.3. Impact on Scalability 72

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 92
.4

2
81

.8
4

81
.6

6
82

.2
8

baseline

82
.5

2
64

.6
4

62
.9

6
62

.4
8

improved

bzip2_comp
93

.8
2

84
.5

4
89

.0
6

88
.6

8

baseline

83
.3

2
63

.5
4

58
.4

6
57

.3
8

improved

vpr_place

88
.2

2
77

.5
4

75
.6

6
76

.8
8

baseline

82
.0

2
67

.1
4

64
.0

6
62

.7
8

improved

average

(a) bus

|0

|20

|40

|60

|80
|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

88
.0

2
68

.5
4

63
.5

6
61

.7
8

baseline

79
.7

2
55

.7
4

51
.6

6
45

.9
8

improved

bzip2_comp

90
.1

2
72

.6
4

69
.7

6
67

.6
8

baseline

83
.5

2
61

.6
4

60
.0

6
59

.3
8

improved

vpr_place

86
.2

2
73

.2
4

69
.9

6
69

.5
8

baseline

81
.8

2
66

.1
4

63
.4

6
62

.0
8

improved

average

(b) crossbar

Figure 6.6: Impact of our techniques for improved locality on the scalability of parallel regions,
as we vary the number of processors from 2 to 8. The improvement is most pronounced for
bzip2 comp and vpr place, but is also significant on average across all benchmarks.

6.3. Impact on Scalability 73

bus interconnect, we see that increasing the number of processors to eight actually hinders per-

formance (as compared with only using six processors). This negative trend is most pronounced

in Bzip2 comp and Vpr place, as shown in Figure 6.6(a).

After applying our techniques for improving locality (labeled improved, which exploits both

read-based and write-based sharing patterns), both Bzip2 comp and Vpr place show im-

proved scaling, as well as significantly improved performance. Looking at the average case,

we see that increasing processors from six to eight improves performance (although modestly).

The amount of improvement over the baseline case grows with the number of processors (6.2%,

10.4%, 11.4%, and 14.1% for 2, 4, 6, and 8 processors respectively), demonstrating that the

importance of dealing with cache locality issues for TLS grows with the number of processors.

On the other hand, the TLS baseline with a crossbar interconnect is able to scale well up

to eight processors, as shown in Figure 6.6(b), while our techniques further improve the perfor-

mance of parallel regions.

Chapter 7

Conclusions

Thread-Level Speculation (TLS) is a promising way to exploit chip multiprocessors (CMPs) to

improve the performance of an individual program through speculative parallelization. However,

the cache locality of the original program is significantly disrupted by TLS execution, resulting

in nearly a four-fold increase in the data cache miss rate. This dissertation proposes techniques

which improve cache locality and hence performance for TLS systems. These techniques are

evaluated with SPEC integer benchmarks. In this section, we review the contributions of this

dissertation and discuss possible directions for future work.

7.1 Contributions

This thesis makes the following contributions. First, we provide a thorough classification of

the cache locality problem for TLS, and use this classification to divide and conquer the prob-

lem. Second, we perform a detailed evaluation of techniques for addressing read-only sharing,

write-based sharing, and strided-based miss patterns. We show that these simple techniques

can significantly reduce the number of cache misses for TLS programs and improve overall per-

74

7.1. Contributions 75

formance. Third, we demonstrate the importance of re-selecting parallel regions after applying

our techniques for improving cache locality, as opposed to only evaluating the original selection

which is biased towards baseline TLS hardware support. Finally, we show that our techniques

significantly improve the ability of TLS execution to scale to larger numbers of processors.

Our investigation into the TLS cache locality problem revealed that scheduling the sequen-

tial portion of execution to a single processor is much better for cache locality than a floating

sequential processor. We also discovered that given this proper scheduling instruction cache

locality was not an issue, and that the majority of performance problems come from the data

cache locality and interconnect traffic during parallel execution. Finally, we observed that a vast

majority of misses were for miss patterns exhibiting read-only sharing, with write-based sharing

and stride-based patterns being the next two most significant.

These observations motivated us to suggest several schemes for improving data cache local-

ity. With respect to baseline TLS hardware support, we can further reduce cache misses by

38.2% with a bus and 34.2% with a crossbar, improve parallel region and program performance

by 12.8% and 5.5% respectively for a bus, 9.5% and 3% for a crossbar, through our techniques

for exploiting read and write based sharing. While stride-based prefetching can significantly

reduce data cache misses, we found that the additional traffic incurred during parallel regions

is prohibitive. We showed the importance of re-selecting parallel regions after applying any op-

timization with a bus interconnect: for five applications a different selection of parallel regions

resulted in a significant additional performance improvement, making the difference between

achieving no speedup at all and achieving modest program speedups. Finally, we demonstrated

that our techniques facilitate scaling, and that the importance of dealing with cache locality

issues for TLS grows with the number of processors.

7.2. Future Work 76

Extracting thread-speculative parallelism from general purpose programs is challenging.

However, by maximizing the efficiency of every aspect of the system, including repairing cache

locality, we can use CMPs to automatically extract significant speculative parallelism from a

broad range of applications.

7.2 Future Work

Improving the cache locality for TLS is a relatively new topic and there is no other similar work

as far as we know. There is plenty of research to be done beyond this dissertation, including

the following,

Future compiler research: Although we have shown our hardware techniques are able

to eliminate locality misses and improve performance significantly, we believe that since the

compiler has the knowledge of the program structure, it could be used to analyze the regions

and suggest the hardware with the best potential locality optimizations. Compiler transforma-

tions for improving locality on speculative parallel would be beneficial, especially for array based

strided accesses.

Investigate into the possibility of selectively activating a combination of locality

technique for individual region: Since the cache access patterns for each parallel region can

be very different, it is highly possible that any particular locality technique would perform well

in one region while hurting the performance of another region. The invocation path of the region

may also have an impact on cache behaviour, and affect the locality techniques. A system that

is able to monitor cache behaviour online and select the optimal combination of optimizations

for each region invocation would be beneficial.

7.2. Future Work 77

Evaluation of our locality techniques on other multithreaded systems: It would

be interesting to see the performance impact of our techniques on other hardware-based TLS

systems [17,18] (as described in Chapter 2) and helper threads prefetching schemes [28,46].

Bibliography

[1] Hazim Abdel-Shafi, Jonathan Hall, Sarita V. Adve, and Vikram Adve. An evaluation of

fine-grain producer-initiated communication in cache-coherent multiprocessors. In Proceed-

ings of the third International Conference on High-Performance Computer Architecture,

Feburary 1997.

[2] Haitham Akkary and Michael A. Driscoll. A dynamic multithreading processor. In Pro-

ceedings of the 31st International Symposium on Microarchitecture, December 1998.

[3] J. Gregory Steffan Antonia Zhai, Christopher B. Colohan and Todd C. Mowry. Compiler

optimization of scalar value communication between speculative threads. In Proccedings of

the Tenth International Conference on Architectural Support for Programming Languages

and Operating Systems, October 2002.

[4] J. Gregory Steffan Antonia Zhai, Christopher B. Colohan and Todd C. Mowry. Compiler

optimization of memory-resident value communication between speculative threads. In

Proceedings of the 2004 International Symposium on Code Generation and Optimization,

March 2004.

[5] Jean-Loup Baer and Tien-Fu Chen. Effective hardware-based data prefetching for high-

performance processors. In IEEE Transactions on Computers, Volume 44 , Issue 5, May

1995.

78

Bibliography 79

[6] S. E. Breach, T. N. Vijaykumar, Sridhar Gopal, J. E. Smith, and G. S. Sohi. Single-

program speculatives multithreading (spsm) architecture: Compiler-assisted fine-grained

multithreading. Technical Report RC19928, IBM Research Division, T.J. Watson Research

Center, Feburary 1995.

[7] Jeffery A. Brown, Hong Wang, George Chrysos, Perry H. Wang, and John P. Shen. Spec-

ulative precomputation on chip multiprocessors. In Proceedings of the 6th Workshop on

Multithreaded Execution, Architecture, and Compilation, November 2001.

[8] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations for im-

proving data locality. In Proceedings of the Sixth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 252–262, San Jose,

California, 1994.

[9] Standard Performance Evaluation Corporation. The SPEC Benchmark Suite. Technical

report. http://www.spechbench.org.

[10] Alan L. Cox and Robert J. Fowler. Adaptive cache coherency for detecting migratory shared

data. In Proceedings of the 20th International Symposium on Computer Architecture, San

Diego, CA, 1993.

[11] F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed and adaptive sequential prefetching in

shared-memory multiprocessors. In Proceedings of the International Conference on Parallel

Processing, 1993.

[12] Yiannakis Sazeides Eric Rotenberg, Quinn Jacobson and Jim Smith. Trace processors. In

Proceedings of the 30th International Symposium on Microarchitecture, December 1997.

[13] M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic reordering of memory

references. IEEE Transactions on Computers, May 1996.

Bibliography 80

[14] Manoj Franklin. The Multiscalar Architecture. PhD thesis, Department of Computer Sci-

ences, University of Wisconsin-Madison, December 1993.

[15] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride directed prefetching in scalar

processors. In Proceedings of the 25th annual international symposium on Microarchitecture,

1992.

[16] S. Breach G. S. Sohi and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the

22th International Symposium on Computer Architecture, June 1995.

[17] Sridhar Gopal, T.N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning cache.

In Proceedings of the Fourth International Symposium on High-Performance Computer Ar-

chitecture, February 1998.

[18] Lance Hammond, Ben Hubbert, Michael Siu, Manohar Prabhu, Mike Chen, and Kunle

Olukotun. The stanford hydra cmp. In IEEE MICRO Magazine, March 2000.

[19] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a chip

multiprocessor. In Proceedings of the Eighth ACM Conference on Architectural Support for

Programming Languages and Operating Systems, October 1998.

[20] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. Tcp: Tag correlating prefetchers.

In Proceedings of the The Ninth International Symposium on High-Performance Computer

Architecture, 2003.

[21] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In Proceedings of

the 24th annual international symposium on Computer architecture, 1997.

[22] Stefanos Kaxiras, Stein Gjessing, and James R. Goodman. A study of three dynamic

approaches to handle widely shared data in shared-memory multiprocessors. In ICS ’98:

Bibliography 81

Proceedings of the 12th international conference on Supercomputing, pages 457–464, New

York, NY, USA, 1998. ACM Press.

[23] Iffat H. Kazi and David J. Lilja. Coarse-Grained Speculative Execution in Shared-Memory

Multiprocessors. In Proceedings of the 12th international conference on Supercomputing,

1998.

[24] Dongkeun Kim, Steve Shih wei Liao, Perry H. Wang, Juan del Cuvillo, Xinmin Tian, Xiang

Zou, Hong Wang, Donald Yeung, Milind Girkar, and John P. Shen. Physical experimen-

tation with prefetching helper threads on intel’s hyper-threaded processors. In CGO ’04:

Proceedings of the international symposium on Code generation and optimization, page 27,

Washington, DC, USA, 2004. IEEE Computer Society.

[25] Venkata Krishnan and Josep Torrellas. A chip multiprocessor architecture with specu-

lative multithreading. IEEE Transactions on Computers, Special Issue on Multithreaded

Architecture, September 1999.

[26] An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-invalidation using last-

touch prediction. In ISCA ’00: Proceedings of the 27th annual international symposium on

Computer architecture, pages 139–148, New York, NY, USA, 2000. ACM Press.

[27] Alvin R. Lebeck and David A. Wood. Dynamic self-invalidation: reducing coherence over-

head in shared-memory multiprocessors. In ISCA ’95: Proceedings of the 22nd annual

international symposium on Computer architecture, pages 48–59, New York, NY, USA,

1995. ACM Press.

[28] Chi-Keung Luk. Tolerating memory latency through Software-Controlled Pre-Execution in

simultaneous multithreading processors. In Proceedings of the 28th Annual International

Symposium on Computer Architecture (ISCA), pages 40–51, July 2001.

Bibliography 82

[29] Pedro Marcuello and Antonio Gonzalez. Clustered speculative multithreaded processors.

In Proceedings of the 12th International Conference on Supercomputing, June 1999.

[30] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled prefetching

in shared-memory multiprocessors. J. Parallel Distrib. Comput., 12(2):87–106, 1991.

[31] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a compiler

algorithm for prefetching. In Proceedings of the 5th International Conference on Architec-

tural Support for Programming Languages and Operating System (ASPLOS), volume 27,

pages 62–73, New York, NY, 1992. ACM Press.

[32] S. Palacharla and R. Kessler. Evaluating stream buffers as a secondary cache replacement.

In Proceedings of the 21st International Symposium on Computer Architecture, April 1994.

[33] Antonio Gonzalez Pedro Marcuello and Jordi Tubella. Speculative multithreaded proces-

sors. In Proceedings of the 12th International Conference on Supercomputing, July 1998.

[34] L. Rauchwerger and D. Padua. The LRPD Test: Speculative Run-Time Parallelization of

Loops With Privatization and Reduction Parallelization. In Proceedings of PLDI ’95, pages

218–232, June 1995.

[35] Amir Roth and Gurindar S. Sohi. Speculative data-driven multithreading. In Proceedings

of the 7th International Symposium on High Performance Computer Architecture, January

2001.

[36] Amir Roth and Gurindar S. Sohi. A quantitative framework for automated pre-execution

thread selection. In Proceedings of the 35th International Symposium on Microarchitecture,

November 2002.

[37] J. Gregory Steffan. Hardware Support for Thread-Level Speculation. PhD thesis, School of

Computer Science, Carnegie Mellon University, April 2003.

Bibliography 83

[38] J. Gregory Steffan, Christopher B. Antonia, Colohan Zhai, and Todd C. Mowry. A scalable

approach to thread-level speculation. In Proceedings of the 27th International Symposium

on Computer Architecture, June 2000.

[39] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. Improving

value communication for thread-level speculation. In Proceedings of the Eighth International

Symposium on High-Performance Computer Architecture, February 2002.

[40] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing

On-Chip Parallelism. In Proceedings of ISCA 22, pages 392–403, June 1995.

[41] T. N. Vijaykumar. Compiling for the Multiscalar Architecture. PhD thesis, Department of

Computer Sciences, University of Wisconsin-Madison, January 1998.

[42] Zhenlin Wang, Doug Burger, Steven K. Reinhardt, Kathryn S. McKinley, and Charles C.

Weems. Guided region prefetching: A cooperative hardware/software approach. In Proceed-

ings of the 30th Annual International Symposium on Computer Architecture, June 2003.

[43] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In PLDI ’91:

Proceedings of the ACM SIGPLAN 1991 conference on Programming language design and

implementation, pages 30–44, New York, NY, USA, 1991. ACM Press.

[44] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April 1996.

[45] Xiaotong Zhuang and Hsien-Hsin S. Lee. A hardware-base cache pollution filtering mech-

anism for aggressive prefetches. In Proceedings of the 32nd International Conference on

Parallel Processing, October 2003.

[46] Craig Zilles and Gurindar Sohi. Execution-based prediction using speculative slices. In

Proceedings of the 28th Annual International Symposium on Computer Architecture (ISCA),

pages 2–13, July 2001.

