
The STAMPede Approach to
Thread-Level Speculation

J. GREGORY STEFFAN
University of Toronto
CHRISTOPHER COLOHAN
Carnegie Mellon University
ANTONIA ZHAI
University of Minnesota
and
TODD C. MOWRY
Carnegie Mellon University

Multithreaded processor architectures are becoming increasingly commonplace: many current and
upcoming designs support chip multiprocessing, simultaneous multithreading, or both. While it is
relatively straightforward to use these architectures to improve the throughput of a multithreaded
or multiprogrammed workload, the real challenge is how to easily create parallel software to al-
low single programs to effectively exploit all of this raw performance potential. One promising
technique for overcoming this problem is Thread-Level Speculation (TLS), which enables the com-
piler to optimistically create parallel threads despite uncertainty as to whether those threads are
actually independent. In this article, we propose and evaluate a design for supporting TLS that
seamlessly scales both within a chip and beyond because it is a straightforward extension of write-
back invalidation-based cache coherence (which itself scales both up and down). Our experimental
results demonstrate that our scheme performs well on single-chip multiprocessors where the first
level caches are either private or shared. For our private-cache design, the program performance
of two of 13 general purpose applications studied improves by 86% and 56%, four others by more
than 8%, and an average across all applications of 16%—confirming that TLS is a promising way
to exploit the naturally-multithreaded processing resources of future computer systems.

This research has been supported by grants from the National Science Foundation, NASA, IBM,
and Intel.
Authors’ addresses: J. G. Steffan, Department of Electrical and Computer Engineering, Com-
puter Engineering Research Group, University of Toronto, 10 King’s College Road, Toronto,
Ontario, Canada M5S 3G4; email: steffan@eecg.toronto.edu; C. B. Colohan, Computer Science
Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213; email:
colohan@cs.cmu.edu; A. Zhai, Department of Computer Science and Engineering, University
of Minnesota, 4-192 EE/Csci Building, 200 Union Street, SE, Minneapolis, MN 55455; email:
zhai@cs.umn.edu; T. C. Mowry, Computer Science Department, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, PA 15213; email: tcm@cs.cmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0734-2071/05/0800-0253 $5.00

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005, Pages 253–300.

254 • J. G. Steffan et al.

Categories and Subject Descriptors: C.1.4 [Processor Architectures]: Parallel Architectures;
D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Thread-level speculation, chip-multiprocessing, automatic par-
allelization, cache coherence

1. INTRODUCTION

Due to rapidly increasing transistor budgets, today’s microprocessor architect
is faced with the pleasant challenge of deciding how to translate these extra
resources into improved performance. In the last decade, microprocessor per-
formance has improved steadily through the exploitation of instruction-level
parallelism (ILP), resulting in superscalar processors that are increasingly
wider-issue, out-of-order, and speculative. However, this highly interconnected
and complex approach to microarchitecture is running out of steam. Cross-chip
wire latency (when measured in processor cycles) is increasing rapidly, mak-
ing large and highly interconnected designs infeasible [Palacharla et al. 1996;
Agarwal et al. 2000]. Both development costs and the size of design teams are
growing quickly and reaching their limits. Increasing the amount of on-chip
cache will eventually show diminishing returns [Farrens et al. 1994]. Instead,
an attractive option is to exploit thread-level parallelism.

The transition to new designs that support multithreading has already be-
gun: Sun’s MAJC [Tremblay 1999], IBM’s Power4 [Kahle 1999], and HP’s PA-
8800, are all chip-multiprocessors (CMPs), in that they incorporate multiple
processors on a single die. Alternatively, the Alpha 21464 [Emer 2001], and
Intel Pentium IV Xeon support simultaneous multithreading (SMT) [Tullsen
et al. 1995], where instructions from multiple independent threads are simul-
taneously issued to a single processor pipeline. The more recently announced
Sun Niagara and IBM Power5 are each a CMP composed of SMT-enabled
processors.

While designing cost-effective CMP and SMT architectures is relatively well-
understood, the real issue is how to use thread-level parallelism to improve the
performance of the software that we care about. Multiprogramming workloads
(running several independent programs at the same time) and multithreaded
programs (using separate threads for programming convenience, such as in a
web server) both naturally take advantage of the available concurrent threads.
However, we are often concerned with the performance of a single nonthreaded
application. To use a multithreaded processor to improve the performance of a
single application requires the application to be parallel.

Writing a parallel program is not an easy task, requiring careful manage-
ment of communication and synchronization, while at the same time avoiding
load-imbalance. Instead of having to write parallel programs we would rather
have the compiler translate any program into a parallel program automatically.
While there has been much research in automatic parallelization of numeric
programs (array-based codes with regular access patterns), compiler technology
has made little progress towards the automatic parallelization of non-numeric

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 255

applications: progress here is impeded by ambiguous memory references and
pointers, as well as complex control and data structures—all of which force the
compiler to be conservative. Rather than requiring the compiler to decide the
independence of potentially-parallel threads, we would like the compiler to be
able to parallelize code if it is likely that the potential threads are independent.
This new form of parallel compilation is enabled by thread-level speculation
(TLS).

1.1 Related Work

There are currently many ways of supporting TLS. Of these, one class of
schemes is implemented entirely in software [Gupta and Nim 1998; Rundberg
and Stenstrom 2000; Rauchwerger and Padua 1995; Cintra and Llanos 2003]
but require explicit code and storage to track data dependences and buffer spec-
ulative modifications (or provide an undo-log); these schemes are thus only ef-
fective for array-based, numeric applications where the portions of memory for
which cross-thread dependences need to be tracked are well defined. A software-
only approach to TLS support for a large number of arbitrary memory accesses
(pointers) is infeasible due to high bookkeeping overheads.

Approaches to TLS that involve hardware support may be divided into two
classes: those that are implemented entirely in hardware [Rotenberg et al. 1997;
Akkary and Driscoll 1998; Marcuello and Gonzlez 1999], and those that use both
hardware and software [Park et al. 2003; Krishnan and Torrellas 1999b; Zhang
et al. 1999; Cintra et al. 2000; Hammond et al. 1998; Prvulovic et al. 2001; Frank
et al. 1999; Gopal et al. 1998; Krishnan and Torrellas 1999a; Ooi et al. 2001].
Hardware-only approaches have the advantage of operating on unmodified bi-
naries, but are limited, since hardware must decide how to break programs
into speculative threads without knowledge of high-level program structure.
Hardware-only approaches are generally more complex: transformations and
optimization of TLS execution as well as selecting speculative threads can be
done in hardware, but is often simpler to do in software.

These schemes may also be classified by their underlying architectures:
those that focus on chip-multiprocessor (CMP) architectures [Gopal et al.
1998; Hammond et al. 1998; Krishnan and Torrellas 1999b; Oplinger et al.
1999; Zhang et al. 1999; Frank et al. 1999; Ooi et al. 2001],1 those that fo-
cus on simultaneously-multithreaded (SMT) or other shared-cache architec-
tures [Akkary and Driscoll 1998; Marcuello and Gonzlez 1999; Park et al. 2003],
and those that scale beyond a single chip to multiprocessor (MP) architectures
[Cintra et al. 2000; Gupta and Nim 1998; Prvulovic et al. 2001; Rauchwerger
and Padua 1995; Rundberg and Stenstrom 2000; Zhang and Torrellas 1995;
Zhang et al. 1998]. With the exception of the scheme by Cintra et al. [2000],
no related approach is scalable both within a chip and also beyond a chip
to multiprocessor systems; no related approach is applicable to all multipro-
cessor systems, chip-multiprocessors, and shared-cache architectures (such as
SMT).

1Note that the SUDS scheme [Frank et al. 1999] is implemented using the MIT RAW reconfigurable
architecture, as opposed to extending a conventional CMP.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

256 • J. G. Steffan et al.

Related approaches can also be differentiated by the class of applications
that are supported. Of the past evaluations of TLS hardware, two use only nu-
meric applications [Zhang et al. 1999; Cintra et al. 2000], while the rest focus
on general purpose applications. In general, only numeric applications contain
enough coarse-grain parallelism to tolerate the communication latency of scal-
ing beyond chip boundaries; general purpose applications have more fine-grain
parallelism, and hence are limited to scaling within chip boundaries. How-
ever, it is desirable for one system to support both forms of speculative par-
allelism. Any scheme that supports general-purpose applications should also
function correctly for numeric applications, but the converse is not necessarily
true (ie., a system that works well for numeric applications may not be able
to expliot the fine-grain parallelism in general-purpose applications). It is im-
portant to note that the work of Cintra et al. [2000] focuses solely on numeric
applications.

Finally, related approaches demonstrate a wide variety of hardware imple-
mentations, of which the most important feature is the mechanism for buffering
speculative state and tracking data dependences between speculative threads.
For this purpose, dynamic multithreading (DMT) [Akkary and Driscoll 1998],
SUDS [Frank et al. 1999], and Zhang et al. [1999] introduce a new buffer near
the processor; the latter two approaches speculatively modify memory and use
the buffers to maintain an undo log, while the former uses its buffers to separate
speculative modifications from memory. Implicitly-Multithreaded processors
[Park et al. 2003] use modified load-store queues, while the Hydra [Hammond
et al. 1998] introduces speculative buffers between the write-through first-
level caches and the unified second-level cache. These speculative buffers must
be sufficiently large to be effective, but adding large amounts of speculation-
specific buffering to the memory hierarchy is undesirable. The remaining ap-
proaches [Marcuello and Gonzlez 1999; Krishnan and Torrellas 1999a; Gopal
et al. 1998; Cintra et al. 2000]2 use the existing caches as speculative buffers. A
comprehensive summary and quantitative comparison of several schemes for
TLS support is provided by Garzaran et al. [2003].

While there are many important issues regarding the role of the compiler
in TLS, this article focuses on the design of the underlying hardware support.
The hardware support for TLS presented in this article has the following four
goals:

(1) to handle arbitrary memory accesses—not just array references;
(2) to preserve the performance of nonspeculative workloads;
(3) to scale seamlessly within a chip and provide a framework for scaling be-

yond chip boundaries;
(4) to fully exploit the compiler and minimize the amount and complexity of

the underlying hardware support.

2The Trace Processor [Rotenberg et al. 1997] approach does not specify means for buffering spec-
ulative modifications and tracking data dependences, assuming instead that other work will solve
this.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 257

1.2 Contributions

This article makes contributions in two major areas. The first is the proposal
of a cooperative approach to TLS that capitalizes on the strengths of both the
compiler and hardware. The second is the design and detailed evaluation of a
unified scheme for TLS hardware support.

1.2.1 A Cooperative Approach to TLS. In contrast with many previous ap-
proaches to TLS, this work contributes a cooperative approach that exploits
the respective strengths of compiler and hardware and ventures to redefine the
interface between them. The compiler understands the structure of an entire
program, but cannot easily predict its run-time behavior. In contrast, hard-
ware operates on only limited windows of instructions but can observe all of
the details of dynamic execution. Through new architected instructions that
allow software to manage TLS execution, we free hardware from the burden
of breaking programs into threads and tracking register dependences between
them, while empowering the compiler to optimistically parallelize programs.
This cooperative approach has many advantages over those that use either
software or hardware in isolation, allowing the implementation of aggressive
optimizations in the compiler, and minimizing the complexity of the underlying
hardware support.

1.2.2 Unified Hardware Support for TLS. Previous approaches to TLS
hardware support apply to either speculation within a chip-multiprocessor (or
simultaneously-multithreaded processor) or to a larger system composed of
multiple uniprocessor systems. The hardware support for TLS presented here
is unique because it scales seamlessly within chip boundaries, and provides a
framework for scaling beyond chip boundaries [Steffan et al. 2000]—allowing
this single unified design to apply to a wide variety of multithreaded processors
and larger systems that use those processors as building blocks. We demon-
strate that tracking data dependences by extending invalidation-based cache
coherence and using first level data caches to buffer speculative state is both
elegant and efficient. This article also contributes a thorough evaluation of
chip-multiprocessors with varying numbers of processors and cache organiza-
tions, as well as a detailed exploration of design alternatives and sensitivity to
various architectural parameters.

2. ARCHITECTURAL SUPPORT FOR TLS

We introduce our cooperative approach to TLS in this section by defining the
TLS execution model, the roles of compiler and hardware, and the interface
between them.

2.1 Execution Model

The following describes the execution model for TLS as targeted by the compiler
and implemented in hardware. First, we divide a program into speculatively-
parallel units of work called epochs. For this article, each epoch is associated

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

258 • J. G. Steffan et al.

Fig. 1. Glossary of terms.

with its own underlying speculative thread, and creates the next epoch through
a lightweight fork called a spawn. The spawn mechanism forwards initial pa-
rameters and a program counter (PC) to the appropriate processor. An alter-
native approach (which we do not evaluate in this article) would be to have a
fixed pool of speculative threads that grab epochs from a work queue.

A key component of any architecture for TLS is a mechanism for tracking
the relative ordering of the epochs. In our approach, we timestamp each epoch
with an epoch number to indicate its ordering within the original sequential
execution of the program. We say that epoch X is “logically-earlier” than epoch Y
if their epoch numbers indicate that epoch X should have preceded epoch Y in
the original sequential execution. Epochs commit speculative results in the
original sequential order by passing a homefree token, which indicates that all
previous speculative threads have made all of their speculative modifications
visible to the memory system and hence it is safe to commit. When an epoch
is guaranteed not to have violated any data dependences with logically-earlier
epochs and can therefore commit all of its speculative modifications, we say
that the epoch is homefree.

In the case when speculation fails for a given epoch, all logically-later epochs
that are currently running are also violated and squashed. Although more ag-
gressive strategies are possible (for certain speculative regions), this conserva-
tive approach ensures that an epoch does not continue to execute when it may
have consumed incorrect data.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 259

Fig. 2. TLS instructions for thread and stack management.

Fig. 3. TLS instructions for speculation management.

2.2 Software Interface

We have architected our TLS system to involve both the compiler and hardware,
hence we require an interface between them. There are a number of issues to
consider for such an interface: some issues are analogous to those for purely
parallel applications, such as creating threads and managing the stacks; others
are unique to TLS, such as passing the homefree token and recovering from
failed speculation. We now describe the important components of the software
interface to TLS hardware, and present the new instructions that implement
this interface.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

260 • J. G. Steffan et al.

Fig. 4. TLS instructions for value forwarding.

2.2.1 Managing Threads. In our approach to speculative threads, we are
primarily concerned with providing concurrency at a very low cost—hence we
implement a lightweight fork instruction called a spawn. A spawn instruction
creates a new thread that begins execution at the start address (PC) given,
and is initialized through a copy of the current thread’s forwarding frame (de-
scribed later); a thread descriptor for the child thread is returned as a handle.
When its speculative work is complete, a thread is terminated by the end thread
instruction. Rather than requiring software to be aware of the number of avail-
able speculative contexts, the semantics of the spawn primitive are such that
it may fail: failure is indicated by a returned thread-descriptor value of zero.
Whenever a spawn fails, the speculative thread that attempted the spawn sim-
ply executes the next epoch itself. This method allows speculative threads to
grow to consume all of the available processing resources without creating an
unmanageable explosion of threads.

To speculatively parallelize certain code structures we require support for
control speculation. For example, a while loop with an unknown termination
condition can be speculatively parallelized, but superfluous epochs beyond the
correct termination of the loop may be created. For correct execution we require
the ability to cancel any such superfluous epochs, which is provided by the
cancel thread primitive. Each speculative context provides a flag that indicates
whether the current epoch has been cancelled.3 Any epoch that is cancelled
also cancels its child epoch if one exists. In contrast to an epoch that suffers a
violation, a cancelled epoch is not reexecuted by the run-time system.

2.2.2 Managing Stacks. A key design issue is the management of refer-
ences to the stack. A naive implementation would maintain a single stack
pointer (shared among all epochs) and a stack in memory that is kept con-
sistent by the underlying data dependence tracking hardware. The problem
with this approach is that speculation would fail frequently and unnecessarily:
for example, whenever multiple epochs write/read short-lived temporary values
to the same location on the stack, the resulting read-after-write (RAW) depen-
dence violations would effectively serialize execution. In addition, whenever
the stack pointer is modified, the new value must be forwarded to all succes-
sive epochs. An alternative approach is to create a separate stacklet [Goldstein

3Another option is to interrupt and terminate the epoch, rather than poll a flag.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 261

et al. 1996] for each epoch to hold local variables, spilled register values, re-
turn addresses, and other procedure linkage information. These stacklets are
created at the beginning of the program, assigned to each of the participating
processors, and re-used by the dynamic threads. The stacklet approach allows
each epoch to perform stack operations independently, allowing speculation to
proceed unhindered. We implement instructions for saving and restoring the
stack pointer, and returning to the regular stack after using stacklets during
the speculative region.

2.2.3 Managing Speculation. Within a speculative thread, software must
first initialize speculative execution. The set sequence number instruction al-
lows software to specify an epoch number to hardware. After an epoch is created,
it may perform nonspeculative memory accesses to initialize itself. Once this
phase of execution is complete, the become speculative instruction indicates
that future memory references are speculative.

We cannot determine whether speculation has succeeded for the current
epoch until all previous epochs have made their speculative modifications visi-
ble to memory—hence the act of committing speculative modifications to mem-
ory must be serialized. Two options would be 1) for a central entity to maintain
the ordering of the active epochs, or 2) to broadcast to all processors any changes
in the allocation of epoch numbers. A more scalable approach is to directly pass
an explicit token—which we call the homefree token—from the logically-earliest
epoch to its successor when it commits and makes all of its speculative modifica-
tions visible to memory. Receipt of the homefree token indicates that the current
epoch has no speculative predecessors, and hence is no longer speculative. This
homefree token mechanism is simply a form of producer/consumer synchroniza-
tion and hence can be implemented using normal synchronization primitives.

Several instructions manage the homefree token and associated actions. The
wait for homefree token primitive stalls the processor until the homefree to-
ken is received from the previous epoch. The commit speculative writes prim-
itive instructs hardware to make all speculative modifications visible to the
memory system before returning. Finally, the pass homefree token primitive
sends the homefree token to the next epoch.

2.2.4 Managing Value Forwarding. There are often variables that are, at
compile time, provably dependent between epochs: for example, a local scalar
that is both used and defined every epoch. Without taking any special action
the compiler would allocate the variable in memory, and this would then cause
dependence violations between all consecutive epochs. Instead it is preferable
that the compiler explicitly synchronize and forward that variable between
consecutive epochs, avoiding dependence violations. In our approach, the com-
piler allocates forwarded variables on a special portion of the stack called the
forwarding frame: the forwarding frame supports the communication of values
between epochs, and synchronizes the accesses to these variables. The forward-
ing frame is defined by a base-address within the stack frame and an offset from
that base address; this way, any regular load or store to an address within the
predefined forwarding frame address range can be treated appropriately. The

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

262 • J. G. Steffan et al.

address range of the forwarding frame is defined through the software inter-
face at the beginning of every speculative region. Accesses to the forwarding
frame are exempt from the data dependence tracking mechanisms of the under-
lying hardware. Previous work provides a thorough treatment of issues related
to the communication of values between speculative threads [Breach et al. 1994;
Moshovos et al. 1997; Zhaia et al. 2002; Steffan et al. 2002].

There are four primitives that support the forwarding of values between
epochs. First are two instructions that are executed at the beginning of a spec-
ulative region to define the forwarding frame by giving its base address and
size. The other two instructions name a value to wait for or send by speci-
fying an offset into the forwarding frame. The send value primitive specifies
the thread descriptor of the target epoch, and the location of the actual value
to be sent. These primitives implement fine-grained synchronization, since we
synchronize on each individual value (rather than stalling the entire thread
before the first use of any forwarded value and sending after the last definition
of any forwarded value). This granularity also allows the processor to issue
instructions out-of-order with respect to a blocked wait for value instruction.

2.2.5 Example of Transformed Code. These new TLS instructions are suf-
ficient to generate a broad class of TLS programs. Figure 5 shows the trans-
formation of an example loop for TLS execution. The variable i is updated and
copied to the next epoch through the forwarding frame at each spawn, and also
serves as the epoch number which is set by the set sequence number primi-
tive. The code is constructed such that the spawn instruction may fail and the
current speculative thread will continue and execute the next epoch itself. The
final speculative thread will branch around the outermost if construct, wait to
be homefree, and then continue to execute the code following the loop.

Figure 5(a) illustrates two cross-epoch dependences: one ambiguous depen-
dence (through the array x) and one definite dependence (through the scalar v).
Our TLS interface allows us to speculate on the ambiguous dependence while
directly satisfying the definite dependence through value forwarding: as shown
in Figure 5(b), the array x is modified speculatively while v is synchronized
using the TLS instructions for forwarding values. The entire forwarding frame
is copied when each epoch is spawned, initializing each epoch with the proper
value of i.

After speculatively updating x, each epoch must synchronize and update v.
The wait for value primitive stalls the execution of all loads from the forward-
ing frame at the offset specified, and the pipeline logic also stalls any further
indirectly dependent instructions. Once the value of v is produced by the previ-
ous thread, the wait for value instruction unblocks and the value of v is loaded
from the forwarding frame. The variable v is then updated, stored back to the
forwarding frame, and then the next epoch is sent the updated value.

3. PRIVATE-CACHE SUPPORT FOR TLS

Having described our TLS execution model, instruction interface, and compiler
infrastructure, we now turn our attention to hardware support. In this sec-
tion we present a unified mechanism for supporting thread-level speculation,

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 263

Fig. 5. An example loop transformed for TLS execution.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

264 • J. G. Steffan et al.

which can handle arbitrary memory access patterns (not just array references),
and which is appropriate for any scale of architecture with parallel threads,
including: simultaneous-multithreaded processors [Tullsen et al. 1995], chip-
multiprocessors [Olukotun et al. 1996; Tremblay 1999], and more traditional
shared-memory multiprocessors of any size [Laudon and Lenoski 1997]. We fo-
cus on private-cache chip-multiprocessor support in this section, and evaluate
shared-cache support in Section 6.4

To support thread-level speculation, we must perform the difficult task of
detecting data dependence violations at run-time, which involves comparing
load and store addresses that may have occurred out-of-order with respect to
the sequential execution. These comparisons are relatively straightforward for
instruction-level data speculation (within a single thread), since there are few
load and store addresses to compare. For thread-level data speculation, however,
the task is more complicated since there are many more addresses to compare,
and since the relative interleaving of loads and stores from different threads is
difficult to track.

There are three possible ways to track data dependences at run time; for
each option, a different entity is responsible for detecting dependence viola-
tions. First, a third-party mechanism could observe all memory operations and
ensure that they are properly ordered—similar to the approach of the Wisconsin
Multiscalar’s address resolution buffer (ARB) [Sohi et al. 1995; Franklin and
Sohi 1996]. Such a centralized approach has the drawback of increasing load hit-
latency which would hinder the performance of nonspeculative workloads.5 Sec-
ond, the producer could detect dependence violations and notify the consumer.
This approach requires the producer to be notified of all addresses consumed
by logically-later epochs, and for the producer to save all of this information
until it completes. On every store, the producer checks if a given address has
been consumed by a logically-later epoch and if so, notifies that epoch of the
dependence violation. This scheme has the drawback that the logically-earliest
epoch must perform the detection—but we want the logically-earliest epoch to
proceed unhindered!

A third approach is to detect data dependence violations at the consumer.
In this approach, consumers track which locations have been speculatively
consumed, and each producer reports the locations that it produces to the
consumers. Hence a producer epoch that stores to a location must notify all con-
sumer epochs that have previously loaded that location, so that the consumer
epochs can verify that proper ordering has been preserved. Our key insight is
that this behavior is similar to that of an invalidation-based cache coherence
scheme: whenever a cache line is modified that has recently been read by an-
other processor, an invalidation message is sent to the cache that has a copy of
that line. To extend this behavior to detect data dependence violations, we sim-
ply need to track which locations have been speculatively loaded, and whenever
a logically-earlier epoch modifies the same location (as indicated by an arriving
invalidation message), we know that a violation has occurred.

4Steffan [2003] provides an evaluation of TLS on multiprocessors composed of CMPs.
5Subsequent designs of the ARB were more distributed [Breach et al. 1996; Gopal et al. 1998].

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 265

Fig. 6. Using cache coherence to detect a RAW dependence violation.

3.1 An Example

To illustrate the basic idea behind our scheme, consider an example of how
it detects a read-after-write (RAW) dependence violation. Recall that a given
speculative load violates a RAW dependence if its memory location is subse-
quently modified by another epoch such that the store should have preceded
the load in the original sequential program. As shown in Figure 6, the state of
each cache line is augmented to indicate whether the cache line has been specu-
latively loaded (SL) and/or speculatively modified (SM). Each cache maintains
a logical timestamp (epoch number), which indicates the sequential ordering
of that epoch with respect to all other epochs, and a flag indicating whether a
data dependence violation has occurred.

In the example, epoch 6 performs a speculative load (1), so the corresponding
cache line is marked as speculatively loaded (2). Epoch 5 then stores to that
same cache line (3), generating an upgrade-request containing its epoch num-
ber (4). When the upgrade-request (invalidation) is received, three things must
be true for this to be a RAW dependence violation. First, the target cache line
of the invalidation must be present in the cache. Second, it must be marked as
having been speculatively loaded. Third, the epoch number associated with the
upgrade-request must be from a logically-earlier epoch. Since all three condi-
tions are true in the example, a RAW dependence has been violated and epoch 6
is notified (5). When epoch 6 tries to commit its writes, it fails and restarts (6).
The coherence scheme presented in this section handles many other cases, but
the overall concept is analogous to this example.

3.2 Underlying Architecture

The goal of our coherence scheme is to be both general and scalable to any
size of machine. We want the coherence mechanism to be applicable to any

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

266 • J. G. Steffan et al.

Fig. 7. Base architecture for the TLS coherence scheme.

combination of single-threaded or multithreaded processors within a shared-
memory multiprocessor (not restricted simply to chip-multiprocessors, and so
on).

We assume that the shared-memory architecture supports an invalidation-
based cache coherence scheme, where all hierarchies enforce the inclusion prop-
erty. Figure 7(b) shows a generalization of the underlying architecture. There
may be a number of processors or perhaps only a single multithreaded proces-
sor, followed by an arbitrary number of levels of physical caching. The specula-
tion level is the first level where invalidation-based cache coherence begins. We
generalize the levels below the speculation level (further away from the pro-
cessors) as an interconnection network providing access to main memory with
some arbitrary number of levels of caching.

The amount of detail shown in Figure 7(a) is not necessary for the purposes of
describing our cache coherence scheme. Instead, Figure 7(b) shows a simplified
model of the underlying architecture. The speculation level described above
happens to be a level of physically shared caches: above these caches, we have
some number of processors, and below the caches we have an implementation
of cache-coherent shared memory.

Although coherence can be recursive, speculation only occurs at the specu-
lation level. Above the speculation level (closer to the processors), we maintain
speculative state and buffer speculative modifications. Below the speculation
level (further from the processors), we simply propagate speculative coherence
actions and enforce inclusion.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 267

3.3 Overview of the Coherence Scheme

The following provides a summary of the key features of our coherence scheme,
which requires these key elements: (i) a notion of whether a cache line has
been speculatively loaded and/or speculatively modified; (ii) a guarantee that a
speculative cache line will not be propagated to regular memory, and that spec-
ulation will fail if a speculative cache line is replaced; and (iii) an ordering of
all speculative memory references (provided by epoch numbers and the home-
free token). The full details of the coherence scheme are available in a previous
publication [Steffan et al. 1997].

3.3.1 Cache Line States. A cache line in a standard invalidation-based co-
herence scheme can be in one of the following states: invalid (I), exclusive (E),
shared (S), or dirty (D). The invalid state indicates that the cache line is no
longer valid and should not be used. The shared state denotes that the cache
line is potentially cached in some other cache, while the exclusive state indi-
cates that this is the only cached copy. The dirty state denotes that the cache
line has been modified and must be written back to memory. When a processor
attempts to write to a cache line, exclusive access must first be obtained—if the
line is not already in the exclusive state, invalidations must be sent to all other
caches that contain a copy of the line, thereby invalidating these copies.

To detect data dependences and to buffer speculative memory modifications,
we extend the standard set of cache line states as shown in Figure 8(a). For
each cache line, we need to track whether it has been speculatively loaded (SL)
and/or speculatively modified (SM), in addition to exclusiveness. Rather than
enumerating all possible permutations of SL, SM, and exclusiveness, we in-
stead summarize by having two speculative states: speculative-exclusive (SpE)
and speculative-shared (SpS).

For speculation to succeed, any cache line with a speculative state must re-
main in the cache until the corresponding epoch becomes homefree. Speculative
modifications may not be propagated to the rest of the memory hierarchy, and
cache lines that have been speculatively loaded must be tracked in order to de-
tect whether data dependence violations have occurred. If a speculative cache
line must be replaced, then this is treated as a violation causing speculation
to fail and the epoch is reexecuted—note that this will affect performance but
neither correctness nor forward progress.

3.3.2 Coherence Messages. To support thread-level speculation, we also
add the three new speculative coherence messages shown in Figure 8(a):
read-exclusive-speculative, invalidation-speculative, and upgrade-request-
speculative. These new speculative messages behave similarly to their non-
speculative counterparts except for two important distinctions. First, the epoch
number of the requester is piggybacked along with the messages so that the
receiver can determine the logical ordering between the requester and itself.
Second, the speculative messages are only hints and do not compel a cache to
relinquish its copy of the line (whether the line is relinquished, is indicated in
the acknowledgment message).

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

268 • J. G. Steffan et al.

Fig. 8. States and messages used in our coherence scheme.

3.4 State Transitions

Our coherence scheme for supporting TLS is summarized by the two state tran-
sition diagrams shown in Figures 9(a) and 9(b). The former shows transitions
in response to processor-initiated events (speculative and non-speculative loads
and stores), and the latter shows transitions in response to coherence messages
from the external memory system.

Let us first briefly summarize standard invalidation-based cache coherence.
If a load suffers a miss, we issue a read to the memory system; if a store misses,
we issue a read-exclusive. If a store hits and the cache line is in the shared (S)
state, we issue an upgrade-request to obtain exclusive access. Note that read-
exclusive and upgrade-request messages are only sent down into the memory
hierarchy by the cache; when the underlying coherence mechanism receives
such a message, it generates an invalidation message (which only travels up to
the cache from the memory hierarchy) for each cache containing a copy of the
line, enforcing exclusiveness. This summarizes standard coherence; the follow-
ing highlights the key features of our extended coherence scheme to support
TLS.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 269

Fig. 9. State transition diagram for our coherence scheme.

3.4.1 Key Features of the Speculative Coherence Scheme. When a specula-
tive memory reference is issued, we transition to the speculative-exclusive (SpE)
or speculative-shared (SpS) state, as appropriate. For a speculative load, we set
the SL flag, and for a speculative store, we set the SM flag. When a speculative
load misses, we issue a normal read to the memory system. In contrast, when
a speculative store misses, we issue a read-exclusive-speculative containing the
current epoch number. When a speculative store hits and the cache line is in the
shared (S) state, we issue an upgrade-request-speculative, which also contains
the current epoch number.

When a cache line has been speculatively loaded (it is in either the SpE or
SpS state with the SL flag set), it is susceptible to a read-after-write (RAW)
dependence violation. If a normal invalidation arrives for that line, then specu-
lation fails. In contrast, if an invalidation-speculative arrives, then a violation
only occurs if it is from a logically-earlier epoch (as determined by comparing
the epoch numbers).

When a cache line is dirty, the cache owns the only up-to-date copy of the
cache line and must preserve it. When a speculative store accesses a dirty cache
line, to ensure that the only up-to-date copy of the cache line is not corrupted

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

270 • J. G. Steffan et al.

with speculative modifications, we generate a flush; a flush sends a copy of the
cache line to the next level of cache.

3.4.1.1 Speculative Invalidation of Non-Speculative Cache Lines. A goal of
the coherence scheme is to avoid slowing down non-speculative threads to the
extent possible—hence a cache line in a non-speculative state is not invalidated
when an invalidation-speculative arrives from the external memory system.
For example, a line in the shared (S) state remains in that state whenever an
invalidation-speculative is received. Alternatively, the cache line could be re-
linquished to give exclusiveness to the speculative thread, possibly eliminating
the need for that speculative thread to obtain ownership when it becomes home-
free. Since the superior choice is unclear without concrete data, we compare the
performance of both approaches later in Section 5.3.1.

3.4.1.2 Dirty and Speculative Exclusive State. As illustrated in Figure 9,
when a speculative store attempts to write a cache line that is in the dirty (D)
state, we generate a flush, ensuring that the only up-to-date copy of a cache line
is not corrupted with speculative modifications. However, since a speculative
load cannot corrupt the cache line, it is safe to delay writing the line back until a
speculative store occurs. This minor optimization is supported with the addition
of the dirty and speculative exclusive state (DSpE), which indicates that a cache
line is dirty but has been speculatively loaded. Since it is trivial to add support
for this state, we include it in our scheme.

3.4.2 When Speculation Succeeds. Our scheme depends on ensuring that
epochs commit their speculative modifications to memory in logical order. We
implement this ordering by waiting for and passing the homefree token at the
end of each epoch. When the homefree token arrives, we know that all logically-
earlier epochs have completely performed all speculative memory operations,
and that any pending incoming coherence messages have been processed—
hence memory is consistent. At this point, the epoch is guaranteed not to suffer
any further dependence violations with respect to logically-earlier epochs, and
therefore can commit its speculative modifications.

Upon receiving the homefree token, any line that has only been specula-
tively loaded immediately makes one of the following state transitions: either
from speculative-exclusive (SpE) to exclusive (E), or else from speculative-shared
(SpS) to shared (S). We will describe in the next section how these operations
can be implemented efficiently.

For each line in the speculative-shared (SpS) state that has been specula-
tively modified (i.e. the SM flag is set), we must issue an upgrade-request to
acquire exclusive ownership. Once it is owned exclusively, the line may transi-
tion to the dirty (D) state—effectively committing the speculative modifications
to regular memory. Maintaining the notion of exclusiveness is therefore impor-
tant since a speculatively modified line that is exclusive (i.e. SpE with SM set)
can commit its results immediately simply by transitioning directly to the dirty
(D) state.

It would take far too long to scan the entire cache for all speculatively modi-
fied and shared lines—ultimately this would delay passing the homefree token

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 271

and hurt the performance of our scheme. Instead, we propose that the addresses
of such lines be added to an ownership required buffer (ORB) whenever a line
becomes both speculatively modified and shared. Hence whenever the home-
free token arrives, we can simply generate an upgrade-request for each entry in
the ORB, and pass the homefree token on to the next epoch once they have all
completed.

3.4.3 When Speculation Fails. When speculation fails for a given epoch,
any speculatively modified lines must be invalidated, and any speculatively
loaded lines must make one of the following state transitions: either from
speculative-exclusive (SpE) to exclusive (E), or else from speculative-shared
(SpS) to shared (S). In the next section, we will describe how these operations
can also be implemented efficiently.

3.4.4 Forwarding Data Between Epochs. As described in Section 2.2.4,
we can avoid violations due to predictable data dependences between epochs
through the forwarding frame and wait/signal synchronization. As defined by
the instruction interface, the forwarding frame and synchronization primitives
may be implemented a number of ways, the most simple being through regular
memory. Our coherence scheme can be extended to support value forwarding
through regular memory by allowing an epoch to make non-speculative mem-
ory accesses while it is still speculative. Hence an epoch can perform a non-
speculative store whose value will be propagated to the logically-next epoch
without causing a dependence violation.

3.5 Implementation

We now describe the implementation of our coherence scheme, beginning with a
hardware implementation of epoch numbers. We then give an encoding for cache
line states, and describe the organization of epoch state information. Finally,
we describe how to allow multiple speculative writers and how to preserve
correctness.

3.5.1 Epoch Numbers. In previous sections, we have mentioned that epoch
numbers are used to determine the relative ordering between epochs. In the
coherence scheme, an epoch number is associated with every speculatively-
accessed cache line and every speculative coherence action. The implementa-
tion of epoch numbers must address several issues. First, epoch numbers must
represent a partial ordering (rather than total ordering) since epochs from in-
dependent programs or even from independent chains of speculation within the
same program are unordered with respect to each other. We implement this by
having each epoch number consist of two parts: a thread identifier (TID) and
a sequence number. If the TIDs from two epoch numbers do not match exactly,
then the epochs are unordered. If the TIDs do match, then the signed difference
between the sequence numbers is computed to determine a logical ordering.

The speculation system must guarantee that there are twice as many con-
secutive epoch sequence numbers in the sequence number space as there are
speculative contexts in the system; given this constraint, epoch numbers may

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

272 • J. G. Steffan et al.

Fig. 10. Encoding and implementation of cache line states. In (b), X means “don’t care.”

safely wrap around, and the sign of the difference between two non-equal se-
quence numbers indicates which epoch sequence number is logically earlier.
Such a comparison is trivial to implement, and should only require a small
amount of dedicated hardware. This implementation of sequence numbers is
quite similar to the inums implemented in the Alpha 21464 [Emer 2001].

3.5.2 Implementation of Speculative State. We encode the speculative
cache line states given in Figure 8(a) using five bits, as shown in Figure 10(a).
Three bits are used to encode basic coherence state: exclusive (Ex), dirty (Di),
and valid (Va). Two bits—speculatively loaded (SL) and speculatively modi-
fied (SM)—differentiate speculative from non-speculative states. Figure 10(b)
shows the state encoding, which is designed to have the following two useful
properties. First, when an epoch becomes homefree, we can transition from
speculative to appropriate non-speculative states simply by resetting the SM
and SL bits. Second, when a violation occurs, we want to invalidate the cache
line if it has been speculatively modified; this can be accomplished by setting

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 273

its valid (Va) bit to the AND of its Va bit with the complement of its SM bit
(Va = Va ∧ SM).

Figure 10(c) illustrates how the speculative state can be arranged. Notice
that only a small number of bits are associated with each cache line, and that
only one copy of an epoch number is needed per speculative context. The SL
and SM bit columns are implemented such that they can be flash-reset by a
single control signal. The SM bits are also wired appropriately to their corre-
sponding Va bits such that they can be simultaneously invalidated when an
epoch is squashed. Also associated with the speculative state are an ownership
required buffer (ORB, described in Section 3.4.2), and the address of the cancel
routine.

3.5.3 Preserving Correctness. There are several issues—in addition to ob-
serving data dependences—that must be addressed to preserve correctness for
TLS. First, speculation must fail whenever any speculative state is lost: if the
ORB overflows or if a cache line in a speculative state must be replaced, then
speculation must fail for the corresponding epoch. Note that we do not need
special support to choose which cache line to evict from an associative set:
the existing LRU (least recently used) policy ensures that any non-speculative
cache line is evicted before a speculative one. Second, as with other forms of
speculation, a speculative thread should not immediately invoke an exception
if it dereferences a bad pointer, divides by zero, and so on; instead, it must wait
until it becomes homefree to confirm that the exception really should have taken
place, and for the exception to be precise. Third, if an epoch relies on polling to
detect failed speculation and it contains a loop, a poll must be inserted inside
the loop to avoid infinite looping. Finally, system calls generally cannot be per-
formed speculatively without special support; if a thread attempts to perform
a system call, we simply stall it until it is homefree.

3.5.4 Allowing Multiple Writers. It is often advantageous to allow multiple
epochs to speculatively modify the same cache line at the same time. Such
support can reduce failed speculation due to false dependences, as well as allow
write-after-write dependences to proceed successfully by effectively renaming
memory. Similar support is implemented in related schemes that use caches as
speculative buffers [Gopal et al. 1998; Cintra et al. 2000].

Supporting a multiple writer scheme requires the ability to merge a modified
cache line with a previous copy of that line; this in turn requires the ability to
identify partial modifications. One possibility is to replicate the SM column of
bits so that there are as many SM columns as there are words (or even bytes)
in a cache line, as shown in Figure 11(a). We will call these fine-grain SM bits.
When a write occurs, the appropriate SM bit is set. If a write occurs that is of
lesser granularity than the SM bits can resolve (for example a byte-write when
there is only one SM bit per 4-byte word), we must conservatively set the SL bit
for that cache line since we can no longer merge this cache line with others—
setting the SL bit ensures that a violation is raised if a logically-earlier epoch
writes the same cache line. With support for multiple writers, a speculative
upgrade-request from a logically-earlier epoch no longer causes speculation to

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

274 • J. G. Steffan et al.

Fig. 11. Support for multiple writers.

fail when the corresponding cache line is only speculatively modified (and not
speculatively loaded).

Figure 11(b) shows an example of how we can combine speculatively modified
versions of a cache line with a non-speculative one. Two epochs speculatively
modify the same cache line simultaneously, setting the fine-grain SM bit for
each location modified. A speculatively modified cache line is committed by
updating the current non-speculative version with only the words for which
the fine-grain SM bits are set. In the example, both epochs have modified the
first location. Since epoch i + 1 is logically-later, its value (G) takes precedence
over epoch i’s value (E).

Because dependence violations are normally tracked at a cache line granular-
ity, another potential performance problem is false violations—where disjoint
portions of a line were read and written. To help reduce this problem, we observe
that a line only needs to be marked as speculatively loaded (SL) when an epoch
reads a location that it has not previously overwritten (the load is exposed [Aho
et al. 1986]). The fine-grain SM bits allow us to distinguish exposed loads, and
therefore can help avoid false violations. We evaluate the performance benefits
of support for multiple writers in Section 5.3.2, and show that this support has
a significant impact.

4. EXPERIMENTAL FRAMEWORK

In this section we describe the compiler support, benchmark applications, and
simulation infrastructure that are used throughout this article to evaluate our
support for TLS.

4.1 Compiler Support

In contrast with hardware-only approaches to TLS, we rely on the compiler to
define where and how to speculate. Our compiler infrastructure is based on the
Stanford SUIF 1.3 compiler system [Tjiang et al. 1992], which operates on C
code, and it performs the following phases when compiling an application to
exploit TLS.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 275

4.1.1 Deciding Where to Speculate. One of the most important tasks in a
thread-speculative system is deciding which portions of code to execute specu-
latively. Performing this task without the use of detailed profile information
is an open research problem, although significant progress has been made
[Vijaykumar 1998; Marcuello and González 2002; Zilles and Sohi 2002; Roth
and Sohi 2001; Prabhu and Olukotun 2003]. For the evaluations in this arti-
cle, the compiler uses profile information to decide which loops in a program to
speculatively parallelize. We limit our focus to loops for two reasons: first, loops
comprise a significant portion of execution time (coverage) and hence can impact
overall program performance; second, loops are fairly regular and predictable,
hence it is straightforward to transform loop iterations into epochs.

The following gives a basic description of the loop selection process used to
compile benchmark applications. The first step is to measure every loop in ev-
ery benchmark application by instrumenting the start and end of each potential
speculative region (loop) and epoch (iteration). Second, we remove from consid-
eration those loops that are unlikely to contribute to improved performance. In
particular, we do not want to consider (i) loops that comprise an insignificant
fraction of execution time, (ii) loops with so many instructions per iteration
that cross-iteration dependences are inevitable and speculative buffering will
be insufficient, and (iii) loops with so few instructions per iteration that the
overheads of parallelization will overcome any benefit. Hence we filter the loops
to only consider those that meet the following criteria:

—the coverage (fraction of dynamic execution) is more than 0.1% of execution
time;

—there is more than one iteration per invocation (on average);
—the number of instructions per iteration is less than 16000 (on average);
—the total number of instructions per loop invocation is greater than 30 (on

average);

In the third step, we unroll each loop by factors of 1 (no unrolling), 2, 4, and
8, generating several versions of each benchmark to measure. Next we measure
the expected performance of each loop and unrolling when run speculatively in
parallel, using detailed simulation on our baseline hardware support for TLS
(see Section 5). We select loops for the purposes of evaluating our hardware
support by maximizing performance: we select the loops that contribute the
greatest performance gain. The best performing unrolling factor is used for each
loop, and chosen independently for the sequential and speculative versions of
each application.

4.1.2 Transforming to Exploit TLS. Once speculative regions are chosen,
the compiler inserts the TLS instructions that interact with hardware to cre-
ate and manage the speculative threads and forward values, as described in
Section 2.2 and illustrated in Figure 5.

4.1.3 Optimization. Without optimization, execution can be unnecessarily
serialized by synchronization (through wait and signal operations). A patho-
logical case is a “for” loop in the C language where the loop counter is read at

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

276 • J. G. Steffan et al.

Table I. Benchmark Use

Benchmark Description Input
S

P
E

C
in

t2
00

0
BZIP2 COMP compression input.source from ref, comp phase
BZIP2 DECOMP decompression input.source from ref, decomp phase
CRAFTY chess board solver ref
GAP group theory interpreter ref
GCC compiler expr.i from ref
GZIP COMP compression input.source from ref, comp phase
GZIP DECOMP decompression input.source from ref, decomp phase
MCF combinatorial optimization ref
PARSER natural language parsing ref
PERLBMK perl interpreter diffmail.pl from ref
TWOLF place and route for standard cells ref
VORTEX OO database bendian1.raw from ref
VPR PLACE place and route for FPGAs place portion of ref input
VPR ROUTE place and route for FPGAs route portion of ref input

S
P

E
C

in
t9

5 COMPRESS compression/decompression reduced ref input (5.6MB)
GO game playing, AI, plays against itself 9stone21.in from ref
IJPEG image processing vigo.ppm from ref
LI lisp interpreter ref
M88KSIM microprocessor simulator ref

the beginning of the loop and then incremented at the end of the loop—if the
loop counter is synchronized and forwarded, then the loop will be serialized.
However, scheduling can be used to move the wait and signal closer to each
other, thereby reducing this critical path. Our compiler schedules these critical
paths by first identifying the computation chain leading to each signal, and
then using a dataflow analysis that extends the algorithm developed by Knoop
[Knoop and Ruthing 92] to schedule that code in the earliest safe location. We
can do even better for any loop induction variable that is a linear function of
the loop index; the scheduler hoists the associated code to the top of the epoch
and computes that value locally from the loop index, altogether avoiding any
extra synchronization. These optimizations have a large impact on performance
[Zhaia et al. 2002, 2004].

4.1.4 Code Generation. Our compiler outputs C source code, which encodes
our new TLS instructions as in-line MIPS assembly code using gcc’s “asm”
statements. This source code is then compiled with gcc v2.95.2 using the “-O3”
flag to produce optimized, fully-functional MIPS binaries containing new TLS
instructions.

4.2 Benchmarks

We evaluate our support for TLS using the SPECint95 and SPECint2000 in-
teger benchmarks [SPEC 2000], with the exception of EON, which is written in
C++ and not supported by SUIF. A brief description of each benchmark and
the input data set used is given in Table I—we use the ref input set for every
benchmark. BZIP2, GZIP, and VPR are split into two phases each, so that their ex-
ecutions are more representative of the entire benchmark. To maintain reason-
able simulation time, we truncate the execution of all appropriate benchmarks

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 277

Table II. Benchmark Statistics

Portion Average Average
of Dynamic Number Epoch Number
Execution of Unique Size of Epochs

Parallelized Parallelized (dynamic Per Dynamic
Benchmark (Coverage) Regions insts) Region Instance

BZIP2 COMP 28% 14 268.6 230587.3
BZIP2 DECOMP 13% 3 176.4 693495.1
CRAFTY 9% 7 1022.0 11.6
GCC 11% 58 700.7 60.9
GO 17% 26 1249.1 16.6
IJPEG 84% 12 449.0 152.4
LI 8% 2 5994.2 1.4
M88KSIM 57% 5 424.1 85.6
MCF 97% 4 125.5 5328.2
PARSER 7% 23 312.6 17205.2
PERLBMK 10% 5 971.0 165.9
VORTEX 4% 5 6543.7 8.7
VPR PLACE 76% 8 340.7 4.3

average 32% 13 1429.0 72855.7

by fast-forwarding the initialization portion of execution and simulating up to
the first billion instructions, beginning simulation with a “warmed-up” memory
system loaded from a presaved snapshot. Since the sequential and TLS versions
of each benchmark are compiled differently, the compiler instruments them to
ensure that they terminate at the same point in their executions relative to the
source code so that the executions are comparable.

Table II shows an analysis of the benchmarks studied. For COMPRESS, GAP,
GZIP, TWOLF, and VPR ROUTE, the region selection algorithm has opted to select no
regions at all. We do not claim that there is no speculative parallelism available
in these applications, but that they require more advanced compiler and/or
support for TLS than we investigate in this article—for example, applying more
advanced techniques for improving value communication between speculative
threads can increase the amount of available speculative parallelism [Moshovos
et al. 1997; Steffan et al. 2002; Zhaia et al. 2002, 2004; Cintra and Torrellas
2002].

For the remaining integer benchmarks, coverage (the portion of dynamic
execution of the sequential version that is speculatively parallelized) ranges
from 4% to 97%, and averages 32%. For some applications, good coverage is
achieved by selecting several significant loops, such as for IJPEG which has a
coverage of 84% through 12 different selected loops. In contrast, MCF has a
coverage of 97% through only 4 unique loops. The SPECint2000 version of GCC

has 58 loops selected, but a coverage of only 11.0%.
Epoch size is another important characteristic. If epochs are too small, the

overheads of speculative parallelization will be overwhelming. If epochs are
too large, then they will likely be dependent, or we may not have enough buffer
space to hold all of the speculative state. Table II indicates a wide range of aver-
age epoch sizes for the selected regions, from just 125.5 dynamic instructions in

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

278 • J. G. Steffan et al.

Table III. Simulation Parameters

Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16kB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32kB, 4-way set-assoc
Data Cache 32kB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

MCF to over six thousand dynamic instructions in VORTEX. Over all benchmarks,
the average number of dynamic instructions per epoch is 1429, which is quite
large. However, the average number of epochs per dynamic region instance can
be quite small for some benchmarks: for example, 1.4 on average for LI. On
average, only two processors will be busy when executing speculatively for LI,
which will limit the overall speedup for this benchmark.

4.3 Simulation Model

We evaluate our approach using a detailed model—built upon the MINT+
[Veenstra 2000] MIPS emulator—that simulates 4-way issue, out-of-order, su-
perscalar processors similar to the MIPS R10000 [Yeager 1996] but with more
modern structure sizes (a 128 entry reorder buffer, larger caches and so on).
Register renaming, the reorder buffer, branch prediction, instruction fetching,
branching penalties, and the memory hierarchy (including bandwidth and con-
tention) are all modeled, and are parameterized as shown in Table III.

5. EVALUATION OF PRIVATE-CACHE SUPPORT

We now present the performance of our coherence scheme for TLS, and evaluate
the overheads of our approach. In this section we focus on chip-multiprocessor
architectures where each processor has a private first-level data cache—
later (in Section 6) we evaluate architectures that share the first-level data
cache.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 279

Fig. 12. Overall performance of our approach to TLS on four processors. P is program speedup, R
is region speedup, and O is outside-region speedup. The percent coverage is shown in parentheses
next to each benchmark name.

5.1 Performance of the Baseline Coherence Scheme

Figure 12 summarizes the performance of each application on our base-
line architecture (as reported by the detailed simulation model described in
Section 4.3), which is a four-processor chip-multiprocessor that implements our
coherence scheme. Throughout this article, all speedups (and other statistics
relative to a single processor) are with respect to the original executable (with-
out any TLS instructions or overheads) running on a single processor. Hence
our speedups are absolute speedups and not self-relative speedups.

As we see in Figure 12, we achieve speedups on the speculatively-parallelized
regions of code (R) ranging from 1% to 207%, and averaging 60%. We also re-
port the speedup for the portion of execution that has not been parallelized
(outside-region speedup, O), which for the most part indicates that performance
is reduced for the TLS versions: this portion of execution has an average 2%
slowdown across all applications. This slowdown is the result of hampered com-
piler optimization (due to our inserted TLS instructions and code transforma-
tions) and decreased data-cache locality (due to the spreading of cache lines to
multiple caches during speculative region execution). In addition to the slight
slowdown of the non-parallelized portions, the overall program speedups (P)
are also limited by the coverage (the fraction of the original execution time that
was parallelized) which ranges from 4% to 97%, and averages 32%.

Looking at program performance (P), IJPEG and M88KSIM are 84% and 56%
faster respectively, and four other applications improve by at least 8%. Six other
applications, show more modest improvement, while VORTEX performs slightly
worse than the original sequential version. On average across all applications,
we achieve a program speedup of 16%. To simplify our evaluation of hardware
support for TLS, throughout the remainder of this section, we will focus solely
on the regions of code that have been speculatively parallelized.

Figure 13 shows region execution time normalized to that of the original se-
quential version; each of the bars are broken down into eight segments explain-
ing what happened during all potential graduation slots.6 The top segment,

6The number of graduation slots is the product of (i) the issue width (4 in this case), (ii) the number
of cycles, and (iii) the number of processors.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

280 • J. G. Steffan et al.

Fig. 13. Impact on region execution time of our baseline hardware support for TLS. S is the original
sequential version, F is the speculative version run sequentially, and B is the speculative version
run in parallel on four processors.

idle, represents slots where the pipeline has nothing to execute—this could
be due to either instruction-fetch latency, or simply a lack of work. The next
three segments represent slots where instructions do not graduate for the fol-
lowing TLS-related reasons: waiting to begin a new epoch (spawn); waiting for
synchronization for a forwarded value (sync); and waiting for the homefree to-
ken to arrive (homefree). The fail segment represents all slots wasted on failed
speculation, including slots where misspeculated instructions graduated. The
remaining segments represent regular execution: the busy segment is the num-
ber of slots where instructions graduate; the dcache segment is the number of
non-graduating slots attributed to data cache misses; and the istall segment is
all other slots where instructions do not graduate.

The first bar (S) shows the breakdown for the original sequential version
of each benchmark. Some are dominated by data cache miss time (dcache),
while others are dominated by pipeline stalls (istall). Very little time is lost
due to an empty pipeline (idle) for any application. The next bar (F) shows
the performance of the TLS version of each benchmark when executed on a
single processor (in this model, all spawns simply fail, resulting in a sequential
execution); this experiment shows the overheads of TLS compilation that must
be overcome with parallel execution for performance to improve. The increase
in busy time between the S and F bars is due to the TLS instructions added to
the TLS version of each benchmark, as well as other instruction increases due
to compilation differences. In most cases, data cache miss time (dcache) remains
relatively unchanged, while pipeline stalls (istall) increase. Some overhead is
due to inefficient compilation: inserted TLS instructions are encoded as in-line
MIPS assembly code using gcc’s “asm” statements, and the unmodified version of
gcc (v2.95.2) that we use as a back-end compiler is conservative in the presence
of these statements (e.g. generating superfluous register spills).

The third bar (B) shows the TLS version executed speculatively in parallel
on four processors. Some benchmarks show a large increase in idle time—for
the most part this is caused by a small number of epochs per region instance,
resulting in idle processors. For example, LI has an average of only 1.4 epochs
per region instance (see Table II), which is not enough parallelism to completely
occupy 4 processors. To some extent this is an artifact of our simulation, since

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 281

Fig. 14. Varying the number of processors (1, 2, 4, 6, 8). The baseline architecture has four
processors.

a more sophisticated TLS system could increase the number of speculative
threads by allowing speculation beyond the end of a loop (the loop continuation
could be executed speculatively in parallel with the iterations of the loop). It
is important to note that the failed speculation component (fail) includes data
cache misses, pipeline stalls, synchronization, and so on, for all cycles spent
on failed speculation—hence when a bottleneck such as synchronization is re-
duced, the failed speculation component may be reduced as well.

At the beginning and end of each epoch we measure the time spent waiting
for an epoch to be spawned (spawn), and the time spent waiting for the homefree
token. Spawn time is not a significant bottleneck for any benchmark, but is most
evident in CRAFTY. Passing the homefree token (homefree) is an insignificant
portion of execution time for every benchmark, indicating that in general this
aspect of our scheme is not a performance bottleneck.

5.1.1 Scaling Within a Chip. Figure 14 shows how performance varies
across a number of different processors. As we increase the number of proces-
sors, performance continues to improve for every case but LI, which has a limited
amount of available parallelism (hence the dramatic increase in idle time for
that application). However, the speedup achieved is not linear with the number
of processors—the benefits of additional processors beyond four is modest. For
BZIP2 COMP, MCF, PARSER, and PERLBMK, the amount of failed speculation increases
with the number of processors, indicating a limit to the independence of epochs
for these applications. The amount of time spent waiting for the homefree token
remains negligible for all applications.

5.2 Overheads of the Baseline Coherence Scheme

We now investigate the overheads of our baseline scheme in greater de-
tail. The most significant overheads are from flushing the ORB (described in
Section 3.4.2), failed speculation, and decreased cache locality.

5.2.1 Ownership Required Buffer (ORB). Recall that the ORB maintains a
list of addresses of speculatively-modified cache lines that are in the speculative-
shared (SpS) state. When the homefree token arrives, we must issue and com-
plete upgrade requests to obtain exclusive ownership of these lines (thereby
committing their results to memory) prior to passing the homefree token to the

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

282 • J. G. Steffan et al.

Fig. 15. Evaluating the size of the ownership required buffer (ORB) per epoch as we vary the
number of processors (2, 4, 6, 8). We show the size of the ORB required to capture all ORB entries
for 50%, 75%, 90%, 99%, and 100% of all epochs.

Fig. 16. Percentage of execution time wasted on failed speculation, and the breakdown of reasons
for violations as we vary the number of processors (1, 2, 4, 6, 8).

next logically-later epoch. In addition, speculation fails if the ORB overflows.
For these reasons, we desire the average number of required ORB entries per
epoch to be small.

Figure 15 shows the resulting sizes of the ORB for a varying number of
processors. First we see that averaging across all applications, 99% of all epochs
require three ORB entries or less. We also note that an ORB of five entries would
be sufficient for every application 99% of the time. An ORB with eight entries is
sufficient for the average application 100% of the time; however an ORB with
22 entires is needed for PARSER to work 100% of the time, which is probably too
large. For BZIP2 COMP, PARSER, and VORTEX, the maximum number of ORB entries
per epoch clearly increases as the number of processors increases, indicating
that there are shared cache lines for which the number of sharers increases
with the number of processors. From these results we can conclude that an
ORB of 5 entries is sufficient for all benchmarks.

5.2.2 Failed Speculation. Figure 16 shows the percentage of execution for
each benchmark lost to failed speculation for a varying number of processors.
Each bar is broken down, showing the fraction of speculation that failed for each
of five reasons. The first segment, CHAIN, represents time spent on epochs that
were squashed because logically-earlier epochs were previously squashed. This
violation chaining prevents an epoch from using potentially incorrect data that
was forwarded from a logically-earlier epoch. The next two segments (REPL
and RINV) represent violations caused by replacement in either the first-level
data caches or the shared unified cache, respectively. The last two segments

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 283

Fig. 17. Percentage of misses where the cache line is resident in another first-level cache, which
indicates the impact of TLS execution on cache locality.

(DINV and DINVSP) represent violations caused by true data dependences. A
DINV violation occurs when an epoch commits and flushes its ORB, generates
a read-exclusive request, and invalidates a speculative cache line belonging to
a logically-later epoch. A DINVSP violation is caused by a speculative invalida-
tion, which is sent before an epoch commits.

BZIP2 DECOMP, CRAFTY, IJPEG, LI, and M88KSIM all have an insignificant amount
of failed speculation, and for GCC and GO, the amount of failed speculation is
quite small. For the other benchmarks with greater amounts of failed specula-
tion, the fraction that is due to CHAIN violations increases with the number
of processors; for a given violated epoch, the number of CHAIN violations is
equal to the number of logically-later epochs currently in-flight. The portion of
failed speculation due to CHAIN violations is usually greater than the portion
due to other reasons, except for the two-processor cases, where at any given
time only one epoch is speculative and can be violated (and the other is always
non-speculative). Replacement in the unified cache (RINV) is not significant
for any benchmark (since the data sets for these applications fit well within
the 2MB unified secondary cache); failed speculation due to replacement from
the first-level data caches (REPL) is evident for VORTEX. Speculative invalida-
tions (DINVSP) are preferable over ORB-generated invalidations (DINV) be-
cause they give earlier notification of violations and also help reduce the size
of the ORB itself. For three applications, DINVSP violations are roughly as
frequent as DINV violations, while four other applications are dominated by
DINV violations.

5.2.3 Data-Cache Locality. Finally, we estimate the impact of speculative
parallelization on data cache locality by measuring the fraction of cache misses
where the cache line in question is currently resident in another first-level
cache, as shown in Figure 17. A high percentage indicates that cache locality for
the corresponding application has been decreased. We see that this percentage
is quite high for most applications, the average being 61.0%. This loss of locality,
while not prohibitive, is an opportunity for improvement—possibly through
prefetching or other techniques for dealing with distributed data access.

In summary, the overheads of TLS remain small enough so that we still enjoy
significant performance gains for the speculatively-parallelized regions of code.
We now focus on other aspects of our design.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

284 • J. G. Steffan et al.

Fig. 18. Impact of support for multiple writers—W is without, while B (our baseline coherence
scheme) includes, support for multiple writers.

5.3 Tuning the Coherence Scheme

Our performance analysis has shown that TLS is promising, that our scheme
for extending cache coherence to track data dependences and buffer speculative
state is efficient and effective, and that within a single chip it scales to extract
the speculative parallelism available in applications. In this section we briefly
evaluate the performance of two implementation alternatives: support for spec-
ulative invalidation of non-speculative cache lines, and for multiple writers.

5.3.1 Speculative Invalidation of Non-Speculative Cache Lines. As dis-
cussed earlier in Section 3.4.1, another subtle design choice is whether a spec-
ulative invalidation should invalidate a cache line in a non-speculative state.
Recall that our baseline scheme does speculatively invalidate non-speculative
cache lines. Previous work [Steffan 2003] shows that allowing speculative in-
validation of non-speculative cache lines improves performance by only 0.6%
on average (across all applications), indicating that this is not a crucial design
decision [Steffan 2003].

5.3.2 Support for Multiple Writers. Recall from Section 3.5.4 that multiple
writer support allows us to avoid both violations due to write-after-write depen-
dences as well as violations due to false dependences where speculative loads
are not exposed. Figure 18 compares the performance of our baseline hardware
(B), which does support multiple writers, with that of less complex hardware
(W), which does not support multiple writers. For five applications, support for
multiple writers greatly reduces the amount of failed speculation; VORTEX and
VPR PLACE require this support to speed up at all. On average across all bench-
marks, support for multiple writers improves the performance of our coherence
scheme by 24%, hence we include it in our design.

5.4 Sensitivity to Architectural Parameters

To better understand the bottlenecks of TLS execution, it is important to know
the performance impact of various architectural parameters. Since many ar-
chitectural mechanisms can be made larger and faster for an increased cost,
we want to understand which features have a significant impact on perfor-
mance. In this section we explore the sensitivity of TLS execution to the size and

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 285

Fig. 19. Impact of varying communication latency (0, 10, 20, and 30 cycles).

complexity of several architectural features including inter-processor communi-
cation mechanisms and the memory system. Further evaluations are available
in Steffan’s dissertation [Steffan 2003].

5.4.1 Inter-Processor Communication Latency. Our TLS simulation model
allows us to independently modify the latency between processors for several
TLS communication events, allowing us to model a range of latencies from the
slower speeds of the regular memory system to faster mechanisms such as
dedicated communication lines or a shared register file. There are three impor-
tant types of communication in TLS execution affected by this latency. First,
there is the time taken to spawn a child thread. In our execution model, this
is the time from when a spawn instruction is executed on one processor until
the child thread begins executing on the target processor. Since the state for
the child thread (the speculative context) has been preallocated, it is possi-
ble for this mechanism to be quite fast. Second, there is the time taken for-
warding a value between speculative threads. This is measured from the time
a signal instruction executes on one processor until the corresponding wait
instruction on the receiving processor may proceed. Finally, we can indepen-
dently vary the latency of passing the homefree token from one epoch to the
next.

In a previous study we investigated the potential impact of improving each of
these latencies independently [Steffan 2003]. When spawn latency is zero, the
remaining spawn segment for nearly all applications is negligible, indicating
that spawn latency is not a bottleneck. When the forwarding latency is set to
zero, the sync portion is reduced for most applications. However, this component
of execution time is not removed completely, and in some cases it is only slightly
reduced—this indicates that the actual communication of signal messages (once
they are ready) is not a bottleneck. When the latency of sending the homefree
token is set to zero, performance improves only slightly in most cases. These
results confirm that the communication latency for passing the homefree token
is not a bottleneck.

An interprocessor communication latency of 10 cycles is itself quite fast. Can
speedups be achieved with larger communication latencies? Figure 19 shows
the impact of varying all three communication latencies simultaneously from
zero to thirty cycles. About half of the applications are very sensitive to the

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

286 • J. G. Steffan et al.

Fig. 20. Varying data cache size from 8kB to 64kB. Note that our baseline architecture has a 32kB
data cache per processor.

communication latencies. Spawn time is the component that increases the most:
since it is the first latency to occur for each epoch, it receives a majority of the
blame. The increase in the sync segment is less pronounced, while the home-
free segment remains minimal. Only CRAFTY and LI no longer speed up when
communication latency is 30 cycles, although the trends indicate that latencies
of 50–60 cycles would eliminate most of the benefits of TLS. Hence it is defi-
nitely important to minimize the communication latency between processors,
although most benchmarks can withstand greater latency than we assume and
still achieve decent speedups under TLS.

5.4.2 Data Cache Size. Our scheme for TLS uses the caches and coherence
scheme to implement data dependence tracking and buffering speculative state,
and hence requires an efficient underlying memory system. In this section we
investigate the sensitivity of TLS execution to the size of the first-level data
caches.

In Figure 20 we vary the size of the data caches from 8kB to 64kB—our
baseline architecture has a 32kB data cache per processor. This experiment
has a significant impact on both the sequential and TLS versions of the appli-
cations, with the TLS versions benefiting more than the sequential versions
from larger caches. As is evident in Figure 20(b), larger caches also reduce the
amount of failed speculation due to replacement (REPL). For the 8kB caches,
CRAFTY, GO, IJPEG, M88KSIM, and VORTEX all suffer a significant amount of failed
speculation due to replacement, indicating that 8kB caches alone are insuffi-
cient for implementing our scheme. Performance continues to improve as we
increase cache size, although 32kB caches nearly eliminate failed speculation
due to replacement.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 287

Fig. 21. Hardware support for multiple epoch contexts in a single cache.

6. SHARED-CACHE SUPPORT FOR TLS

Until this point we have focused on the implementation and performance of
TLS on a chip-multiprocessor where each processor has its own private data
cache. In this section we describe and evaluate support for multiple speculative
contexts within a single cache, which is important for three reasons. First,
support for multiple speculative contexts allows us to implement TLS with
simultaneous multithreading (SMT) [Tullsen et al. 1995] and other shared-
cache multithreaded architectures. Second, we can use multiple speculative
contexts to allow a single processor to switch to a new epoch when the current
epoch is suspended (e.g., when waiting for the homefree token). Finally, we may
want to maintain speculative state across OS-level context switches so that we
can support TLS in a multiprogramming environment.7

We begin by describing how our implementation of speculative state from
Section 3.5 can be extended to support multiple speculative contexts. We next
evaluate this support and then explore ways to avoid failed speculation due to
conflicts in the shared cache.

6.1 Implementation

In our basic coherence scheme, two epochs from the same program may both
access the same cache line except in two cases: (i) two epochs must not modify
the same cache line, and (ii) an epoch must not read from a cache line that has
been speculatively-modified by a logically-later epoch. We can trivially enforce
these constraints by simply squashing the logically-later epoch whenever a
constraint is about to be violated.

Figure 21 shows how we can support TLS in a shared cache by implementing
multiple speculative contexts. The exclusive (Ex), dirty (Di), and valid (Va)
bits for each cache line are shared between all speculative contexts, but each

7For now we assume that any system interrupt will cause all speculation to fail—evaluation of
OS-level context-switching is beyond the scope of this article.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

288 • J. G. Steffan et al.

Fig. 22. Support for efficient epoch number comparison.

speculative context has its own speculatively-loaded (SL) and speculatively-
modified (SM) bits. This state allows us to track which epochs have speculatively
loaded or modified any cache line, and allows us to track data dependences
between epochs as well as check for conflicts. As we add more state to the
cache, it is of course important to consider layout factors and to ensure that
the basic performance of the cache is not adversely affected. For example, this
will limit the number of speculative contexts that can be supported in a single
cache.

Since epoch contexts that share a cache are implemented in a common struc-
ture (as opposed to the distributed implementation for private caches), it is
wasteful to frequently recompute their relative ordering by comparing epoch
numbers on every memory reference. Instead, we can precompute and store the
relative ordering between all active epochs that share the cache. A convenient
method of storing this information is in a logically-later mask. Each specula-
tive context maintains its own mask, and within each mask there is a bit per
speculative context. For the logically-later mask owned by a context executing
epoch i, each bit of the mask is set if the corresponding speculative context is
currently executing an epoch that is logically-later than epoch i. Hence this
mask must be updated whenever an epoch is spawned or completes.

As shown in Figure 22(a), we can use the logically-later mask to detect data
dependence violations. If the active epoch stores to a location, then any logically-
later epoch that has already speculatively loaded that same location has com-
mitted a violation. We can detect a violation by taking the bit-wise AND of the
logically-later mask with the SL bits for the appropriate cache line and OR’ing
the result with the violation flag for each epoch.

In addition to detection of data dependence violations, we also need to track
read and write conflicts in the shared cache. A conflict occurs when two epochs
access the same cache line in an incompatible way, and is resolved by squash-
ing the logically-later epoch (a conflict violation). For our initial shared-cache
implementation, the following two access patterns are incompatible (these are
formalized in the description of our speculative coherence scheme [Steffan et al.
1997]).

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 289

Fig. 23. Explicit vs implicit forwarding.

(1) If an epoch speculatively modifies a cache line, only that epoch or a logically-
later epoch may read that cache line afterwards. If a logically-earlier epoch
attempts to read the cache line, a read-conflict violation results.

(2) Only one epoch may speculatively modify a given cache line. If an
epoch attempts to speculatively modify a cache line that has already
been speculatively modified by a different epoch, a write-conflict violation
results.

We can use the logically-later masks to determine whether any load or store
will result in a read or write-conflict violation, as illustrated in Figures 22(b)
and 22(c). Recall that a read-conflict miss occurs when the active epoch attempts
to execute a speculative load but a logically-later epoch has already modified
that same cache line. This condition may be checked by taking the AND of the
logically-later mask with the speculatively-modified (SM) bits for the appropri-
ate cache line and checking the OR of the results. A write-conflict miss occurs
when the active epoch executes a speculative store and any other epoch has al-
ready speculatively stored that cache line. We can check for this case by taking
the OR of the speculatively-modified (SM) bits (excluding the bit belonging to
the epoch in question) as shown in Figure 22(b), and proceed by squashing the
logically-later epoch.

The data dependence tracking implemented by our shared-cache support for
TLS differs from the private-cache support described in Section 3.5 in the fol-
lowing two ways. First, our shared-cache support allows us to implicitly forward
speculative modifications between two properly ordered epochs. In Figure 23,
we differentiate between explicit and implicit forwarding. With explicit for-
warding, as is supported in our private-cache scheme, the compiler inserts ex-
plicit wait and signal primitives, which communicate a value between epochs
through the forwarding frame. In contrast, implicit forwarding (which is not
supported in our private-cache scheme) allows a value to be communicated
between a store from one epoch and a load from a logically-later epoch that
happen to execute in order. Our private-cache design supports only explicit for-
warding because its distributed nature makes implicit forwarding extremely

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

290 • J. G. Steffan et al.

Fig. 24. Region performance on both private-cache and shared-cache architectures. P is specula-
tively executed on a 4-processor CMP with private caches, and S is speculatively executed on a
4-processor CMP with a shared cache.

difficult to implement.8 However, implicit forwarding is trivial to support in a
shared cache: we simply allow an epoch to speculatively load from a cache line
that has been speculatively-modified by a logically-earlier epoch. Note that if
the logically-earlier epoch then speculatively modifies that cache line again,
a write-conflict violation will result. Since support for implicit forwarding is
trivial to implement in a shared cache, we include implicit forwarding in our
baseline design.

The second major difference between shared and private-cache architectures
is that we cannot easily allow two epochs to modify the same cache line—in
this respect, our basic shared-cache design is less aggressive than our private-
cache design, which has such support for multiple writers (see Section 5.3.2). We
will describe how our baseline shared-cache design can be extended to support
multiple writers in Section 6.3.

As we will demonstrate next, these simple extensions provide effective sup-
port for TLS in shared-cache architectures.

6.2 Evaluation of Shared-Cache Support

We begin our evaluation by comparing the performance of both private-cache
and shared-cache support for TLS, as shown in Figure 24(a). P shows spec-
ulative execution on a 4-processor CMP with private caches, and S shows

8Speculative modifications would have to be broadcast to all logically-later epochs, or an epoch
would have to poll the caches of all logically-earlier epochs for the most up-to-date value on every
load.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 291

speculative execution on a 4-processor CMP with a shared first-level data cache.
To facilitate comparison, the shared cache is the same size and associativity as
one of the private caches (32kB, 2-way set associative). For 7 of the 13 appli-
cations, the performance with a shared cache is similar to the performance
with private caches, while for LI, performance with a shared cache is somewhat
improved; the remaining 6 applications (BZIP2 COMP, BZIP2 DECOMP, IJPEG, VORTEX,
and VPR PLACE) perform significantly worse with a shared cache due to increased
failed speculation. On average, the shared-cache implementation performs 22%
worse than the private-cache version, despite the potential benefits of increased
data and instruction cache locality.

Figure 24(b) shows the percentage of time wasted on failed speculation for
each application, broken down into the reasons why speculation failed. The first
three segments are common between private and shared cache architectures:
CHAIN violations represent time spent on epochs that were squashed because
a logically-earlier epoch was previously squashed, while (REPL and RINV)
represent violations caused by replacement in either the first-level data caches
or the shared unified cache, respectively.9 The next two segments (DINV and
DINVSP) are for private-cache architectures only. Recall that a DINV violation
occurs when an epoch commits and flushes its ORB, generates a read-exclusive
request, and invalidates a speculative cache line belonging to a logically-later
epoch, while a DINVSP violation is caused by a speculative invalidation, which
is sent before an epoch commits.

The remaining three segments represent violations raised by the new shared-
cache TLS mechanisms: the RAW segment represents read-after-write data
dependence violations, and the R CONF and W CONF segments represent read
and write conflicts respectively. It is apparent that write conflicts (W CONF)
account for the vast majority of the failed speculation for the shared-cache TLS
support. Furthermore, even though the set-associative first-level data cache is
only 2-way set-associative, it is encouraging that CRAFTY and GO are the only two
applications for which replacement (REPL) is a significant component of time
lost to failed speculation.

For half the applications, our baseline shared-cache hardware support is suf-
ficient to maintain the performance of private caches; however, for the remain-
ing applications the impact of conflict violations is severe. We will investigate
ways to tolerate these conflicts later in Section 6.3.

6.2.1 Scaling Within a Chip. Next we examine how a shared-cache archi-
tecture can scale (within a chip) by varying the number of processors from 2
to 8, as shown in Figure 25. The observed scaling behavior is similar to that of
the private cache architecture (evaluated in Section 5.1), except for BZIP2 COMP,
BZIP DECOMP, IJPEG, VORTEX, and VPR PLACE—for these applications failed specula-
tion prevents scaling for the shared-cache architecture. To investigate further,
Figure 25(b) shows the percentage of time wasted on failed speculation for the

9Recall that we do not need special support to choose which cache line to evict from an associative
set: the existing LRU (least recently used) mechanism ensures that any non-speculative cache line
is evicted before a speculative one.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

292 • J. G. Steffan et al.

Fig. 25. Varying the number of processors for the shared-cache architecture (1, 2, 4, 6, 8).

Fig. 26. Benefits of implicit forwarding in a shared cache. N does not support implicit forwarding,
while S (our shared-cache baseline) does.

shared-cache design. Again, we observe that write conflicts (W CONF) are the
main cause of failed speculation for most applications, except for PERLBMK and
VORTEX, which suffer from read conflicts as well (R CONF)—we will further
investigate conflicts in Section 6.3.

6.2.2 Impact of Implicit Forwarding. For shared-cache designs, providing
support for implicit forwarding is relatively straightforward since the specula-
tive state is implemented in a common structure (as opposed to the distributed
implementation for private caches). However, it is interesting to quantify the
benefits of such support. In the shared-cache experiments in Figure 26, the N
experiment does not include support for implicit forwarding while the S exper-
iment (our shared-cache baseline) does. It is apparent that support for implicit
forwarding does not have a significant impact on performance other than for
MCF, which improves slightly due to a decrease in failed speculation. The main

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 293

Fig. 27. Two epochs that store the same cache line. In (a), suspension of epoch 2 allows it to proceed
later. In (b), suspension cannot help, and epoch 2 is violated due to the write conflict.

reason that implicit forwarding does not have a large performance impact is be-
cause the compiler has already explicitly synchronized local scalars. Also, since
our speculative regions were selected for having good performance on hardware
without support for implicit forwarding, they may be biased to not require such
support. However, our results show that decent performance benefits can be
obtained without such support.

We have shown that support for TLS in a shared data cache architecture
is straightforward to implement, and that performance for most applications
is comparable to that of a private-cache architecture. However, we also ob-
served that an increase in failed speculation due to read and write conflicts
can negate the potential performance improvement from the increased locality
of the shared cache architecture (as compared with the private-cache architec-
ture); hence we next investigate ways to tolerate these conflicts.

6.3 Tolerating Read and Write Conflicts

In this section, we evaluate two methods for tolerating read and write con-
flicts in a shared-cache design. First, we investigate support for suspending an
epoch that is about to cause a conflict. Second, we evaluate support for cache
line replication; this support is more costly but allows speculative execution
to proceed. Third, we analyze the performance of these two techniques when
combined. Finally, we measure the impact of increasing the associativity of the
shared cache.

6.3.1 Suspending Epochs. Rather than handling read or write conflicts by
squashing the logically-later epoch, we can instead suspend that epoch until
it becomes homefree. Only in certain cases can an epoch be suspended. For
example, consider two epochs that both attempt to write to the same cache
line, as shown in Figure 27. In Figure 27(a) epoch 1 (E1) writes first, then
epoch 2 (E2) is suspended when it attempts to write until it is passed the home-
free token, at which point it can proceed. In contrast, in Figure 27(b) epoch 2
writes first, and when epoch 1 writes, a write conflict is triggered and epoch 2 is
squashed. There are two requirements to avoid deadlock when suspending an

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

294 • J. G. Steffan et al.

Fig. 28. Impact of suspending violations for replacement and conflicts. S is the baseline 4-processor
shared-cache architecture, U builds on S by tolerating conflicts and replacement through suspen-
sion of the logically-later epoch, R builds on S by tolerating conflicts through replication, and Q
supports both suspension and replication.

epoch: (i) that exactly one epoch is always homefree, and (ii) any suspended
epoch that receives the homefree token is unsuspended at that point.

In Figure 28, we evaluate performance when both replacement and certain
read/write conflicts cause the logically-later epoch to be suspended rather than
squashed. We show performance on our shared-cache baseline architecture (S),
and an augmented baseline where epochs are suspended rather than squashed
whenever possible (U). Suspension eliminates a significant amount of failed
speculation due to replacement and conflicts for several applications, including
BZIP2 COMP, IJPEG, PARSER, and VORTEX. Overall, this support is worthwhile and
also straightforward to implement, and provides a 3.7% performance improve-
ment. However, it only eliminates some of the problem of read/write conflicts.

6.3.2 Cache Line Replication. Another technique for tolerating read and
write conflicts is cache line replication. Rather than squashing the conflicting
epoch, the epoch can proceed by replicating the appropriate cache line: if the
cache line is not yet speculatively-modified, then it may be copied directly; if
the cache line is speculatively-modified, then the replicated copy is obtained
from the external memory system. Once replicated, both copies of the cache
line are kept in the same associative set of the shared cache. The owner of a
given cache line can be determined by checking the SM and SL bits—in other
words, the SM and SL bits are considered part of the tag match. If all entries in
an associative set are consumed, then replication fails and the logically-latest
epoch owning a cache line in that set is suspended or squashed.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 295

Fig. 29. Example of cache line replication.

Fig. 30. Hardware support for multiple writers in a shared cache.

Figure 29 shows an example of cache line replication. In the figure, only the
speculative state of the appropriate associative set is shown. In Figure 29(a),
epoch 2 (E2) executes a speculative store to location X , and the SM bit for that
cache line is set. Next, in Figure 29(b), epoch 1 executes a speculative load from
the same location (X), resulting in a read conflict (since epoch 1 must not read
the speculative modifications of epoch 2). Rather than squashing epoch 2, we can
use the available entry in the associative set to store a replicated copy of location
X . Once replication is supported, we can also extend our implementation to
support multiple writers by adding fine-grain SM bits [Steffan et al. 2000]—as
shown in Figure 30, only one group of fine-grain SM bits is necessary per cache
line since only one epoch may modify a given cache line.

For replication to function correctly, two other issues must be dealt with.
First, when an epoch performs a store, the store value must be propagated to

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

296 • J. G. Steffan et al.

replicated copies that belong to logically-later epochs—this prevents potentially
expensive merging operations at commit time. Second, when an epoch commits,
any cache line that it has speculatively modified transitions to the dirty state;
if such a cache line was itself a replica, then the original cache line must be
invalidated since it has been made obsolete by the dirty cache line. One efficient
way to track such cache lines would be to keep a list of their cache tags, in a
manner similar to the ORB mechanism (described in Section 3.4.2).

In Figure 28, the R experiment builds on the baseline S with support for
cache line replication. This support has a significant positive impact on the
performance of BZIP2 COMP, IJPEG, VORTEX, and VPR PLACE. On average, replication
provides a 12.7% improvement over basic shared-cache support, and a 9.3%
improvement over suspension. In all of these cases the amount of failed spec-
ulation has been significantly reduced. From Figure 28(b), which shows the
percentage of execution time wasted on failed speculation and the correspond-
ing breakdown, we see that replication does increase tolerance of write conflicts
(W CONF) and read conflicts (R CONF). Reducing the occurrence of write con-
flicts merely exposes more true data dependence violations (RAW) for VPR PLACE.
Although this support is relatively costly to implement (since we need to be able
to store multiple versions of the same cache line in a single associative set), the
benefits are significant.

6.3.3 Combining Suspension and Replication. In the Q experiment in
Figure 28, we evaluate the combination of both the suspension of epochs and
cache line replication. Although replication (R) is more effective than suspen-
sion (U) for most benchmarks, compared with either technique in isolation we
observe that the combination of the two techniques (Q) captures the best perfor-
mance of either in nearly every case. Furthermore, for 5 applications (CRAFTY,
GCC, GO, PARSER, and PERLBMK), this combination is complementary, achieving bet-
ter performance than either technique alone. Overall, the combination of both
techniques gives an average improvement of 13.5% over the basic shared-cache
scheme.

6.4 Impact of Increasing Associativity

Increased associativity is usually desirable for shared-cache architectures, al-
though there is a point where the increase in hit latency negates further benefit.
Hence we want to ensure that our scheme for supporting TLS in a shared cache
can also benefit from increased associativity—in particular, whether support
for cache line replication can capitalize on the increased opportunity for stor-
ing replicated copies. In Figure 31 we repeat the experiments for suspension
and replication (shown in Figure 28) for a shared cache with an associativity
of 4 ways (as opposed to 2 ways, as used until this point): we maintain the
original hit latency, and re-evaluate the sequential execution (to which all ex-
periments are normalized) on a 4-way set-associative cache as well. Comparing
with Figure 28, we observe that the performance of the baseline (S) with in-
creased associativity is improved in most cases. Suspension and replacement
are even more effective at tolerating conflicts and reducing failed speculation
for most applications. With support for both suspension and replication (Q),

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 297

Fig. 31. Impact of suspending violations for replacement and conflicts when the shared data cache
is 4-way set-associative (as opposed to 2-ways). S is the baseline 4-processor shared-cache architec-
ture, U builds on S by tolerating conflicts and replacement through suspension of the logically-later
epoch, R builds on S by tolerating conflicts through replication, and Q supports both suspension
and replication.

failed speculation due to read/write conflicts is nearly or entirely eliminated for
BZIP2 COMP, BZIP2 DECOMP, IJPEG, PERLBMK, VORTEX, and VPR PLACE. These results
confirm that increased associativity does not eliminate the need for suspension
and replication, but instead further enables those techniques to improve the
performance of shared-cache TLS.

7. CONCLUSIONS

Architectures that naturally support multithreading—such as chip-
multiprocessors and simultaneously-multithreaded processors—have become
increasingly commonplace over the past decade, and this trend will likely
continue in the near future. However, only workloads composed of parallel
threads can take advantage of such processors. We propose support for
Thread-Level Speculation (TLS) that is simple and efficient, and can scale to a
wide range of multithreaded architectures, while empowering the compiler to
optimistically create parallel threads despite uncertainty as to whether those
threads are actually independent. This claim is validated through a detailed
evaluation of SPEC integer benchmarks, generated by a feedback-directed,
fully-automated compiler, and measured on realistic, simulated hardware.

We have introduced a speculative cache coherence scheme that allows the
compiler to automatically parallelize general purpose applications and to ex-
ploit moderate numbers of processors on a single chip. Our approach extends
the architecture of a generic chip-multiprocessor without adding any large or

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

298 • J. G. Steffan et al.

centralized TLS-specific structures, and without hindering the performance of
non-speculative workloads. Of 13 benchmark applications studied, our baseline
architecture and coherence scheme improves program performance for two ap-
plications by 86% and 56%, for four other applications by more than 8%, and
provides more modest improvements for six other applications—an average of
16% program speedup was achieved across all applications. A deep analysis of
our scheme shows that our implementation of TLS support is efficient, and that
our mechanisms for supporting speculation are not a bottleneck.

A closer look at our hardware support and speculative coherence scheme
resulted in many important observations. We found that support for multiple
writers is necessary for good performance for most general-purpose applica-
tions studied. Analyzing the sensitivity of our scheme to various architectural
parameters, we found an expensive interprocessor communication mechanism
to be unnecessary so long as a less expensive mechanism with latency on the
order of 20–30 cycles can be implemented. Varying the sizes of the data caches
demonstrated that 8kB caches are insufficient, although 64kB caches do not
offer a significant improvement over 32kB caches. We also explored alternative
designs for several aspects of our TLS hardware support.

Our evaluation of support for TLS in shared-cache architectures showed
that performance is similar to that of private-cache architectures, since the
increased cache locality of a shared-cache architecture is balanced with an in-
crease in failed speculation due to conflicts. We also showed that two techniques
for tolerating read and write conflicts—suspending conflicting epochs and repli-
cating cache lines—can significantly lower the amount of failed speculation due
to these conflicts.

Our approach to TLS empowers the compiler to optimize the performance
of speculative threads, and frees the hardware from the burden of centralized
structures and tightly-coupled connections. Our hardware support for TLS is
unique because it scales seamlessly within chip boundaries and provides a
framework for scaling beyond a chip—allowing this single unified design to
apply to a wide variety of multithreaded processors and larger systems that
use those processors as building blocks.

ACKNOWLEDGMENTS

We thank the reviewers and editor for their insightful comments.

REFERENCES

AGARWAL, W., HRISHIKESH, M., KECKLER, S., AND BURGER, D. 2000. Clock rate versus IPC: the end
of the road for conventional microarchitectures. In Proceedings of ISCA 27.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques and Tools. Addison
Wesley.

AKKARY, H. AND DRISCOLL, M. 1998. A dynamic multithreading processor. In MICRO-31.
BREACH, S. E., VIJAYKUMAR, T. N., GOPAL, S., SMITH, J. E., AND SOHI, G. S. 1996. Data memory alter-

natives for multiscalar processors. Tech. Rep. CS-TR-1997-1344, Computer Sciences Department,
University of Wisconsin-Madison.

BREACH, S. E., VIJAYKUMAR, T. N., AND SOHI, G. S. 1994. The anatomy of the register file in a
multiscalar processor. In Proceedings of the 27th Annual International Symposium on Microar-
chitecture. 181–190.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

The STAMPede Approach to Thread-Level Speculation • 299

CINTRA, M. AND LLANOS, D. R. 2003. Toward efficient and robust software speculative paralleliza-
tion on multiprocessors. In Proceedings of the ninth ACM SIGPLAN symposium on Principles
and practice of parallel programming. ACM Press, 13–24.

CINTRA, M., MARTı́NEZ, J. F., AND TORRELLAS, J. 2000. Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. In Proceedings of ISCA 27.

CINTRA, M. AND TORRELLAS, J. 2002. Learning cross-thread violations in speculative parallelization
for multiprocessors. In Proceedings of the 8th HPCA.

EMER, J. 2001. Ev8: The post-ultimate alpha (keynote address). In International Conference on
Parallel Architectures and Compilation Techniques.

FARRENS, M., TYSON, G., AND PLESZKUN, A. 1994. A study of single-chip processor/cache organiza-
tions for large number of transistors. In Proceedings of ISCA 21. pp. 338–347.

FRANK, M., MORITZ, C., GREENWALD, B., AMARASINGHE, S., AND AGARWAL, A. 1999. Suds: Primitive
mechanisms for memory dependence speculation. Tech. Rep. MIT/LCS Technical Memo LCS-
TM-591. January.

FRANKLIN, M. AND SOHI, G. S. 1996. ARB: A hardware mechanism for dynamic reordering of
memory references. IEEE Trans. Comput. 45, 5 (May).

GARZARAN, M. J., PRVULOVIC, M., LLABERIA, J. M., VINALS, V., RAUCHWERGER, L., AND TORRELLAS, J.
2003. Tradeoffs in buffering memory state for thread-level speculation in multiprocessors. In
Proceedings of the Ninth International Symposium on High-Performance Computer Architecture
(HPCA).

GOLDSTEIN, S. C., SCHAUSER, K. E., AND CULLER, D. E. 1996. Lazy threads: Implementing a fast
parallel call. J. Para. Distrib. Comput. 37, 1 (Aug.), 5–20.

GOPAL, S., VIJAYKUMAR, T., SMITH, J., AND SOHI, G. 1998. Speculative versioning cache. In Proceed-
ings of the Fourth International Symposium on High-Performance Computer Architecture.

GUPTA, M. AND NIM, R. 1998. Techniques for speculative run-time parallelization of loops. In
Proceedings of Supercomputing 1998.

HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. 1998. Data speculation support for a chip multipro-
cessor. In Proceedings of ASPLOS-VIII.

KAHLE, J. 1999. Power4: A Dual-CPU processor chip. Microprocessor Forum ’99.
KNOOP, J. AND RUTHING, O. 1992. Lazy code motion. In Proceedings of the ACM SIGPLAN 92

Conference on Programming Language Design and Implementation.
KRISHNAN, V. AND TORRELLAS, J. 1999a. A chip multiprocessor architecture with speculative mul-

tithreading. IEEE Trans. Comput. Special Issue on Multithreaded Architecture.
KRISHNAN, V. AND TORRELLAS, J. 1999b. The Need for Fast Communication in Hardware-Based

Speculative Chip Multiprocessors. In International Conference on Parallel Architectures and
Compilation Techniques (PACT).

LAUDON, J. AND LENOSKI, D. 1997. The SGI Origin: A ccNUMA highly scalable server. In Proceed-
ings of the 24th ISCA. 241–251.

MARCUELLO, P. AND GONZÁLEZ, A. 2002. Thread-spawning scheme for speculative multithreading.
In Proceedings of the 8th HPCA.

MARCUELLO, P. AND GONZLEZ, A. 1999. Clustered speculative multithreaded processors. In Pro-
ceedings of the ACM International Conference on Supercomputing.

MOSHOVOS, A. I., BREACH, S. E., VIJAYKUMAR, T., AND SOHI, G. S. 1997. Dynamic speculation and
synchronization of data dependences. In Proceedings of the 24th ISCA.

OLUKOTUN, K., NAYFEH, B. A., HAMMOND, L., WILSON, K., AND CHANG, K. 1996. The Case for a Single-
Chip Multiprocessor. In Proceedings of ASPLOS-VII.

OOI, C. L., KIM, S. W., PARK, I., EIGENMANN, R., FALSAFI, B., AND VIJAYKUMAR, T. N. 2001. Multi-
plex: Unifying conventional and speculative thread-level parallelism on a chip multiprocessor.
In Proceedings of the International Conference on Supercomputing.

OPLINGER, J., HEINE, D., AND LAM, M. S. 1999. In search of speculative thread-level parallelism.
In Proceedings of the 1999 International Conference on Parallel Architectures and Compilation
Techniques (PACT’99).

PALACHARLA, S., JOUPPI, N. P., AND SMITH, J. E. 1996. Quantifying the complexity of superscalar
processors. Tech. Rep. CS-TR-1996-1328, University of Wisconsin-Madison.

PARK, I., FALSAFI, B., AND VIJAYKUMAR, T. N. 2003. Implicitly-multithreaded processors. In Proceed-
ings of the 30th annual international symposium on Computer architecture.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

300 • J. G. Steffan et al.

PRABHU, M. AND OLUKOTUN, K. 2003. Using thread-level speculation to simplify manual paral-
lelization. In Principles and Practices of Parallel Programming.

PRVULOVIC, M., GARZARAN, M., RAUCHWERGER, L., AND TORRELLAS, J. 2001. Removing architectural
bottlenecks to the scalability of speculative parallelizatoin. In proceedings of the 28th Annual
International Symposium on Computer Architecture.

RAUCHWERGER, L. AND PADUA, D. 1995. The LRPD Test: Speculative run-time parallelization of
loops with privatization and reduction parallelization. In Proceedings of PLDI ’95. 218–232.

ROTENBERG, E., JACOBSON, Q., SAZEIDES, Y., AND SMITH, J. 1997. Trace processors. In Proceedings of
Micro 30.

ROTH, A. AND SOHI, G. 2001. Speculative data-driven multithreading. In 7th International Sym-
posium on High Performance Computer Architecture (HPCA-7). 20–24.

RUNDBERG, P. AND STENSTROM, P. 2000. Low-cost thread-level data dependence speculation on
multiprocessors. In Fourth Workshop on Multithreaded Execution, Architecture and Compilation.

SOHI, G. S., BREACH, S., AND VIJAYKUMAR, T. N. 1995. Multiscalar processors. In Proceedings of
ISCA 22. 414–425.

SPEC. 2000. The SPEC Benchmark Suite. Tech. rep., Standard Performance Evaluation Corpo-
ration. http://www.spechbench.org.

STEFFAN, J. G. 2003. Hardware Support for Thread-Level Speculation. Ph.D. thesis, Carnegie
Mellon University. Tech. Rep. CMU-CS-03-122.

STEFFAN, J. G., COLOHAN, C. B., AND MOWRY, T. C. 1997. Architectural Support for Thread-Level
Data Speculation. Tech. Rep. CMU-CS-97-188, School of Computer Science, Carnegie Mellon
University. November.

STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND MOWRY, T. C. 2002. Improving value communication
for thread-level speculation. In Proceedings of the 8th HPCA.

STEFFAN, J. G., COLOHAN, C. B., ZHAIA, A., AND MOWRY, T. C. 2000. A scalable approach to thread-
level speculation. In Proceedings of ISCA 27.

TJIANG, S., WOLF, M., LAM, M., PIEPER, K., AND HENNESSY, J. 1992. Languages and Compilers for
Parallel Computing. Springer-Verlag, Berlin, Germany, 137–151.

TREMBLAY, M. 1999. MAJC: Microprocessor Architecture for Java Computing. HotChips ’99.
TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. 1995. Simultaneous multithreading: Maximizing

on-chip parallelism. In Proceedings of ISCA 22. 392–403.
VEENSTRA, J. 2000. MINT+ mips emulator. Personal communication.
VIJAYKUMAR, T. 1998. Compiling for the multiscalar architecture. Ph.D. thesis, Computer Sciences

Department, University of Wisconsin-Madison.
YEAGER, K. 1996. The MIPS R10000 superscalar microprocessor. IEEE Micro.
ZHAIA, A., COLOHAN, C. B., STEFFAN, J. G., AND MOWRY, T. C. 2002. Compiler optimization of scalar

value communication between speculative threads. In Proceedings of ASPLOS-X.
ZHAIA, A., COLOHAN, C. B., STEFFAN, J. G., AND MOWRY, T. C. 2004. Compiler optimization of memory-

resident value communication between speculative threads. In Proceedings of the International
Symposium on Code Generation and Optimization.

ZHANG, Y., RAUCHWERGER, L., AND TORRELLAS, J. 1998. Hardware for speculative run-time paral-
lelization in distributed shared-memory multiprocessors. In Proceedings of the Fourth Interna-
tional Symposium on High-Performance Computer Architecture.

ZHANG, Y., RAUCHWERGER, L., AND TORRELLAS, J. 1999. Hardware for speculative parallelization
of partially-parallel loops in DSM multiprocessors. In Fifth International Symposium on High-
Performance Computer Architecture (HPCA). 135–141.

ZHANG, Z. AND TORRELLAS, J. 1995. Speeding up irregular applications in shared-memory multipro-
cessors: Memory binding and group prefetching. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture. 188–200.

ZILLES, C. AND SOHI, G. 2002. Master/slave speculative parallelization. In 35th International Sym-
posium on Microarchitecture (MICRO-35). 18–22.

Received June 2003; revised December 2004; accepted January 2005

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.

