
An FPGA-based Accelerator Platform for

Network-on-Chip Simulation

by

Danyao Wang

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

Copyright c© 2010 by Danyao Wang

Abstract

An FPGA-based Accelerator Platform for Network-on-Chip Simulation

Danyao Wang

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2010

The increased demand for on-chip communication bandwidth as a result of the multi-core

trend has made packet-switched networks-on-chip (NoCs) a more compelling choice for

the communication backbone in next-generation systems [5]. However, NoC designs have

many power, area, and performance trade-offs in topology, buffer sizes, routing algorithms

and flow control mechanisms—hence the study of new NoC designs can be very time-

intensive. To address these challenges, we propose DART, a fast and flexible FPGA-

based NoC simulation architecture. Rather than laying the NoC out in hardware on the

FPGA like previous approaches [8, 14], our design virtualizes the NoC by mapping its

components to a generic NoC simulation engine, composed of a fully-connected collection

of fundamental components (e.g., routers and flit queues). This approach has two main

advantages: (i) since it is virtualized it can simulate any NoC; and (ii) any NoC can

be mapped to the engine without rebuilding it, which can take significant time for a

large FPGA design. We demonstrate that an implementation of DART on a Virtex-

II Pro FPGA can achieve over 100× speedup over the cycle-based software simulator

Booksim [6], while maintaining the same level of simulation accuracy.

ii

Acknowledgements

First I would like to thank my supervisors, Prof. Greg Steffan and Prof. Natalie Enright

Jerger for their guidance and support as I learn to do research. I still have much to

learn about writing and conducting research effectively. I would also like to thank Prof.

Andreas Moshovos for his participation and feedback during the early scope meetings

that helped frame the scope of this project. My gratitude goes to Prof. Paul Chow and

his group for providing access to the Xilinx tools and equipment. I also acknowledge

NSERC CGS-M for funding my research.

I want to thank my fellow grad students in the Computer Group, from whom I learned

a great deal. Especially I owe many thanks to Henry Wong for all the discussions,

suggestions and helpful tips, to Ioana Burcea for sharing with me her many insights on

research, work and life and to Myrto Papadopoulou for always having the perfect quote

or story to keep me motivated.

Finally I would like to thank Ryan for being my best friend and always being there

for me, and I thank my parents for the love and support they have always given to me.

iii

Contents

1 Introduction 1

1.1 Flexible NoC Simulation Engine . 2

1.2 Research Goals . 4

1.3 Thesis Organization . 4

2 Background 5

2.1 Network-on-Chip Basics . 5

2.2 Software NoC Simulators . 9

2.3 FPGA-based NoC Models . 10

3 DART Architecture 13

3.1 Flit Queue (FQ) . 15

3.2 Traffic Generator (TG) . 16

3.3 Router . 18

3.3.1 Area-Speed Trade-off . 19

3.3.2 Send-Ahead Optimization . 20

3.4 Global Interconnect . 21

3.5 Configuration and Data Collection . 23

3.6 Off-Chip Interface . 23

3.7 Software Tools . 24

3.7.1 Configuration Generation . 25

iv

3.7.2 Front-end Interface . 27

4 Implementation 29

4.1 9-node DART on XUPV2P . 29

4.1.1 RAM Optimization . 30

4.1.2 Serial Interface . 31

4.2 Scaling DART to Virtex 5 . 31

5 Analysis 33

5.1 Methodology . 33

5.2 Correctness . 33

5.3 Speedup vs. Software Simulation . 35

5.4 Cost of Programmability . 36

5.5 Scalability . 38

5.5.1 Performance Scaling . 39

5.5.2 Performance vs. Resource Utilization 40

5.6 Case Studies . 41

5.6.1 Mesh with Express Links . 42

5.6.2 Tree . 43

6 Conclusions 46

6.1 Contributions . 46

6.2 Future Work . 47

Bibliography 48

v

List of Acronyms

ADF Architecture description file

CAD Computer-aided design

CMP Chip-multiprocessor

FF Flip flop

FIFO First-in-first-out queues

FPGA Field programmable gate array

FSM Finite state machine

HDL Hardware description language

LUT Look-up table

NoC Network-on-chip

RNG Random number generator

SERDE Serializer/Deserializer

VC Virtual channel

XUPV2P Xilinx University Program Virtex-II Pro development system

vi

List of Tables

3.1 Flit descriptor format (36 bits) . 14

3.2 Credit descriptor format (12 bits) . 14

3.3 Packet descriptor format (32 bits) . 17

3.4 Implementation cost of router structures 19

3.5 Configurable parameters in DART nodes 23

3.6 Off-chip interface command format . 24

3.7 Off-chip interface command description 25

4.1 Resource utilization breakdown of a 9-node DART on a XC2VP30 FPGA 30

4.2 FIFO Usage in 9-node DART . 30

5.1 3×3 mesh benchmark configuration parameters 34

vii

List of Figures

1.1 DART Simulator architecture on the FPGA 3

2.1 NoC as the communication backbone of a multi-core system 6

2.2 Microarchitecture of a classic credit-based wormhole VC router 8

3.1 Algorithm to calculate the dequeue timestamp in an FQ 15

3.2 Flit Queue datapath . 16

3.3 Traffic Generator datapath . 18

3.4 DART Router datapath . 18

3.5 VC allocator implementation . 19

3.6 DART’s global interconnect . 22

3.7 Off-chip interface . 24

3.8 DART software flow . 26

3.9 Architecture description file for an 9-node DART simulator 27

3.10 Excerpt of the network description file for a 9-node mesh 28

5.1 3 × 3 mesh network latency vs. injection rate 34

5.2 3 × 3 mesh network packet latency distribution 35

5.3 DART performance . 36

5.4 Overhead of the DART interconnect and simplified Router model 37

5.5 Booksim and DART simulation speed for different network sizes 39

5.6 Performance impact of global interconnect sizes 40

viii

5.7 Resource utilization of different interconnect sizes 41

5.8 Microbenchmarks . 42

5.9 Express links performance . 44

5.10 Tree performance . 45

ix

Chapter 1

Introduction

Processor performance has improved rapidly since microprocessors were first introduced

in the late 1970s. This improvement is a result of both advances in process technology

and innovations in computer architecture design. However, since 2002, the limits on max-

imum power dissipation, diminishing return from exploiting instruction-level parallelism

to improve uni-processor performance and unchanged memory latency have resulted in

the adoption of multi-core architecture in the mainstream [10].

As more cores are incorporated into a single chip, packet-switched networks-on-chip

(NoCs) have emerged as a compelling replacement of traditional bus-based on-chip in-

terconnects. NoCs provide higher overall bandwidth, more efficient use of shared on-chip

resources, and a modular design that is easier to design, verify and fabricate. NoC de-

signs are sensitive to many parameters such as topology, buffer sizes, routing algorithms,

and flow control mechanisms. Hence, detailed NoC simulation is essential to accurate

full-system evaluation.

To study the performance trade-offs of NoCs, software simulation is used widely,

both as stand-alone network simulators [6, 20] and as the interconnect component of

large full-system simulators [1, 9]. Software simulation has the advantages of being very

flexible, easy to program, fast to compile, and deterministic (making them amenable to

1

Chapter 1. Introduction 2

debugging). However, simulation of large NoCs in software is slow, which adds to the

already burdensome computation required to perform detailed full-system simulation. To

maintain reasonable simulation times, the user may need to simulate at a higher level

of abstraction. For example, instead of a cycle-accurate model of the on-chip router’s

microarchitecture, using a simple ideal switch that does not model the resource contention

within the router reduces the amount of computation required in the simulation.

The increased on-chip logic and memory capacities of FPGAs (Field Programmable

Gate Arrays) allow an entire on-chip system to be prototyped or emulated on a single

device. Several FPGA-based NoC emulators have been proposed [8,14,21,25] that reduce

simulation time by several orders of magnitude. These dramatic speedups are possible

because the emulator is constructed by laying out the entire NoC on the FPGA, allowing

the hardware to exploit all available fine and coarse grain parallelism between the emu-

lated events in the NoC. However, this direct approach has three key drawbacks relative

to software simulation: (i) any change in the simulated NoC requires manual redesign

of the emulator HDL, (ii) redesign in turn requires complete compilation/synthesis of

the FPGA design, which can take hours, or up to a day for a large design, and (iii) the

maximum simulatable NoC size is determined by the FPGA capacity.

1.1 Flexible NoC Simulation Engine

We bridge the speed and usability gap between software and hardware approaches of

NoC simulation by proposing a novel overlay architecture for FPGA-based NoC simula-

tion. The simulator architecture, which we call DART, provides a parametrized model

of a generic NoC where the parameters can be set by software to simulate different NoCs

without modifying the hardware simulator on the FPGA. Fig. 1.1 shows the organization

of DART, which consists of a fully-connected collection of fixed-function components that

model the building blocks of an NoC: traffic generators, routers and queues. Configurable

Chapter 1. Introduction 3

Figure 1.1: DART Simulator architecture on the FPGA

parameters within each node allows behaviors of individual nodes to be altered to match

nodes in the simulated NoC. The global interconnect provides all-to-all communication

between DART nodes, thus allowing simulation of different topologies. In addition, the

simulated time is decoupled from the FPGA cycles through the use of a global time

counter. It is incremented once every simulated cycle after all network transfers for that

cycle are simulated, which may take a variable number FPGA cycles. Virtualizing simu-

lation time allows us to optimize the DART components for area efficiency. This partially

addresses the limitation on simulatable NoC size due to FPGA capacity constraints.

Chapter 1. Introduction 4

1.2 Research Goals

The focus of this dissertation is to develop a flexible NoC simulation architecture for

FPGAs and demonstrate its advantage over pure software or hardware approaches. We

accomplish this through the following goals:

1. to design an FPGA-based NoC simulation architecture that supports a wide range

of NoC configurations while making efficient use of FPGA resources,

2. to develop a design flow that allows the simulator to be programmed and controlled

by software without hardware changes, and

3. to implement the proposed simulator architecture on a Virtex-II Pro FPGA and

evaluate its usability and performance.

1.3 Thesis Organization

The rest of the thesis is organized as the following. In Chapter 2, we provide an overview

of basic NoC concepts and summarize the approaches taken by prior efforts in both

software and hardware-based NoC simulation. In Chapter 3 we describe the DART

hardware architecture and its work flow. In Chapter 4, we present an implementation

of a 9-node DART on a Virtex-II Pro FPGA and discuss strategies to scale DART to

larger FPGA devices. In Chapter 5 we verify the correctness of the DART simulator

and quantify its performance and scalability. We also present two case studies that

demonstrate DART’s features. In Chapter 6, we summarize our contributions and discuss

future research directions.

Chapter 2

Background

Cycle-accurate performance simulators are important tools in the early stages of the

design process. They allow system architects to evaluate trade-offs between design alter-

natives when making design decisions. A good performance simulator models the target

system accurately, and provides an easy way to explore different design options quickly.

As NoCs have become an integral part of modern computer systems, we need high-quality

performance simulators for NoCs. In this chapter, we first introduce some basic concepts

in NoC design, including the building blocks of state-of-the-art NoCs. Then we briefly

review closely-related work on NoC simulation, both software-based and FPGA-based.

2.1 Network-on-Chip Basics

With increasing core counts in a single chip, a network-on-chip (NoC) is replacing tradi-

tional bus-based on-chip interconnects to provide a high bandwidth and scalable on-chip

communication fabric. Figure 2.1 shows the organization of a multi-core system that uses

an NoC as the communication backbone. A core can be a CPU with a private cache or

a dedicated computing engine. In a shared memory system, the NoC is used to support

the cache coherence protocol. In a message-passing system, the NoC facilitates direct

message exchanges between processor cores. The Network Interface Controller (NIC)

5

Chapter 2. Background 6

Figure 2.1: NoC as the communication backbone of a multi-core system

packages messages from the core into packets and injects them into the NoC. Within the

network, packets are transfered between routers in units of flow control digits or flits.

Each packet consists of a head flit, some body flits and a tail flit. The flits are reassem-

bled back into packets and packets into messages at the receiving NIC. A network node

refers to a router and its attached core and NIC.

A NoC is characterized by four parameters: topology, routing algorithm, flow control

and router microarchitecture. The role of each is briefly described below. More in-depth

explanations can be found in Dally and Towles [6] and Enright Jerger and Peh [11].

Topology specifies how nodes in the network are connected to one another. It de-

termines the performance bound of a network assuming perfect routing and flow con-

trol. Given a topology, routing algorithms and flow control mechanisms are devel-

oped to efficiently manage the physical resources to approach the performance bound.

Chapter 2. Background 7

Two-dimensional, low-radix1 topologies such as rings, meshes and tori are commonly

used [2,3,24] because they can be easily laid out in a 2D chip. Moreover, regular topolo-

gies such as a mesh facilitate tile-based system design that simplifies verification and

fabrication. High-radix topologies such as flattened butterfly [13] and folded Clos [12]

have garnered interests recently. Compared to the low-radix topologies, the high-radix

proposals leverage the abundance of on-chip wires to reduce hop counts. This in turn

reduces the latency a packet experiences when traversing the network.

Routing algorithm defines the path through the network that a packet takes to reach

its destination. A deterministic routing algorithm defines a single path between each pair

of nodes. It is used widely among existing NoCs due to its simplicity. All deterministic

routing algorithms form a subset of a larger class known as oblivious routing algorithms,

where routing decisions are made independent of the network traffic situation. Non-

deterministic oblivious routing algorithms allow many paths between a node pair. This

added path diversity results in less congestion for the same traffic pattern. Contrary

to oblivious routing algorithms, adaptive routing algorithms use congestion information

to choose the routing path on the fly. This further improves the network’s tolerance of

congestion and hardware fault, but adds complexity to the router microarchitecture.

Flow control mechanisms dictate the allocation and sharing of network resources be-

tween messages. Most modern NoCs use a combination of wormhole and virtual channel

(VC) flow control. Wormhole flow control allocates router buffer slots and link band-

width on a per-flit basis. Flits can move on to the next node without waiting for the

entire packet to be received at the current node. This allows routers to use small buffers

while still supporting large packet sizes. To prevent buffer overflow, each router main-

tains credit counts to track the number of available buffer spaces at the next hop. When

a flit leaves a router, the credit counter for the downstream buffer is decremented while

1The radix or degree of a network refers to the number of neighbors an average node connects to in
a topology.

Chapter 2. Background 8

Figure 2.2: Microarchitecture of a classic credit-based wormhole VC router

a credit is sent to the upstream router to increment its counter. This mechanism en-

sures that a flit is only forwarded when the next-hop router has buffer space to store

it. Virtual channels improve the link utilization of wormhole flow control by associating

multiple queues with each router port. The VCs arbitrate for access to the physical link

on a cycle-by-cycle basis. When an in-transmission packet spanning multiple hops stalls

due to contention, the idle intermediate links can be used by other VCs.

Router microarchitecture defines the pipeline structure of the router that implements

the routing algorithm and flow control mechanism. Figure 2.2 shows the microarchitec-

ture of a classic credit-based wormhole VC router. The main components are the per-VC

input buffers, routing logic, VC allocator, switch allocator and the crossbar switch. A flit

traverses the router pipeline in five stages: buffer write (BW), route computation (RC),

VC allocation (VA), switch allocation (SA) and switch traversal (ST). The head flit goes

through all five stages, while the body and tail flits skip the RC and VA stages as they

inherit the route and the VC allocated by the head flit. The tail flit also deallocates the

VC when it leaves the router. The router pipeline latency directly affects the per-hop

delay for each flit. Additional delay can arise due to contention at next-hop input buffers

Chapter 2. Background 9

and in VC allocation and switch allocation. Depending on the traffic condition in the

network, the delay a flit experiences due to contention varies.

The performance of a NoC depends on the combination of topology, routing algorithm,

flow control mechanism and router microarchitecture. Hence a simulator must model all

four components to provide an accurate estimate of network performance.

2.2 Software NoC Simulators

Most NoC simulators are written in software so they are easy to develop and modify, and

can be designed to be very accurate. Stand-alone network simulators such as Booksim [6]

and SICOSYS [20] are used widely by network researchers. Their modular design allows

variations of network components such as routing algorithms and allocators to be easily

incorporated. Both Booksim and SICOSYS use synthetic traffic, where packets are in-

jected according to a random process. Synthetic traffic stresses network resources and

provides a good estimate of the network’s performance under worst-case traffic scenarios.

Full system simulators such as GEMS [17] and SimFlex [9] enable computer architects

to study the interaction between processor architecture and other system components

using real applications. They incorporate NoC simulators to model the communication

fabric. Different simulators model the NoC at varying levels of detail. SimFlex has a

simple network model that assumes perfect routers with infinite switching bandwidth and

computes packet delay based solely on the topology of the network and the latency/band-

width properties of the links. These simplified assumptions may lead to underestimates

of network latencies when there is congestion. GEMS’s Garnet [1] interconnect simula-

tor provides a more accurate model of a classic five-stage pipelined router with virtual

channels, and hence can provide better estimates of system performance.

Although software simulators offer many advantages, the most important being the

ease to add and modify models, they can be slow. Typical simulation speeds range from

Chapter 2. Background 10

the low KIPS (Thousands of Instructions per Second) to 100s of KIPS, depending on the

detail level of the models [19]. Parallelizing the software simulators and leveraging mod-

ern multi-core processors to improve simulation speed is non-trivial, as NoC simulation

is communication-intensive and requires fine-grained synchronization. Näıve paralleliza-

tion can incur high synchronization cost. DARSIM [16] is a parallel NoC simulator that

achieves good scalability for up to four threads in cycle-accurate mode, which requires

two global synchronizations per simulated cycle. Relaxing this constraint allows good

scaling to eight threads at the cost of lower accuracy.

2.3 FPGA-based NoC Models

FPGAs are programmable devices that are used to implement digital circuits. They have

traditionally been used to prototype circuit designs for final-stage verification. With

advances in process technology, newer FPGAs offer enough logic and memory capacity

to implement a complete digital system on a single chip. As a performance evaluation

platform for NoCs, FPGAs have two advantages over software simulators. First, the fine-

grained parallelism in NoC simulation can be exploited by a large collection of dedicated

function units. Second, the high amount of communication that is expensive to implement

in a coarse-grained thread model is easily accommodated by the abundance of wires

available to connect the function units. As a result, FPGA-based NoC models can be

orders of magnitude faster than software simulation.

Genko et al. [8] describe an emulation platform that consists of programmable traf-

fic generators and receptors that drive a 6-switch NoC and is 2600-fold faster than a

SystemC simulation of the same network. While this platform supports programmable

traffic patterns and statistics counters, changing the configuration of the network requires

resynthesis of the emulator. DRNoC [14] circumvents this requirement by leveraging the

partial reconfigurability of Xilinx FPGAs. The DRNoC host FPGA is divided into grids;

Chapter 2. Background 11

each grid slot can be dynamically reconfigured to implement a new component to model

different networks. However, partial reconfiguration requires a special design flow and

incurs area overheads; it is also only available for select devices. In contrast, DART’s

configuration interface is based on a generic shift register and is portable to any FPGA.

NoCem [21] improves emulation density over Genko et al.’s design [8] and implements

a 9-node mesh network on a single FPGA by eliding the router pipeline details and virtual

channels. Instead of sacrificing these important details, we employ a simple design for

each DART Router: each has multiple input ports but only one output port, and models

the all-to-all switching in a simulated router by routing one input port per DART cycle.

All of the aforementioned NoC evaluation platforms do not distinguish between the

FPGA-based evaluation architecture and the architecture of the modeled NoC. As a re-

sult, to study a different NoC, the emulator must be modified and the FPGA synthesis-

place-route steps are repeated. This process is labor-intensive and time consuming.

Moreover, they do not allow emulation performance to be traded off for other impor-

tant criteria such as the implementation area.

Wolkotte et al. [25] allow performance/area trade-off by virtualizing a single router

on an FPGA. An NoC with multiple routers is simulated by iterating multiple contexts

through the router model. An off-chip ARM processor stores N contexts for the router

model and orchestrates the emulation of the N-node network. This approach allows the

router model to be much more detailed, although changing the router configuration still

requires hardware changes. In addition, the off-chip ARM/FPGA communication link is

a performance bottleneck.

DART provides a flexible FPGA-based NoC simulator platform by decoupling the

simulator architecture from the architecture of the simulated system. This technique is

borrowed from FPGA-based processor simulators [4,19,23]. ProtoFlex [4] is a functional

simulator of a multi-core processor. It implements a SPARC V9 processor pipeline on

the FPGA and uses multithreading to simulate multiple processors. RAMPGold [22,23]

Chapter 2. Background 12

also uses a virtualized functional model to simulate multiple processors. In addition,

it contains a timing model and adds the ability to configure some system parameters,

such as the number of simulated cores, cache configuration and simulated DRAM timing

characteristics, after the simulator is implemented on the FPGA. A-Ports [19] proposes

a method to abstract any synchronous system into components connected by queues.

Each queue has some latency and bandwidth, and models the timing of the component it

connects to. While DART employs the same high level strategy as these simulators, NoC

architectures are significantly different from processor pipelines. An NoC is a distributed

system and has more communication. We design the DART architecture to efficiently

and accurately capture the characteristics of an NoC. We describe the DART architecture

in the next chapter.

Chapter 3

DART Architecture

The basis of the DART architecture is to provide programmability by decoupling (i) the

simulator architecture from the architecture of the simulated NoC, and (ii) DART cycles

from simulated time. The generic DART architecture provides a configurable functional

model for NoC simulation by abstracting common NoC functionalities into three basic

components: Traffic Generators (TGs), Flit Queues (FQs) and Routers. Each component

contains configurable parameters whose values can be set via software to alter the be-

havior of the component. Components can also be mixed and matched to create DART

nodes that model more complex NoC functionalities. A global interconnect provides

all-to-all communication between DART nodes. A given topology is hence simulated by

programming the Routers to only forward to their simulated neighbors via the global

interconnect.

Traffic Model As described in Section 2.1, there are two types of traffic in a NoC: flits

that carry data messages around the network and credits that are exchanged between

neighboring routers to enforce flow control. DART models flits and credits using descrip-

tors (Tables 3.1, 3.2) that contain only the information necessary to forward them from

source to destination, but not the data payload. This saves area as fewer bits are stored

and passed between DART nodes. We use 36-bit flit descriptors to match the port width

13

Chapter 3. DART Architecture 14

Table 3.1: Flit descriptor format (36 bits)

Bit Range Width Description

35 1 Head flit boolean flag
34 1 Tail flit boolean flag
33 1 Measurement flit boolean flag

32:23 10 Timestamp to forward to next hop
22:15 8 Destination node address
14:5 10 Source node address (if this is a head flit) or injection timestamp
4:2 3 Next hop port ID
1:0 2 Next hop virtual channel ID

Table 3.2: Credit descriptor format (12 bits)

Bit Range Width Description

11:10 2 Virtual channel ID
9:0 10 Timestamp to forward to next hop

of embedded RAM blocks on the FPGA, which are used to implement the flit buffers.

Anything wider doubles the RAM usage as two RAM blocks must be used in parallel

to support the data width. To encode the credit information, 12 bits are the minimum

possible.

Timing Model To capture the timing of flit transfers, we use a global time counter to

synchronize all network events. Each flit contains a timestamp that indicates when the

next transfer of this flit should happen. As a flit traverses the network, its timestamp

is updated by intermediate DART nodes to reflect the delay due to pipeline latency and

simulated contention. Credit transfers are timed similarly. Upon arrival at the destina-

tion TG, a flit’s end-to-end latency is computed by subtracting the injection timestamp

from the arrival timestamp. The bit width of the timestamp must be large enough to

cover the maximum end-to-end latency a packet may experience in the network. We

choose it to be 10 bits. This allows DART to correctly compute packet latencies up to

1024 simulated cycles while keeping the flit descriptor within 36 bits. We believe 1024

cycles provide enough coverage as most on-chip communication takes no more than a few

Chapter 3. DART Architecture 15

N_through ++

if(T_enqueue>T_last_flit || N_through>=bandwidth)

T_dequeue = max(T_enqueue, T_last_flit+1)

N_through = 1

else

T_dequeue = T_enqueue

T_dequeue += latency

Figure 3.1: Algorithm to calculate the dequeue timestamp in an FQ

hundred cycles. It is important to note that using a 10-bit timestamp does not affect the

maximum number of cycles a DART simulation can run because the global time counter

can safely wrap around during a simulation without causing errors.

Design Space Coverage The bit widths of the other descriptor fields are also chosen

to be minimum size while still providing sufficient functionality coverage. The 8-bit node

address, 3-bit port ID and 2-bit virtual channel (VC) ID allow DART to scale to 256

nodes, 8 ports per node and 4 virtual channels per port.

3.1 Flit Queue (FQ)

The Flit Queue component models the VC buffers at a router’s input port and the band-

width/latency constraints of the wire link feeding the port. The buffers are independent

FIFO (first-in-first-out) queues. They are implemented using a single block-RAM that is

statically partitioned among the VCs. A Verilog parameter controls the number of VCs

to incorporate (set to two in our current implementation).

Figure 3.2 shows the FQ datapath. For each incoming flit, the FQ computes the new

dequeue timestamp to properly reflect the delay it experiences traversing the link due

to latency and bandwidth constraints. The algorithm to compute the new timestamp

is shown in Figure 3.1. Here Nthrough counts the number of flits through the FQ during

a simulated cycle. Tlastflit is the dequeue timestamp of the previous flit less the link

latency. Both the latency and bandwidth parameters are configurable per FQ.

Chapter 3. DART Architecture 16

Figure 3.2: Flit Queue datapath. The Inf block ensures that the flits at the head of the
FIFOs are only dequeued according to their timestamps

After the timestamp is updated, the flit is queued according to its VC. It is forwarded

to the next-hop Router when it gets to the front of the FIFO and the global simulation

time is equal to its timestamp. This ensures all flits arrive at a Router in chronological

order, which is required for correct simulation of resource contention at the routers. A

separate FIFO is used for the credit channel. Similar to the flits, a credit can leave an

FQ only during its scheduled dequeue time.

3.2 Traffic Generator (TG)

The Traffic Generator component injects traffic into the simulated network. It also acts

as a traffic sink and records statistics about received packets. When enabled, a Traffic

Generator injects traffic in one of two modes: synthetic or dynamic. The former is useful

for stress testing the simulated network. The latter provides an interface to incorporate

DART into a full-system evaluation framework. The mode is configurable per TG.

In synthetic mode, a TG injects flits in bursts of fixed sized packets using a Bernoulli

process1. A random number generator [15] generates a new random number every sim-

1A Bernoulli process is a sequence of binary random variables that take only two values, 0 or 1.
Intuitively, a Bernoulli process is repeated coin flipping, where each coin flip is independent. The coin
may be unfair, but the unfairness is constant.

Chapter 3. DART Architecture 17

Table 3.3: Packet descriptor format (32 bits)

Bit Range Width Description

31 1 Measurement packet boolean flag
30:21 10 Injection timestamp
20:19 2 Virtual channel ID
18:16 3 log2(packet size) - 1
15:8 8 Destination node address
7:0 8 Source node address

ulate cycle and compares it to a threshold. A packet is generated when the random

number is below the threshold, allowing the probability of packet generation (hence the

average injection interval) to be set by adjusting the threshold. The threshold, RNG

seeds, packet size (minimum 2 flits) and destination node address are configurable per

TG. Currently DART only supports a single destination node. Hence it cannot directly

simulate a traffic pattern where a node may send to different destination nodes at differ-

ent stages during the simulation. However, DART allows nodes to be reconfigured when

simulation is paused, and can resume the simulation with the new settings so we can

emulate time-varying traffic by running the simulation in phases.

In dynamic mode, a TG receives packet descriptors (Table 3.3) from the host PC and

injects packets according to the descriptors. Packet size can be varied between 2 and 256

flits in powers of 2. Packet descriptors can be generated from either a memory access

trace or a processor simulator running concurrently with DART.

Figure 3.3 shows the TG datapath. The Bernoulli FSM and PacketPlay FSM handle

the traffic injection of the synthetic and dynamic injection modes respectively. In addi-

tion, each TG also contains two FQs: the input buffer models the last-hop delay to the

TG, and the output buffer models the source queue. We use the same technique from

Dally and Towles [6] and allow the injection state machine to lag behind the current

simulation time when the output buffer is full, to model an infinite source queue. TGs

also serve as traffic sinks and record the number of packets received and the cumulative

Chapter 3. DART Architecture 18

Figure 3.3: Traffic Generator datapath

Figure 3.4: DART Router datapath

packet latency. More statistics counters can be easily added.

3.3 Router

The Router component encapsulates the routing and allocation logic of the classic credit-

based wormhole VC router described in Section 2.1. Figure 3.4 shows the Router dat-

apath. The number of ports is set to five in our current implementation, but can be

changed by setting a Verilog parameter. We use table-based routing. Hence any de-

terministic routing algorithms can be implemented. The table contents are configurable

without reprogramming the FPGA. The configuration of the routing table also facilitates

the simulation of a wide range of topologies.

Chapter 3. DART Architecture 19

Table 3.4: Allocator and crossbar implementation cost in terms of the basic building
blocks required in the classic router and in the DART Router (pi is the number of input
ports. po is the number of output ports. v is the number of VCs per port.)

Structure Classic Router DART Router

VC Allocator piv v-to-1 arbiters and 1 v-to-1 arbiter and
pov piv-to-1 arbiters 1 v-bit po-to-1 MUX

Switch Allocator pi v-to-1 arbiters and 1 piv-to-1 arbiter
po pi-to-1 arbiters

Crossbar Switch pov piv-to-1 MUXes 1 piv-to-1 MUX

(a) (b)

Figure 3.5: VC allocator implementation: (a) classic router, (b) DART Router

A 4-bit counter for each output VC is used to implement credit-based flow control.

Initial credit values represent the number of entries in the input buffer at the downstream

router. The counter is decremented when a flit is routed, and incremented when a credit

is received. The values are configurable for each VC and Router.

3.3.1 Area-Speed Trade-off

The allocators and the crossbar in the classic router are complex structures [18]. A

direct implementation is too area-consuming. Instead, the DART Router employs simple

arbiters and a multiplexer to implement the same functionality by trading off simulation

Chapter 3. DART Architecture 20

speed. Table 3.4 outlines the implementation costs of the allocators and crossbar in

the classic router and their equivalents in the DART Router. A two-stage VC allocator

(Figure 3.5a), which consists of piv v-to-1 arbiters in the first stage and pov piv-to-1

arbiters in the second stage is required because we allow flits to allocate any free VC

once the output port is determined by the routing function. Figure 3.5b shows the

DART Router VC allocator for comparison. DART’s equivalent to the classic router’s

allocators and crossbar are much smaller.

As a result of this model simplification, the Router component can only route one flit

per DART cycle. To model a 5-ported classic router, the input VCs are routed one at

a time while the global time counter is stalled so all input ports appear to be routed in

the same simulated cycle. A round-robin scheme selects an input VC to route in each

DART cycle. If a flit cannot be routed due to failed VC allocation or lack of credits

for the requested output VC, it remains in the FQ. It is considered again in the next

simulated cycle. For every simulated cycle that a flit is unable to route, its timestamp is

incremented to reflect the contention delay. When a flit is finally routed, its timestamp is

incremented by a fixed pipeline latency. This pipeline latency is configurable per Router.

3.3.2 Send-Ahead Optimization

Once a flit is routed, it waits in the Router output queue. It is forwarded to the next-hop

FQ at its scheduled dequeue time. The Router stalls when the output queue is full. If

the queue is not large enough to cover the pipeline latency, deadlock may arise when

global time is stalled because there are unprocessed input ports, but the output queue

is not drained as the head flit waits for its dequeue time. To keep the output queue size

small while avoiding deadlock, we let flits in the output queue proceed immediately to the

global interconnect so the output queue can make forward progress even when global time

stalls. The flits still arrive at the receiving FQ in order because they leave the Router in

chronological order, despite being sent ahead. Sending ahead also avoids bursty requests

Chapter 3. DART Architecture 21

to the global interconnect in the beginning of every simulated cycle. Overall interconnect

utilization is improved.

3.4 Global Interconnect

The global interconnect provides uniform-latency communication between all DART

nodes. By configuring the routing tables appropriately, DART can simulate any topology.

The maximum node radix is limited by the number of ports configured in the Router

components. Figure 3.6 shows the interconnect organization. Each DART node consists

of one TG, one Router, and four FQs to implement a 5-ported wormhole router. The

number of FQs to incorporate is controlled by a Verilog parameter. We choose not to

use a full crossbar for the global interconnect because crossbar area increases quadrat-

ically with the number of input and output ports. It will not scale as we incorporate

more nodes into DART. Instead, DART nodes are grouped into partitions and the par-

titions are connected by a small crossbar. A separate, narrower but otherwise identical

interconnect is used to carry the credit traffic.

A flit crosses the global interconnect in two stages. First, it arbitrates for the source

partition output, which is connected to a crossbar input port. Upon winning the arbi-

tration, the flit arbitrates for the desired crossbar output at the destination partition.

Both intra- and inter-partition arbitrations use simple round-robin arbiters, with priority

given to flits with timestamps equal to the current simulation time (urgent flits). These

flits must be forwarded first before ticking the global time counter to prevent late flits,

which may cause out-of-order flits at the next Router. Flits with a timestamp ahead of

the current simulation time (future flits) can be forwarded out-of-order across the global

interconnect because flits destined for each FQ remain in order. Within each source and

destination partition, the priority is implemented by having two separate arbiters for the

urgent flits and future flits. The result of the urgent arbiter always takes precedence.

When there are no valid requests for the urgent arbiter, it indicates that all urgent flits

Chapter 3. DART Architecture 22

Figure 3.6: DART’s global interconnect. Nodes are grouped into partitions so the size
of the crossbar needed is small. The source partitions are shown at the top and the
destination partitions are shown at the bottom.

have crossed the interconnect. The global time counter is then incremented. Because it

takes a cycle to detect this condition, each simulated cycle takes at least 2 DART cycles.

The global interconnect is on the timing critical path. Hence, it is pipelined to improve

maximum achievable system clock frequency (fmax) during implementation. The pipeline

registers are inserted after the source partitions.

Because only one flit can be sent and received by a partition per DART cycle, the

partitions are a performance bottleneck. For a fixed number of DART nodes, varying the

size of the partition trades off the global interconnect throughput for implementation area.

We discuss this in more detail in Section 5.5. For our current 9-node implementation, we

use an 8 × 8 crossbar to connect the partitions. In general, the largest crossbar that fits

in the device once the nodes are implemented should be chosen.

Chapter 3. DART Architecture 23

Table 3.5: Configurable parameters in DART nodes

Node FF-based RAM-based

Traffic Gen Destination node address
Bernoulli threshold
Taus RNG seeds
Packet size (in flits)

Flit Queue Latency
Bandwidth

Router Initial credit counts Routing table
Pipeline latency

3.5 Configuration and Data Collection

As described in previous sections, each DART node is highly configurable. Table 3.5 lists

the parameters by node type. With the exception of the routing table, the parameters

are chained in a 16-bit shift register. The configuration byte-stream is received from the

host PC and shifted into the chain. The RAM-based routing tables are connected to

the input end of the shift register. Each table has a finite state machine that captures a

segment of the configuration bits to populate the table. An enable signal is asserted to

start the simulation when configuration completes.

Similar to the configuration registers, performance counters are read back by shifting

them through a 16-bit-wide chain. Currently three counters are incorporated per TG to

record the number of injected and received packets (32 bits) and the cumulative packet

latency (64 bits). More counters can be easily added to this shift register chain.

3.6 Off-Chip Interface

The simulator on the FPGA communicates with the DART software tools on the host PC

to receive configuration and input data, and to send back simulation results. Figure 3.7

illustrates the communication stack. We define a 16-bit command protocol that can be

implemented on any physical interface so DART can be easily ported to different FPGA

Chapter 3. DART Architecture 24

Figure 3.7: Off-chip interface

systems. Table 3.6 shows the format of the command protocol and Table 3.7 explains

the fields. Each 16-bit word contains a 4-bit opcode and a 12-bit immediate value. It can

also be optionally followed by multiple 16-bit data words. The Control FSM interprets

the commands and generates control signals that drive the simulator core. The off-chip

interface is currently implemented over the RS232 serial port.

Table 3.6: Off-chip interface command format
[15:12] 11:4 3 2 1 Bit 0
0 × 0 sim reset
0 × 1 NA timer enable no inject measure enable
0 × 2 timer value (lower 12 bits)
0 × 3 timer value (higher 12 bits)
0 × 4 config enable
0 × 5 data request
0 × 6 states request
0 × 7 num packets

0 × 8 .. 0 × F Unused

3.7 Software Tools

The DART software tools run on a host PC connected to the FPGA where the hardware

simulator resides. They allow the dynamic reprogramming of the hardware simulator

after it is implemented on the FPGA. Fig. 3.8 shows the software flow. The components

are described in this section.

Chapter 3. DART Architecture 25

Table 3.7: Off-chip interface command description

Field Description

sim reset A write to this address resets the DART simulator
sim enable When set to 1, it enables the DART simulator
measure When set to 1, all new flits generated are tagged to be measure-

ment flits
stop injection When set to 1, no more new packets will be generated
timer enable When set to 1, the DART simulator automatically stops itself

and sends back the simulator states after timer value simulation
steps

config enable A write to this address must be followed by (N+1) 16-bit words,
where the first word is equal to N and the rest contains the
configuration bytes

data request A write to this address must be followed by a 16-bit word N

and it causes the Control Unit to send back N words through
the TX Unit.

states request A write to this address causes the Control Unit to send back
four 16-bit words indicating the current state of the simulator
(debugging only)

num packets A write to this address must be followed by 2×N 16-bit words
that contain N 32-bit packet descriptors. The value of N is
encoded in the lower 12 bits of this command.

3.7.1 Configuration Generation

DARTgen creates the configuration byte-stream from an Architecture Description File

(ADF) and a Network Description File (NDF). Excerpts of the ADF and NDF are shown

in Figures 3.9 and 3.10. The ADF specifies the on-chip architecture by listing the number

of partitions on the interconnect and the number of nodes within each partition. Each

partition is identified by its source partition ID (SP) and destination partition ID (DP).

The NDF describes the user network to simulate, including the topology, routing tables,

traffic pattern, and properties of individual links and routers.

The DARTgen flow consists of three stages: network extraction, placement, and

byte-stream generation. In network extraction, DARTgen constructs a graph of the

user network from the NDF. Each vertex represent a router and its host node. The edges

represent the links between routers. The vertices and edges are annotated with properties

Chapter 3. DART Architecture 26

Figure 3.8: DART software flow. DARTgen creates the configuration byte-stream from
user specifications. DARTportal provides an interactive interface for the user to control
the hardware simulator.

specified in the NDF. A model of the on-chip partition hierarchy is also constructed from

the ADF.

In placement, vertices and edges are mapped to Routers and Flit Queues, with the

host node in each vertex mapped to the Traffic Generator connected to the correspond-

ing Router. We use a round-robin scheme to balance the number of used nodes across

different partitions. This provides sufficient load balancing because the on-chip com-

munication bottleneck is within each partition, where the nodes contend for the shared

access to the inter-partition crossbar. Intra-partition contention can be further reduced

by grouping neighbors of a common node in the user network into one partition. Because

the common node can only send to one member of the group in a simulated cycle, there

is less competition within the group to use the crossbar output.

Finally in byte-stream generation, the configuration bytes for the architecture nodes

are printed to a file in the order that they are connected in the configuration chain

on-chip. This file is used by the front-end tool DARTportal to program the on-chip

simulator.

Chapter 3. DART Architecture 27

SourcePartitions 8

DestPartitions 8

SwitchPorts 5

NumVCs 2

SP 0 DP 0 NumNodes 2

SP 1 DP 1 NumNodes 1

SP 2 DP 2 NumNodes 1

SP 3 DP 3 NumNodes 1

SP 4 DP 4 NumNodes 1

SP 5 DP 5 NumNodes 1

SP 6 DP 6 NumNodes 1

SP 7 DP 7 NumNodes 1

Figure 3.9: Architecture description file for an 9-node DART simulator

3.7.2 Front-end Interface

DARTportal provides a command-based interactive interface to configure, run and collect

data from the simulator. It is implemented in two layers for portability. The top layer

implements all functionalities exposed by the command protocol of the DART off-chip

interface. The bottom layer contains driver code to directly communicate with the phys-

ical interface used to connect to the FPGA. Only the bottom layer needs to be modified

when a different physical interface is used for DART’s off-chip interface.

Chapter 3. DART Architecture 28

NumNodes 9

NumSwitches 9

ChannelLatency 1

ChannelBandwidth 1

NumVCPerChannel 2

SwitchPorts 5

InitialCredits 5

RouterPipeLatency 5

NumWarmupSteps 30

Traffic pattern (type, source node -> dest node, size, interval)

Traffic CBR Node 0 -> Node 7 2 4

Traffic CBR Node 1 -> Node 3 2 4

...

Topology (Host Node -> Switch addr:port, latency, bandwidth)

Top Node 0 -> Switch 0:0 1 1

Top Node 1 -> Switch 1:0 1 1

...

9-node MESH (router1:port -> router2:port, latency, bandwidth)

Top Switch 0:3 -> Switch 1:1 1 1

Top Switch 0:4 -> Switch 3:2 1 1

Top Switch 1:3 -> Switch 2:1 1 1

...

Deadlock-free routing tables

Switch 0 -> * (-> dest_addr {output_port:VC})

Route Switch 0 -> 0 { 0:0 }

Route Switch 0 -> 1 { 3:0 }

...

Figure 3.10: Excerpt of the network description file for a 9-node mesh

Chapter 4

Implementation

We design the DART components in Verilog HDL. Device specific constructs are avoided

whenever possible so the simulator core can be implemented on different FPGA sys-

tems with minimal changes. Prior to developing the HDL, we develop a cycle-accurate

architecture simulator in C++ to explore different design options. This simulator also

serves as the design specification, which is used to verify the HDL design. To demon-

strate the functionality of DART and to obtain real measurement of simulation speed, we

implement a 9-node DART on a Xilinx University Program Virtex-II Pro Development

System (XUPV2P) [27]. We also discuss the strategies to scale up DART to target a

Virtex 5 FPGA. However, we do not have the hardware to test actual performance of

the Virtex 5 implementation. We use the Xilinx ISE 10.1 software suite for synthesis and

implementation.

4.1 9-node DART on XUPV2P

The XUPV2P platform contains a Virtex-II Pro 2VP30 FPGA that has 27,392 logic cells

and 136 embedded RAM blocks. A logic cell consists of a 4-input lookup table (LUT)

and a flip-flop (FF). Each block-RAM contains 18 Kb and has two read/write ports.

The maximum width of a port is 36 bits. Table 4.1 shows the resource breakdown of

29

Chapter 4. Implementation 30

Table 4.1: Resource utilization breakdown of a 9-node DART on a XC2VP30 FPGA

Module
Per-Module Resource Utilization % of Total

4-LUTs FFs Block RAMs 4-LUTs

Traffic Generator 691 500 2 24.7%
Flit Queue 305 145 1 43.5%

Router 612 201 0.5 21.8%
Global Interconnect 2144 104 0 8.5%

Control Unit 152 70 0 0.6%
UART interface 208 171 1 0.8%

Total 26,38 13,192 99 100%
% of Available 96% 48% 72%

Table 4.2: FIFO Usage in 9-node DART

Usage Width (bits) Depth Total Number

Per-VC Flit buffer in FQ 36 64 108
Credit buffer in FQ 12 64 54

Router output flit buffer 36 16 9
Router output credit buffer 12 16 9

the DART components as implemented on the XUPV2P platform. Because every two

Routers share a dual-ported routing table, which is implemented using a dual-port block-

RAM, each Router uses 0.5 block-RAMs on average. The maximum number of DART

nodes that fit on this FPGA is 9. Each node consists of one TG, one Router with 5

ports, and four FQs with 2 VCs each. We use 8 partitions in the global interconnect,

which is the largest that fits inside the area constraint. The final implementation runs

at 50 MHz.

4.1.1 RAM Optimization

DART uses FIFO buffers extensively. Table 4.2 enumerates the usage. FIFOs can be

implemented either in block-RAMs or LUT-based shift registers on an FPGA. When

implemented in a RAM, a FIFO takes up both ports on the RAM block to allow simulta-

neous read and write operations. The 2VP30 FPGA does not have enough RAM blocks

Chapter 4. Implementation 31

to accommodate all FIFOs in the 9-node DART. Our solution is two-fold: First, because

a FQ can receive at most one flit and send one flit per DART cycle, the VC buffers in the

FQ can share a single statically partitioned RAM block for storage. The FIFO output

registers and control logic must be replicated. Second, we implement the shallow output

buffers in the Routers using LUT-based SRL16 shift registers [26].

Because routing tables are read-only during simulation, we can pack two into each

dual-port block-RAM to utilize both ports. One of the ports is configured to be read-

/write and is used to configure the table contents.

4.1.2 Serial Interface

We implement the DART off-chip interface over the RS232 serial port because it is more

lightweight than other options. A UART module on the FPGA handles serial communi-

cation with the host PC. The UART can operate at up to 115200 bps. This is sufficient

for configuration and stats collection because they are only performed once before and

after the simulation. However, it is too slow for packet injection as it only allows an

average of 356 packet descriptors to be injected to each of the 9 nodes per second. As-

suming 5% simulated packet injection, using the UART interface limits simulation speed

to 7 KHz. Faster interface options will be investigated in future work.

4.2 Scaling DART to Virtex 5

We investigate scaling up DART to target the Virtex 5 LX330T FPGA. In comparison to

the 2VP30 device, the LX330T provides 10× more LUTs and FFs but only 4× more 18

Kb block-RAMs. Because of the limited number of block-RAMs, an unmodified DART

can only scale up to 32 nodes on the LX330T device, with only 40% logic utilization. To

balance the RAM and logic utilization, we can extend the block-RAM sharing scheme

currently used between flit buffers within a FQ to FQs in the same partition. Because

Chapter 4. Implementation 32

each partition receives one flit per DART cycle, the sharing does not change DART’s

behavior. Using this scheme, each 18 Kb block-RAM can accommodate 4 FQs with 2

VCs each if the FIFO dimensions in Table 4.2 are used. This will allow DART to scale

to 64 nodes, limited by the amount of logic resources on the FPGA.

A limitation of the current DART design is that the computation logic of each DART

node cannot be easily time-shared between multiple contexts to allow simulation of NoCs

larger than what can currently fit in an FPGA. This is because a significant portion of

each DART node is devoted to state registers (implemented using logic cell flip flops)

and control state machines. They must be replicated for each context that shares the

pipeline, thus limiting the potential area saving. Multiple contexts can be supported by

storing the state registers in a block-RAM. This requires the DART components to be

further pipelined to accommodate the additional state look-up latency.

Chapter 5

Analysis

In this section we validate DART’s simulation results using Booksim as a reference. We

also compare the speedup achieved using our Virtex-II Pro implementation. Finally we

investigate the performance cost of a programmable simulator architecture and DART’s

scalability.

5.1 Methodology

We use both the architecture simulator of DART and the XUPV2P implementation of

DART to collect results for this section. Results shown in Sections 5.2, 5.4, 5.5 and

5.6 are obtained using the architecture simulator because we explore different DART

architectures and the architectural simulator allows more statistics to be collected for

analysis. The timing results shown in Section 5.3 are measured on the FPGA board. Since

the architectural simulator is also the design specification for the Verilog implementation

of DART, their results agree when the same configuration is used.

5.2 Correctness

To verify DART’s correctness, we simulate a 9-node mesh network and compare the

measured average latency reported by Booksim and DART (Fig. 5.1). We obtain two

33

Chapter 5. Analysis 34

Table 5.1: 3×3 mesh benchmark configuration parameters

Topology 3 × 3 mesh
Link latency 1 flit cycle

Router architecture Input queue
Routing algorithm Dimension-order (XY)
of VCs per port 2

VC Allocation Round-robin
Input VC buffer size 5

Router pipeline latency 5 flit cycle
Traffic pattern Permutation traffic

Packet size 2 flits

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

booksim
booksim2

DART

Figure 5.1: Average packet latency reported by Booksim and DART for a 3×3 mesh.
Booksim has a 5-cycle routing delay, zero switch allocation and VC allocation delay.
Booksim2 has 4-cycle routing delay and 1-cycle switch allocation delay.

sets of results from Booksim using two router configurations. In both cases the total

router latency is 5 cycles, but the configuration booksim has a 5-cycle routing delay

zero switch allocation delay and zero VC allocation delay, while booksim2 has a 4-cycle

routing delay, 1-cycle switch allocation delay and zero VC allocation delay. Table 5.1

shows the configuration of this microbenchmark. Both simulators run 15,000 warm-up

cycles, followed by 30,000 measurement cycles and finally a draining phase. The flit

Chapter 5. Analysis 35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

<7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49>=50

F
re

qu
en

cy
 (

of

 p
ac

ke
ts

)

Average Packet Latency (flit cycles)

booksim1
DART

Figure 5.2: 3 × 3 Mesh. Packet latency distribution measured by Booksim (booksim1)
and DART at flit injection rate = 0.4

injection rate is varied from 0.01 until saturation. DART tracks Booksim closely at

low injection rates. At higher injection rates, the one-stage pipeline used in the Router

results in a less accurate latency measurement. This is evident in that DART latency is

enveloped by the two Booksim configurations, which have the same overall router latency

but different latencies at each stage. To further investigate the mismatch, Fig. 5.2 shows

the distribution of packet latencies at 0.4 flits per cycle. The peaks at 8, 14, 20, 26, and

32 correspond to the zero-load latencies for 0, 1, 2, 3, and 4-hop paths. The lower peaks

reflect the queuing delay and resource contention the packets experience at the routers.

Booksim has a much longer tail than DART. Because all contentions (buffer, VC, and

switch) are modeled in one stage in the DART Router, DART may underpredict the

latency for a flit to acquire all resources. However, the similar overall shapes of the two

distribution increases our confidence that DART produces useful predictions of network

performance.

5.3 Speedup vs. Software Simulation

In Fig. 5.3 we evaluate the 3×3 mesh benchmark described in Table 5.1 on the XUPV2P

DART implementation and compare the simulation speed to Booksim. For the Booksim

baseline, we measure the execution time of the main loop, excluding network setup, on a

2.66 GHz Core 2 Quad Linux workstation. Each data point is an average over 20 runs. We

Chapter 5. Analysis 36

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.1 0.2 0.3 0.4 0.5 0.6

B
oo

ks
im

 S
pe

ed
 (

cy
cl

es
 /

s)

Flit Injection Rate (flits / node / cycle)

(a)

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
A

R
T

 S
pe

ed
 /

B
oo

ks
im

 S
pe

ed

Flit Injection Rate (flits / node / cycle)

(b)

Figure 5.3: DART performance: (a) Booksim simulation speed, (b) Speedup achieved by
DART vs. Booksim

measure DART’s execution time in DARTportal from the sending of the “Run” command

and until the end-of-simulation signal is received back from the simulator. Configuration

time is excluded. The speedup is the ratio of the number of cycles simulated per second

in DART to that in Booksim. We observe that Booksim’s simulation speed decreases

with increasing injection rate. DART’s speed is roughly constant, with all measured

runtimes falling within 3% (0.528 ms) of the average (20.5 ms for 50,000 cycles)—this

is because DART’s execution time increases slowly with traffic, and is largely masked

by the high IO overhead to send and read-back commands to/from the simulator, which

accounts for over 50% of the measured time (about 11.7 ms). As a result, DART achieves

greater speedup at higher packet injection rates. The IO overhead can also be amortized

in longer-running simulations of networks larger than the 3×3 mesh used here.

5.4 Cost of Programmability

The main alternative to DART’s programmable architecture is one that is directly laid-

out in the FPGA fabric. In this section we measure the performance cost of DART’s

Chapter 5. Analysis 37

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
A

R
T

 C
yc

le
s

/ S
im

ul
at

ed
 C

yc
le

Flit Injection Rate (flits / node / cycle)

dedicated+5port
global+5port

dedicated+1port
global+1port

(a)

 0

 5

 10

 15

 20

 25

 30

 0 0.05 0.1 0.15 0.2 0.25

D
A

R
T

 C
yc

le
s

/ S
im

ul
at

ed
 C

yc
le

Flit Injection Rate (flits / node / cycle)

dedicated+5port
global+5port

dedicated+1port
global+1port

(b)

Figure 5.4: Overhead of the DART interconnect and simplified Router model for a (a)
9-node and (b) 64-node DART. Results measured by simulating a mesh (3×3 and 8×8
respectively) using random permutation traffic

programmability by measuring the overhead (extra cycles required) of DART’s global

interconnect and the simplified Router model, relative to a model with a dedicated inter-

connect and full routers. As shown in Fig. 5.4, we measure for a 9-node and a 64-node

DART all combinations of the two types of interconnect and two types of router:

• dedicated: Baseline interconnect with dedicated links between connected ports on

neighboring nodes

• global: DART interconnect with 8 partitions

• 5port: True 5-ported router

• 1port: DART Router that routes 1 flit per cycle

Fig. 5.4a shows the number of DART cycles required per simulated cycle (CPS) for

the 3×3 mesh benchmark from Table 5.1. The baseline (dedicated+5port) has a constant

CPS of 1 as it corresponds to a direct mapping of the 9-node mesh NoC. Global+5port

shows the performance loss due to the DART interconnect. The timer increment bubble,

Chapter 5. Analysis 38

described in Section 3.4 on page 21, limits the minimum CPS to 2. Increased traffic

causes more contention over the interconnect and lower CPS. Dedicated+1port shows

the performance loss due to the serial processing of input VCs in the Router. CPS

increases with network traffic, as each Router has more input VCs in use. Global+1port

shows that for 9 nodes, because of the small number of nodes and low throughput of the

Router, the global interconnect is not the performance bottleneck. However, Fig. 5.4b

shows that more nodes in a large DART increases contention for the global interconnect

and it can become the bottleneck. As traffic load increases, it takes more DART cycles

for all flits of a given simulated cycle to cross the global interconnect. Consequently,

CPS increases linearly with traffic. The simulated network saturates when the per node

injection rate is 0.25 flits/simulated cycle. Because the overall traffic in the network does

not increase beyond this point, CPS levels off and we see the knee inflection in the figure.

To avoid limiting simulation performance, an appropriate interconnect size should be

chosen for each DART implementation.

Compared to the baseline, DART’s interconnect uses more area than dedicated links,

but the overhead is compensated by the simplified Router. Thus, the overall area cost

is comparable to published results from existing direct mapped emulators [8, 21]. We

believe the performance penalty is a worthwhile trade-off for the ability to reprogram the

simulator without hardware modification.

5.5 Scalability

We explore the scalability of DART beyond 9 nodes when a larger FPGA becomes avail-

able using the architecture simulator. The predicted runtime does not include commu-

nication overhead to and from the host PC. It provides an upper bound to the actual

attainable speedup.

Chapter 5. Analysis 39

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45

B
oo

ks
im

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Aggregated Transfers (flit hops / cycle)

3x3 mesh
4x4 mesh
6x6 mesh
8x8 mesh

(a)

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45

D
A

R
T

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Aggregated Transfers (flit hops / cycle)

3x3 mesh
4x4 mesh
6x6 mesh
8x8 mesh

(b)

Figure 5.5: Booksim (a) and DART (b) simulation speed for different network sizes

5.5.1 Performance Scaling

Fig. 5.5 highlights the different scaling trends of Booksim and DART for four mesh

networks of different sizes. The aggregated flit transfers per simulated cycle is the product

of the flit rate, average number of hops between packet source and destination pairs and

number of nodes. It measures the overall amount of in-flight traffic that traverses the

network every cycle. For a given simulation, Booksim’s speed depends on both the size

of the simulated network and also on the amount of network activity. Because Booksim

is cycle-based, it must simulate every cycle including those when the simulated network

is idle. This overhead dominates simulation time for large networks and the network

activity level becomes an insignificant factor for performance. DART’s simulated time

advances faster when the simulated network is idle. Its simulation speed thus depends

only on the amount of network activity. As a result, DART’s speedup over Booksim

varies from 300× for the 3×3 mesh to 2000× for the 8×8 mesh. The design focus for

DART is on improving area efficiency so more simulator nodes can be implemented on a

given FPGA.

Chapter 5. Analysis 40

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 9 16 25 36 64

D
A

R
T

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Torus Size (number of nodes)

SP4_DP4
SP8_DP4
SP8_DP8

SP16_DP8
SP16_DP16

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 9 16 25 36 64

D
A

R
T

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Torus Size (number of nodes)

SP4_DP4
SP8_DP4
SP8_DP8

SP16_DP8
SP16_DP16

(b)

Figure 5.6: Performance impact of global interconnect sizes, evaluated using torus net-
works (a) flit injection rate = 0.1 (b) flit injection rate = 0.5

5.5.2 Performance vs. Resource Utilization

The global interconnect is the main performance bottleneck in the DART architecture

because nodes within the same partition compete for access to the input and output ports

on the inter-partition crossbar. Fig. 5.6 shows the performance impact of various crossbar

configurations for different DART sizes, where SPx DPy denotes a global interconnect

with an x × y crossbar. Each data point is evaluated by simulating a torus network

using the DART global interconnect. We use permutation traffic for each simulated

network. The results for the SP4 DP8 and SP8 DP16 configurations are not shown here

because their performance is similar to that of the SP8 DP4 and SP16 DP8 configurations

respectively. Relative to a square crossbar, doubling the number of either the input ports

or output ports only improves performance slightly as the asymmetric configurations do

not fully remove the contention within partitions.

Fig. 5.7 shows the total resource utilization of the global interconnect for a 64-node

DART. The source partitions encapsulate the arbitration logic to allow sharing of the

inter-partition crossbar inputs; the area of each source partition grows roughly linearly

Chapter 5. Analysis 41

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

4x4 4x8 8x4 8x8 8x16 16x816x16

Lo
gi

c
U

til
iz

at
io

n
(4

-L
U

T
s)

Interconnect Crossbar Size (SPxDP)

SourcePartitions
DestPartitions

Figure 5.7: Resource utilization of different interconnect sizes

with the number of nodes in the partition. As a result, for a fixed number of DART nodes,

the aggregated resources used by the source partitions are roughly constant, irrespective

of the number of source partitions. The destination partition contains the multiplexers

that implement the crossbar and the broadcast logic that enable the sharing of the inter-

partition crossbar outputs, and it grows linearly to the number of source partitions. For

the range of interconnect sizes considered here, because the source partitions start off as

a significant portion of the total area, the overall LUT usage of the interconnect grows

roughly linearly with the number of ports. For best performance, the largest square

crossbar that meets the area constraint should always be used.

5.6 Case Studies

We choose two examples (Fig. 5.8) to demonstrate DART’s ability to simulate irregular

network configurations. The results presented in this section are simulated using a ran-

domly generated permutation traffic pattern. Each configuration requires generating a

new byte-stream file, but the DART simulator is only synthesized once on the FPGA.

Chapter 5. Analysis 42

0 1

4

2

5

3

6 7

(a)

0

1 2

3 4 5 6 7 8

(b)

Figure 5.8: Two microbenchmarks: (a) 4×2 mesh with express links, and (b) 2-level tree

5.6.1 Mesh with Express Links

Fig. 5.8a illustrates a microbenchmark that implements a simplified version of express

cube [7]. The solid lines represent local links and the dashed lines represent express links

that allow non-local traffic to bypass intermediate nodes. Fig. 5.9 shows the average

packet latency for the following configurations:

• NOEX BUF5: No express link, 5 flits/VC input buffers

• EX1 BUF5: With express links, 5 flits/VC input buffers

• EX1 BUF4: With express links, 4 flits/VC input buffers

• EX2 BUF4: EX1 BUF4 with 2-cycle latency express links

For all packet sizes, the express links reduce packet latency because flits traverse

fewer hops. The increased bisection bandwidth afforded by the added links also allows

the network to accept higher load before saturating. To compensate for the additional

area the added express link port incurs in each router, we reduce the input buffer size from

5 flits to 4 flits (EX1 BUF4 vs. EX1 BUF5). The resulting performance degradation is

progressively more pronounced for traffic with larger packet sizes because they are more

bursty, hence more sensitive to buffer space in the router. Because the express links span

Chapter 5. Analysis 43

two hops, we increase their latency to 2 cycles while keeping the latency of other links at

1 cycle (EX2 BUF4). This configuration causes higher latency for large packets because

credits take longer to replenish on the slower express links. However, the network still

saturates later than the NOEX BUF5 baseline.

5.6.2 Tree

Fig. 5.8b illustrates a tree where two sub-trees are linked by a root router, where the bold

lines represent global links. This organization captures the essence of building blocks in

a hierarchical on-chip network. Only the leaf nodes generate and receive traffic, and 50%

of the generated traffic cross the root router. Fig. 5.10 shows the average packet latency

for the following configurations:

• BUF5 BW1: Unit latency and bandwidth for all links, 5 flits/VC input buffers

• BUF5 BW2: BUF5 BW1, bandwidth = 2 flits/cycle on global links

• BUF10 BW1: BUF5 BW1 with 10 flits/VC input buffers

• BUF10 BW2: BUF5 BW2, with 10 flits/VC input buffers

For all packet sizes, increasing the global link bandwidth (BUF5 BW2 vs. BUF5 BW1,

BUF10 BW2 vs. BUF10 BW1) does not significantly improve packet latency because all

flits crossing the global links must be first stored in the buffers of the gateway routers

(nodes 1 and 2), which form the performance bottleneck. Increasing the buffer space

to 10 flits significantly reduces latency. Again the reduction is greater for large packets

because bursty traffic is more sensitive to buffer sizes. Moreover, Fig. 5.10c and 5.10d

show that once the buffer space bottleneck is removed, increasing global link bandwidth

can provide additional performance improvement.

Chapter 5. Analysis 44

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

NOEX_BUF5
EX1_BUF5
EX1_BUF4
EX2_BUF4

(a)

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

NOEX_BUF5
EX1_BUF5
EX1_BUF4
EX2_BUF4

(b)

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

NOEX_BUF5
EX1_BUF5
EX1_BUF4
EX2_BUF4

(c)

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

NOEX_BUF5
EX1_BUF5
EX1_BUF4
EX2_BUF4

(d)

Figure 5.9: Express links performance: (a) 2-flit packets, (b) 4-flit packets, (c) 8-flit
packets, and (d) 16-flit packets

Chapter 5. Analysis 45

 27

 28

 29

 30

 31

 32

 33

 34

 0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

BUF5_BW1
BUF5_BW2

BUF10_BW1
BUF10_BW2

(a)

 20

 30

 40

 50

 60

 70

 80

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

BUF5_BW1
BUF5_BW2

BUF10_BW1
BUF10_BW2

(b)

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

BUF5_BW1
BUF5_BW2

BUF10_BW1
BUF10_BW2

(c)

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

BUF5_BW1
BUF5_BW2

BUF10_BW1
BUF10_BW2

(d)

Figure 5.10: Tree performance: (a) 2-flit packets, (b) 4-flit packets, (c) 8-flit packets and
(d) 16-flit packets

Chapter 6

Conclusions

We have presented a software-programmable overlay architecture for NoC simulation on

FPGAs. By decoupling the simulator architecture from the architecture of the simu-

lated NoC and virtualizing simulation time, DART improves upon existing FPGA-based

emulators by eliminating the high cost of modifying and resynthesizing the hardware em-

ulator when simulating different NoCs. At the same time, DART is significantly faster

than software NoC simulators. Using an implementation of a 9-node DART simulator on

a Virtex II Pro FPGA, we demonstrate over 100-fold speedup over Booksim while main-

taining a similar level of accuracy. Through two examples, we also show that irregular

NoCs can be easily set up and simulated on DART.

6.1 Contributions

This dissertation makes the following contributions:

1. An abstraction model for NoC simulation on FPGAs and the demonstration of the

feasibility of a software configurable FPGA-based NoC simulator with negligible

area overhead relative to existing emulators that do not support configuration.

2. A comparison of the performance of the DART simulator to the well-known software

46

Chapter 6. Conclusions 47

NoC simulator Booksim and the demonstration of over 100-fold speedup.

3. An implementation of DART on a Xilinx FPGA and software configuration tools

that will be publicly released so they can be built upon in future research.

6.2 Future Work

This work opens up a few avenues of future research: First, the one-to-one mapping

between simulated nodes and DART nodes limits the maximum size of the NoC that

can be simulated on a FPGA. Time-multiplexing a simulator node between multiple

simulated threads is a technique used in FPGA-based processor simulators to enable

large-scale simulation on a single FPGA. We need to investigate how DART nodes can

be efficiently pipelined to support multithreading. Second, the simple Router cannot

easily model adaptive routing algorithms or more sophisticated router architectures such

as speculative routing. Directly replacing DART Routers with soft processors may result

in significantly slower simulation due to software overhead. Future work can explore

specializing a soft processor for routing operations. Finally, the long term goal of this

research is to build a fast and scalable full system simulator infrastructure to enable

large-scale many-core architecture research. Because the communication fabric is an

important component of any many-core architecture, we believe DART is an essential

building block to the full system simulator infrastructure.

Bibliography

[1] N. Agarwal, T. Krishna, Li-Shiuan Peh, and N.K. Jha. GARNET: A detailed on-chip

network model inside a full-system simulator. In Proc. Int’l Symp. on Performance

Analysis of Systems and Software, April 2009.

[2] T.W. Ainsworth and T.M. Pinkston. Characterizing the Cell EIB On-Chip Network.

IEEE Micro, pages 6–14, 2007.

[3] M. Baron. The Single-Chip Cloud Computer. Microprocessor Report, April 26, 2010.

[4] E.S. Chung, E. Nurvitadhi, J.C. Hoe, B. Falsafi, and K. Mai. PROToFLEX: FPGA-

accelerated Hybrid Functional Simulator. In Proc. Int’l Parallel and Distributed

Processing Symposium, March 2007.

[5] William Dally and Brian Towles. Route packets, not wires: on-chip interconnection

networks. In Proc. Design Automation Conference, 2001.

[6] William Dally and Brian Towles. Principles and Practices of Interconnection Net-

works. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[7] W.J. Dally. Express cubes: Improving the performance of k-ary n-cube interconnec-

tion networks. IEEE Transactions on Computers, pages 1016–1023, 1991.

[8] N. Genko, D. Atienza, G. De Micheli, J.M. Mendias, R. Hermida, and F. Catthoor.

A complete network-on-chip emulation framework. In Proc. Design, Automation

and Test in Europe, March 2005.

48

Bibliography 49

[9] Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch, Roland E. Wunder-

lich, Shelley Chen, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G.

Nowatzyk. SimFlex: a fast, accurate, flexible full-system simulation framework for

performance evaluation of server architecture. SIGMETRICS Perform. Eval. Rev.,

31(4):31–34, 2004.

[10] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 4th edition, 2007.

[11] N.E. Jerger and L.S. Peh. On-Chip Networks. Synthesis Lectures on Computer

Architecture, 2009.

[12] Y.H. Kao, N. Alfaraj, M. Yang, and H.J. Chao. Design of High-Radix Clos Network-

on-Chip. In Fourth Proc. Int’l Symp. on Networks-on-Chip, pages 181–188. IEEE,

2010.

[13] J. Kim, J. Balfour, and W.J. Dally. Flattened Butterfly Topology for On-Chip

Networks. In 40th Proc. Int’l Symp. on Microarchitecture, pages 172–182, 2007.

[14] Y.E. Krasteva, F. Criado, E. de la Torre, and T. Riesgo. A Fast Emulation-Based

NoC Prototyping Framework. In Proc. Int’l Conf. on Reconfigurable Computing and

FPGAs, Dec. 2008.

[15] P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators. Mathe-

matics of Computation, 65(213):203–214, 1996.

[16] M. Lis, K.S. Shim, M.H. Cho, P. Ren, O. Khan, and S. Devadas. DARSIM: a Parallel

Cycle-Level NoC Simulator. In 6th Annual Workshop on Modeling, Benchmarking

and Simulation, June 2010.

[17] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,

Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.

Bibliography 50

Wood. Multifacet’s general execution-driven multiprocessor simulator (GEMS)

toolset. SIGARCH Comput. Archit. News, 33(4):92–99, 2005.

[18] L.S. Peh and W.J. Dally. A delay model and speculative architecture for pipelined

routers. In Seventh Proc. Int’l Symp. on High-Performance Computer Architecture,

2001.

[19] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. A-Ports: An

Efficient Abstraction for Cycle-Accurate Performance Models on FPGAs. In Proc.

Int’l Symp. on Field Programmable Gate Arrays, Feb. 2008.

[20] V. Puente, J.A. Gregorio, and R. Beivide. SICOSYS: an integrated framework

for studying interconnection network performance in multiprocessor systems. In

Euromicro Workshop on Parallel, Distributed and Network-based Processing, 2002.

[21] G. Schelle and D. Grunwald. Onchip Interconnect Exploration for Multicore Pro-

cessors Utilizing FPGAs. In 2nd Workshop on Architecture Research using FPGA

Platforms, 2006.

[22] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and K. Asanović.

RAMP Gold: An FPGA-based architecture simulator for multiprocessors. In Proc.

Design Automation Conference, pages 463–468. ACM, 2010.

[23] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and D. Patterson. A Case

for FAME: FPGA Architecture Model Execution. In 37th Proc. Int’l Symp. on

Computer Architecture, May 2010.

[24] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,

C.C. Miao, J.F. Brown, and A. Agarwal. On-Chip Interconnection Architecture of

the Tile Processor. IEEE Micro, 27(5):15–31, 2007.

Bibliography 51

[25] P.T. Wolkotte, P.K.F. Holzenspies, and G.J.M. Smit. Fast, Accurate and Detailed

NoC Simulations. In First Proc. Int’l Symp. on Networks-on-Chip, May 2007.

[26] Xilinx Inc. Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 Genera-

tion FPGAs. Appl. Note XAPP465, May 2005.

[27] Xilinx, Inc. Xilinx University Program Virtex-II Pro Development System Hardware

Reference Manual. 2008.

	Introduction
	Flexible NoC Simulation Engine
	Research Goals
	Thesis Organization

	Background
	Network-on-Chip Basics
	Software NoC Simulators
	FPGA-based NoC Models

	DART Architecture
	Flit Queue (FQ)
	Traffic Generator (TG)
	Router
	Area-Speed Trade-off
	Send-Ahead Optimization

	Global Interconnect
	Configuration and Data Collection
	Off-Chip Interface
	Software Tools
	Configuration Generation
	Front-end Interface

	Implementation
	9-node DART on XUPV2P
	RAM Optimization
	Serial Interface

	Scaling DART to Virtex 5

	Analysis
	Methodology
	Correctness
	Speedup vs. Software Simulation
	Cost of Programmability
	Scalability
	Performance Scaling
	Performance vs. Resource Utilization

	Case Studies
	Mesh with Express Links
	Tree

	Conclusions
	Contributions
	Future Work

	Bibliography

