
DART: Fast and Flexible NoC Simulation using FPGAs

Danyao Wang, Natalie Enright Jerger, and J. Gregory Steffan
Department of Electrical and Computer Engineering, University of Toronto

{wangda,enright,steffan}@eecg.toronto.edu

1. Introduction
A packet-switched network-on-chip (NoC) is be-

coming a more compelling choice for the commu-
nication backbone in next-generation multicores and
systems-on-chip [2]. NoC designs are sensitive to
many parameters such as topology, buffer sizes, rout-
ing algorithms, and flow control mechanisms. Hence,
system architects and researchers must include de-
tailed NoC simulation as part of any complete system
simulation. However, detailed NoC simulation adds
to the already burdensome computation required to
accurately perform full-system evaluation.

NoCs are normally simulated in software, as stand-
alone NoC simulators [3], [7] and also as the intercon-
nect component of large full-system simulators [1], [5].
Software NoC simulators have the advantages of being
very flexible, easy to program, fast to compile, and
deterministic (making them suitable for debugging).
However, software simulators are very slow for large
NoCs, and can require the user to reduce simulation
detail to maintain reasonable simulation times.

Several FPGA-based NoC emulators have been pro-
posed [4], [6], [8], [9] that reduce simulation time by
several orders of magnitude. These dramatic speedups
are possible because the emulator is typically imple-
mented by laying out the entire NoC on the FPGA,
allowing the FPGA to exploit all available fine and
coarse grain parallelism between events in the NoC.
However, mapping the simulated NoC directly onto
the FPGA has three key drawbacks: (i) any change
in the simulated NoC requires manual redesign of the
emulator HDL, (ii) redesign in turn requires complete
compilation/synthesis of the FPGA design (which can
take hours, or up to a day for a large design), and (iii)
the maximum simulatable NoC size is determined by
the available FPGA capacity.

A Flexible NoC Simulation Engine: To address
these challenges we proposeDART, an FPGA-based
NoC simulation engine where the simulated NoC and
the architecture of DART are decoupled and indepen-
dent. In this paper, we present an implementation of
DART on a Virtex 2 Pro FPGA, demonstrating: (i) an
overlay engine that provides software-like accessibility
to the FPGA, allowing different NoC architectures to
be simulated without recompiling/resynthesizing the
DART engine; and (ii) over300× speedup over the

cycle-based software simulator Booksim [3], while
maintaining the same level of simulation accuracy.

2. Related Work
Genko et al. [4] describe an emulation platform

that consists of programmable traffic generators and
receptors that drive a 6-switch NoC and is2600×
faster than a SystemC simulation of the same network.
While this platform supports programmable traffic pat-
terns and statistics counters, changing the configuration
of the network requires re-generating the emulator.
DRNoC [6] circumvents this requirement by leverag-
ing the partial reconfigurability of Xilinx FPGAs. The
DRNoC host FPGA is divided into grids; each grid
slot can be dynamically reconfigured to implement a
new component to model different networks. However,
partial reconfiguration requires a special design flow
and incurs area overheads; it’s also only available
for select devices. In contrast, DART’s configuration
interface is based on a generic shift register and can
be implemented on any FPGA.

NoCem [8] improves emulation density over Genko
et al.’s design [4] and implements a 9-node mesh net-
work on a single FPGA by eliding the router pipeline
details and virtual channels. Instead of sacrificing these
important details, we employ a simple design for each
DART Router: each has multiple input ports but only
one output port, and models the all-to-all switching in
a simulated router by routing one input port per DART
cycle.

Wolkotte et al. [9] virtualize a single router on an
FPGA, allowing the simulation of a NoC with multiple
routers. An off-chip ARM processor storesN contexts
for the router model and orchestrates the emulation of
the N-node network. This approach allows the router
model to be much more detailed. However, the off-chip
ARM/FPGA communication link is a performance
bottleneck. DART is implemented entirely on-chip and
does not suffer from this bottleneck.

3. DART Architecture

A basic NoC simulation requires that flits be for-
warded around the network while modeling the timing
of flit transfers. In DART we abstract the components
of a NoC into three primitive types:Flit Queues(FQs),
Traffic Generators(TGs), andRouters. In the DART
architecture (Figure 1), each node contains FQs, a

Figure 1. DART architecture. Each node models a 5-ported
router, and nodes in the same partition share a crossbar port.
The host PC communicates with the FPGA over a serial link.

TG, and a Router, although the TG may or may not
be used. Nodes are grouped into partitions that are
interconnected by a crossbar, allowing all-to-all com-
munication between any node pairs. DART simulates a
NoC by mapping the simulated NoC to DART nodes,
and restricts the communication pattern through the
interconnect to model the connectivity of the simulated
topology. Each DART node has parameters that can be
configured to match the properties of the component
they simulate, without modifying the DART HDL.

To capture the timing of flit transfers, we define
a time stepas a flit cycle in the simulated NoC. A
global counter keeps track of current simulation time,
and is only incremented when all flit transfers for this
time step are performed. A time step may take multiple
DART cycles to simulate. This virtualization of time
allows DART to trade speed for area efficiency.

We use flit and credit descriptorsto model the
traffic within the simulator. The 32-bit flit descriptor
contains (i) the metadata for routing and flow control,
(ii) a timestamp that indicates when the flit should
be forwarded to the next node, and (iii) the injection
time to compute latency at the destination. The 11-bit
credit descriptor only contains a timestamp and a VC
identifier. A flit’s lifetime starts when it is injected at a
TG. It is then alternately forwarded between FQs and
Routers until it is received at the destination.

3.1. Flit Queue

The Flit Queue (FQ) component models the band-
width and latency constraints of a wire link. Each
FQ encapsulates multiple virtual channels (VCs). The
VC buffers are implemented using a block-RAM that
is statically partitioned among the VCs. A Verilog
parameter controls the number of VCs to incorporate
(set to two for this paper). Each incoming flit is queued
according to its VC and the new dequeue timestamp
is computed using the following algorithm:

N_through ++
if(T_enqueue>T_last_flit || N_through>=bandwidth)

T_dequeue = max(T_enqueue, T_last_flit+1)
N_through = 1

else
T_dequeue = T_enqueue

T_dequeue += latency

Here Nthrough counts the number of flits through
the FQ during a time step.Tlastflit is the dequeue
timestamp of the previous flit less the link latency. The
latency and bandwidth parameters are configurable
on a per-FQ basis.

3.2. Traffic Generator

When enabled, the Traffic Generator (TG) compo-
nent injects packets using a Bernoulli process. Packet
size (minimum 2 flits), destination node address, and
the average injection interval are configurable per-TG.
TGs also serve as traffic sinks. They record the number
of packets received and the cumulative packet latency.
Each TG contains two FQs; theinput buffer models
the last-hop delay to the TG, and theoutput buffer
models the source queue. We use the same technique
from Dally et al. [3] and allow a TG to lag behind the
current simulation time when its output buffer is full,
to model an infinite source queue.

3.3. Router

The Router component models a canonical five-stage
wormhole VC router with credit-based flow control [3].
The number of ports is controlled by a Verilog param-
eter, set to five for this paper. Each Router connects to
four FQs that model per-port input buffers and one TG.
Table-based routing is used, and the table content is
configurable for each Router without reprogramming
the FPGA. In contrast to a real 5-ported wormhole
router, the Router component forwards one flit per
DART cycle. A time step is simulated by iterating over
all ready input FQs and processing them sequentially
over multiple DART cycles. Meanwhile, the global
time counter is stalled so all flits appear to be routed
in the same time step. By doing so, we can use
simple arbiters to simulate the switch allocator and
the crossbar, which constitute a significant portion of
the area in a real router. Head-of-line blocking can
arise if the selected input VC cannot be routed due to
failed VC allocation or lack of credits. We solve this
by setting aninspectedflag for the offending VC so
it is not selected again until the next time step. This
creates a bubble in the Router pipeline and wastes a
DART cycle.

Pipeline latency of the simulated router is modeled
by incrementing the flit timestamp when it leaves the
Router; this value is configurable per Router. Con-
tention in VC and switch allocation are also modeled
by adjusting the timestamp appropriately.

Credit-based flow control is implemented using a
credit counter for each output VC, for which initial

Figure 2. DART’s 8× 8 concentrated crossbar interconnect

credit values are configurable. When a flit is routed,
the output VC’s counter is decremented, and a credit
is sent to the corresponding input FQ of the up-
stream Router through the global interconnect. The
corresponding counter is updated when the credit is
received.

3.4. Interconnect

The global interconnect provides all-to-all communi-
cation between DART nodes. By restricting the actual
communicating pairs in the routing tables, DART can
simulate any regular or irregular topology, provided the
maximum node radix is less than the number of input
ports in the Router component. Although a crossbar
is a first intuition, its area increases quadratically with
network size which can be expensive as DART’s size
increases. Instead, DART nodes are grouped into par-
titions and interconnected by a concentrated crossbar
(Figure 2). Both intra- and inter-partition arbitrations
use the three LSBs of the flit timestamp as priority
to guarantee chronological simulation of flit transfers.
The partitions are the main throughput bottleneck of
the interconnect since each partition can only send and
receive one flit per DART cycle. Varying the degree of
concentration trades crossbar area for performance. We
currently use an8 × 8 crossbar as it strikes a good
area/performance balance. Section 4 discusses these
trade-offs in more detail. Credit traffic uses a separate
interconnect that is similar but narrower.

3.5. Configuration and Data Collection

As mentioned earlier, each DART node has con-
figurable parameters (packet size, latency, bandwidth,
etc.). With the exception of the routing tables, these
parameters are chained in a 16-bit shift register. A
software tool on the host PC sends the configuration
bits over an RS232 serial interface. The block-RAM-
based routing tables are connected to the input end of
the shift register. An finite state machine captures a
chunk of the configuration bits to populate the block-
RAM. When configuration completes, an enable signal
is asserted to start the simulation.

Similar to the configuration registers, a 16-bit shift
register is used to read simulator output performance

counters. We currently have three counters per TG to
measure the number of injected and received packets
and the cumulative packet latency. More counters can
be easily added to this shift register chain. Since con-
figuration and stats collection are only performed once
before and after the simulation, the host PC–FPGA
communication latency is not performance critical.

3.6. Using DART

We have automated the process of mapping a user’s
simulated NoC to DART. In the current implemen-
tation, the configuration management tool runs on a
host PC and communicates with DART over an RS232
serial link. This interface is not performance critical,
since it is only used for configuration, commands, and
gathering results. We use a round-robin scheme to
evenly distribute the simulated NoC nodes across the
DART partitions—because the global interconnect is
symmetric, balancing the load this way is sufficient to
achieve good performance.

4. Evaluation
In this section, we quantify the trade-offs made in

the design of DART and evaluate its performance by
comparing with Booksim 2.0 [3], which is widely used
in NoC studies. The results presented are obtained
using a cycle-accurate simulator of the DART archi-
tecture, which has been verified to be identical to our
actual HDL implementation.

DART’s simplified Router component allows a 9-
node DART engine to fit on a Virtex II Pro (XC2VP30)
FPGA while modeling detailed VCs, wormhole rout-
ing, credit-based flow-control, and providing run-
time configurability. However, there is a performance
penalty because DART serializes the switching that
is normally performed concurrently in a real router.
Using the number of time steps simulated per DART
cycle (SPC) as a performance metric, Figure 3 shows
the Router component’s impact on performance for two
simple benchmarks. Both cases use 2 VCs, 5-flit VC
buffers, and permutation traffic with 2-flit packets and
flit injection rates between 0.1 and 0.8. While the ideal
SPC is 1.0, we expect DART’s achievable SPC to be
inversely proportional to the average number of busy
input ports per time step. This agrees with the figure,
since DART’s performance degrades gracefully with
increased network load.

A second trade-off in DART is the use of the concen-
trated crossbar interconnect to allow the simulation of
arbitrary topologies without modification to the DART
HDL. The contention at the crossbar input and output
ports is the main performance bottleneck. For a DART
simulator with a fixed number of nodes, increasing the
crossbar size alleviates this contention by reducing the
size of the partitions. However, crossbar area grows
quadratically with the number of ports. Figure 4 shows
the scalability of various crossbar configurations for

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S
im

 c
yc

le
s

/ D
A

R
T

 c
yc

le
 (

S
P

C
)

A
vg

. #
 o

f b
us

y
po

rt
s

/ s
im

 c
yc

le

Injection rate (flits / node / sim cycle)

(a) 3x3 Torus

Simulation speed (SPC)
Avg. busy ports / sim cycle

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S
im

 c
yc

le
s

/ D
A

R
T

 c
yc

le
 (

S
P

C
)

A
vg

. #
 o

f b
us

y
po

rt
s

/ s
im

 c
yc

le

Injection rate (flits / node / sim cycle)

(b) 3x3 Mesh

Figure 3. Performance impact due to the serialization in the
Router component

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 9 16 25 36 64

S
im

 s
te

ps
 /

F
P

G
A

 c
lo

ck
 c

yc
le

Torus Size (number of nodes)

(a) Injection rate = 0.1 flit / node / sim cycle

4x4
8x4

8x8
16x8

16x16

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 9 16 25 36 64

S
im

 s
te

ps
 /

F
P

G
A

 c
lo

ck
 c

yc
le

Torus Size (number of nodes)

(b) Injection rate = 0.5 flit / node / sim cycle

Figure 4. Performance impact of crossbar sizes

different DART sizes. Each data point is evaluated
using a torus with permutation traffic. The results for
the 4 × 8 and 8 × 16 configurations are not shown
here because their performance is similar to that of the
8 × 4 and16 × 8 configurations respectively. Relative
to a square crossbar, doubling the number of either the
input ports or output ports only improves performance
slightly as the asymmetric configurations do not fully
remove the contention due to concentration. Hence, the
largest square crossbar that meets the area constraint
should always be used, which is8 × 8 for the FPGA
hardware in use.

Our current implementation of the 9-node DART
uses 13,050 slices (95% available) on the XC2VP30
FPGA and runs at 50 MHz. The critical path includes
the logic that selects the earliest flits to cross the
global interconnect. Using the same benchmarks as in
Figure 3, we compare the number of milliseconds it
takes DART and Booksim to simulate a time step. We
measured Booksim’s runtime on a 2.66 GHz Intel Core
2 Quad linux workstation and averaged the measure-
ments over 20 runs. Both simulators simulated approx-
imately 30K cycles and the reported average packet
latencies agree within 5%. Figure 5a shows DART’s
speedup. The upward trend is because the 9-node
benchmarks do not saturate the global interconnect
even at high injection rates. As a result, DART’s per-
formance degrades more slowly than Booksim. Under
similar network load, Booksim exhibits worse scaling
than DART when network size increases (Figure 5b);
however, the interconnect can become the bottleneck
in larger DART systems, in which case additional
network load results in declining speedup.

 320

 330

 340

 350

 360

 370

 380

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
pe

ed
up

Injection Rate (flits / node / sim cycle)

(a) 3x3 Torus on 9-node DART

3x3 Torus
3x3 Mesh

 650

 700

 750

 800

 850

 900

 950

 1000

 0.1 0.2 0.3

S
pe

ed
up

Injection Rate (flits / node / sim cycle)

(b) 6x6 Torus on 36-node DART

6x6 Torus

Figure 5. Speedup of DART vs. Booksim

5. Conclusions and Future Work

In this paper, we introduced a flexible NoC simu-
lation engine that provides software-like accessibility
to the FPGA and achieves significant speedup over
software simulators while maintaining the same level
of accuracy. The DART simulator architecture is de-
coupled and independent from the simulated NoC and
allows us to trade speed for programmability and area
efficiency. Moving forward, we plan to add multiple
contexts to each DART node to allow the user to
further trade speed for simulated network capacity if
necessary. It is also possible to integrate DART with a
full system simulator by replacing the synthetic Traffic
Generators with application or trace driven ones to
enable comprehensive evaluation of the entire system.

References

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha, “GAR-
NET: A detailed on-chip network model inside a full-
system simulator,” inPerformance Analysis of Systems
and Software, ISPASS, Apr 2009.

[2] W. Dally and B. Towles, “Route packets, not wires: on-
chip interconnection networks,” inDesign Automation
Conference, DAC, 2001.

[3] W. Dally and B. Towles,Principles and Practices of
Interconnection Networks. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2003.

[4] N. Genko, D. Atienza, G. De Micheli, J. Mendias,
R. Hermida, and F. Catthoor, “A complete network-on-
chip emulation framework,” inDesign, Automation and
Test in Europe, DATE, Mar 2005.

[5] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wun-
derlich, S. Chen, J. Kim, B. Falsafi, J. C. Hoe, and
A. G. Nowatzyk, “Simflex: a fast, accurate, flexible full-
system simulation framework for performance evaluation
of server architecture,”SIGMETRICS Perform. Eval.
Rev., vol. 31, no. 4, pp. 31–34, 2004.

[6] Y. Krasteva, F. Criado, E. de la Torre, and T. Riesgo, “A
Fast Emulation-Based NoC Prototyping Framework,” in
Reconfigurable Computing and FPGAs, Dec 2008.

[7] V. Puente, J. Gregorio, and R. Beivide, “SICOSYS:
an integrated framework for studying interconnection
network performance in multiprocessor systems,” inEu-
romicro Workshop on Parallel, Distributed and Network-
based Processing, 2002.

[8] G. Schelle and D. Grunwald, “Onchip interconnect ex-
ploration for multicore processors utilizing FPGAs,” in
2nd Workshop on Architecture Research using FPGA
Platforms, 2006.

[9] P. Wolkotte, P. Holzenspies, and G. Smit, “Fast, Accurate
and Detailed NoC Simulations,” inNetworks-on-Chip,
NOCS, May 2007.

