DATA PARALLEL FPGA WORKLOADS: SOFTWARE VERSUSHARDWARE
Peter Yiannacouras, J. Gregory Seffan, and Jonathan Rose

Edward S. Rogers Sr. Department of Electrical and Computgireering
University of Toronto
10 King'’s College Road, Toronto, ON
email: yiannac,steffan,jayar@eecg.utoronto.ca

ABSTRACT the design allowing embedded systems designers to use

Commercial soft processors are unable to effectively 1em to reduce their time to market and exploit single-chip
exploit the data parallelism present in many embedded@dvantages without requiring specialized FPGAs \hitd
systems workloads, requiring FPGA designers to exploit Processors; however, the performance and area of current
it (laboriously) with manual hardware design. Recent commercial soft processors is _st|II S|gn|f|pantly |_nfertor
research [1, 2] has demonstrated that soft processors aughat of a custom hardware solution, meaning designers need
mented with support fovector instructions provide signifi- (© SPend more time implementing hardware to meet their
cant improvements in performance and scalability for data- 4€Sign constraints. As aresult, we are motivated to improve
parallel workloads. These soft vector processors provideSOft Processors to reduce FPGA design time.

a software environment for quickly encoding data parallel ~ Recent advancements in both academia [3, 4] and in-
computation, but their competitiveness with manual hard- dustry [5] have indeed expanded the applicability of soft
ware design in terms of area and performance remainsProcessors by improving them over current commercial
unknown. In this work, using an FPGA platform equipped soft processors. In particular, recent work has proposed
with DDR memory executing data-parallel EEMBC embed- extending soft processors with vector processing capabili
ded benchmarks, we measure the area/performance gap;ges [1,2] as a means of scaling performance for data-gérall
between (i) a scalar soft processor, (i) our improved soft workloads. Vector processing allows a single instruction
vector processor, and (jii) custom FPGA hardware. to command multiple datapaths calleector lanes. On

We demonstrate that the 432x wall clock performance & FPGA the number of vector lanes can be configured by
gap between scalar execut€dand custom hardware can the designer, allowing them to use more FPGA resources
be reduced significantly to 17x using our improved soft {0 scale-up performance. However, the impact of soft
vector processor, while silicon-efficiency is improved by 3 ~ VECtor processors depends on their ability to lure FPGA
in terms of area-delay product. We modified the architecture designers into software design by providiggod enough
to mitigate three key advantages we observed in custompPerformance/area to reduce the amount of needed manual
hardware: loop overhead, data delivery, and exact resourcdardware design. Thus, it is crucial to understand the
usage. Combined these improvements increase performancaerfomance and area gap between soft vector processors and
by 3x and reduce area by almost half, significantly reducing Custom hardware.
the need for designers to resort to more challenging custom

hardware implementations. 1.1. Measuring, Understanding, and Reducing the Gap

1. INTRODUCTION We measure the area and performance gap using several
data-parallel benchmarks (primarily from the industrgrstard

The designer of an FPGA-based embedded system often haBEMBC [6] embedded benchmark suites) of three platforms
the difficult choice between designing custom hardware by executing: (i) “out-of-the-boxC on a scalar soft processor;
hand using a hardware-description language (HDL) that is (ii) hand-vectorized-assembly on many configurationsef th
mapped directly to the FPGA fabric, or writing software ina soft vector processor called VESPA (Vector Extended Soft
high-level language such &that targets aoft processor— Processor Architecture) [1]; and (iii) custom hardwaredian
a processor implemented using the programmable FPGAdesigned in Verilog. Our goal in this work is to use this
fabric and programmed using traditional sequential pro- measurement to quantify the competitiveness of recent soft
gramming languages and software compilers. The perfor-vector processors and further improve them by leveraging
mance of a soft processor is often sufficient for parts of our insights into the causes of the performance/area gap as

well as the circuit structures used to implement the bench- Vector || _

marks in hardware. Specifically we identify the following Coproc |11 Lane L

key advantages of custom hardware over VESPA, and we I }

improve VESPA reducing the impact of each advantage. Scalar || Memory
Loop Overhead Loop control in custom hardware is MIPS]| Crossbar

generally implemented using a finite state machine (FSM) i

that executes in parallel with the loop computation, while i Icache Dcache

VESPA the control datapath must complete an instruction
before the vector lanes can issue the following instrugtion
and vice versa. We reduce this advantage and improve ~_ Amiter
VESPA by decoupling the control datapath from the vector
lanes and exploiting instruction-level parallelism.

Data Délivery High performance custom hardware can
often achieve near perfect delivery of data to functional
units with no cycles wasted. In contrast, for soft processor

including VESPA, data flows from memory through caches sjs. They find that hardware outperforms the processor by
to registers and eventually to functional units. We improve factors ranging between 24x and 44x for scalar workloads.
data delivery in VESPA in two ways: (i) by tuning cache Our work performs a similar comparison but between FPGA
design, and (ii) by supporting prefetching. hardware and soft vector processors, while including the

Exact Resource Usage A custom hardware implemen- effects of clock frequency and latent memory. More recent
tation contains exactly the resources required to supportwork [8] has compared FPGAs to hard microprocessors but

the application: functional units support only the reqgdire do not compare against soft vector processors.
operations, and datapath bit-widths exactly match those

required. In contrast, soft processors such as VESPA are o
general-purpose and hence support a full instruction setl-3- Contributions

(ISA) and the corresponding maximum bit-widths. We im- | his paper we make the following contributions: (i)
prove VESPA via support for subsetting the instruction set using an FPGA platform with DDR memory we quantify
and reducing datapath bit-widths to match the application. .4 analyze the area/performance gaps for industry-snda
In this work we demonstrate that these improvements henchmarks between a scalar soft processor, a parame-
when combined provide 3x improved performance over the grizeq vector soft processor, and hand-designed hardware
original VESPA and significantly broaden its design space. implementations; (ii) we improve VESPA by targetting key
We also show that the performance gap between a scalafgyantages of hardware implementations—specifically by
soft processor a_nd custom hardware is 432_x, and that OUfeducing loop overhead, tuning cache design, supporting
fastest VESPA implementation reduces this gap 10 17X, gata prefetching, and eliminating unused hardware; (i)
while providing a performance-per-unit-areathat is upXo 3 \ye show that our improved soft vector processor VESPA
that of the scalar processor. While the remaining gap is stil provides a powerful design space, spanning 5x in area and
large, these improvements allow soft vector processors t011y in performance, with the fastest VESPA reducing the
better compete with custom hardware, allowing designers 3oy scalar soft processor performance gap to 17x while

to more often implement a software-programmable solution jnrving silicon efficiency in terms of area-delay product
rather than having to design custom hardware. by up to 3x.

Prefetch

[DDR

Fig. 1. VESPA processor block diagram.

1.2. Related Work
2. VESPA

The most closely related work is by Yet. al. [2], who
demonstrate the potential for vector processing as a simple In our previous work on VESPA (Vector Extended Soft
to-use and scalable accelerator for soft processors, pofrocessor Architecture) we implemented a parameterized
tentially scaling better than Altera’€2H [5] behavioral vector processor in Verilog and explored its potential for
synthesis tool for three benchmarks. However, that work scalability and customization. The following summarizes
models a vector processor optimistically including using a the VESPA architecture and parameters (old and new),
on-chip one-cycle (latency) memory system. We compare afurther details can be found in [1].
real vector processor to manual hardware design. Figure 1 shows a block diagram of the VESPA processor
Hardt and Camposano [7] compare hardware circuits that consists of a scalar MIPS-based processor autonigtical
synthesized to 2 CMOS to software on a SPARC processor generated using the SPREE system [3], coupled with a
with cycle performance estimated from static code analy- parameterized vector coprocessor based on the VIRAM [9]

section we describe the components of our infrastructure

Table1. Configurable parameters for VESPA. necessary to execute, verify, and evaluate the FPGA designs

| Parameter [Symbol [Values || We describe our hardware platform, verification process,
Vector Lanes L 1,2,4,8,16,... CAD tool measurement methodology, benchmarks, and
Vector Lane Bit-Width w 1,2,3,4,...,32 compiler. We also discuss how hardware implementations
Maximum Vector Length, MVL 2,4,8,16,... of our benchmarks were created.
Memory Crossbar Lanes M 1,248,...L
Each Vector Instruction - on/off

Soft Processor Platform We use the multi-FPGA Trans-

BEZEEE Eiiztrsli(zga()B) gvl?/ 41'283323 a mogrifier 4 (TM4) [10] to host the complete soft processor
DCache Miss Prefeich DPK 123 systems and to measure the number cycles for bench-
Vector Miss Prefetch DPV 1’2’3"" mark execution. The platform has four Altera Stratix

EP1S80F1508C6 devices each with access to two 1GB
PC3200 CL3 DDR SDRAM DIMMs clocked at 133 MHz
(266 MHz DDR). We synthesize our processor systems onto
‘'one of the four Stratix | FPGAs connected to one of the
- DIMMs and clock the processor at 50 MHz. All instances
table. The parameters of the VESPA system are listed ¢ \yESpA are fully tested in hardware using the built-in
in Table 1. The vector coprocessor consistd.gbarallel -ocksum values encoded into each benchmark. Debugging
vector lanes where each lane can perform operations on gs nerformed using Modelsim and is guided by comparing
single element in a pipelined fashion. The widthof each y3cas of all writes to the scalar and vector register files.
vector lane datapath is 32 bits by default, but can be reduced\;yie that because the Stratix | EPGAs on the TM4 are dated,
for applicatic_ms that requi_re less than the full 32 bit-widt _ we use this platform only for measuring benchmark cycle
ML determines the maximum vector length supported in ¢ nts. For area and clock frequency measurements we use
hardware and is set to 64 for this study. the CAD flow described below to target a faster Stratix Il

~ The scalar processor and vector coprocessor share gpGa (which was unavailable to us) and achieves a clock
single instruction stream fed by an instruction cache. The speed of 130 MHz. While this faster clock speed would
scalar processor and vector coprocessor are both in-ordefcrease the memory latency observed by the processor,
pipelines, but can execute out-of-order with respect theac e pelieve that this would not significantly impact our
other except for memory operations which are serialized yogyts: the memory latency in our current system is already
to maintain sequentla_l consistency. Both share a d'reCt'exaggerated by the fact that our DDR controller is hand-
mapped data cache with parameterized d&fifand cache ade and suffers many inefficiencies, including the use of

line sizeDW A crossbar routes _each I_Jyte in a cache line 4 closed-page policy that requires every memory request to
to/from Mof the L vector lanes in a given cycle. A full incur both row and column access latencies.
crossbar L) can significantly reduce the clock frequency

of the design wherl is large; in such caseMl can be)
reduced to restore the clock rate and save area, but mor&PGA CAD Tools A key benefit of FPGA-based systems
cycles will be spent moving data between the cache IinesfeseafCh is that we can obtain high quality measurements,
and vector lanes. The data cache is equipped with a”?dUd'”g the area and clock frequency measurements pro-
hardware prefetcher configured with parame®@PK and ~ Vided by FPGA CAD tools. We use Altera’s Quartus II
DPV described in a later section. 8.0 CAD software with register retiming and duplication
Beyond our previous work, we compare the VESPA enabled and with aggressive timing constraints. Through
configurations to hardware for the first time, we added €xPerimentation we found that these settings provided the
configurable caches and data prefetching, we explore the?€St area, delay, and runtime trade-off. We perform eight
complete design space with our new robust design rather SUCh runs for each hardware design to average-out the non-
than individually for each parameter, and finally we make determinism in the CAD algorithms. The relative silicon

other non-parameterized architectural improvements (seeré@ of each tile in a Stratix Il FPGA was supplied to us by
Section 5.2). Altera [11], which we then adjust to approximate the slightl

modified FPGA architecture of the Stratix Ill. We report the
silicon area consumed by a design in unitsegtivalent
3. MEASUREMENT METHODOLOGY ALMs—the silicon area of a single ALM (Adaptive Logic
Module—the basic programmable logic unit in the Stratix
Our goal is to measure the area/performance gap betweetil) including its routing. For VESPA processors the areas
scalar soft processors, soft vector processors, and hegdwa we report include the instruction cache, data cache, data
as well as to investigate techniques to reduce the gap.dn thi prefetcher, scalar processor, and vector processor.

vector instruction set. The scalar SPREE processor is a 3
stage pipeline with full forwarding and a 1-bit branch higto

Table 2. Benchmark applications.

EEMBC EEMBC Input Output | Largest Vector| % VIRAM

Benchmark Description Source Suite Dataset#| size (B) | size (B) Element ISA Used
AUTCOR auto correlation EEMBC/VIRAM Telecom 2 1024 64 32 bits 9.6%
CONVEN convolution encoder| EEMBC/VIRAM Telecom 1 517 1024 1 bit 5.9%
RGBCMYK rgb filter EEMBC/VIRAM | Digital Ent. 5 1628973 | 2171964 8 bits 5.9%
RGBYIQ rgb filter EEMBC/VIRAM | Digital Ent. 6 1156800 | 1156800 16 bits 8.1%
IP_CHECKSUM checksum EEMBC Networking - 40960 40 32 bits 8.1%
IMGBLEND combine two images VIRAM - - 153600 76800 16 bits 7.4%

Benchmarks The six benchmarks that we measure are

listed in Table 2: five are from the industry-standard EEMBC Table 3. Hardware circuit area and performance.

; Clock
collection [6], and Onel(/IGBLgN D) was hancrzl{mzde. 1.4:T-_ . Benchmark | ALMs | DSPs| M9Ks | (MHz) | Cycles
COR, CONVEN, RGBCMYK, andrGBYIQ were hand-vectorize con = 2 : 3 057
and provided by Kozyrakis and the Berkeley VIRAM project[9] conven 46 0 0 476 226
For these benchmarks we execute using the largest datasef RreacmYk 527 0 0 447 | 237784
with the EEMBC test harness uncompromised. We also RGBYIQ Igg 188 8 i;‘; 1;‘;‘;;‘1

. IP_.CHECKSUM
manually extracted_and ve_ctonzed thecHECKSUMKernel _ IMGBLEND 302 3 0 443 | 14414
from the Networking suite of EEMBC, and execute it AUTCOR.unroll 13699 | 256 0 244 143
using correspondingly-modified input data stream. Note | conven-unroll | 67 0 0 476 98

that cycle counts are collected from a complete execution
on our hardware platform as described above, and the

vectorized code is never modified to support any specific fions: - All input/output data starts/ends in memory and
vector configuration. is transfered uninterrupted at the full rate of our DRAM

device. We also idealize the control logic assuming it can
Compilation Framework Benchmarks are built using a make decisions in a single clock and accounts for negligible
MIPS port of GNUgcc 4.2.0 with the- O3 optimization ~ area. Finally we don’t allow any value or value-range
level. Initial experiments with this version gfcc’s auto- Specific optimization in either the software or hardware.
vectorization capability showed that it failed to vecterkey ~ To summarize, we build only the datapath of the circuit
loops in our benchmarks, preventing us from automatically under optimistic assumptions about the control logic and
generating vectorized code. Instead we ported the GNUtransfer of data. The resulting hardware circuits are teiste

assembler to support VIRAM vector instructions allowing Simulation using test vectors, and area and clock frequency
us to manually vectorize in assembly. are measured using the previously-described CAD flow. For

each hardware circuit we compute the total number of cycles
Area-Delay Product A system designer may care more for execution as the sum of the pipeline latency plus cycles
about area than performance, or vice-versa, depending orspent transferring data since the circuit computation isedo
the constraints of the design at hand. However, it is impor- in parallel with this transfer time. Overall we believe the
tant to have an understanding of the overall performance-hardware circuits are optimistic and certainly overconee th
per-area of candidate designs motivating us to measaae manual vectorization advantage in software.
delay product as is traditionally done for digital circuits. As a result of forbidding value and value-range op-
We use the aforementioned equivalent ALMs for area and timizations, we do not perform loop unrolling of non-
the wall-clock-time of benchmark execution as the delay vectorized loops, nor the equivalent in hardware. For
(combining the cycle counts reported by real hardware with example, benchmarks such @asTCOR operate repeatedly
the maximum clock frequency reported by CAD tools). on the same data set with the actual computation dependent
on a parameter input which varies from 0 to 15. In hard-
ware we can unroll that loop performing all 16 operations
simultaneously. The benefit of unrolling a loop would be
We model the performance of our hardware circuits opti- relatively small for VESPA which is an in-order single-
mistically while using area and clock frequencies from d rea issue processor, while hardware could readily exploit the
FPGA hardware design, achieved by manually converting exposed instruction level parallelism (ILP). The last two
each benchmark into a Verilog hardware circuit. While rows in Table 3 show the impact of unrolling in hardware
there are infinite variations of such hardware designs, wefor AuTCORandcoNVEN—the only two benchmarks where
attempted to implement designs that maximize performanceunrolling is useful in hardware. The unrolled circuits act n
while simplifying this process with the following assump- used in our results, but the performance impact can be large:

3.1. Designing Custom Hardwar e Circuits

200

in the case oAUTCOR execution completes in 7.4x fewer % 180 b
cycles, although clock frequency is reduced and circuiare £ 15 X +1lane
increases substantially. 3 1o x *2Lanes
< 100 ” A4 Lanes
B 80 ‘A X8 Lanes
60 X
2 4 V& SWN ><- u |16 Lanes
4. COMPARING TO HARDWARE 2 2 * A =
T 0 20 40 60 80
In this section we compare the area and performance of tt HW Area Advantage

following three implementations of our benchmarks create:
via different design entry methods: (i) out-of-the-b@x Fig. 2. Area-performance design space of VESPA proces-
code executed on the MIPS-based SPREE scalar processosprs normalized against hardware.
(i) hand-vectorized assembly language executed on many
variations of our VESPA soft vector processor; and (iii)
hardware designed in Verilog at the register transfer levelIn @ subsequent section, here they are used to show the
as described in Section 3.1. fine-grained tradeoffs within VESPA. The tradeoffs are
Table 4 shows the area advantage and speedup of thsignificant pecause VESPA could be a potentially large
hardware implementation versus the scalar SPREE procescomponentin an FPGA system.
sor in the first row and the slowest, the least area-delay,
and the fastest c_on_figurations of VESI_DA_ in t_he remaini_ng 4.1. VESPA vs Scalar
three rows. The limited number of multipliers in the Stratix
1S80 on the TM4 prevent us from evaluating soft vector Looking at the first two rows of Table 4, we can compare
processors with more than 16 lanes, but we expect furtherthe scalar processor with a VESPA processor that has only
performance scaling on larger Stratix Ill based hardware a single lane and identical cache organization. The VESPA
platforms [1]. Focusing on the first row of the table, we processors are at least 2x larger than the scalar sincertaey a
observe that the scalar processor executing out-of-tlke-bo comprised of both a scalar processor and vector coprocessor
Ccode is on average 6.7x larger than the hardware circuitsThe hand-vectorized assembly executed on VESPA gains
and performs 432x slower. Not exploiting the available data more than 2x average performance over the scalar out-of-
parallelism is the primary cause of the under-performance.the-box C code on scalar SPREE, even though there is
The area of the scalar processor is larger than each of theno data parallel execution on the single-lane version of
hardware implementations, suggesting that despite thee tim VESPA. This is partly due to a number of advantages in
multiplexed resources, the general purpose overheads causvESPA: (a) More efficient pipeline execution with few
the processor to be still larger than the spatially executeddependencies. (b) The large vector register file can store
hardware. In an extreme casePNVEN with its 1-bit and manipulate arrays without having to access the cache
datapath is 64x smaller than the scalar processor. or memory. (c) Amortization of loop control instructions.
With respect to the hardware circuits VESPA is 13x to (d) Direct support for fixed-point operations, predication
64x larger and 192x to 17x slower. A more quantitative and built-in min/max/absolute instructions in the VIRAM
analysis follows in a subsequent section but it is clear instruction set. (e) Simultaneous execution in the scalar
that vector processing extensions to soft processors argrocessor and vector co-processor. (f) Manual vectodmati
motivated since the 432x scalar processor performance gajn assembly versus the C-compiled scalar output from GCC.
can be reduced down to 17x. Such a massive performance Determining the exact contribution of each advantage is
boost could help convert many components of an FPGA beyond the scope of this work, we instead perform some
system into software executing on a soft vector processorqualitative analysis. Closer inspection@dNVEN revealed
rather than laboriously-designed custom hardware. the cause of the 9x performance boost seen on the single
Figure 2 shows the area-performance design space ofane VESPA to be the repeated operations performed on a
many near-pareto-optimal VESPA processors normalizedsingle array. In VESPA the large vector register file canestor
against hardware. We observe that the VESPA design spactarge array chunks and manipulate them without storing and
is quite large, spanning 5x in area and 11x in performancere-reading them from cache as the scalar processor must.
with the 16 lane VESPAs providing the best performance The other benchmarks are less impacted because of their
at the cost of additional area. The figure identifies the streaming and low-reuse nature. The loop overhead amor-
number of lanes in each configuration which is the most tization gained by performing 64 loop iterationéL=64)
dominant parameter in determining area and performanceat once significantly impacts benchmarks with small loop
but also being varied is the memory crossbar ditehe bodies such aauTCOR, CONVEN, IP_.CHECKSUM, and
data cache deptBD, the data cache line siZ8V and the IMGBLEND. The more powerful VIRAM instruction set
data prefetcheDPV. These parameters will be discussed with fixed-point support further reduced the loop bodies of

Table 4. Area and performance advantage for hardware over varimeepsors

Processor Clocl Area (Aprocessor/Anw) Wall Clock Time ((processor/Thw)
L |M |DD|DW|DPV| AUTCOR|CONVEN| RGB- |RGB-| IP_CH- | IMG- | GEO ||AUTCOR|CONVEN|RGB- |RGB-| IP_.CH- | IMG- | GEO
«B)| ®) (MHz) CMYK| YIQ |ECKSUM|BLEND|MEAN CMYK| YIQ |[ECKSUM|BLEND|MEAN
[Scalaf 4]16] 0 [159] 2.7 | 63.8 | 5.6 | 1.3] 18.6 | 3.9 | 6.7 | 440.8 1899.6]267.7549.] 163.9 [322.5] 432.1]
1{1(4]16| O 141 5.3 125.3 1 10.9| 2.6 | 36.5 7.7 13.2 224.8 | 211.7 |204.9|205.9 114.3 | 214.7| 191.5
8|8 (16|64 |8VL|| 139 14.6 344.2 1 30.0| 7.1 | 100.2 | 21.1 | 36.3 32.8 30.1 | 27.2|25.7| 124 | 25.8 | 246
16(16| 16| 64 [8VL|| 122 259 | 610.0 | 53.2|12.7| 1776 | 37.4 | 64.3 23.8 244 | 185|16.4| 8.8 16.0 | 171
3500
Table 5. Hardware advantages over fastest VESPA. g, 00 e Gt ® Scalar
o T 5 2500 - ¢1Lane
Iteration | Cycles per @g 2000 X um X2 Lanes
Benchmark | Clock | Parallelism| Iteration gg‘ 1500 Ao a4 oxmH A4 Lanes
t 26 1 91 ;E: 1000 A n a X8 Lanes
autcor -bX X X I 500 W16 Lanes
conven 3.9x 1x 6.1x 0
rgbcmyk 3.7x 0.375x 13.8x 0 20 40 60 80
rgbyiq 2.2x 0.375x 19.0x HW Area Advantage
ip_checksum| 3.7x 0.5x 4.8x Fig 3. Area-del duct FVESPA
imgblend 3.6x 1x 4.4x 19. o. ; reg- e c’_:ly [i[JLO l(,;C versus area o processors
GEOMEAN | 3.2x 0.64x 8.2x normalized against haraware.

eration in hardware over VESPA and is calculated from

AUTCOR andRGBCMYK. Finally, the scalar disassembled the measured overall speedups in the last row of Table 4
GCC output did not appear significantly less efficient than gjyided by the aformentioned clock and iteration parasteli
the vectorized assembly for any of the benchmarks, leadingadvantages. This component represents the inefficiencies
us to infer that manual assembly Optimization was not a inherent in our VESPA design as We” as in any processor-
disproportionally significant advantage for VESPA. style architecture. VESPA currently can sustain only one
vector instruction in flight while known techniques such as
vector chaining can be used to overlap execution of multiple
instructions through a multi-ported vector register filaan
By focussing only on loops we can decompose the per-multiple functional units. The hardware circuit has the
formance difference between VESPA and hardware into benefit of creating as many functional units as necessary and
the following categories: (i) the clock frequency; (i) the can keep them fed with data without the scaling limitations
number of loop iterations executed concurrently called of a centralized register file.
eration level parallelism; and (iii) the number of cycles Further improvements to VESPASs cycles per iteration
required to execute a single loop iteration. For each of are motivated since it remains the largest component and
these components, the hardware advantage over the fastesiill further expose fundamental limitations in processor
VESPA configuration (see last row of Table 4) is shown in architectures. VESPA's vector extensions reduced tha-iter
Table 5. The second column shows the hardware circuitstion parallelism hardware advantage from 10.3x for a scalar
have clock speeds between 2.2x and 4x faster than the besfoft processor to 0.64x, proving that VESPA has greatly
performing VESPA. This 3.2x average clock advantage canincreased iteration parallelism leaving cycles per iterat
be improved through further circuit design effortin VESPA. as a key target for further reducing the performance gap.

The third column of Table 5 shows that the iteration level
parallelism exploited by the hardware is less than or equal t
that exploited by VESPA which is 16 for all benchmarks
since there are 16 lanes. But in the hardware circuits Figure 3 shows the area-delay of the scalar and VESPA
we matched the parallelism to the memory bandwidth, processors relative to that of hardware, averaged acrass ou
for example, thap_CHECKSUM benchmark operates on a benchmark set, and plotted against area. The figure demon-
stream of 16-bit elements meaning in a given DRAM accessstrates that VESPA can provide up to a 3.25x decrease
only 8 elements can be retrieved from memory. The circuit in area-delay versus the scalar SPREE processor. Note
is hence designed to have only 8-way parallelism while that VESPA includes the same scalar SPREE processor,
VESPA wastes cycles gathering data for its 16 lanes. thus, adding the vector extensions significantly increase

The last column shows the speedup of a single it- the performance-per-area of this processor. The VESPA

4.2. VESPA vsHW

4.3. Area-Delay Product Gap

® 16B Dcache line

cache line request. The data cache line was parameterized
and expanded from 16 bytes to 64 bytes, and accompanied
with a corresponding growth in capacity to keep the FPGA
block RAMs fully utilized. Our experiments show that this
improved cache design results in 2x average performance
gain as seen in Figure 4, due almost entirely to the expanded
S cache line rather than the capacity [12]. This performance
S gain comes with a 2x growth in VESPA area due primarily
to the larger vector memory crossbar seen in Figure 1 which
grows with the cache line size. The crossbar is necessary
even without a cache, and since the cache storage is less
than 6% of the area and is shared with the scalar processor,
we are not motivated to investigate a no-cache solution.
processor with the least area-delay product is still 892x
worse than the hardware but is surprisingly not the VESPA
design with the highest performance, instead it is the 8&;lan
full memory crossbar vector processor with a 16KB cache, When comparing the hardware circuits to the vectorized
64B line size, and data prefetching listed in the second lastloops, one glaring difference is the absence of the many
row of Table 4. While this area-delay gap is enormous, control instructions required to manage a loop: in hardware
a significant part of it is due to area which in many cases a finite state machine (FSM) manages the loop in parallel
may be well worth the general-purpose computing provided with the computation. We modified VESPA by decoupling
by the processor. Specifically, the processor can be usedhe three pipelines allowing vector, vector control, and
to implement many parts of an application: for example, scalar instructions to execute simultaneously and out-of-
if a designer wanted to execute all six of our benchmarks order with respect to each other. As long as the number of
sequentially they can do so on a single instance of VESPAcycles needed to compute the vector operations is greater
which would reduce the area gap by 6x compared to thethan the cycles needed for the vector control and scalar

64B Dcache line

m 64B+Decoupled

m 64B+Decpl+Prefetching

Cycle Speedup
O B N W A U o N

Fig. 4. Performance gained with improved VESPA architec-
ture.

5.2. Zero Overhead L oops

instantiation of all six circuits. operations, the loop will have no overhead. While our
previous work already decoupled the scalar pipeline, i thi
5 REDUCING THE PERFORMANCE GAP work we decouple the execution of the vector and vector

control pipelines. The impact on performance for a 16-lane
In this section we examine the performance advantagesVESPA with 16KB data cache and 64B line size is shown

that hardware circuits have over VESPA and describe thein Figure 4. The technique improves performance by 7% on
architectural modifications that we use to mitigate theatéfe ~ average and by 15% in the best case, while the area cost is
of those advantages: we examine different cache designshegligible.

the decoupling of certain pipelines within VESPA, and data

prefe_tching These teghniques d!rectly tackled _the pycﬂs P 5.3. DataPrefetching

iteration highlighted in our earlier results which inclade

these improvements. Figure 4 shows the accumulated perAnother advantage of custom hardware is that it can overlap
formance gains from these three improvements measured iffomputation with memory accesses. We can do the same
cycle speedup since clock frequency did not change signif-in VESPA by supporting hardware data prefetching where
icantly. On average the cache, decoupling, and prefetchingd cache miss translates into a request for the missing cache
can be combined to increase performance by 3x over the"ne as well as additional cache lines that are predicted to
previous VESPA, causing its 50x performance gap with SOON be accessed. Due to the predictable memory access

hardware to be reduced to the 17x reported in Table 5. patterns in our benchmarks simple sequential prefetching
that loads the nexbPK cache lines is effective, reducing

the time spent servicing misses to just 4% of execution
time [12]. Using theDPV parameter instructs VESPA
Hardware circuits typically benefit from near-perfect de- to prefetch only for vector memory instructions with low
livery of data from the DRAM to the pipelined functional strides and to prefetch either a constant or a multiple of the
units, while for most processors data passes through levelsurrent vector length elements into the cache. All of these
of caches, then the register file, and finally to the functiona methods yield very similar results.

units. Although we maintained this framework, we accomo- Figure 4 shows the 42% performance boost of our best
dated VESPA by tuning the cache, specifically the cache lineoverall prefetching configuration which loads 8 times the
so that ideally all vector lanes can be satisfied with a single current vector length elements into the cache. By using

5.1. CacheDesign

N
o
S

—e—Full the 892x for the full-size 8 lane VESPA discussed earlier,

—=— Subsetted and 5.15x better than the scalar soft processor.
—— Subsetted+Width Reduced

i
o
=]

i
o
<]

7. CONCLUSIONS

3]
o

o

HW Speed Advantage

0 10 20 20 0 50 60 70 Our comparisons have demonstrated fhabde executing
HW Area Advantage on a scalar soft processor performs on average 432x slower
and is 6.7x larger in area than custom FPGA hardware. The
Fig. 5. Effect of instruction set subsetting and width VESPA soft vector processor now provides a large design
reduction on the area and speed gap of VESPA processorspace of vector processors that, relative to hardwareggang
versus hardware. from 192x slower and 13x larger to 17x slower and 64x
larger. This large space allows a designer to choose the
area/performance of a system component without laborious
Ihardware design, and can drastically reduce the 432x scalar
soft processor performance gap to 17x for data parallel
workloads. In addition, VESPA is shown to have 3x better
area-delay product than our scalar soft processor. Fjnally
by eliminating hardware in VESPA which is not used by the
application, we can reduce the area of VESPA by up to 45%,
6. REDUCING THE AREA GAP resulting in a 5.15x reduced area-delay product than that of
) .) a scalar soft processor. In summary, the quantified gap and
In hardware, we implement only the functional units re- jmproved soft vector processor can significantly reduce the

quired by the application and match them to the bit-width need for embedded designers to resort to more challenging
of the data operands. VESPA is equipped with param- manyal hardware design.

eters that allow it to perform similar application-specific
customizations. The vector lane widican be used to
reduce the datapath for benchmarks which do not require

the vector length to determine the number of cache lines to
prefetch, we guarantee no more than one miss per vecto
instruction regardless of the length of the vector. The cost
of the prefetcher is less than 2% of the area due primarily to
buffering dirty cache lines evicted by prefetched lines.

8. REFERENCES

the 32-bit processing VESPA provides. For examplen- [1] P.Yiannacouras, J. G. Steffan, and J. Rose, “VespaabBlert
VEN requires only a 1-bit datapath (see Table 2) and its scalable, and flexible fpga-based vector processors,” in
implementation in hardware gains a large area advantage =~ CASES08: International Conference on Compilers, Archi-
over VESPA because of it. Using théparameter we can tecture and Synthesis for Embedded Systems. ACM, 2008.
reduce the lane width to 1-bit and reduce VESPA's area by [2] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing
half—vector state, control logic, the 32-bit address space as a soft-core cpu accelerator,” ®mposium on Field
and the scalar processor limit further reduction. Note our programmable gate arrays. New York, NY, USA: ACM,
previous work [1] limited the lane width to multiples of 2008, pp. 222-232.
8. VESPA also supports the individual disabling of each [3] P. Yiannacouras, J. G. Steffan, and J. Rose, “Applicatio
vector instruction which automatically eliminates hardeva specific customization of soft processor microarchitegtur
support for that instruction. This feature allows us to sbs in FPGA'06: Proceedings of the International Symposium
the instruction set to that used by the application shown in on Field Programmable Gate Arrays. New York, NY, USA:
Table 2. ACM Press, 2006, pp. 201-210.

Figure 5 shows the effect of instruction set subsetting [4] R. Dimond, O. Mencer, and W. Luk, “ CUSTARD - A
as well as the combined effect of subsetting and width Customisable Threaded FPGA Soft Processor and Tools ;'
reduction on the set of pareto optimal points in our VESPA in International Conference on Field Programmable Logic

design space. We see that compared to the full VESPA (FPL), August 2005.

processor the area is significantly reduced, in the best case[5] D. Lau, O. Pritchard, P. Molson, and C. Altera Santa Cruz,
by 45%, and some performance is even gained from the “Automated Generation of Hardware Accelerators with Di-
higher clock speeds which reach as high as 153 MHz on rect Memory Access from ANSI/ISO Standard C Functions,”
the smaller customized VESPA processors. The points Field-Programmable Custom Computing Machines, pp. 45—
move closer to the origin as VESPA sheds general purpose 96, 2006.

overheads and begins to resemble a dedicated hardware part[6] “The Embedded Microprocessor Benchmark Consortium,”
It is interesting to note that after trimming this area, tiée 1 http://www.eembc.org, EEMBC.

lane VESPA with full memory crossbar, prefetching, and [7] w. Hardt and R. Camposano, “Trade-offs in hw/sw code-
64B line size has the smallest area-delay product which is sign,” in Workshop on Hardware/Software Codesign. ACM,
561x worse than hardware; a substantial improvement over 1994,

[8] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitagi
analysis of the speedup factors of fpgas over processors,” i
Symposium on Field programmable gate arrays. New York,

NY, USA: ACM, 2004, pp. 162-170.

[9] C. Kozyrakis and D. Patterson, “Scalable, vector preoes
for embedded systemaMicro, |IEEE, vol. 23, no. 6, pp. 36—
45, 2003.

[10] J. Fender, J. Rose, and D. R. Galloway, “The transmegrifi
4: An fpga-based hardware development system with multi-
gigabyte memory capacity and high host and memory
bandwidth.” in IEEE International Conference on Field
Programmable Technology, 2005, pp. 301-302.

[11] R. CIliff, “Altera Corporation,” Private Comm, 2005.

[12] P. Yiannacouras, J. G. Steffan, and J. Rose, “Improving
memory systems for soft vector processors,'WoSPS 08:
Workshop on Soft Processor Systems, 2008.

