
1

Sampling-Based Locality Profiling

Ian Christopher and Chen Ding
University of Rochester

2

Outline

1) Brief motivation and definitions of terms
2) Discussion of sampling methods
3) Locality analysis techniques
4) Introduction to the implementation (SLO-R) and

experimental results
5) Conclusion

3

Motivation

● Locality, both temporal and spatial, has a dramatic effect
on prefetching and caching.

● Profiling can point out pieces with poor locality in code
or serve as a larger metric for the entire program itself.

● Full trace analysis too slow for most situations, so
sampling is commonly necessary.

4

Definition of Terms

● Reuse distance - the number of unique
memory locations referenced between a
memory address' use and reuse.

● Reuse signature - histogram of reuse
distances.

● Temporal locality can be judged entirely by
reuse distances.

● Spatial locality is an equally simple idea but
is more complex than temporal locality. It
has a few different constituents – inter-
block and adjacent-block

5

Outline

1) Brief motivation and definitions of terms
2) Discussion of sampling methods
3) Locality analysis techniques
4) Introduction to the implementation (SLO-R) and

experimental results
5) Conclusion

6

Sampling Introduction

● Ideally, sampling provides a
representative portion of a
program.

● Sampling creates a balance
between accuracy and
execution runtime.

● A full trace based analysis
commonly causes a slow
down with a factor
somewhere in the
hundreds.

● Good sampling is difficult.

7

Types of Samples

● Temporal and spatial locality scores depend on very
different access trace measurements.

● Temporal locality can be found using just an
approximated reuse distance.

● Spatial locality requires a broader analysis of an access.
The access stream around it must be considered.

● The size of these spatial samples is not well defined.

8

Naive Methods

● Taking every n-th possible sample seen.

● Sampling based on what locations in the code you have already
sampled.

● Sampling based on how many samples you have already collected.

9

Reservoir Sampling

● Consider the following:
● You have a stream of

running water in front of
you. You are not sure
how long it will remain
running and want to
collect N representative
samples before it stops.
What do you do?

● Reservoir sampling takes
its name from this
problem.

10

Reservoir Sampling (continued)

● There are two forms of answers

1) Assign each sample seen a random number. Keep the highest
N of them in a reservoir of samples.

2) Use statistical methods to predict how many samples you
should throw out before you insert the next in to the reservoir.
Prediction is dependent on how many samples you have
collected in the past.

11

Reservoir Sampling Continued

● Algorithm L from "Reservoir-Sampling Algorithms of Time
Complexity O(n(1+log(N/n)))" by Kim-Hung Li

1) [Initialize] Initialize the reservoir Xl,. . . . Xn. to be the first n
samples, Set W := exp(log(random())/n).

2) [Generate S] Set S := [log(random())/log(l – W)].
3) [Search for the next potential record] Search for the next (S +

l)th sample, say Y. If the file is exhausted before the record is
found, deliver Xl, Xn. and terminate

4)[Update X and W] Replace Xrandom, by Y. Replace W by W
“exp(log(random())\n). Go to step (2).

● Found in : ACM Transactions on Mathematical Software, vol. 20,
No. 4, December 1994

12

Reservoir Sampling Continued

● The last algorithm was very fast with respect to most
other sampling algorithms.

● Still have keep the reservoir in memory. The number of
samples that can be collected becomes an issue.

13

Reservoir Locality Analysis

● Now that we have the
reservoir, how do we
assign locality scores?

● Are there types of
analysis that are
favorable to this type of
sampling?
Unfavorable?

14

Outline

1) Brief motivation and definitions of terms
2) Discussion of sampling methods
3) Locality analysis techniques
4) Introduction to the implementation (SLO-R) and

experimental results
5) Conclusion

15

Temporal Analysis

● Temporal samples are
relatively
straightforward.

● Samples approximate
reuse distance with time.

● Defining a metric for reuse
distances gives an
overall metric for the
reservoir.

16

Spatial Analysis

● A new type of analysis called Intra-block Spatial Reuse
Analysis.

● Suppose elements x and y of size b belong to the same 2b block.
– The original temporal reuses distance is reduced in two

ways : larger block sizes and so-called intercepts.

17

Spatial Analysis Continued

● At a high level, the analysis is a metric on how much the distances
changed in the two block size.

● Short original temporal reuses are not analyzed.

● The block sizes where the L1 and L2 cache sizes respectively.

● Full analysis for every reuse is far too costly, so statistical
approximations are used.

● Analysis was used to improve a NLP program's runtime roughly
seven percent with six lines of code improvement.

18

Outline

1) Brief motivation and definitions of terms
2) Discussion of sampling methods
3) Locality analysis techniques
4) Introduction to the implementation (SLO-R) and

experimental results
5) Conclusion

19

The Implementation - SLO-R

● SLO-R is a platform-independent locality analysis tool.

● It is an extension of Suggestions for Locality Optimizations
(SLO), which will be presented in the next slide. Note: the “R”
in SLO-R denotes “Rochester”.

● It provides the programmer direct feedback on which parts of
code have poor locality and gives suggestions on how to fix
them.

● Through GCC, it inserts calls to an external locality library
into a compiled program. During execution, result data files
are created and analyzed by a Java back end.

20

SLO – Suggestions for Locality Optimizations

● Developed by Kristof Beyls and Erik H. D'Hollander at the
University of Ghent.

● Deserve the utmost credit – we built on their open source
code.

● Collects temporal locality samples through GCC4.1.1 and
provides feedback where the worst sections of code are.

● Hosted by Sourceforge

21

SLO-R vs SLO
● SLO-R has spatial locality considerations and block temporal

locality scores.
● SLO-R's spatial reservoir also allowed reference affinities to be

estimated.

22

23

SLO-R results

● Sampling created a slow down of about thirty five. This
figure includes a lot of extra execution.

– Three reservoirs, reference affinity analysis, both types
of locality analysis, writing large data files, etc.

● Original slow down was well over three hundred.

● As for code improvement (a metric of sampling quality),
there has not been enough testing.

● Small spatial samples resulted in poor results. Larger spatial
samples seems to give good results.

24

SLO's Results

● Beyls and D'Hollander reported these results.
● An average slow down of about seven in long

running programs.

25

Outline

1) Brief motivation and definitions of terms
2) Discussion of sampling methods
3) Locality analysis techniques
4) Introduction to the implementation (SLO-R) and

experimental results
5) Conclusion

26

Conclusion

● Reservoir sampling provides good approximations to
program access behavior.

● With a relatively small reservoir, program temporal
locality can be approximated well.

● Due to sample size and a more ambiguous metric, spatial
locality is more difficult to analyze with sampling. Using a
large reservoir it can be done, but its size will certainly be an
issue.

27

Question? Comments?

Thank you everyone for coming.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

