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ABSTRACT
We introduce an algorithm that uses buffer space available
at the server for smoothing disk transfers of variable bit-rate
streams. Previous smoothing techniques prefetched stream
data into the client buffer space, instead. However, emer-
gence of personal computing devices with widely different
hardware configurations means that we should not always
assume abundance of resources at the client side. The new
algorithm is shown to have optimal smoothing effect un-
der the specified constraints. We incorporate it into a pro-
totype server, and demonstrate significant increase in the
number of streams concurrently supported at different sys-
tem scales. We also extend our algorithm for striping vari-
able bit-rate streams on heterogeneous disks. High bandwidth
utilization is achieved across all the different disks, which
leads to server throughput improved by several factors at high
loads.

1. INTRODUCTION
Variable bit-rate encoding of video streams can achieve qual-
ity equivalent to constant bit-rate encoding while requiring
average bit rate that is lower by 40% or more [10, 13]. How-
ever, variable bit-rate streams have high variability in their
resource requirements which can lead to low utilization of
disk and network bandwidth in the common case. This oc-
curs because the aggregate bandwidth requirements of con-
currently served streams can be significantly higher at par-
ticular time instances than on average, and the admission
control process typically bases its decisions on peak aggre-
gate demand when considering new stream requests.

In order to improve resource utilization and the throughput
of the system, a number of smoothing techniques have been
proposed that can remove peaks in the required transfer
bandwidth of individual streams by appropriately prefetch-
ing stream data during periods of lower bandwidth demand.
To date smoothing schemes always prefetched data into the
client buffers. Although such an approach can improve the
utilization of both disk and network bandwidth, it is depen-

dent on the amount of buffer space available at the client.

In this paper, our goal is to maximize the average num-
ber of users supported concurrently in video server systems,
by applying smoothing techniques and combining them ap-
propriately with disk striping and admission control poli-
cies. Thus, we introduce a stream smoothing algorithm that
prefetches data into server buffers, which has several impor-
tant advantages:

• ability to provide the benefits of smoothing even to
clients with minimal memory resources (such as inex-
pensive mass-produced specialized devices),

• ability to limit the requirements for disk bandwidth,
which is estimated to increase at rates an order of mag-
nitude slower than network link bandwidth [9],

• reduced complexity in admission control processing be-
cause separate transfer schedules for each individual
client type are not required,

• reduced stream replication, since a single retrieval se-
quence and striping layout suffices for all clients.

Server-side prefetching addresses disk bandwidth and not
network utilization. However, our smoothing scheme ac-
cepts as input a specification of the quantity of data that
should be sent to the client over time. Thus, its operation
can be complemented with network smoothing techniques
for cases where clients have sufficient buffer resources.

In order to prevent excessive smoothing from exhausting the
available buffer space, we apply a novel scheme where data
prefetching is done as long as the proportion of server buffer
required by each stream does not exceed the correspond-
ing (decreased) proportion of the required disk bandwidth.
Thus, the smoothing process is adjusted automatically, ac-
cording to the total memory and disk bandwidth available
in the server configuration.

Another aspect we study in this paper is smoothing of vari-
able bit-rate streams striped across heterogeneous disks, some-
thing that has not been done previously as far as we know.
In the past, it was assumed that load-balancing and relia-
bility problems restrict the size of disk arrays across which
stream data can be striped efficiently [6, 28]. However, more
recently disk striping schemes that are scalable have been
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Figure 1: Compressed video streams are stored across mul-
tiple disks of the media server. Multiple clients can connect
and start playback sessions via a high-speed network.

introduced [1, 4]. It is important to consider the efficient
operation of a server with heterogeneous disks because this
allows server installations to be incrementally expanded us-
ing the most advanced and cost-efficient storage devices as
the system load increases. With the ratio between disk stor-
age capacity and disk bandwidth increasing by a factor of ten
every decade [9], disk accesses are becoming more precious.
Therefore, bandwidth is the particular disk resource that
our approach strives to use best.

This smoothing scheme was implemented in a prototype
server. Experiments with various MPEG-2 streams demon-
strated an increase in the system throughput that can reach
15% with homogeneous disks and can exceed a factor of
three with heterogeneous disks in the configuration that we
used.

The rest of this paper is structured as follows. In Section
2, we present a high-level description of the system archi-
tecture that we choose in our study. In Section 3, we in-
troduce the Server Smoothing algorithm and in Section 4,
we describe our experimentation environment, including the
stream benchmark used in our experiments. In Section 5,
we study the performance of Server Smoothing on homoge-
neous disks, and in Section 6, we extend the algorithm to
apply to heterogeneous disks. In Section 7, we validate our
arguments with detailed simulated disk measurements. In
Section 8, we summarize previous research, and relate it to
our work, and in Section 9 we summarize our conclusions.

2. SYSTEM ARCHITECTURE
2.1 Overview
The system we propose operates according to the server-
push model. When a playback session starts, the server
periodically sends data to the client until either the end
of the stream is reached, or the client explicitly requests
suspension of the playback. Data transfers occur in rounds
of fixed duration Tround. In each round, an appropriate
amount of data is retrieved from the disks into a set of server
buffers reserved for each active client. Concurrently, data
are sent from the server buffers to the client through the
network interfaces (Figure 1).

The amount of stream data periodically sent to the client
is determined by the decoding frame rate of the stream and
the resource management policy of the network. One rea-
sonable policy would send to the client during each round
the amount of data that will be needed for the decoding
process at the client in the next round; any other policy

that does not violate the timing requirements and buffering
constraints of the decoding client would be also acceptable.

The streams are compressed according to the MPEG-2 spec-
ification, or any other encoding scheme that supports con-
stant quality quantization parameters and variable bit rates.
The stream data are stored across multiple disks, as shown
in Figure 1. Playback requests arriving from the clients are
initially directed to an admission control module, where it is
determined whether enough resources exist to activate the
requested playback session either immediately or within a
limited number of rounds. A schedule database maintains
for each stream information on how much data needs to be
accessed from each disk in any given round, the amount of
server buffer space required, and how much data needs to be
transferred to the client. This scheduling information is gen-
erated when the media stream is first stored and is used for
both admission control and to control data transfers dur-
ing playback. It is possible that two or more replicas are
available for each stream file, with different corresponding
schedules.

2.2 Stride-Based Disk Space Allocation
In our experiments, we use a method called stride-based al-
location for allocating disk space [1]. In stride-based allo-
cation, disk space is allocated in large, fixed-sized chunks
called strides. The strides are chosen larger than the maxi-
mum stream request size per disk during a round. This size
is known a priori, since stored streams are accessed sequen-
tially according to a predefined (albeit variable) rate. When
a stream is retrieved, only the requested amount of data is
fetched to memory during a round, and not the entire stride.

Stride-based allocation eliminates external fragmentation,
while internal fragmentation remains negligible because of
the large size of the streams relative to strides, and because
a stride may contain data of more than one round. Another
advantage of this method is that it sets an upper-bound on
the estimated disk access overhead during retrieval; since
the size of a stream request never exceeds the stride size
during a round, at most two partial stride accesses will be
required to serve the request of a round on each disk.

2.3 Reservation of Server Resources
A mathematical abstraction of the resource requirements
is necessary for scheduling purposes. Initially, we consider
a system with D functionally equivalent disks, although a
more general case of heterogeneous environments is exam-
ined later. In the following sequence definitions, a zero value
is assumed outside the specified range.

The stream Network Sequence, Sn, of length Ln defines the
amount of data, Sn(i), 1 ≤ i ≤ Ln, that the server must send
to a particular client during round i of its playback. The
Buffer Sequence, Sb, of length Lb = Ln+1 defines the server
buffer space, Sb(i), 0 ≤ i ≤ Lb, required by the stream data
during round i. The Disk Sequence Sd of length Ld = Ln

defines the total amount of data, Sd(i), 0 ≤ i ≤ Ld − 1,
retrieved from all the disks in round i for the client. We
assume that stream data are stored on the disks in logical
blocks of fixed size Bl, which is multiple of the physical
sector size Bp of the disk. Both the disk transfer requests
and the memory buffer reservations are specified in multiples



of the block size Bl. The Disk Striping Sequence Sm of
length Ld determines the amount of data Sm(i, k), 0 ≤ i ≤
Ld − 1, that are retrieved from disk k, 0 ≤ k ≤ D − 1, in
round i. It can be easily derived from the corresponding
disk sequence Sd according to the striping method used.

We assume that each disk has edge to edge seek time TfullSeek,
single-track seek time TtrackSeek, average rotational latency
TavgRot, and minimum internal transfer rate Rdisk. The
stride-based disk space allocation policy enforces an upper
bound of at most two disk arm movements per disk for each
client per round. The total seek distance can also be limited
using a CSCAN disk scheduling policy. Let Mi be the num-
ber of active streams during round i of the system operation,
and lj the round of system operation that the playback of
stream j, 1 ≤ j ≤ Mi, started. Then, the total access time
on disk k in round i of the system operation will have an
upper-bound of:

Tdisk(i, k) =2TfullSeek + 2Mi · (TtrackSeek + TavgRot)

+

Mi∑

j=1

Sj
m(i− lj , k)/Rdisk

where Sj
m is the disk striping sequence of client j. TfullSeek

is counted twice due to the disk arm movement from the
CSCAN policy, while the factor two in the second term is
due to the stride-based allocation scheme we use. The first
term should be accounted for only once in the disk time
reservation structure of each disk, but each client j incurs
an extra access time of

T j
disk(i, k) = 2 · (TtrackSeek + TavgRot)

+ Sj
m(i− lj , k)/Rdisk

on disk k during round i, when Sj
m(i − lj , k) > 0, and zero

otherwise. Reservations of network bandwidth and buffer
space are more straightforward, and based on the network
and buffer sequence of each accepted playback request, re-
spectively.

2.4 Variable-Grain Striping
In Variable-Grain Striping, the data retrieved during a round
for a client are always accessed from a single disk, and the
disks are used in round-robin fashion in successive rounds.
The disk striping sequence determines the particular sin-
gle disk accessed and the exact amount of data retrieved
during each round. Comparison with alternative striping
techniques has shown significant performance benefit for
Variable-Grain Striping [1], and this is the method that we
use in the present study.

3. SERVER-BASED SMOOTHING
3.1 Outline
Previous studies have pointed out the potentially low disk
utilization (and system throughput) achieved when retriev-
ing variable bit-rate streams, and the need for appropriately
prefetching data into the server buffers [15, 22]. A simi-
lar utilization problem was also studied in the context of
network links carrying variable bit-rate streams, where it
was proposed to smooth bit-rate peaks along a stream by
prefetching data into client buffers [7, 25]. It was shown

that such an approach can improve bandwidth utilization
in both disks and network links, but is dependent on the
memory configuration of individual clients.

Here, we consider smoothing out disk bandwidth peaks by
prefetching stream data into server buffers. One crucial is-
sue with disk prefetching is how to maintain an appropriate
balance between disk bandwidth and server buffer space us-
age. Too aggressive prefetching can limit the number of
concurrent streams that can be supported because of exces-
sive server buffer usage [15]. Existing client-based smooth-
ing algorithms do not have this problem, due to their im-
plicit assumption of a fixed available client buffer size. The
client buffer space need not be multiplexed among different
streams as is the case when buffering is done at the server.

Intuitively, we propose a stream scheduling procedure that
specifies for each stream both the variable server buffer and
disk bandwidth requirements over time. A disk block b orig-
inally scheduled for round i may be prefetched in a previous
round j only if: i) the disk bandwidth requirement in round
j with the prefetched block does not exceed the original
disk bandwidth requirement of round i, and ii) the fraction
of server buffer required in each of the rounds j up to i− 1,
after prefetching block b, may not exceed the fraction of disk
bandwidth required in round i without b. The first condition
is necessary in order for the prefetching to have a smoothing
effect on the disk bandwidth requirements over time. The
second condition is a heuristic that we apply in order to
prevent exhaustion of the server buffer. Both conditions are
applied to individual streams, and we experimentally study
their effect when serving multiple streams concurrently.

Knowing the data amount that needs to be retrieved from
the disks during stream playback is important information
that can be used during stream storage. Appropriate strip-
ing methods that take advantage of this information have
been previously shown to achieve significantly increased sys-
tem throughput with respect to striping methods of fixed-
size block [1]. On the other hand, a retrieval sequence that
is fixed a priori might ignore the exact resource tradeoffs
that occur during system operation, when different stream
playbacks are multiplexed. We evaluate later in detail the
resource utilizations that are achieved with our approach
of using the retrieval sequence to determine the striping
method.

3.2 Limitations of Previous Approaches
For several reasons, previous client-based smoothing algo-
rithms are inadequate for solving the server-based smooth-
ing problem:

1. Unlike network transfer delays, disk access delays in-
clude mechanical movement overhead and cannot be
accurately expressed in terms of bit rates only.

2. The prefetching constraints that we use span resources
of different types and measures (e.g. access delays,
data amounts) and it is difficult to describe them using
data amounts only. This is not a problem, when the
only constraint is the total buffer space available at
the client.



0. proc serverSmoothing
1. input : Ln, Sn[] ( =0 outside [1..Ld] ), Bl

2. output : Ld, Sd[], Lb, Sb[]
3. begin
4. blockQuantize(Ln, Sn[], Bl) (* see App. B *)
5. for trnd : 0..Ln-1
6. if ( Pbuf (Sb(trnd)) < Pdsk(Sd(trnd)) )
7. repeat
8. tmin := trnd

9. Pmin := max( Pdsk(Sd(trnd)), Pbuf (Sb(trnd)) )
10. tprv := trnd − 1, prefFailed := false
11. while ( prefFailed = false AND tprv >= 0 )
12. Pprf = max( Pdsk(Sd(tprv) + Bl),
13. Pbuf (Sb(tprv) + Bl) )
14. Pshf = max( Pdsk(Sd(tprv)),
15. Pbuf (Sb(tprv) + Bl) )
16. (*check for max proportion decrease*)
17. if (Pprf < Pmin)
18. tmin = tprv, Pmin = Pprf

19. else if (Pmin < Pshf )
20. prefFailed := true
21. end-if
22. tprv := tprv − 1
23. end-while
24. if (tmin < trnd) (* update vectors *)
25. Sd(tmin) := Sd(tmin) + Bl,
26. Sb(tmin) := Sb(tmin) + Bl

27. for tprv := tmin + 1 .. trnd − 1
28. Sb(tprv) := Sb(tprv) + Bl

29. end-for
30. Sd(trnd) := Sd(trnd) − Bl

31. end-if
32. until (tmin >= trnd) (*prefetch search failed*)
33. end-if
34. end-for
35. end

Figure 2: The Server Smoothing algorithm generates ma-
jorization minimal disk sequence with the disk bandwidth
proportion bounding above the corresponding server buffer
proportion.

3. Our constraints are complex and can only be conve-
niently expressed as inequalities continuously evalu-
ated during the execution of the algorithm. There is
no obvious way to represent them as fixed vectors ini-
tialized at the beginning of the algorithm.

Instead, we introduce a new smoothing algorithm that is
more general than previous ones, and gives more flexibility
and expressibility in representing the required optimization
conditions.

3.3 Basic De£nitions
We use a “smoothness” criterion that is based on Majoriza-
tion Theory [17, 25]. For any x = (x1, . . . , xn) ∈ Rn, let
the square bracket subscripts denote the elements of x in
decreasing order x[1] ≥ · · · ≥ x[n]. For x,y ∈ Rn, x is
majorized by y, x ≺ y, if:

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, · · · , n− 1

and

n∑

i=1

x[i] =
n∑

i=1

y[i].

Then, we consider x smoother than y, if x ≺ y. Finally,
we call a vector x ∈ Rn majorization-minimal if there is no
other vector z ∈ Rn such that z ≺ x.

From section 2.3, the disk time reservation for a disk transfer
of X bytes is approximately equal to:

Tdisk(X) = 2 · (TtrackSeek + TavgRot) + X/Rdisk.

Before further explaining the algorithm, we introduce the
following definitions.

Definition 1 Let the Disk Time Proportion of X bytes,
Pd(X), be the fraction of the round time Tround that the disk
time reservation Tdisk(X) occupies: Pd(X) = Tdisk(X)/Tround.
Further let the Buffer Space Proportion of X bytes, Pb(X),
be the fraction of the buffer space for each disk, Bdisk,1 that
X bytes occupy in a round: Pb(X) = X/Bdisk. Then, the
Maximum Resource Proportion in round i, is the maximum
of the corresponding disk time and buffer space proportions
in that round: max(Pd(Sd(i)), Pb(Sb(i))).

Definition 2 The Deadline Round for a block is the lat-
est round at which the block can be accessed from the disk
without incurring a real-time violation at the network trans-
fer. Then, with respect to a specific block, all rounds before
the deadline round are considered Candidate Rounds and
the one actually chosen for prefetching is called the Prefetch
Round. All the rounds between the deadline and a prefetch
round are called Shift Rounds.2

Definition 3 We define as the Maximum-Proportion Con-
straint the requirement that the maximum resource propor-
tion of the deadline round is no less than the maximum
resource proportion of the corresponding (if any) prefetch
and shift rounds.

3.4 The Algorithm
In the rest of this section we describe an algorithm that,
given a stream network sequence Sn and a target server con-
figuration, generates a smoothed disk sequence Sd. We show
that the generated disk sequence is majorization-minimal
under the specified constraints. The generated disk sequence
can be subsequently transformed into a striping sequence
Sm according to some disk striping method, such as the
Variable-Grain Striping.

The Server Smoothing algorithm of Figure 2 initially invokes
the blockQuantize procedure (see appendix B) that gener-
ates disk and buffer sequences with data transfer sizes that
are integral multiples of the logical block Bl. Network trans-
fers are specified in byte granularity for increased flexibility
(if necessary, they could be quantized too). Then, rounds of
the generated sequences are visited in increasing order start-
ing from round zero. For every logical block to be retrieved
from the disk in the currently visited round, previous rounds
are examined linearly in decreasing order towards round zero
for potential prefetching of the block. Each such search com-
pletes successfully when a prefetch round is found such that
the maximum resource proportion of the current round de-
creases while remaining higher than those of the prefetch
and shift rounds. Below, we show that the algorithm works
correctly.

1Bdisk is the total server buffer divided by the number of
disks D.
2These definitions only affect the number of blocks accessed
in each round, since stream block accesses are done sequen-
tially during playback.



Lemma 1 The Server Smoothing algorithm chooses the prefetch
round for each block in a way that satisfies the following
properties: i) No network transfer timing violation occurs.
ii) No maximum-proportion constraint violation occurs. iii)
It has the lowest possible disk time proportion. iv) It is clos-
est to the deadline round. Property (iii) prevails when in
conflict with property (iv).

Proof: Available in appendix A.

Definition 4 If β1 ≥ · · · ≥ βn are integers and βi > βj ,
then the transformation β′

i = βi − 1, β′
j = βj + 1, β′

k = βk,

for all k 6= i, j is called a transfer from i to j.3

Lemma 2 (Muirhead, 1903 [19]) If α1, . . . , αn, β1, . . . , βn

are integers and α ≺ β, then α can be derived from β by
successive applications of a finite number of transfers.

Proof: See Marshall and Olkin [17], pg. 135.¤

In the presentation that follows transfer units correspond to
logical blocks of size Bl as opposed to individual bytes.

Lemma 3 The Server Smoothing algorithm produces disk
sequence that satisfies the properties of Lemma 1, and has
no transfer that would not violate them.

Proof: Available in appendix A.

Theorem: 1 The Server Smoothing algorithm generates a
majorization-minimal disk sequence that satisfies the prop-
erties of Lemma 1.

Proof: From Lemma 3, the disk sequence generated by
the Server Smoothing algorithm satisfies the properties of
Lemma 1 and has no transfer that would not violate them.
Then, from Lemma 2, there is no other sequence that satis-
fies the properties of Lemma 1 and is majorized by the disk
sequence generated by the Server Smoothing algorithm. If
such a sequence existed, additional block transfers would be
acceptable.¤

The computational complexity of the Server Smoothing al-

gorithm is O(
∑Ln

i=1 Sn(i)
Bl

L2
n), where Sn is the input network

sequence and Ln is its length. Although it may be possible
to reduce this complexity, practically the application of this
algorithm on a video stream of 30 minutes completes in tens
of seconds in our experiments on a 133MHz RISC processor
with Bl = 16KB, Ln = 1, 800 and

∑Ln
i=1 Sn(i) = 1.12 · 109.

Since the schedule generation is done off-line, the above ex-
ecution time is acceptable. The higher computational com-
plexity relative to the O(Ln) complexity of network smooth-
ing algorithms [25] is the extra cost for avoiding the “hard-
wired” fixed client buffer constraint. The Server Smoothing
algorithm can generate majorization-minimal disk sequence
with several buffer constraints, including the fixed buffer of
network smoothing algorithms as a special case.

3The term transfer that we borrow from the original defini-
tion [19], should not be confused with regular data transfers.

Content Avg Bytes Max Bytes CoV
Type per Round per Round per Round
Science Fiction 624,935 1,201,221 0.383
Music Clip 624,728 1,201,221 0.366
Action 624,194 1,201,221 0.245
Talk Show 624,729 1,201,221 0.234
Adventure 624,658 1,201,221 0.201
Documentary 625,062 625,786 0.028

Table 1: We used six MPEG-2 video streams of 30 minutes
duration each. The coefficient of variation shown in the last
column changes according to the content type.

4. EXPERIMENTATION ENVIRONMENT
4.1 Prototype Overview
We have designed and built a media server experimentation
platform, in order to evaluate the resource requirements of
alternative stream scheduling techniques. The modules are
implemented in about 12,000 lines of C++/ Pthreads code
on AIX4.1. The code is linked either to the University of
Michigan DiskSim disk simulation package [8], which incor-
porates advanced features of modern disks such as on-disk
cache and zones for simulated disk access time measure-
ments, or to hardware disks through their raw device in-
terfaces [2]. The indexing metadata are stored as regular
Unix files, and during operation are kept in main memory.

The basic responsibilities of the media server include file
naming, resource reservation, admission control, logical to
physical metadata mapping, buffer management, and disk
and network transfer scheduling.

With appropriate configuration parameters, the system can
operate at different levels of detail. In Admission Control
mode, the system receives playback requests, does admission
control and resource reservation, but no actual data trans-
fers take place. In Simulated Disk mode, all the modules
become functional, and disk request processing takes place
using the specified DiskSim [8] disk array. There is also the
Full Operation mode, where the system accesses hardware
disks and transfers data to fixed client network addresses.
For the experiments in the current study, we mostly used
the Admission Control mode of our system, except for the
validation in section 7 where Simulated Disk Mode was used.

4.2 Performance Evaluation Method
We assume that playback initiation requests arrive inde-
pendently of one another, according to a Poisson process.
The system load can be controlled through the arrival rate
λ of playback initiation requests. Assuming that the disk
transfers form the bottleneck resource, we consider the ideal
system, with no disk overhead when accessing disk data,
as “perfectly efficient system.” Then, we choose the max-
imum arrival rate λ = λmax of playback requests equal to
the mean stream completion rate in that perfectly efficient
system. This creates enough system load to show the perfor-
mance benefit of arbitrarily efficient data striping policies.
The mean stream completion rate µ, expressed in streams
per round, for streams of average data size Stot bytes be-
comes:

µ =
D ·Rdisk · Tround

Stot

streams

round
. (1)

The corresponding system load becomes: ρ = λ
µ
≤ 1, where

λ ≤ λmax = µ.



Seagate Cheetah ST-34501N
Data Bytes per Drive 4.55 GB
Average Sectors per Track 170
Data Cylinders 6,526
Data Surfaces 8
Zones 7
Buffer Size 0.5 MB
Track to Track Seek(read/write) 0.98/1.24 msec
Maximum Seek(read/write) 18.2/19.2 msec
Average Rotational Latency 2.99 msec
Internal Transfer Rate
Inner Zone to Outer Zone Burst 122 to 177 Mbit/s
Inner Zone to Outer Zone Sustained 11.3 to 16.8 MB/s

Table 2: Features of the Seagate SCSI disk assumed in our
experiments.

In the admission control process, when a playback request
arrives, it is checked whether available resources exist for
every round during playback. The test considers the exact
data transfers of the requested playback for every round and
also the corresponding available disk transfer time, network
transfer time and buffer space in the system. If the request
cannot be initiated in the next round, the test is repeated
for each round up to d 1

λ
e rounds into the future, until the

first round is found where the requested playback can be
started with guaranteed sufficiency of resources. Checking
d 1

λ
e rounds into the future achieves most of the potential

system capacity as was shown previously [1]. If not accepted,
the request is rejected rather than being kept in a queue.

As the basic performance metric we choose the average num-
ber of active playback sessions that can be supported by the
server. The objective is to make this number as high as
possible.

4.3 Experimentation Setup
We used six different VBR MPEG-2 streams of 30 minutes
duration each. Each stream has 54,000 frames with a reso-
lution of 720x480 and 24 bit color depth, 30 frames per sec-
ond frequency, and a IB2PB2PB2PB2PB2 15 frame Group of
Pictures structure. The encoding hardware that we use al-
lows the generated bit rate to take values between 1Mbit/s
and 9.6Mbit/s. The statistical characteristics of the clips
are given in Table 1. The coefficients of variation of bytes
per round lie between 0.028 and 0.383, depending on the
content type. In our mixed basic benchmark, the six differ-
ent streams are submitted round-robin. Where appropriate,
experimental results from individual stream types are also
shown.

For experimentation with homogeneous disks, we assumed
Seagate Cheetah SCSI disks, with the features shown in Ta-
ble 2.4 Except for the much larger storage capacity in the
latest models, the rest of the performance numbers are typ-
ical of today’s high-end drives. The logical block size Bl

was set to 16KB bytes, while the physical sector size Bp

was equal to 512 bytes. The stride size Bs in the disk space
allocation was set to 2 MB. The server memory is organized

4Note that one megabyte (megabit) is considered equal to
220 bytes (bits), except for the measurement of transmission
rates and disk storage capacities where it is assumed equal
to 106 bytes (bits) instead [11].
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Figure 3: Example of applying the Server Smoothing algo-
rithm. We depict the disk time and buffer space propor-
tion in the system (a) before, and (b) after applying Server
Smoothing. The maximum disk time proportion drops from
11.5% to 8.7%, while the maximum buffer space proportion
increases from less than 1% to 8.7%. The Seagate Cheetah
disk parameters are assumed and server buffer of 256 MB
per disk.

in buffers of fixed size Bl = 16KB bytes each, with a typi-
cal total space of 256 MB for every extra disk. (The effect
of buffer space is examined later.) The available network
bandwidth was assumed to be infinite, leaving contention
for the network outside the scope of the current work.

In our experiments, the round time was set equal to one
second.5 We used a warmup period of 3,000 rounds and
calculated the average number of active streams from round
3,000 to round 9,000. The measurements were repeated until
the half-length of the 95% confidence interval was within 5%
of the estimated mean value of the number of active streams.

5. STUDY OF HOMOGENEOUS DISKS
We start with a study of disk arrays consisting of function-
ally equivalent disks. In Figure 3, we depict the disk time
and buffer space proportions in each round for a particular
stream. Without smoothing (Fig. 3(a)), the occupied buffer
space is the minimum necessary for data staging during disk
and network transfers. With Server Smoothing (Fig. 3(b)),
data are prefetched into the server buffer according to the
maximum-proportion constraint. This keeps the maximum
buffer space proportion to be no more than the maximum
disk time proportion (8.7% in this example).

In Figure 4 we can see the number of active streams that can
be sustained at different system loads and array configura-
tions with between 4 and 64 disks using the mixed workload.
In all the cases shown, the stream data have been striped ac-
cording to the Variable-Grain Striping method. The Server-
Smoothed plots show the performance benefit of applying
the Server Smoothing algorithm assuming 256 MB of avail-
able server buffer space for each extra disk (we try later other
server buffer sizes). At moderate load (ρ = 50%), Variable-
Grain Striping with no smoothing allows all stream requests
to be accepted. At a higher load (ρ = 90%) the Server
Smoothing can improve throughput by over 10%. The cor-
responding rejection rate (not shown) is 25% with Server

5We found this round length to achieve most of the sys-
tem capacity with reasonable initiation latency. This choice
also facilitates comparison with previous work in which one
second rounds were used.
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Figure 4: With the mixed workload and Variable-Grain
Striping (with/without Server Smoothing), the sustained
number of active streams increases almost linearly with the
number of disks. Although at system load 50% all the sub-
mitted streams are accepted, at load 90% Server Smoothing
increases the number of active streams by about 10%. This
benefit is maintained across different numbers of disks.
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Figure 5: The advantage of Server Smoothing when applied
to Variable Grain Striping can exceed 15% (Action) depend-
ing on the stream type. The load was set to 90% on sixteen
disks and 256 MB per disk were assumed.

Smoothing, and 41% with plain Variable Grain Striping, at
90% load.

Results for individual stream types are shown in Figure 5.
We find that the benefit of Server Smoothing depends on the
variability of data transfers across different rounds. Thus,
although smoothing adds no benefit at streams with negli-
gible variability (e.g. Documentary), as variation becomes
higher, the increase in the number of streams can exceed
15% (Action).

Figure 6 shows the average total reserved disk time Tdisk(i, k)
(expressed as percentage of round time) on a particular disk
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Figure 6: With sixteen disks and 90% system load, the av-
erage disk time reserved each round increases from less than
80% to over 90% with Server Smoothing and server buffer
256 MB per disk. Although the disk time shown corresponds
to one of the disks (Disk 0) it was similar (typically within
2%) across the disks of the array.
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Figure 7: With buffer space (per disk) set to 64 MB, more
than half of the total benefit of Server Smoothing can be
achieved (see also Figure 5). Increasing the buffer space to
256 MB farther improves the number of streams in Science
Fiction and Action types although at a diminishing degree.

(k = 0) during the measurement period 3, 000 ≤ i < 9, 000.
While for most stream types the average disk time hardly
exceeds 80% of the round time with plain Variable-Grain
Striping, it consistently approaches 90% and in several cases
exceeds 93% (Action, Music Clip, Talk Show) when Server
Smoothing is applied. This is remarkably high when com-
pared to the 96% achieved by Documentary that has very
low variation of data transfer sizes across different rounds.

Statistics gathered across the different stream workloads
showed that the average occupied proportion of the available
buffer space was about 50%, and the maximum hardly ex-
ceeded 60% at 90% load. Although in individually smoothed
streams the buffer space requirement is allowed to reach that
of disk bandwidth (in terms of proportions), the aggregate



HP-C3323A
Data Bytes per Drive 1,052,491,776
Data Sectors per Track 72 to 120
Data Cylinders 2,910
Data Surfaces 7
Zones 8
Buffer Size 0.5 MB
Track to Track Seek < 2.5 msec
Maximum Seek 22 msec
Rotational Latency 5.56 msec +/- 0.5%
Internal Transfer Rate
Inner to Outer Zone Burst 4.0 to 6.6 MB/s
Inner to Outer Zone Sustained 2.8 to 4.7 MB/s

Table 3: Features of the HP SCSI disk that is included in
the experiments for heterogeneous environments.

buffer space requirement turns out to be lower. This is a re-
sult of the way resource requirements of individual streams
are multiplexed during system operation. The original con-
straint of preventing excessive prefetching from overflowing
the available buffer space is still satisfied. Further increasing
the aggregate buffer demand, without the buffer becoming
a potential bottleneck in the system, would require incorpo-
rating into the algorithm information about the way stream
requests are multiplexed.

In our experiments until now, we have assumed a server
buffer of 256 MB per disk. From Figure 7 we can con-
clude that more than half of the Server Smoothing benefit is
achieved with server buffer size as low as 64 MB per disk. We
still believe that our assumption of 256 MB server memory
(per disk) in the smoothing process is reasonable, however.
The additional performance benefit from extra memory is
sustained across different system sizes as was shown in Fig-
ure 4, with the purchase and administration cost of server
memory being only a fraction of the costs associated with
high-end disk drives.

6. STUDY OF HETEROGENEOUS DISKS
It has traditionally been assumed that disk arrays consist
of homogeneous disks, presumably in order to keep the sys-
tem complexity manageable. With the scalability of stream
striping demonstrated recently [4, 1] and the sequential ac-
cess of stored video making things somewhat simpler, it is in-
teresting to investigate systems with different disk types that
might have been upgraded incrementally with the newest
disk technology. Newer disk models typically achieve higher
transfer rates and have larger storage capacities.

In this section, we study the case of striping stream data
across heterogeneous disk arrays. Our objective is to max-
imize the number of active streams by increasing the disk
bandwidth utilization across all the disks. This might lead
to suboptimal storage capacity utilization, which we assume
is affordable given the current technology trends [9].

In our experiments, we assume disk arrays consisting of Sea-
gate (Table 2) and older HP disks in alternating order. The
features of the HP disks are shown in Table 3. We note
a striking difference in the minimum internal transfer rate,
which is 2.8 MB/s for the HP disks, one fourth as much as
the 11.3 MB/s of the Seagate disks. Such a difference only
makes the balancing of the system load more challenging.
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Figure 8: Example of stream Server Smoothing, in disk array
configuration with Seagate and HP disks in alternating or-
der. The much lower bandwidth of the older HP disk model
leads to disk time proportion exceeding 40% in some of the
rounds. When Server Smoothing is applied, disk transfers
are appropriately adjusted to smooth out the peaks and keep
the maximum reservation below 13%. At the same time, the
maximum server buffer proportion is constrained to never
exceed the maximum disk time proportion.
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Figure 9: With the mixed workload and plain Variable-
Grain Striping, the sustained number of active streams re-
mains the same as the load is raised from 50% to 90%. In-
stead, when Variable-Grain Striping is combined with Server
Smoothing the number of streams increases by a factor of 2
at 50% and more than a factor of 3 at 90% load, when
compared to that achieved by plain Variable-Grain Striping.
Server buffer space of 256 MB per disk has been assumed.

Although the experiments in this section assume an equal
number of disks of each type, we also tried other ratios in
the number of disk types and obtained similar results.

.

In Figure 8(a) we depict an example of a stream striped
across an heterogeneous disk array. The lower transfer rate
of the HP disks creates peaks of disk time proportion that
can exceed 40%. In order to alleviate this problem, we ex-
tend the Server Smoothing algorithm to handle heteroge-
neous disks. In particular, we redefine the disk time Tdisk(X)
and the disk time proportion function Pd(X) to accept a sec-
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Figure 10: Applying Server Smoothing on different stream
types, can lead to an increase in the number of streams by
more than a factor of 3 at 90% load and server buffer 256
MB per disk.

ond disk type argument k that specifies the particular disk

parameters to be used Pd(X, k) = Tdisk(X,k)
Tround

. During the

operation of the Server Smoothing algorithm, the disk type
k assumed in each round i can be derived using a simple
rule, such as k = i(mod D), where D is the total number of
the disks. Finally, if Rk

disk is the minimum internal transfer
rate of disk k, the service rate definition of Eq. (1) becomes:

µ = (Tround ·
∑D−1

k=0 Rk
disk)/Stot

streams
round

.

We applied the extended Server Smoothing algorithm on
the stream example of Figure 8(a). The generated transfer
sequence, shown in Figure 8(b), has its buffer space pro-
portion bounded by the disk time proportion, as before. In
addition the maximum disk time proportion dropped from
over 40% to less than 13%, after the transfer sizes across dif-
ferent rounds were appropriately adjusted according to the
available disk bandwidth.

In Figure 9, we compare the performance of plain Variable-
Grain Striping to that of Variable-Grain Striping with Server
Smoothing in a range of heterogeneous disks between 4 and
64. Although the number of streams always increases al-
most linearly with the number of disks, Server Smoothing
can achieve an advantage that exceeds a factor of 2 and 3 at
loads of 50% and 90%, respectively. The reason is that the
limited disk bandwidth of the HP disks, prevents the Sea-
gate disks from attaining high bandwidth utilization with-
out appropriate adjustment of the disk transfers. A similar
behavior is also demonstrated across different stream types
in Figure 10. With plain Variable-Grain Striping, the num-
ber of supported streams on sixteen disks hardly exceeds 50;
when Server Smoothing is added the number of streams gets
close to 140.

In Figure 11, we depict the average time that the Seagate
and HP disks are expected to be busy respectively during
each round. We show the statistics for disks 0 and 1 only,
since the statistics for the rest of the disks were similar. As
we see, the average time that the Seagate disks are busy is
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Figure 11: The two leftmost bars of each stream type, show
the average reserved disk time for the Seagate (STN) and
HP (HPC) disks, assuming plain Variable Grain Striping
and 90% load. The lower transfer bandwidth of the HP disk
creates a bottleneck keeping the reserved disk time of the
Seagate disk to less than 25% of the round time. As is shown
by the two rightmost bars though, with Server Smoothing
both disk types attain average disk time close to 90% of the
round time.
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Figure 12: With the server buffer (per disk) set to 64 MB,
most of the benefit of Server Smoothing can be attained
(see also Figure 10). Increasing the server buffer from 64
MB to 256 MB increases only marginally (less than 5%) the
sustained number of active streams.

less than 25% of the round time with plain Variable-Grain
Striping. The reason is the low bandwidth of the HP disks,
whose corresponding average time varies between 50% and
80%; it cannot get higher due to the relatively large data re-
quirements of the individual streams. When Server Smooth-
ing is applied, a high average reserved disk time that gets
close to 90% is achieved across all the disks of the disk ar-
ray. This becomes possible with appropriate data prefetch-
ing that distributes data accesses across the disks according
to the bandwidth that they can support.

In the previous experiments we set the server buffer to 256
MB per disk. However, as we can see from Figure 12, having
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Figure 13: In an array of four disks, Seagate (STN) and
HP (HPC) models are used in alternating order. The aver-
age and maximum reserved and measured time is shown for
the disks 0 and 1 of the array with the mixed workload at
90% load. On the STN disks, the reserved statistics are no
more than 8% higher than the measured. On the HPC disk,
the corresponding difference can get up to 20%. The mea-
surements have been done using the detailed disk simulation
models by Ganger et al.

only 64 MB per disk is sufficient to get most of the benefits
of Server Smoothing for the particular streams included in
our benchmark.

7. VALIDATION IN SIMULATED DISK
MODE

In order to keep the computation time reasonable, the pre-
vious experiments were conducted with our system in Ad-
mission Control mode, where resource reservations are made
for arriving playback requests, but without actual time mea-
surement of the individual disk transfers. In the present sec-
tion, we use Simulated Disk Mode to compare the statistics
of the disk time reservations with the statistics gathered over
the access times of all individual data transfers involved, us-
ing the DiskSim representation of the Seagate Cheetah and
HP C3323A disks [8]. A four-disk array model is used with
the disk types in alternating order. Each disk is presumed
to be attached to a separate 20 MB/sec SCSI bus, and no
contention is assumed on the host system bus connecting
the SCSI buses. The statistics are gathered during 6,000
rounds after a warmup period of 3,000 rounds, as before
and the mixed workload is used. The server can support
9.74 active streams with plain Variable-Grain Striping and
33.87 active streams with Server-Smoothed Variable-Grain
Striping corresponding to a 90% load.

As can be seen from Figure 13, in both the average and max-
imum case, the reserved disk time is no more than 8% higher
than the corresponding measurements on the Seagate disk
model by Ganger et al.[8]. This gap can be attributed to the
fact that our disk time reservation assumes a minimum disk
transfer rate and ignores on-disk caching. The correspond-
ing gap for the HP disks gets close to 15% with plain striping
and 20% with Server Smoothing. Possible reasons for the

larger discrepancy with the HP disks are the increased on-
disk cache locality due to the smaller disk capacity, and the
higher probability that only one head movement is required
with the smaller data transfers (smoothed case).

In general, we believe that the achieved accuracy in the disk
time predicted by the resource reservation is adequate. In
fact, to improve these estimates, it would probably be nec-
essary to have extra disk geometry information that is not
readily available for commercial disk drives [30].

8. RELATED WORK
Several smoothing techniques deal with network link trans-
fers of stored video streams. Salehi et al. describe a network
smoothing technique to minimize the variability of network
bandwidth requirements assuming a fixed-size client buffer
[25]. Feng and Rexford compare the scheme of Salehi et al.
with alternative schemes that minimize the total number
of network bandwidth increases or decreases [7]. McManus
and Ross introduce a dynamic programming methodology
for scheduling network transfers [18]. Zhao and Tripathi
describe a class of algorithms that minimize the maximum
required network bandwidth when multiplexing stream net-
work transfers to multiple clients [31]. All of these studies
are complementary to our work, since our algorithm focuses
on the management of the server disk bandwidth and server
buffer space, and can accommodate any valid specification
of data amounts that should be sent to the client over time.

Other related research tries to improve network link utiliza-
tion for live video. Rexford et al. use client data prefetching
for smoothing live video streams, where the stream require-
ments are known only for a limited period of time instead
of the entire playback period [23]. Mansour et al. examine
several resource tradeoffs in live video smoothing [16]. Ideas
from live video smoothing are combined with prefix caching
for smoothing streams in network proxies, assuming extra
knowledge of quality of service parameters about the client
not usually available at the server [27]. This study is con-
sistent with our own assumptions about limited knowledge
of client resources at the server.

Several studies have considered server-side resource manage-
ment. Patterson et al. apply a cost-benefit analysis in order
to control the disk bandwidth versus data buffer size trade-
off for general applications [21]. Paek and Chang propose
an approach that, given a set of streams, optimizes a “gen-
eral objective function” by controlling the maximum disk
bandwidth and buffer space available to each stream [20].
One difference relative to our server-based smoothing algo-
rithm is that we determine the memory-bandwidth tradeoff
before stream storage, and we use it during striping. Reddy
and Wijayaratne have experimented with the effect of client-
based smoothing on alternative disk striping methods; they
point out the need for also studying server-based prefetch-
ing techniques in their future work [22]. Other schemes that
have been proposed require that a certain amount of data
be retrieved into the server buffer before playback can start,
which reduces responsiveness [3, 14]. In addition, previ-
ous studies are limited to single disk systems with fixed-size
transfers only [3]. It has been shown that allowing vari-
ability in the transfer sizes can increase system throughput
[1].



Sahu et al. [24] find a limited smoothing effect when increas-
ing the round time in variable-size transfers and the block
size in fixed-size transfers. Additional smoothing benefit
is achieved with deadline-based scheduling of disk transfers
that minimize the maximum required buffer space and disk
bandwidth. However, that study is limited to single-disk
systems. It remains unclear how deadline-based algorithms
for admission control and disk scheduling are extended and
actually perform when data are striped across multiple disks.
The striping method itself can affect significantly the disk
access efficiency and the data prefetching flexibility for re-
ducing the load imbalance across the system.

Kim et al.[12] outline some ideas on how to control the
tradeoff between buffer and disk bandwidth utilization in
stored video streaming. Their work differs from ours in sev-
eral aspects, and they specify no concrete algorithm for the
problem. Their approach divides the stream into arbitrary
length segments according to an “empirical threshold”, al-
pha. Prefetching is done only within a segment, and it is
controlled by an “empirical threshold”, beta. Their disk
bandwidth definition ignores the disk arm movement de-
lays and the round duration, and their simulation study is
limited to single disk systems only. In contrast, we pro-
pose a smoothing algorithm that prevents the required pro-
portion of server buffer from exceeding the correspondingly
decreased proportion of the required disk bandwidth. We
prove that the algorithm achieves optimally smoothed disk
transfer sequence under the specified constraints.

A significant amount of previous work also addresses efficient
retrieval of stream data from heterogeneous disks. Dan and
Sitaram suggest that multiple heterogeneous storage devices
may coexist in a video server environment [6]. Consider-
ing the complexity of striping data across all the devices,
they propose clustering homogeneous devices into groups
and describe a dynamic data placement policy to keep the
bandwidth and storage space utilization high. Chou et al.
propose dynamic object replication techniques for improving
utilization across different groups of disks [5]. Santos and
Muntz use randomized replication techniques for load bal-
ancing of heterogeneous disk arrays [26], while other studies
try to achieve that with alternative disk array organizations
and striping methods [29, 32]. Unlike all these methods,
which are applicable (or have been demonstrated to work)
only for constant rate streams, we propose a smoothing tech-
nique for efficiently striping variable bit-rate streams across
heterogeneous disks.

9. CONCLUSIONS
Recently, thin client devices have emerged that are soon
expected to outnumber powerful desktop computers. They
motivate the development of resource management policies
that make minimal assumptions about the available client
capabilities.

In this paper, we introduce the Server Smoothing algorithm
that uses data prefetching into server buffers for smoothing
disk transfers of variable bit-rate streams. The algorithm is
greedy and is shown to have optimal smoothing effect under
the specified constraints. Experimentation with homoge-
neous disk arrays and moderate server buffer space demon-
strates that Server Smoothing can achieve more than 15%

increase in the number of streams that can be supported by
the server. This benefit is sustained across different numbers
of disks that we examine.

We also use the Server Smoothing algorithm for striping
variable bit-rate streams across arrays of heterogeneous disks.
When plain disk striping is used, disks with lower trans-
fer rates prevent the system from reaching high utilization.
With Server Smoothing, the average reserved disk access
time can get as high as 90% of the round time across the
different disks. The corresponding benefit in the number of
streams accepted by the server exceeds a factor of three for
the particular disk array configuration that we use.

One important issue that remains open is designing ap-
propriate replication techniques for tolerating disk failures
in heterogeneous disk environments. In our future work,
we also plan to consider potential contention in the net-
work, and include in our experimentation, alternative net-
work smoothing techniques as well.
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APPENDIX
A. PROOFS OF LEMMAS 1 AND 3
Proof of Lemma 1: The property (i) comes from lines 10-
11,22 of the algorithm, which limit the range of prefetching
rounds to those preceding the current one. The property
(ii) is due to lines 17,19 which ensure that the maximum
resource proportion of the deadline round is no less than that
of the prefetch and shift rounds respectively. The candidate
round with minimal disk time proportion (iii) is kept track
of through variable Pmin in line 18. Finally, the closeness
to the deadline (iv) is controlled by the descending loop at
lines 22, and the strict inequality in line 17. ¤

Proof of Lemma 3: The algorithm is “greedy” and we
will use induction on the network sequence length Ln. The
generated disk sequence trivially satisfies the lemma claim
at Ln = 1, with round 0 to access the data from disk and
round 1 to send the data over the network. We assume that
at Ln = k the claim is valid. We show that it is also valid for
Ln = k + 1. Let us assume that we get the sequence of the
k first disk accesses 0 . . . k − 1 to satisfy the lemma claim,
before starting to deal with the disk access of round k. Due
to the property (i) of Lemma 1, it is not possible to schedule
in round k, block accesses from the previous rounds. There-
fore, the only acceptable transfer of blocks that remains is
moving blocks of the round k to previous rounds. An ex-
haustive search is done in the while-loop of the lines 11-23
of the algorithm. Each of the previous rounds is visited,
and a record is kept of the closest round that can prefetch a
block with minimal total disk time proportion from property
(iii). Property (ii) guarantees no violation of the maximum-
proportion constraint. The above search is repeated by the
repeat-loop of lines 7-32 until no more transfers of logical
blocks belonging to round k are possible. (The decision to
choose prefetch rounds closest to the deadline round, from
property (iv), leads to buffer occupancy minimization.) ¤

B. THE BLOCKQUANTIZE PROCEDURE
0. proc blockQuantize
1. input : Ln, Sn[] ( =0 outside [1..Ln] ), Bl

2. output : Ld, Sd[], Lb, Sb[]
3. begin
4. Sd[] := 0, Sb[] := 0
5. Ld := Ln, Lb := Ln + 1
6. totSn := 0
7. for trnd : 0..Ln

8. prvSn := totSn, totSn := totSn + Sn(trnd + 1)
9. (* we use function ceil() for the d e operation *)

10. Sd(trnd) := Bl · ( ceil(totSn/Bl) − ceil(prvSn/Bl) )
11. Sb(trnd) := Sb(trnd − 1) + Sd(trnd) - Sn(trnd − 1)
12. end-for
13. end
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