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Abstract

We study network servers that transmit variable bit-rate streams for real-time playback at remote clients. We
introduce an algorithm that removes peaks of disk bandwidth by prefetching stored stream data into the shared
buffer space of the server. Using a mathematical framework, we show that our algorithm has optimal smoothing
effect to the server disk bandwidth over time. Emergence of inexpensive specialized devices makes prevalent
the assumption of limited hardware resources for playback clients, and insufficient previous techniques that can
only prefetch stream data into the client buffer space. We incorporate our algorithm into a prototype server, and
demonstrate significant increase in the number of streams concurrently supported at different system scales. We
also extend our algorithm to stripe variable bit-rate streams across heterogeneous disks. We achieve high bandwidth
utilization across all the different disks, and improve the server throughput by several factors at high loads.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Bit-rate variability of media streams is a feature of media encoding that allows automatically adjust-
ing the rate of media bits generated over time according to some optimization objective. In particular,
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variablebit-rate encoding keeps approximately constant the perceptual quality of the generated stream,
and produces bits at a rate that changes instantly but remains on average constant[14]. Alternatively,
constantbit-rate encoding keeps at a configurable fixed level the generated bit rate, while it changes the
perceptual quality according to the information content of the input. Therefore, the difference between
the two encoding schemes lies on whether the generated bit rate remains constant on average only or
always, and whether the perceptual quality is constant or variable, respectively.

Modern encoders typically support both constant and variable bit-rate encoding. Nevertheless, variable
bit-rate encoding of video streams can achieve quality equivalent to that of constant bit-rate encoding
while requiring average bit rate that is lower by 40% or more[13,17]. On the other hand, variable bit-rate
streams have high variability in their resource requirements, which potentially leads to low utilization of
disk and network bandwidth. This occurs because the aggregate bandwidth requirements of concurrently
served streams can be significantly higher at particular time instances than on average. Also, the admission
control process typically bases its decisions on peak aggregate demand when considering new stream
requests for playback.

In order to improve the resource utilization and the throughput of a media streaming system, a number of
schemes have been proposed previously. They remove peaks of transfer bandwidth in individual streams
by appropriately prefetching stream data during periods of lower bandwidth demand in the system.
Such prefetching schemes are better known assmoothingtechniques, and have been shown to achieve
significant performance improvements in several cases.

Previously proposed smoothing techniques have been limited to prefetching data from the media server
into the buffer space of the clients. Such techniques can improve the utilization of both the disk and the
network bandwidth, but they are dependent on the amount of buffer space available at the client. In this
paper, our goal is to maximize the average number of users supported concurrently in video server systems,
by applying smoothing techniques within the server only and combining them appropriately with the disk
striping and admission control policies of the server. Thus, we introduce a stream smoothing algorithm
that prefetches data into the shared buffer space of the server rather than the private buffer space of the
client. The algorithm has several important advantages in comparison to previous approaches:

• We reduce the required disk bandwidth in the server, even when serving inexpensive mass-produced
clients of minimal buffer space. This is important since historically disk bandwidth has been improving
at rates an order of magnitude slower than network link bandwidth[12].

• Since we treat all the clients the same, we only store one stream copy in the system. Thus we reduce
the admission control complexity, and the required storage space in the streaming server.

Server-side smoothing targets the required disk bandwidth rather than the network bandwidth, and
accepts as input a specification of the data that should be sent to the client over time. When the clients
have sufficient buffer space, server smoothing can be complemented with network smoothing techniques,
thus taking advantage of prefetching into the buffers of both the server and the client. In order to prevent
excessive prefetching from exhausting the available buffer space in the server, we prevent the increased
proportion of server buffer required by a stream to exceed the reduced proportion of disk bandwidth (more
formally explained later). Thus, the smoothing process is adjusted automatically according to the total
memory and disk bandwidth available in the server configuration. We apply the smoothing algorithm
off-line to each individual stream, and we use the generated transfer schedule for subsequently storing
and accessing the stream data.
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Another issue that we study in the present paper is smoothing ofvariablebit-rate streams striped across
heterogeneous disks. This is a problem that has not been extensively studied in the past, probably because
load-balancing and reliability problems were assumed to restrict the size of disk arrays across which stream
data can be striped efficiently[8,32]. Nevertheless, recent research has introduced disk striping schemes
that are scalable[2,6]. Operating efficiently a server with heterogeneous disks is important because it
enables server installations to be incrementally expanded using the most advanced and cost-efficient
storage devices as the system load increases.

Historically, the ratio between diskstorage capacityand diskbandwidthincreases by a factor of ten
every decade[12]. Thus, disk accesses are becoming more precious, which justifies our decision to focus
on the disk bandwidth. We implemented our smoothing scheme into a prototype server. Using experiments
with various MPEG-2 streams, we demonstrate an increase in the system throughput that can reach 15%
with homogeneous disks and can exceed a factor of three with heterogeneous disks in the configuration
that we used.

In summary, our main contribution in the present paper is to introduce a general smoothing algorithm
that uses the shared buffer space of the server to prefetch stored stream data. We prove that the algorithm
optimally smooths the disk bandwidth of the server over time, and prevents the increased buffer utilization
from exceeding the reduced disk bandwidth utilization. Additionally, we use the same algorithm to
balance the bandwidth utilization of heterogeneous disks under streaming workloads. We experimentally
demonstrate significant benefits in the throughput and the resource utilization of the system.

The rest of this paper is structured as follows: InSection 2we summarize previous research and compare
it with our work. InSection 3we present a high-level description of the system architecture that we use in
our study. InSection 4we introduce the Shared-buffer Smoothing algorithm, and inSection 5we describe
our experimentation environment, including the stream benchmark that we use. InSection 6we study
the performance of Shared-buffer Smoothing on homogeneous disks, and inSection 7, we extend the
algorithm to apply to heterogeneous disks. InSection 8we validate our arguments with detailed simulated
disk measurements, and inSection 9we summarize our conclusions.

2. Related work

Several smoothing techniques deal with network link transfers of stored video streams. Salehi et al.
describe a network smoothing technique to minimize the variability of network bandwidth requirements
assuming a fixed-size client buffer[29]. Feng and Rexford compare the scheme of Salehi et al. with
alternative schemes that minimize the total number of network bandwidth variations over time[10].
McManus and Ross introduce a dynamic programming methodology for scheduling network transfers
[22]. All these cases assume a fixed amount of buffer space available for each individual client, while
in the present paper we investigate the case of prefetching data into buffer space shared across multiple
clients in their server. We made a preliminary presentation of the results described in the present paper
elsewhere[4], although not as clearly and self-dependently as we present them here.

Zhao and Tripathi describe a class of algorithms that minimize the maximum required network band-
width when multiplexing stream network transfers to multiple clients[35]. In later work, that result was
extended to actually smooth (rather than just minimize the peak of) multiplexed traffic using buffers
shared or partitioned among different clients[1]. Although handling multiplexed traffic is theoretically
a more difficult problem than treating each stream individually, which we present here, practically the
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two problems are complementary. In fact, traffic multiplexing takes place during the time of dynamically
serving playback requests and after the streams have been stored on the disks, while individual stream
smoothing occurs in advance and affects the way each stream is striped across multiple disks.

Other related research tries to improve network link utilization for live video. Rexford et al. use client
data prefetching for smoothing live video streams, where the stream requirements are known only for a
limited period of time instead of the entire playback period[27]. Mansour et al. examine several resource
tradeoffs in live video smoothing[20]. Sen et al. combine ideas from live video smoothing with prefix
caching to smooth streams in network proxies, that offer knowledge about the configuration parameters
of the clients unknown to the server[31]. This study is consistent with our own assumptions about limited
knowledge of client resources at the server.

Several studies have considered server-side resource management. Patterson et al. apply a cost-benefit
analysis in order to control the disk bandwidth versus data buffer size tradeoff for traditional applications
[25]. Paek and Chang propose an approach that, given a set of streams, optimizes a “general objective
function” by controlling the maximum disk bandwidth and buffer space available to each stream[24]. One
difference relative to our server-based smoothing algorithm is that we determine the memory-bandwidth
tradeoff before the stream storage, and achieve optimal smoothing of the disk bandwidth. Reddy and
Wijayaratne have experimented with the effect of client-based smoothing on alternative disk striping
methods; they point out the need for also studying server-based prefetching techniques in their future
work [26]. Other schemes that have been proposed require that a certain amount of data be retrieved into
the server buffer before playback can start, which reduces the system responsiveness to client requests
[5,18]. In addition, previous studies are limited to single disk systems with fixed-size transfers only[5].
However, in previous work we have shown that allowing variability in the transfer sizes can increase the
system throughput[2].

Sahu et al.[28] find a limited smoothing effect when increasing the round time in variable-size transfers
and the block size in fixed-size transfers. They achieve additional smoothing benefit with deadline-based
scheduling of disk transfers that minimize the maximum required buffer space and disk bandwidth.
However, that study is limited to single-disk systems. It remains unclear how deadline-based algorithms
for admission control and disk scheduling are extended and actually perform when data are striped across
multiple disks. The striping method itself can affect significantly the disk access efficiency and the data
prefetching flexibility for reducing the load imbalance across the system. Kim et al.[16] outline some ideas
on how to control the tradeoff between buffer and disk bandwidth utilization in stored video streaming.
However, their work differs from ours in several aspects, and they specify no concrete algorithm for the
problem. For example, they use empirical parameters to divide streams into segments of arbitrary length,
and to control data prefetching within each segment. Their disk bandwidth definition ignores the disk head
movement delays, and their simulation study is limited to single disk systems. In contrast, we propose
a smoothing algorithm that prevents the proportion of server buffer to exceed the maximum proportion
of disk bandwidth, and we prove that our algorithm achieves optimally smoothed disk transfer sequence
under the specified constraints.

A significant amount of previous work also addresses efficient retrieval of stream data from hetero-
geneous disks. Recently, Denehy et al. explored dynamic balancing of heterogeneous disks in RAIDs
running traditional workloads[9]. They use online performance measurement of individual disks and
dynamically direct block writes to the faster devices. Earlier, Dan and Sitaram suggested that multiple
heterogeneous storage devices may coexist in a video server environment[8]. Considering the complex-
ity of striping data across all the devices, they propose clustering homogeneous devices into groups and
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describe a dynamic data placement policy to keep the bandwidth and storage space utilization high. Chou
et al. propose dynamic object replication techniques for improving utilization across different groups of
disks[7]. Santos and Muntz use randomized replication techniques for load balancing of heterogeneous
disk arrays[30], while other studies try to achieve that with alternative disk array organizations and strip-
ing methods[33,36]. Unlike all these methods, which are applicable to (or have been demonstrated to
work with) constant rate streams only, we propose a smoothing technique for efficiently striping variable
bit-rate streams across heterogeneous disks.

3. System architecture

In the present section, we outline important aspects of the system architecture that we assume in our
algorithm. We have presented elsewhere[2,3] more details about the design and the implementation of a
system that satisfies these requirements.

3.1. Overview

We assume a system that operates according to the server-push model. When a playback session starts,
the server periodically sends data to the client until either the end of the stream is reached, or the client
explicitly requests suspension of the playback. Data transfers are organized in rounds of fixed duration
Tround, during which we retrieve an appropriate amount of data from the disks into a set of buffers that we
reserve in the server. Concurrently, we send data from the server to the client buffer through the network
interfaces (Fig. 1). During each round, a client must receive the amount of data that will be needed by
the playback during the next round. Any transfer scheduling policy that does not violate this timing
requirement and does not overflow the buffers of the client is acceptable for our purposes.

The streams are compressed according to any encoding scheme (e.g. MPEG-2) that supports streams of
constant perceptual quality at variable bit-rate. We store the stream data across multiple disks, as shown
in Fig. 1. Playback requests arriving from the clients are initially directed to an admission control module,
where we determine whether enough resources exist to activate a playback session either immediately or
within a limited number of rounds. A schedule database maintains for each stream detailed information

Fig. 1. Variable bit-rate video streams are stored across multiple disks of the media server. Multiple clients can connect and start
playback sessions via a high-speed network.



52 S.V. Anastasiadis et al. / Performance Evaluation 59 (2005) 47–72

about the data that should be accessed from each disk at any given round, the amount of server buffer
space required, and the data that need to be transferred to the client. This scheduling information is
generated when the media stream is first stored and is used for both admission control and control of data
transfers during playback. It is also possible that two or more replicas are available for each stream file,
with different storage layout and retrieval schedules.

3.2. Stride-based disk space allocation

In our experiments, we allocate disk space in large fixed-sized chunks, calledstrides, according to the
stride-based allocationmethod[2]. We choose the stride to be larger than the maximum stream request
size per disk during a round. We know this size because we access stored streams sequentially according
to a predefined (potentially variable) rate. During a playback round, we only fetch into memory the
requested amount of stream data, and not the entire stride. Stride-based allocation eliminates external
fragmentation, because the strides have fixed size. It also keeps negligible the internal fragmentation since
we only waste disk space in the last stride of each stream; streams are large in size relative to strides,
while a stride may contain data of more than one round. Another advantage of stride-based allocation is
to set an upper-bound on the estimated disk access overhead during retrieval. Since the size of a stream
request never exceeds the stride size during a round, at most two partial stride accesses will be required
to serve the request of a round on each disk. We describe in the next section, how to allocate strides when
we distribute data across multiple disks.

3.3. Reservation of server resources

In order to describe the resource reservation scheme that we use, we introduce a mathematical abstrac-
tion of the allocated resources in the system. We summarize the symbols that we use for our definitions in
Table 1. For now, we consider a system withD functionally equivalent disks, although later we examine
a more general case of heterogeneous environments. In the following sequence definitions, we assume a
zero value outside the specified index ranges.

The streamNetwork Sequence, Sn, of lengthLn specifies the amount of data,Sn(i), 1 ≤ i ≤ Ln, that
the server must send to a particular client during roundi of its playback. TheBuffer Sequence, Sb, of
lengthLb = Ln + 1 defines the server buffer space,Sb(i), 0 ≤ i ≤ Lb − 1, required by the stream during
roundi. TheDisk SequenceSd of lengthLd = Ln defines the total amount of data,Sd(i), 0 ≤ i ≤ Ld − 1,
that we retrieve from all the disks in roundi for the client. We assume that stream data are stored on
the disks in logical blocks of fixed sizeBl , which is multiple of the physical sector sizeBp of the disk.
Both the disk transfer requests and the memory buffer reservations are specified in multiples of the block
sizeBl .

TheDisk Striping SequenceSm of lengthLd determines the amount of dataSm(i, k), 0 ≤ i ≤ Ld − 1,
that we retrieve from diskk, 0 ≤ k ≤ D − 1, in roundi. We can easily derive it from the corresponding
disk sequenceSd, according to the striping method that we use. In particular, withVariable-Grain Striping
[2] the disk striping sequence is defined as follows:

Sv
m(i, k) = (Kv(i) − Kv(i − 1)) · Bl,K

v(i) =
⌈∑

0≤j≤i Sd(j)

Bl

⌉
,
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Table 1
Summary of symbols used in the descriptions of our resource reservations schemes

Symbol Description

D Number of disks
Ln Length of network sequence
Sn(i),1 ≤ i ≤ Ln Bytes sent at roundi
Lb Length of buffer sequence
Sb(i),0 ≤ i ≤ Lb − 1 Buffer space at roundi
Ld Length of disk sequence
Sd(i),0 ≤ i ≤ Ld − 1 Bytes read at roundi
Sm(i, k),0 ≤ i ≤ Ld − 1,0 ≤ k ≤ D − 1 Striping sequence
Bp Physical block size of disk
Bl Logical block size of system
Bs Stride size
TfullSeek Disk full-seek time
TtrackSeek Disk single-track seek time
TavgRot Average disk rotational latency
Rdisk Disk transfer capacity
Rnet Network transfer capacity
Mi Active streams duringsystemroundi
lj,1 ≤ j ≤ Mi Starting round of streamj
Tdisk(i, k) Access time on diskk in roundi
Rnet Server network link capacity
T

j
net(i) Transmit time of clientj at roundi

Bj(i) Buffer space of clientj at roundi

wheni (modD) = k, andSv
m(i, k) = 0 wheni (modD) �= k. Intuitively, the variable amount of data re-

trieved during a round for a client is always accessed from a single disk, and the disks are used round-robin
in successive rounds. The disk striping sequence determines the particular single disk accessed and the
exact amount of data retrieved during each round. In comparisons with alternative striping techniques, we
have shown significant performance benefit for Variable-Grain Striping[2], which makes it the preferred
method in the present study.

We assume that each disk has full-stroke (edge-to-edge) seek timeTfullSeek, single-track seek time
TtrackSeek, average rotational latencyTavgRot, and minimum internal transfer rateRdisk. The stride-based
disk space allocation policy enforces an upper bound of at most two disk arm movements per disk for
each client per round. Additionally, the C-SCAN disk scheduling policy limits the total distance travelled
by the disk head per round to two full-stroke seeks. LetMi be the number of active streams during round
i of the system operation, andlj the round of system operation that the playback of streamj, 1 ≤ j ≤ Mi,
started. Then, the total access time on diskk in roundi of the system operation can be approximated by
the expression:

Tdisk(i, k) = 2TfullSeek + 2Mi · (TtrackSeek+ TavgRot) +
Mi∑
j=1

Sj
m(i − lj, k)

Rdisk
, (1)

whereSj
m is the disk striping sequence of clientj. In Eq. (1), we include the factor 2 in the first and second

terms due the C-SCAN policy and the stride-based allocation scheme, respectively. In the total time that
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we reserve for diskk during roundi, for each additional clientj we account extra access time:

T
j
disk(i, k) = 2 · (TtrackSeek+ TavgRot) + Sj

m(i − lj, k)

Rdisk
(2)

whenSj
m(i − lj, k) > 0. Reservations of network bandwidth and buffer space are simply based on the

network and buffer sequence of each accepted playback request, respectively. For example, ifRnet is
the total network bandwidth available to the server, then the corresponding network transmission time
reserved for clientj in round i becomesT j

net(i) = Sj
n(i − lj)/Rnet, whereSn is the network sequence of

client j. Also, the total server memory buffer reserved for clientj in roundi becomesBj(i) = S
j
b(i − lj),

whereSb is the buffer sequence of clientj.

4. Shared-buffer Smoothing

4.1. Outline

Previous studies have pointed out the potentially low disk utilization and system throughput achieved
when retrieving variable bit-rate streams from disks, and the need for appropriately prefetching data into
server buffers[19,26]. For a similar problem studied in the context of network links carrying variable
bit-rate streams, it was proposed to smooth bitrate peaks along a stream by prefetching data into client
buffers[10,29]. Such an approach can improve bandwidth utilization in network links (and disk channels
as a side-effect), but is dependent on the memory configuration of individual clients.

Here, we consider smoothing the disk bandwidth peaks by prefetching stream data into server
buffers. Note that the data access order remains sequential during normal playback, and prefetching
only affects the amount of data accessed over time. One crucial issue with disk prefetching is how
to maintain an appropriate balance between disk bandwidth and server buffer space usage. Too ag-
gressive prefetching can limit the number of concurrent streams that can be supported because of ex-
cessive server buffer usage[19]. Existing client-based smoothing algorithms do not have this prob-
lem, due to their implicit assumption of a fixed buffer size available to each client. Unlike the case
of prefetching data into the server buffer, the client buffer space is not multiplexed among different
streams.

Intuitively, we propose a stream scheduling procedure that specifies for each stream both the vari-
able server buffer and disk bandwidth requirements over time. A disk blockb originally scheduled
for round i may be prefetched in a previous roundj only if: (i) the disk bandwidth requirement in
round j with the prefetched block does not exceed the original disk bandwidth requirement of round
i, and (ii) the fraction of server buffer required in the individual roundsj up to i − 1, after prefetch-
ing block b, may not exceed the fraction of disk bandwidth required in roundi. The first condition
is necessary in order for the prefetching to have a smoothing effect on the disk bandwidth require-
ments over time. The second condition is a heuristic that we apply in order to prevent exhaustion of
the server buffer. Essentially, we try to balance the two resources and prevent one of them to be ex-
hausted much earlier than the other as multiple streams are concurrently served. We apply offline these
constraints to individual streams, and experimentally study their effect when serving multiple streams
concurrently.
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We should point out that merely replacing the buffer bounding heuristic that we use in our algorithm with
other constraints can create an entire class of smoothing algorithms that can satisfy different optimization
objectives under alternative operating conditions. However, in our present study, we only examine a
specific buffer bounding constraint that we found to perform acceptably for our purposes, and leave for
future investigation the comparative study of any alternatives.

Knowing the data amount that we need to retrieve from the disks during stream playback is important
information that we may use during stream storage. As we already explained, variable-grain striping
distributes data across a disk array so that we can retrieve from a single disk the amount of data required
during the playback of a fixed time period. We have shown in previous related work the significant
improvement in system throughput as a result of using such striping methods instead of the traditional
approach of disk striping using fixed-size blocks[2]. On the other hand, a retrieval sequence that is fixed
a priori ignores the exact resource tradeoffs that occur during system operation, when different stream
playbacks are multiplexed. We evaluate in detail the resource utilizations that are achieved with our
approach.

4.2. Basic definitions

Before explaining the algorithm, we have to introduce several definitions. Our main challenge is to
capture with appropriate measures the two resources that we consider, namely disk transfer bandwidth
and server buffer space. Subsequently, we use these measures to approximately balance the occupancy
of these two resources. For that purpose, we use the utilization of the disk bandwidth and server buffer
space incurred by the stream under consideration. We also need to specify the specific range of the stream
sequence within which data prefetching takes place (Fig. 2).

The disk time reservation for each extra disk transfer ofXbytes is approximated byEq. (2)of Section 3.3.
We repeat it here for reading convenience:

Tdisk(X) = 2 · (TtrackSeek+ TavgRot) + X

Rdisk
.

We point out thatEq. (2) is only part of the total disk access delay given byEq. (1). We divide this
estimated delay by the round durationTround, and get the bandwidth utilization incurred by the input
stream during a round.

Definition 1. Let thedisk time proportionof X bytes,Pd(X), be the fraction of the round timeTround

that the disk time reservationTdisk(X) occupies:Pd(X) = Tdisk(X)/Tround. Further, let thebuffer space
proportionof X bytes,Pb(X), be the fraction of the buffer space for each disk,Bdisk, thatX bytes oc-
cupy in a round:Pb(X) = X/Bdisk. Then, themaximum resource proportionof round i, MRP(i), is the
maximum of the corresponding disk time and buffer space proportions at roundi: max(Pd(Sd(i)), Pb

(Sb(i))).

Definition 2. Thedeadline roundof a block is the latest round at which the block can be accessed from
the disk without incurring a real-time violation of the corresponding network transfer. Then, with respect
to a specific block, we callcandidate roundsall the rounds before the deadline round, andprefetch round
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Fig. 2. TheShared-bufferSmoothingalgorithm generates majorization minimal disk sequence with the disk bandwidth proportion
limiting the server buffer proportion.

the one actually chosen for prefetching. All the rounds between the deadline and the prefetch round are
calledshift rounds.

4.3. The Algorithm

Main goal of the present study is to explore methods of making as uniform as possible over time
the bitrate of stream data transferred through a disk channel. In order to mathematically formalize this
objective, we use as “smoothness” criterion one that is based onMajorization Theory[21,29]. For any
x = (x1, . . . , xn) ∈ R

n, let the square bracket subscripts denote the elements ofx in decreasing order
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x[1] ≥ · · · ≥ x[n] . Forx, y ∈ R
n, x ismajorizedby y, x ≺ y, if there isk, 1 ≤ k ≤ n, such that

n∑
i=1

xi =
n∑

i=1

yi,

x[i] = y[i], for1 ≤ i < k,

and

x[k] < y[k] .

Then, we considerx smoother thany, if x ≺ y, and call a vectorx ∈ R
n majorization-minimalif there is

no other vectorz ∈ R
n such thatz ≺ x.

We receive as input the logical block sizeBl , and a stream network sequenceSn of data amounts
needed every time unit of playback. The algorithm runs offline and produces as output (i) the smoothed
disk sequenceSd of data amounts transferred into the server buffer from the disk over time, and (ii) the
corresponding buffer sequenceSb. We show that the generated disk sequence is majorization-minimal
under the specified constraints. The generated disk sequence can be subsequently transformed into a
striping sequence that specifies the amount of data retrieved from (after being stored across) the disks
every time unit of playback.

Initially, the algorithm quantizes the disk transfer and buffer sizes into multiples of the logical block
sizeBl , but keeps the network transfers expressed in bytes. We visit the consecutive deadline rounds of the
generated sequences in increasing order starting from round zero. For every logical block to be fetched
from the disk, we examine the preceding rounds in decreasing order towards round zero for potential
block prefetching.

We are striving to reduce the MRP of the current round by retrieving one or more of its blocks earlier
at a prefetch round with lower MRP. The search for prefetch round succeeds when we can reduce the
MRP of the current round but keep it higher than or equal to the MRP of the shift and prefetch rounds.
Among the candidate rounds that satisfy this requirement we choose the one with the lowest MRP that is
closest to the current round.

At the prefetch round we retrieve the data block from the disk into the server memory. At the shift
rounds we keep the fetched data in memory. When the deadline round arrives, we transmit the specified
data block from the server memory to the client buffers. Thus, we leave the client unaware of the fact
that we prefetched into the server memory the transmitted data. We repeat the search for prefetch round
with each block of the current round as long as the search succeeds. When the search fails, we restart the
search procedure at the subsequent deadline round. Below, we show that the algorithm works correctly.

Lemma1. TheShared-buffer Smoothing algorithm chooses as prefetch round the candidate that satisfies
the following properties in order of decreasing priority:

1. Real-Time: Satisfy the network transfer deadlines.
2. Resource-Balance: Prevent the MRP of the prefetch and shift rounds from exceeding the MRP of the
deadline round.

3. Min-Smooth: Pick the candidate with the lowest MRP as prefetch round.
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Proof. The Real-Time property is satisfied at line 10 by choosing the prefetch round among the candidate
rounds that precede the deadline round. We preserve the Resource-Balance property at lines 20 and 22,
respectively, where we explicitly keep the MRP of the prefetch and shift rounds no more than that of the
deadline round. We use the variablePmin at lines 20–21 to keep track of the candidate round with minimal
MRP. We break ties in the choice of the prefetch round at lines 15 and 20 by searching in a decreasing
loop with strict inequality. �

The Real-Time property maintains valid the playback of the generated disk transfer sequence. The
Resource-Balance property keeps the buffer space proportion bounded by the disk time proportion of
the deadline round. The Min-Smooth property with the tie-breaking rule leads to a disk sequence that is
smoother than the original, and only increases the buffer occupancy if necessary.

Definition 3. If β1 ≥ · · · ≥ βn are integers andβi > βj, then the transformationβ′
i = βi − 1, β′

j =
βj + 1,β′

k = βk, for all k �= i, j is called atransfer from i to j.1

Lemma 2 (Muirhead[23]). If α1, . . . , αn, β1, . . . , βn are integers andα ≺ β, thenα can be derived
fromβ by successive applications of a finite number of transfers.

Proof. See Marshall and Olkin[21, p. 135]. �

In the presentation that followstransferunits correspond to logical blocks of sizeBl as opposed to
individual bytes.

Lemma 3. The Shared-buffer Smoothing algorithm produces disk sequence with no additional transfer
to satisfy the properties of Lemma1.

Proof. The algorithm is “greedy” and we will use induction on the network sequence lengthLn. The
generated disk sequence trivially satisfies the lemma claim atLn = 1, with round 0 to access the data
from disk and round 1 to send the data over the network. We assume that atLn = k the claim is valid.
We show that it is also valid forLn = k + 1. Let us assume that we get the sequence of thek first disk
accesses 0, . . . , k − 1 to satisfy the lemma claim, before starting to deal with the disk access of round
k. Due to the Real-Time property ofLemma 1, it is not possible to schedule at roundk block accesses
from the previous rounds. Therefore, the only acceptable blocktransfer is moving blocks of the round
k to previous rounds. An exhaustive search is done in the for-loop of the algorithm at lines 15–25. We
visit each of the preceding rounds, and keep record of the latest round where we can prefetch a block
with minimal disk time proportion. We repeat the above search using the repeat-loop of lines 13–33 until
no moretransfersof logical blocks belonging to roundk are possible. The first time that the search for
prefetch round fails at roundk, we know there are no moreLemma 1transferspossible starting from either
roundkor rounds 1, . . . , k − 1. We conclude so because each earlierLemma 1transfermoved a block to

1 The termtransferthat we borrow from the original definition[23], should not be confused with regular data transfers.
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prefetch round with lowest MRP, and only increased the buffer proportion of the related prefetch and shift
rounds. �

Theorem 1.The Shared-buffer Smoothing algorithm uses Lemma1 transfers to generate amajorization-
minimal disk sequence.

Proof. From Lemma 3, the disk sequenceSd generated by our algorithm has no additionalLemma 1
transfer. Then, fromLemma 2, there is no sequenceS′

d majorized bySd. If such a sequence existed,
additional blocktransferswould be possible after the termination of our algorithm. �

As a corollary of the above theorem, the Shared-buffer Smoothing algorithm generates disk sequence
that satisfies the data transfer deadlines of the original network sequence, and prevents the buffer space
proportion from exceeding the maximum disk time proportion.

4.4. Analysis

For several reasons, previous client-based smoothing algorithms are inadequate for solving the Shared-
buffer Smoothing problem:

1. Unlike network transfer delays, disk access delays include mechanical movement overhead and cannot
be accurately expressed in terms of bit rates only.

2. The prefetching constraints that we assume are (a) smoothing out the required disk transfer bandwidth,
while at the same time (b) keeping under control the occupied buffer space. These constraints span
resources of different types and measures (access delays in disks and occupied buffer space in memory),
and are difficult to describe using data amounts only. This problem is much simpler when the only
constraint is the total buffer space available at the client.

3. Our constraints are complex and can only be conveniently expressed as inequalities continuously
evaluated during the execution of the algorithm. There is no obvious way to represent them as fixed
vectors initialized at the beginning of the algorithm.

As a result of the above, we introduce a new smoothing algorithm that is more general than previous
ones, and gives more flexibility and expressibility in representing the required optimization conditions.
The computational complexity of our algorithm is O((

∑Ln
i=1 Sn(i)/Bl )Ln), whereSn is the input network

sequence andLn is its length in rounds. This complexity follows from the fact that we visit once each of the
O((

∑Ln
i=1 Sn(i))/Bl ) blocks, and consider for each block at most O(Ln) alternative prefetch rounds. It may

be possible to reduce this complexity, although practically the execution of the algorithm completes in
tens of seconds. We ran our experiments using 30-min video streams as input on a 133 MHz RISC proces-
sor withBl = 16 kB,Ln = 1,800 and

∑Ln
i=1 Sn(i) = 1.12E9. Since we generate the smoothed schedule

off-line, we find the above execution time acceptable. As we already pointed out inSection 4.1, our
smoothing algorithm can generate majorization-minimal disk sequences with alternative buffer bounding
constraints. One specific case is the fixed buffer size typically assumed in network smoothing algorithms
[29]. The higher computational complexity of our algorithm relative to O(Ln) of existing algorithms



60 S.V. Anastasiadis et al. / Performance Evaluation 59 (2005) 47–72

[29] is the extra cost that we pay to avoid the fixed buffer constraint typically “hardwired” in network
smoothing.

5. Experimentation environment

5.1. Prototype overview

We have designed and built a media server experimentation platform, in order to evaluate the re-
source requirements of alternative stream scheduling techniques. Our code communicates with either
the DiskSim package[11] for simulated disk access time measurements (with advanced features of
modern disks such as on-disk cache and zones), or hardware disks through their raw interface[3].
With appropriate configuration parameters, the system can operate at different levels of detail. InAd-
mission Controlmode, the system receives playback requests, does admission control and resource
reservation, but does not transfer stream data. InSimulated Diskmode, the system processes disk re-
quests using a DiskSim[11] disk array. Alternatively, the system can access hardware disks and trans-
fer data to client network destinations. For the experiments in the current study, we mostly used the
Admission Control mode, except for the validation inSection 8where we used the Simulated Disk
mode.

5.2. Performance evaluation method

We assume that playback initiation requests arrive independently of one another, according to a Poisson
process. The system load can be controlled through the arrival rateλ of playback initiation requests.
Assuming that the disk transfers are the bottleneck resource, we consider a hypothetical system that
accesses disk data with zero seek and rotational delays. Then the stream completion rate becomes equal
to the maximum arrival rate of playback requestsλ = λmax. This rate creates enough system load to show
the performance benefit of arbitrarily efficient data striping policies. Then, the mean stream completion
rateµ for streams of average total sizeAs bytes becomes

µ = D · Rdisk · Tround

AS
streams/round. (3)

The corresponding system load becomes:ρ = λ/µ ≤ 1, whereλ ≤ λmax = µ.
When a playback request arrives, the admission control process checks whether available resources

exist for every round of the playback, namely disk transfer time, network transfer time and buffer
space in the system. A critical question is how long a request can be delayed to start after it ar-
rives into the system. Normally, a client prefers that a request is served immediately, although this
may be too expensive in terms of resource requirements for a target system throughput. Alternatively
a playback request can be delayed for a limited number of rounds, until available resources become
available for the playback to start and continue uninterrupted. In our experiments, if we cannot ini-
tiate a request in the next round, we repeat the admission test at each round up to
1/λ� rounds
into the future. Previously[2], we verified experimentally that checking
1/λ� rounds into the future
achieves most of the potential system capacity. If we are unable to accept the request in the consid-
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Table 2
We used six MPEG-2 video streams of 30 min duration each

Content type Avg bytes per round Max bytes per round CoV per round

Science fiction 624,935 1,201,221 0.383
Music clip 624,728 1,201,221 0.366
Action 624,194 1,201,221 0.245
Talk show 624,729 1,201,221 0.234
Adventure 624,658 1,201,221 0.201
Documentary 625,062 625,786 0.028

The coefficient of variation shown in the last column changes according to the content type.

Table 3
Features of the Seagate SCSI disk assumed in our experiments

Seagate Cheetah ST-34501N

Data bytes per drive 4.55 GB
Average sectors per track 170
Data cylinders 6526
Data surfaces 8
Zones 7
Buffer size 0.5 MB
Track to track seek(read/write) 0.98/1.24 ms
Maximum seek(read/write) 18.2/19.2 ms
Average rotational latency 2.99 ms

Internal transfer rate
Inner zone to outer zone burst 122–177 Mbit/s
Inner zone to outer zone sustained 11.3–16.8 MB/s

ered time window, we reject the request instead of keeping it in a queue for further reconsideration
later.

Our basic performance metric is the average number of active playback sessions that can be supported
by the server. The objective is to make this number as high as possible.

5.3. Experimentation setup

We used six different VBR MPEG-2 clips with the statistical characteristics shown inTable 2. Each
of them lasts 30 min, and consists of 54,000 frames with resolution 720× 480 pixels, color depth 24
bits, playback frequency 30 frames/s, and group structureIB2PB2PB2PB2PB2. The encoding hardware
that we used generates bits at rates in the range between 1 Mbit/s and 9.6 Mbit/s. Depending on the
clip, the bitrate coefficient of variation takes values in the range between 0.028 and 0.383. In themixed
benchmark, we distribute the playback requests uniformly across the six different streams. Additionally,
we show experimental results from serving each individual stream type in the system.
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Fig. 3. We depict the disk time and buffer space proportion in the system (a) before, and (b) after applyingShared-buffer
Smoothing. The peak of disk time proportion drops from 11.5% to 8.7%, while the peak of buffer space proportion increases
from less than 1% to 8.7%. We assume the disk parameters of Seagate Cheetah and server buffer of 256 MB per disk.

For experimentation with homogeneous disks, we assumed Seagate Cheetah SCSI disks with the
features shown inTable 3.2 Except for the much larger storage capacity in the latest models, the rest of
the performance numbers are typical of today’s high-end drives. We set the logical block sizeBl equal to
16 KB bytes, the physical sector sizeBp to 512 bytes, and the stride sizeBs of the disk space allocation to
2 MB. We organized the server memory in buffers of fixed sizeBl = 16 KB bytes each, with total space
of 256 MB for every extra disk. (We examine later the effect of buffer space to the system performance.)
We assume infinite network bandwidth, thus leaving the contention for network resources outside the
scope of the current work.

In our experiments, we set the round length equal to one second. We found this length to achieve
most of the system capacity with reasonable initiation latency. This choice also facilitates comparison
with previous work where rounds of one second were used. We used a warmup period of 3000 rounds
and calculated the average number of active streams from round 3000 to round 9000. We repeat the
measurements until the half-length of the 95% confidence interval lies within 5% of the estimated mean
value of the number of active streams.

6. Study of homogeneous disks

We start with a study of disk arrays consisting of functionally equivalent disks. InFig. 3, we depict
the disk time and buffer space proportions in each round for a particular stream. Without smoothing
(Fig. 3(a)), the occupied buffer space is the minimum necessary for data staging during disk and network
transfers. WithShared-buffer Smoothing(Fig. 3(b)), data are prefetched into the server buffer according
to the resource-balance constraint. This keeps the maximum buffer space proportion to be no more than
the maximum disk time proportion (8.7% in this example).

In Fig. 4we can see the sustained number of active streams at different system loads and disk array sizes.
In all the cases, we stripe the stream data using the Variable-Grain Striping method. The smoothed plots

2 Note that one megabyte (megabit) is considered equal to 220 bytes (bits), except for the measurement of transmission rates
and disk storage capacities where it is assumed equal to 106 bytes (bits) instead[15].
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Fig. 4. Using mixed workload, the sustained number of active streams increases almost linearly with the number of disks.
Although all the submitted streams are accepted at system load 50%, at system load 90%Shared-buffer Smoothingincreases
the number of active streams by about 10%. This benefit is maintained across different numbers of disks. Note that the lines of
unsmoothed and smoothed streams overlap at load 50%.

show the performance benefit of applying our algorithm assuming 256 MB of available server buffer
space for each extra disk. At moderate load ofρ = 50%, Variable-Grain Striping with no smoothing
allows all stream requests to be accepted. At a higher load ofρ = 90% theShared-buffer Smoothingcan
improve throughput by over 10%. The corresponding rejection rate (not shown) at 90% load is 25% with
Shared-buffer Smoothing, and 41% with plain Variable-Grain Striping.

We show results for individual stream types inFig. 5. We find that the benefit ofShared-bufferSmoothing
depends on the variability of data transfers across different rounds. Thus, although smoothing adds no
benefit to streams with negligible variability (e.g. Documentary), higher variation leads to benefit of 15%
more streams (Action).Fig. 6shows the average reserved busy timeTdisk(i, k) expressed as percentage of
round time on a disk. For most stream types the average disk time hardly exceeds 80% of the round time
with plain Variable-Grain Striping. However, it consistently approaches 90% and in several cases exceeds
93% (Action, Music Clip, Talk Show) when applyingShared-buffer Smoothing. This is remarkably high
when compared to the 96% achieved by Documentary and demonstrates very low variation of data transfer
sizes across different rounds.

The statistics that we gathered across the different stream workloads show that the average occupied
proportion of the available buffer space is about 50%, and the maximum hardly exceeds 60% at 90% load.
Although in individually smoothed streams the buffer space proportion is allowed to reach that of disk
bandwidth, the aggregate buffer space requirement turns out to be lower. This is a result of the way resource
requirements of individual streams are multiplexed during system operation. The original constraint of
preventing excessive prefetching from overflowing the available buffer space is satisfied. Further increase
of the aggregate buffer demand without the buffer becoming a potential bottleneck in the system, would
require incorporating into the algorithm information about the playback request multiplexing.
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In our experiments until now, we have assumed a server buffer of 256 MB per disk. FromFig. 7
we can conclude that more than half of theShared-buffer Smoothingbenefit is achieved with server
buffer size as low as 64 MB per disk. Nevertheless, our previous assumption of 256 MB server mem-
ory per disk is justified by the fact that the advantage from extra server memory is obtained at
purchase and administration cost that is only fraction of that required for additional high-end disk

Fig. 5. The advantage ofShared-buffer Smoothingwhen combined with Variable-Grain Striping can exceed 15% (Action)
depending on the stream type. We set the load to 90% on 16 disks, and assumed buffer space 256 MB per disk in the system.

Fig. 6. With 16 disks and 90% system load, the average disk time reserved each round increases from less than 80% to over
90% withShared-buffer Smoothingand server buffer 256 MB per disk. The disk time, that we show for only one of the disks,
was similar (typically within 2%) across the different disks of the array.
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drives.

7. Study of heterogeneous disks

System designers and administrators traditionally assume that disk arrays consist of homogeneous
disks, presumably in order to keep the system complexity manageable. However, the demonstrated scal-
ability of stream striping[6,2] makes also interesting to investigate systems with different disk types that
are potentially upgraded incrementally[9]. Newer disk models typically achieve higher transfer rates
and have larger storage capacities. In this section, we study the case of striping stream data across het-
erogeneous disk arrays. Our objective is to maximize the number of active streams by increasing the

Fig. 7. With 64MB buffer space per disk, more than half of the total benefit ofShared-buffer Smoothingcan be achieved (see
alsoFig. 5). Increasing the buffer space to 256 MB further improves the number of streams in Science Fiction and Action types
although at a diminishing degree.

Table 4
Features of the HP SCSI model that is included in the experiments for heterogeneous disk arrays

HP-C3323A

Data bytes per drive 1,052,491,776
Data sectors per track 72–120
Data cylinders 2910
Data surfaces 7
Zones 8
Buffer size 0.5 MB
Track to track seek <2.5 ms
Maximum seek 22 ms
Rotational latency 5.56 ms± 0.5%

Internal transfer rate
Inner to outer zone burst 4.0–6.6 MB/s
Inner to outer zone sustained 2.8–4.7 MB/s
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Fig. 8. Example of stream stored in an array consisting of Seagate and HP disks in alternating order. The low bandwidth of the HP
model leads to disks busy over 40% during some rounds. When Shared-buffer Smoothing is applied, disk transfers are adjusted
to smooth out the peaks and keep the maximum reservation below 13%. At the same time, the peak server buffer proportion is
constrained to never exceed the peak disk time proportion.

disk bandwidth utilization across all the disks. This might lead to suboptimal storage capacity utilization,
which we assume is affordable given the current technology trends[12].

In our experiments, we assume disk arrays consisting of Seagate (Table 3) and older HP disks in
alternating order. The features of the HP disks are shown inTable 4. We note a striking difference in the
minimum internal transfer rate, which is 2.8 MB/s for the HP disks, one fourth as much as the 11.3 MB/s
of the Seagate disks. Such a difference only makes the balancing of the system load more challenging.
Although the experiments in this section assume an equal number of disks of each type, we also tried
other ratios in the number of disk types and obtained similar results.

Fig. 9. Using the mixed workload, the sustained number of active streams remains the same as the load is raised from 50 to 90%
with plain Variable-Grain Striping. In comparison, withShared-buffer Smoothingthe number of streams increases by a factor
of 2 at 50% and more than a factor of 3 at 90% load. We assume server buffer space of 256 MB per disk.
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Fig. 10. ApplyingShared-buffer Smoothingto different stream types, can lead to an increase in the number of accepted streams
by more than a factor of 3. We assume load equal to 90%, and server buffer 256 MB per disk.

In Fig. 8(a) we depict an example of a stream striped across an heterogeneous disk array. The lower
transfer rate of the HP disks creates peaks of disk time proportion that can exceed 40%. Essentially,
heterogeneous disks introduce variation in the disk bandwidth that is available to a striped stream over
time. In order to take advantage of all the bandwidth capacity in the system, we extend theShared-buffer

Fig. 11. The two leftmost bars of each stream show the average reserved disk time for the Seagate (STN) and HP (HPC) disks,
assuming plain Variable-Grain Striping and 90% load. The lower transfer bandwidth of the HP disk creates a bottleneck keeping
the reserved disk time of the Seagate disk to less than 25% of the round time. As is shown by the two rightmost bars though,
with Shared-buffer Smoothing both disk types attain average disk time close to 90% of the round time.
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Smoothingalgorithm with knowledge about the available disk bandwidth during each round. For that
purpose, we redefine the disk timeTdisk(X) and the disk time proportion functionPd(X) to accept a
second argumentk that specifies the disk type used in each round:Pd(X, k) = Tdisk(X, k)/Tround. During
the operation of theShared-buffer Smoothingalgorithm, we derive the disk typek of each roundi
using a simple rule, such ask = i (modD), whereD is the total number of the disks. Subsequently,
we incorporate the average disk transfer capacity into the expression of the request interarrival time. If
Rk

disk is the minimum internal transfer rate of diskk, then the service rate definition ofEq. (3) becomes:
µ = (Tround · ∑D−1

k=0 Rk
disk)/

∑Ln
i=1 Sn(i) streams/round.

We applied the extendedShared-buffer Smoothingalgorithm to the stream example ofFig. 8(a). The
generated transfer sequence, shown inFig. 8(b), has its buffer space proportion bounded by the disk time
proportion, as before. In addition the maximum disk time proportion dropped from over 40% to less than
13%, after the transfer sizes across different rounds were appropriately adjusted according to the available
disk bandwidth.

In Fig. 9, we compare the performance of unsmoothed streams with that of smoothed streams in a range
of heterogeneous disks between 4 and 64. Although the number of streams always increases linearly with
the number of disks,Shared-buffer Smoothingcan achieve an advantage that exceeds a factor of 2 and 3 at
loads of 50 and 90%, respectively. The reason is that only a small number of streams is sufficient to saturate
the limited disk bandwidth of the HP disks. As a result, the Seagate disks are prevented from attaining
high bandwidth utilization without appropriate adjustment of the disk transfers. A similar behavior is also
demonstrated across different stream types inFig. 10. With plain Variable-Grain Striping, the number of
supported streams on 16 disks hardly exceeds 50; when Shared-buffer Smoothing is added the number
of streams gets close to 140.

In Fig. 11, we depict the average time that the Seagate and HP disks are expected to be busy respectively
during each round. We show the statistics for the first and second disks only, since the statistics for the rest
of the disks were similar. As we see, the average busy time of the Seagate disks remains less than 25%
of the round time with plain Variable-Grain Striping. The reason is the saturation of the HP disks, whose
corresponding busy time varies between 50 and 80% (it is less than 100% due to the relatively high

Fig. 12. When we set the server buffer per disk to 64 MB, we obtain most of the benefit ofShared-buffer Smoothing(see also
Fig. 10). Scaling the server buffer from 64 to 256 MB increases only marginally the sustained number of active streams.
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bitrate of the individual streams). When Shared-buffer Smoothing is applied, a high average reserved
disk time close to 90% is achieved across all the disks of the disk array. This becomes possible with
data prefetching that distributes data accesses across the disks according to the bandwidth that they can
support.

In the previous experiments we set the server buffer to 256 MB per disk. However, as we can see from
Fig. 12, having only 64 MB per disk is sufficient to get most (close to 95%) of the benefits of Shared-buffer
Smoothing for the particular streams included in our benchmark.

8. System validation

In order to keep the computation time reasonable, the previous experiments were conducted with our
system in Admission Control mode. This means that we make all the necessary resource reservations
when playback requests arrive into the system, but we omit the actual data transfers that normally take
place between the disks and the network. Although this mode adds flexibility in specifying the number
of the disks in the system, it leaves open the question of whether low-level resource management issues
are handled correctly by the system.

In previous work, we verified the correct operation of the system in small scale using hardware disks
[3]. In the present section, we additionally use the Simulated Disk Mode to compare the statistics of the
disk time reservations against those of the access times of the individual data transfers involved, using
the DiskSim representation of the Seagate Cheetah and HP C3323A disks[11]. For that purpose, we use
a four-disk array model consisting of the two disk types in alternating order. We presume that each disk
is attached to a separate SCSI bus 20 MB/s, and there is no contention on the host system bus connecting

Fig. 13. We create an array of four disks with Seagate (STN) and HP (HPC) models in alternating order. We show the average
and maximum reserved and measured time for the first and second disk of the array with the mixed workload at 90% load.
For the STN disks, the reserved statistics are no more than 8% higher than the measured. For the HPC disk, the corresponding
difference can get up to 20%. We made the measurements using the detailed disk simulation models by Ganger et al.
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the SCSI buses. The statistics are gathered during 6000 rounds after a warmup period of 3000 rounds,
as before and the mixed workload is used. With the load set to 90%, the server can support 9.74 active
streams with plain Variable-Grain Striping and 33.87 active streams with smoothing.

As can be seen fromFig. 13, in both the average and maximum case, the reserved disk time is no more
than 8% higher than the corresponding measurements on the Seagate disk model by Ganger et al.[11].
This gap can be attributed to the fact that our disk time reservation assumes a minimum disk transfer
rate and ignores on-disk caching. The corresponding gap for the HP disks gets close to 15% with plain
striping and 20% withShared-buffer Smoothing. Possible reasons for the larger discrepancy with the HP
disks are the increased on-disk cache locality due to the smaller disk capacity, and the higher probability
that fewer head movements are required with the smaller data transfers in the smoothed case.

In general, we believe that the achieved accuracy in the disk time predicted by the resource reservation
is adequate. In fact, to improve these estimates, it would be probably necessary to make use of extra disk
geometry information that is not readily available for commercial disk drives[34].

9. Conclusions

Recently, inexpensive specialized devices have emerged that are expected to outnumber powerful
desktop computers soon. They motivate the development of resource management policies that make
minimal assumptions about the available client capabilities.

In this paper, we introduce theShared-buffer Smoothingalgorithm that uses data prefetching into server
buffers for smoothing disk transfers of variable bit-rate streams. The algorithm is greedy and is shown to
have optimal smoothing effect under the specified constraints. Experimentation with homogeneous disk
arrays and moderate server buffer space demonstrates thatShared-buffer Smoothingcan achieve more
than 15% increase in the number of streams that can be supported by the server. This benefit is sustained
across different numbers of disks that we examine.

We also use theShared-buffer Smoothingalgorithm for striping variable bit-rate streams across arrays
of heterogeneous disks. When plain disk striping is used, disks with lower transfer rates prevent the
system from reaching high utilization. WithShared-buffer Smoothing, the average reserved disk access
time can get as high as 90% of the round time across the different disks. The corresponding benefit
in the number of streams accepted by the server exceeds a factor of three for the particular disk array
configuration that we study.

Comparative study of alternative buffer bounding constraints is a useful topic for future work. An
interesting theoretical question would be to generalize our algorithm to smooth functions of multiple
resources instead of individual resources only. Another open issue to explore further is the design of
appropriate replication techniques for tolerating disk failures in heterogeneous disk environments.
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