
6

Experience Distributing Objects
in an SMMP OS

JONATHAN APPAVOO, DILMA DA SILVA, ORRAN KRIEGER,
MARC AUSLANDER, MICHAL OSTROWSKI, BRYAN ROSENBURG,
AMOS WATERLAND, ROBERT W. WISNIEWSKI, and JIMI XENIDIS

IBM T.J. Watson Research Center

and

MICHAEL STUMM and LIVIO SOARES

Dept. of Electrical and Computer Engineering, University of Toronto

Designing and implementing system software so that it scales well on shared-memory multipro-

cessors (SMMPs) has proven to be surprisingly challenging. To improve scalability, most designers

to date have focused on concurrency by iteratively eliminating the need for locks and reducing lock

contention. However, our experience indicates that locality is just as, if not more, important and

that focusing on locality ultimately leads to a more scalable system.

In this paper, we describe a methodology and a framework for constructing system software

structured for locality, exploiting techniques similar to those used in distributed systems. Specifi-

cally, we found two techniques to be effective in improving scalability of SMMP operating systems:

(i) an object-oriented structure that minimizes sharing by providing a natural mapping from inde-

pendent requests to independent code paths and data structures, and (ii) the selective partitioning,

distribution, and replication of object implementations in order to improve locality. We describe con-

crete examples of distributed objects and our experience implementing them. We demonstrate that

the distributed implementations improve the scalability of operating-system-intensive parallel

workloads.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design

General Terms: Design

Additional Key Words and Phrases: Locality, Concurrency, Distribution, Scalability SMMP

ACM Reference Format:
Appavoo, J., da Silva, D., Krieger, O., Auslander, M., Ostrowski, M., Rosenburg, B., Waterland,

A., Wisniewski, R. W., Xenidis, J., Stumm, M., and Soares L. Experience distributing objects

Authors’ addresses: J. Appavoo, D. da Silva, O. Krieger, M. Auslander, M. Ostrowski, B. Rosenburg,

A. Waterland, R. W. Wisniewski, J. Xenidis; e-mail: {jappavoo,dilmasilva,okrieg,Marc Auslander,

mostrows,rosnbrg,apw,bobww,jimix}@us.ibm.com; M. Stumm and L. Soares: Department of Elec-

trical and Computer Engineering, University of Toronto; e-mail: {stumm,livio}@eecg.toronto.

edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0738-2071/2007/08-ART6 $5.00 DOI 10.1145/1275517.1275518 http://doi.acm.org/

10.1145/1275517.1275518

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 2 • J. Appavoo et al.

in an SMMP OS. ACM Trans. Comput. Syst. 25, 3, Article 6 (August 2007), 52 pages. DOI =
10.1145/1275517.1275518 http://doi.acm.org/10.1145/1275517.1275518

1. INTRODUCTION

On shared-memory multiprocessors (SMMPs), data accessed by only one pro-
cessor is said to have good locality, while data accessed by many processors is
said to have poor locality. Poor locality is typified by contended locks and a large
number of cache misses due to shared-write data accesses. Maximizing locality
on SMMPs is critical to achieving good performance and scalability. A single
shared cache-line on a critical system code path can have a significant negative
impact on performance and scalability.

In this article, we describe a methodology and a framework for constructing
system software that is structured for locality. We have applied the method-
ology in designing an SMMP operating system called K42. The methodology
and framework we have developed is the result of over 10 years experience
implementing SMMP operating systems: first Hurricane [Unrau et al. 1995],
then Tornado [Gamsa 1999] (both at the University of Toronto), and finally
K42 jointly at IBM and the University of Toronto. While we have experience
only with operating systems, the methodology should be equally relevant to
other transaction-driven software, such as databases and Web servers, where
parallelism results from parallel requests by the workload.

Techniques for improving scalability of SMMP operating systems are rele-
vant, as demonstrated by the efforts that have gone into parallelizing Linux
and commercial operating systems such as AIX, Solaris, and Irix over the last
several years. An increasingly large number of commercial 64-way and even
128-way MPs are being used as web or database (DB) servers. Some next-
generation game consoles are 4-way SMMPs. Given the trend in multicore,
multithreaded chips, it is easy to envision 32- or 64-way SMMP desktop PCs in
the not-too-distant future.

Traditionally, system designers have focused on concurrency rather than
locality when developing and scaling SMMP operating systems. We argue that
the approach generally used is ad hoc in nature and typically leads to complex
implementations, while providing little flexibility. Adding more processors to
the system, or changing access patterns, may require significant retuning.

In contrast, the central tenet of our work has been to primarily focus on local-
ity by applying techniques similar to those used in distributed systems for selec-
tively partitioning, distributing, and replicating data, using a framework we de-
veloped that supports locality optimizations within an object-oriented software
model. Hence, we exploit object-oriented structures primarily for locality-
centric performance optimization, and only secondarily for the software engi-
neering benefits or for flexibility. The result, we argue, is a system with a simpler
overall structure that greatly reduces the complexity required to achieve good
scalability. The approach used allows the developer to focus on specific ob-
jects, without having to worry about larger system-wide protocols, enabling
an incremental optimization strategy. Objects are specialized to handle specific

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 3

Fig. 1. K42 microbenchmark measuring cycles required for parallel client-server IPC requests

to update a counter. Locks, shared data access, and falsely shared cache lines all increase round-

trip times significantly even though the shared data access constitutes less than one tenth of one

percent of the overhead in the uncontended case.

demands, leading to a separation of concerns and simplifying the development
process.

1.1 Motivating Example

To illustrate the magnitude of the performance impact of contention and shar-
ing in an SMMP, consider the following simple experiment: each processor con-
tinuously, in a tight loop, issues a request to a server. The interprocess commu-
nication (IPC) between client and server and the request-handling at the server
are processed entirely on the processor from which the request was issued, and
no shared data needs to be accessed for the IPC. On the target hardware, the
round trip IPC costs 1193 cycles.1 It involves an address space switch, transfer
of several arguments, and authentication on both the send and reply paths.
The increment of a variable in the uncontended case adds a single cycle to this
number.

Figure 1 shows the performance of 4 variants of this experiment, measuring
the number of cycles needed for each round-trip request-response transaction
when the number of participating processors is increased from 1 to 24:

(1) Increment counter protected by lock. This variant is represented by the top-
most curve: at 24 processors, each transaction is slowed down by a factor of
about 19.

1The cost for an IPC to the kernel, where no context switch is required, is 721 cycles.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 4 • J. Appavoo et al.

(2) Increment counter using an atomic increment operation. This variant
shows a steady degradation. At 24 processors, each request-response trans-
action is slowed down by a factor of about 12.

(3) Increment per-processor counter in array. This variant has no logical shar-
ing, but exhibits false sharing because multiple counters cohabit a single
cache line. In the worst case, each request-response transaction is slowed
down by a factor of about 6.

(4) Increment padded per-processor counter in array. This variant is rep-
resented by the bottommost curve that is entirely flat, indicating good
speedup: 24 request-response transactions can be processed in parallel
without interfering with each other.

These experiments show that any form of sharing in a critical path can be
extremely costly—a simple mistake can cause one to quickly fall off a perfor-
mance cliff.2 Even though the potentially shared operation is, in the sequential
case, less than one tenth of one percent of the overhead of the experiment, it
quickly dominates performance if it is in a critical path on a multiprocessor sys-
tem. This kind of dramatic result suggests that we must simplify the task of the
developer as much as possible, providing her with abstractions and infrastruc-
ture that simplifies the development of operating system code that minimizes
sharing.

1.2 Scalablity and Locality

An operating system is said to be scalable if it can utilize the processing, com-
munication, and memory resources of the hardware such that adding resources
permits a proportional increase in the load that the operating system can sat-
isfy. Operating system load is considered to be the demand on the basic kernel
services.

Software designed for locality on an SMMP uses partitioning, distribution,
and replication of data to control concurrent access. Doing so provides fine-grain
control over memory accesses and control over the associated communication.
For example, using a distributed implementation of a performance counter,
where each processor is assigned its own local padded subcounter, ensures that
updates to the counter result only in local communication.

It is worth noting that there are two forms of communication associated
with a memory access: (i) utilization of the interconnect fabric to bring the
data from storage into the processor’s caching system, and (ii) utilization of the
interconnect for the associated cache coherency messages. On large-scale ma-
chines, with complex distributed interconnection networks, nonuniform mem-
ory access (NUMA) effects increase the benefit of localizing memory accesses by
avoiding remote delays. Additionally, localizing memory accesses restricts com-
munication to local portions of a complex hierarchical interconnect, and thereby
avoids the use (and thus congestion) of the global portions of the memory
interconnect.

2While this experiment may seem contrived, a number of examples we introduce in later sections

show that this behavior can easily occur in practice.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 5

Even small machines, with flat, high-capacity interconnects that do not suf-
fer congestion delays, benefit from localizing memory accesses. The use of large
multilayer caches to mitigate the disparities between processor frequencies and
main memory response times results in NUMA-like behavior. Considerable de-
lays result when a cache miss occurs. Partitioning, distribution, and replication
help avoid cache misses associated with shared data access by reducing the
use of shared data on critical paths. For example, a distributed performance
counter with all subcounters residing on separate cache lines eliminates cache
coherency actions (invalidations to ensure consistency) on updates, thus making
communication delays associated with cache misses less likely. There is a trade-
off, however: when the value of the counter is needed, the values of the individ-
ual subcounters must be gathered and additional cache misses must be suffered.

Implementations utilizing partitioning, distribution, and replication require
programmers to explicitly control and express how the data structures will
grow with respect to memory consumption as additional load is observed. For
example, consider a distributed table used to record processes, with an imple-
mentation that utilizes a table per processor that records just the processes
created on that processor. In such an approach the OS programmer explicitly
manages the required memory on a per-processor basis. This implementation
will naturally adapt to the size of the machine on which it is running, and on
large-scale machines with distributed memory banks, data growth can occur in
a balanced fashion.

1.3 Overview

Fundamental to the work presented in this paper are K42’s object-oriented
structure and K42’s support for Clustered Objects. Section 2 provides back-
ground on K42’s structure. In Section 3, we identify the principles we have
followed that allow the development of localized, scalable data structures. The
three main points are:

(1) Focus on locality, not concurrency, to achieve good scalability;

(2) Adopt a model for distributed components to enable pervasive and consis-
tent construction of locality-tuned implementations;

(3) Support distribution within an object-oriented encapsulation boundary to
ease complexity and permit controlled and manageable introduction of lo-
calized data structures into complex systems software.

In Section 4, we present a case study of how we distribute objects used
for virtual memory management in K42.3 Despite the complexity associated
with distribution, we demonstrate that a fully distributed implementation of
this core service is possible. We further demonstrate that the techniques are
affordable; uniprocessor performance competitive with traditional systems is
achieved. For a multiuser workload on a 24-way system, the use of distributed
memory-management objects results in a 70% improvement in performance

3We selected the memory management subsystem for this case study because (i) it is critical to the

performance of many applications, and (ii) it represents a complex core service of the operating

system. The same techniques can and have been applied to other subsystems.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 6 • J. Appavoo et al.

as compared with a system using nondistributed implementations of the same
objects, as we show in Section 5.

Our general approach is as follows. We start with simple implementations
and then introduce distributed implementations as needed, with the goal of ex-
ploring our infrastructure and the feasibility of our approach. The goal is not to
argue that the distributed implementations chosen are either optimal or even
superior to equivalent highly-concurrent versions—rather it is to validate the
methodology and gain insights into the techniques for constructing a system
that can feasibly employ locality in a fine-grain fashion. For example, using
a lock-free list instead of a set of distributed lists may provide equal perfor-
mance for a specific machine and load. However, we take it as a basic axiom
that locality-based implementations have the desirable properties of permitting
explicit control of communication costs.

The approach we have taken does not preclude the use of highly concur-
rent structures. Rather we propose a metastructure that permits the designer
and implementor of a system to mix and match centralized and distributed
implementations.

Object-oriented encapsulation and support for distribution are our primary
tools in the pursuit of locality optimizations. We integrate mechanisms and
primitives for developing distributed implementations within a general soft-
ware construction framework. A developer is free to use any technique to im-
plement a given object—coarsely synchronized nondistributed data structures,
highly concurrent nondistributed data structures, distributed data structures,
or hybrids. With our support for distribution integrated in an accepted soft-
ware engineering model, we are able to iteratively and incrementally introduce
compatible implementations that vary in scalability.

Section 6 contains a comprehensive review of related work. Our conclusions
are in Section 7. In many of the sections we include the design principles and
lessons learned that pertain specifically to the content described in that sec-
tion. Overall principles and experiences are presented in the introduction and
conclusion.

2. K42 BACKGROUND

In this section, we present background material on the K42 operating system
needed to understand the remainder of the paper.

Our implementation of K42 is PowerPC Linux API- and ABI-compatible. It
supports the same application libraries as Linux and provides the same device
driver and kernel module infrastructure, extensively exploiting Linux code to
accomplish this [Appavoo et al. 2003]. In essence, K42 provides an alternative
implementation of the core of the Linux kernel.

Fundamental to maximizing locality in K42 are (i) K42’s object-oriented
structure and (ii) K42’s support for Clustered Objects. Some aspects of K42’s
core infrastructure that are important for achieving scalability are its locality-
aware memory allocator, its locality-preserving interprocess communication
mechanism, and its support for read-copy-update (RCU [McKenney et al. 2002])
object destruction.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 7

Fig. 2. An illustration of the K42 runtime structure used to handle in-core page faults.

2.1 K42’s Object-Oriented Structure

K42 uses an object-oriented design that promotes a natural decomposition that
avoids sharing in the common case. In K42, each physical and virtual resource
instance is represented by an individual object instance. Each object instance
encapsulates the data needed to manage the resource instance as well as the
locks required to protect the data. Thus, K42 is designed to avoid global locks or
global data structures, such as the process table, the file table, the global page
cache, the call-switch table, or the device-switch table used in some traditional
operating systems.

We illustrate our approach with a description of in-core page fault handling.
We decompose the page fault handler execution into calls to independent objects
as depicted in Figure 2. Each page fault is handled by an independent kernel
thread that is scheduled on the processor on which the fault occurred. Execution
of each kernel thread servicing a page fault proceeds on an independent path
through the following objects associated with the user-level thread and the
faulting page:

—Process Objects: For each running process there is an instance of a Process
Object in the kernel. Kernel threads handling page faults for independent
processes are directed to independent process objects, avoiding the need for
common data accesses.

—Region Objects: For each binding of an address space region to a file region,
a Region Object instance is attached to the Process Object. Threads within a

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 8 • J. Appavoo et al.

Table I. Kernel Object Accesses for Three User Scenarios (each entry details the accesses to a

unique object instance. We include the objects that account for 80% of all accesses. The final entry

in each column shows the number of objects needed to account for that 80%)

Multi-User Single-User Multi-Threaded

Accesses (%) Object Type Accesses (%) Object Type Accesses (%) Object Type
9569 (13.38) Process (P1) 9569 (13.62) Process(P1) 18928 (27.40) Process

9365 (13.10) Process (P2) 9569 (13.62) Process (P2) 9372 (13.56) HAT

4692 (6.56) HAT (P1) 8196 (11.66) FCMFile (P1,P2) 8239 (11.93) SegmentHAT

4600 (6.43) HAT (P2) 4692 (6.68) HAT (P1) 8197 (11.86) FCMFile

4138 (5.79) SegmentHAT (P1) 4692 (6.68) HAT (P2) 8196 (11.86) Region

4136 (5.78) SegmentHAT (P2) 4136 (5.89) SegmentHAT (P1) 1249 (1.81) FCMComp

4101 (5.73) FCMFile (P1) 4136 (5.89) SegmentHAT (P2) 1224 (1.77) GlobalPM

4099 (5.73) Region (P1) 4097 (5.83) Region (P1)

4098 (5.73) FCMFile (P2) 4097 (5.83) Region (P2)

4098 (5.73) Region (P2) 1181 (1.68) GlobalPM (P1,P2)

1145 (1.60) GlobalPM (P1,P2) 853 (1.21) FCMComp (P1)

910 (1.27) FCMComp (P1) 853 (1.21) FCMComp (P2)

840 (1.17) FCMComp (P2) 447 (0.64) PMLeaf (P1,P2)

666 (0.93) PageAllocator (P1,P2)

503 (0.70) COSMgr (P1,P2)

471 (0.66) Process (P3)

57431 (80.31) 16 56518 (80.43) 13 55405 (80.19) 7

process that access different regions of an address space access independent
Region Objects.

—File Cache Manager (FCM) Objects: For each open file there is a sep-
arate FCM instance that manages the resident pages of the file. Page
faults for data from independent files are serviced by independent FCM
Objects.

Like other research systems, K42 has an object-oriented design, but not pri-
marily for the software engineering benefits or for flexibility, but rather for
multiprocessor performance benefits. More specifically, the design of K42 was
based on the observations that: (i) operating systems are driven by requests
from applications for virtual resources; (ii) to achieve good performance on
multiprocessors, requests to different resources should be handled indepen-
dently, that is, without accessing any common data structures and without
acquiring any common locks, and (iii) the requests should, in the common case,
be serviced on the processors on which they are issued. As illustrated above,
using in-core page fault handling as an example, K42 uses an object-oriented
approach to yield a runtime structure in which execution paths for indepen-
dent operating system requests, in this case page faults, access independent
data structures, thus promoting locality.

Table I illustrates quantitatively the independence of objects within K42. In
the table, we consider three different scenarios involving programs scanning a
file:

(1) entirely independent requests to the OS: two users run different programs
to scan independent files;

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 9

(2) partially independent requests to the OS: a single user runs two instances
of the same program to scan the same file; and

(3) nonindependent requests to the OS: a user runs a multithreaded program
with two threads scanning the same file.

Each row of the table indicates the number of accesses to a particular object
and the percent of all accesses it represents. The table shows that the higher the
degree of independence in requests, the larger the number of objects involved
and the lower the amount of sharing. That is, the object-oriented decomposition
of the operating system structures explicitly reflects the independence (or lack
thereof) in the user access patterns.

2.2 Clustered Objects

Although the object-oriented structure of K42 can help improve locality by map-
ping independent resources to independent objects, some components may be
widely shared and hence require additional measures to ensure locality and
good performance. For these objects, K42 uses distributed implementations
that either partition and distribute object data across the processors/memory
modules or that replicate read-mostly object data.

K42 uses a distributed component model called Clustered Objects to manage
and hide the complexity of distributed implementations. Each clustered object
appears to its clients as a regular object, but is internally implemented as a
number of representative objects that partition and/or replicate the state of the
clustered object across processors. Thus, Clustered Objects are conceptually
similar to design patterns such as Facade [Gamma et al. 1995] or the parti-
tioned object models used in Globe [Homburg et al. 1995] and SOS [Shapiro
et al. 1989]. However, Clustered Objects in K42 are specifically designed for
shared-memory multiprocessors as opposed to loosely-coupled distributed sys-
tems, and focus primarily on maximizing SMMP locality. The infrastructure
used to support Clustered Objects has been described previously [Appavoo
2005; Appavoo et al. 2002; Gamsa et al. 1999] but is summarized here as back-
ground for later discussion.

2.2.1 Details of Clustered Object Implementation. Each Clustered Object
class defines an interface to which every implementation of the class conforms.
We use a C++ pure virtual base class to express a Clustered Object interface.

An implementation of a Clustered Object consists of two portions: a Repre-
sentative definition and a Root definition, expressed as separate C++ classes.
The Representative definition defines the per-processor portion of the Clustered
Object. In the case of the performance counter, it would be the definition of one
of the subcounters. An instance of a Clustered Object Representative class is
called a Rep of the Clustered Object instance. The Representative class im-
plements the interface of the Clustered Object, inheriting from the Clustered
Object’s interface class. The Root class, on the other hand, defines the global,
shared, portion of the Clustered Object. Every instance of a Clustered Object
has exactly one instance of its Root class that serves as the internal central
anchor or “root” of the instance. Each Rep has a pointer to the Root of the

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 10 • J. Appavoo et al.

Clustered Object instance. The methods of a Rep can access the shared data
and methods of the Clustered Object via its root pointer.

At runtime, an instance of a given Clustered Object is created by instantiat-
ing an instance of the desired Root class.4 Instantiating the Root establishes a
unique Clustered Object Identifier (COID, also referred to as a Clustered Object
ref) that is used by clients to access the newly created instance. To the client
code, a COID appears to be an indirect pointer to an instance of the Rep Class.5

Tables and protocols are used to manipulate calls on a COID to achieve the
runtime features of Clustered Objects. There is a single shared table of Root
pointers called the Global Translation Table and a set of Rep pointer tables,
one per processor, called Local Translation Tables. The virtual memory map
for each processor is set up so that that processor’s Local Translation Table
appears at a fixed address “vbase” on that processor.6 The Local Translation
Table is mapped at the same virtual address on each processor, but its entries
can have different values on different processors. Hence, the entries of the Local
Translation Tables are processor-specific despite occupying a single range of
fixed addresses.

When a Clustered Object is allocated, its root is instantiated and a reference
to it is installed into a free entry in the Global Translation Table. (Lists of free
entries are managed on a per-processor basis, so that in the common case an
entry can be allocated without communication or synchronization.) The address
of the corresponding entry in the Local Translation Table is the COID for the
new Clustered Object. The sizes of the global and local tables are kept the
same, and simple pointer arithmetic can be used to convert between global and
local table pointers. Figure 3 illustrates a Clustered Object instance and the
translation tables.

Reps of a Clustered Object are created lazily. They are not allocated or in-
stalled into the Local Translation Tables when the Clustered Object is instan-
tiated. Instead, empty entries of the Local Translation Table are initialized to
refer to a special handcrafted object called the Default Object. The first time
a Clustered Object is accessed on a processor (or an attempt is made to access
a nonexistent Clustered Object), the same global Default Object is invoked.
The Default Object leverages the fact that every call to a Clustered Object goes
through a virtual function table.7 The Default Object overloads the method
pointers in its virtual function table to point to a single trampoline8 method.
The trampoline code saves the current register state on the stack, looks up the

4The client code is not actually aware of this fact. Rather, a static Create method of the Rep class

is used to allocate the root. Because we do not have direct language support, this is a programmer-

enforced protocol.
5To provide better code isolation, this fact is hidden from the client code with the macro: #define

DREF(coid) (*(coid)). For example, if c is a variable holding the COID of an instance of a clustered

performance counter that has a method inc, a call would look like: DREF(c)->inc(). Again, as we

do not have direct language support for Clustered Objects we rely on programmer discipline to

access a Clustered Object instance only via the DREF() macro.
6In K42, a page table is maintained on a per-processor and per-address space basis, and thus each

processor can have its own view of the address space.
7Remember that a virtual base class is used to define the interface for a Clustered Object.
8Trampoline refers to the redirection of a call from the intended target to an alternate target.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 11

Fig. 3. A Clustered Object instance and translation tables.

Root installed in the Global Translation Table entry corresponding to the COID
that was accessed, and invokes a well-known method that all Roots must imple-
ment called handleMiss. This method is responsible for installing a Rep into the
processor’s Local Translation Table entry corresponding to the COID that was
accessed. The miss handler may instantiate a new Rep or identify a preexisting
Rep, in either case storing the Rep’s address into the Local Translation Table
entry to which the COID points. On return from the handleMiss method, the
trampoline code restarts the call on the correct method of the newly installed
Rep.

The process described above is called a Miss, and its resolution Miss-
Handling. Note that after the first Miss on a Clustered Object instance, on
a given processor, all subsequent calls on that processor will proceed as stan-
dard C++ method invocations, albeit with an extra pointer dereference. Thus,
in the common case, methods of the installed Rep will be called directly with
no involvement of the Default Object.

The mapping of processors to Reps is controlled by the Root Object. A shared
implementation can be achieved with a Root that maintains one Rep and uses
it for every processor that accesses the Clustered Object instance. Distributed
implementations can be realized with a Root that allocates a new Rep for some
number (or cluster) of processors, and complete distribution is achieved by a
Root that allocates a new Rep for every accessing processor. There are standard
K42 Root classes that support these scenarios.

In K42, all system resources are represented by Clustered Objects so that
they can be optimized as the need arises.

2.3 Other Relevant K42 Infrastructure

In addition to K42’s object-oriented structure and the clustered object infras-
tructure, the following three features are also important to K42’s scalability:

—Locality-aware memory allocator: Using a design similar to that of
[Gamsa et al. 1999], our allocator manages per-processor memory pools but
also minimizes false sharing by properly padding allocated memory. It also
provides for NUMA support, although this does not come into play in the
experiments presented here. The memory allocator itself is implemented so
that it maximizes locality in its memory accesses and avoids global locks.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 12 • J. Appavoo et al.

—Locality-preserving interprocess communication: The IPC mechanism
of K42 is designed as a protected procedure call (PPC) between address
spaces, with a design similar to the IPC mechanism of L4 [Liedtke et al.
1997]. The PPC facility is carefully crafted to ensure that a request from one
address space to another (whether to the kernel or to a system server) is
serviced on the same physical processor using efficient hand-off scheduling,
maximizing memory locality, avoiding expensive cross-processor interrupts,
and providing as much concurrency as there are processors. Details on the
implementation of our PPC facility can be found in Krieger et al. [1993] and
Gamsa et al. [1999].

—Automatic object collection: Object destruction is deferred until all cur-
rently running threads have finished.9 By deferring object destruction this
way, any object can be safely accessed, even as the object is being deleted.
As a result, existence locks are no longer required, eliminating the need
for most lock hierarchies. This in turn results in locks typically being
held in sequence, significantly reducing lock hold times and eliminating
the need for complex deadlock avoidance algorithms. The basic algorithm
of our object destruction facility is described in Gamsa et al. [1999] and
the details of the K42 clustered object destruction protocols are described
in Appavoo [2005].

Overall, K42 is designed to be demand-driven on a per-processor basis; that
is, when a user process makes a request to the system, objects necessary to
represent the resources for the request are created on demand on the processor
on which the request was made. Future requests by the user process, which
require the same resources, will access the same objects on the same processor
unless the process is migrated. When the user process terminates, the objects
created will be destroyed on the same processor. The K42 scheduler avoids
migration in order to encourage affinity with respect to process requests and
the objects created to service them. To illustrate this property we recorded the
sets of processors on which objects are created, accessed, and destroyed for a
24-way run of the multiuser benchmark discussed in Section 5. Of the 543,029
objects that were created and destroyed during the benchmark, 99.4% were
created, accessed, and destroyed on the same processor.

3. PRINCIPLES

Based on our experience developing scalable data structures, we have concluded
that:

—Locality must be a central design focus in the effort to achieve robust scalable
performance.

—A consistent model for designing system components permits and encourages
a pervasive use of locality.

9K42 is preemptable and has been designed for the general use of RCU techniques [McKenney and

Slingwine 1998] by ensuring that all system requests are handled on short-lived system threads.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 13

—The introduction of distribution within object-oriented encapsulation bound-
aries eases the burden of constructing scalable systems software.

In this section, we discuss these points in detail.

3.1 Focus on Locality

When constructing a system for which scalability is a requirement, it is worth
explicitly considering the implications of concurrency on the software design
and implementation. Unless there is a fundamental change in SMMP hardware,
data sharing will continue to have an overhead that grows with the number of
processors accessing the shared data. As such, the approaches to addressing
concurrency should be analyzed with respect to shared data access. There are
two basic approaches to constructing concurrent systems:

—Synchronization-driven: Start with a functional uniprocessor system and add
synchronization to permit safe, concurrent execution; improve concurrency
by incrementally replacing coarse-grain with finer-grain synchronization. In-
herently, this approach uses pervasive sharing: the locks and data they pro-
tect are typically candidates for access on all processors. Usually no attempt
to structurally or algorithmically limit the set of processors that access a lock
or data item is made explicitly.

—Locality-driven: Design and implement the system around techniques that
permit fine-grain control of sharing. Specifically, distribution and replication
are used to improve locality by eliminating or reducing sharing on critical
system code paths. This approach does not rely on fine-grain synchronization
on performance-sensitive paths.

Most systems have taken the first, synchronization-driven, approach. Given
the nature of this approach, it leads to data structures that are accessed by
many processors. Good concurrency does not necessarily imply locality, nor does
it ensure good scalability given the nature of modern SMMPs. We contend that
the widely shared structures that the synchronization-driven approach favors
are inflexible with respect to achieving good scalability. All operations that
access a shared structure will suffer the communication and cache consistency
overheads associated with sharing. On the other hand, using a localization
approach allows the system developer to adjust/tune/trade off when and where
the overheads of communication will be suffered. Critical operations can be
tuned to eliminate shared data accesses.

As an example, consider the problem of maintaining the mapping from file
offsets to the physical pages that cache portions of the file. One possibility is a
simple hash table. Such a hash table can be constructed to require very small
critical sections and thus have good concurrency. However, every access to the
hash table would result in shared data access. An alternative that reduces the
shared data access is to maintain a master hash table and replicate the data
to local per-processor hash tables. As the local hash tables become populated,
lookups require only local memory access, and sharing is avoided.

There are, of course, limitations to localizing implementations: one can not
eliminate all sharing; one must be selective about which paths will be optimized.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 14 • J. Appavoo et al.

This approach inherently demands fine-grain trade-offs. Optimizations often
involve extra complexity and space usage, and optimizing some operations may
decrease the efficiency of others. Returning to our hash table example, the pro-
posed distributed implementation improves the locality of the lookup operation
at some cost in space and complexity. It also greatly increases the cost of the
remove operation, because now a mapping must be removed from all the local
hash tables. Optimization decisions must always take into account the frequen-
cies with which different paths are executed.

The locality-driven approach is not unique or new, and many systems have
utilized distribution to solve particular problems or have applied it in the large
for the sake of addressing extreme disparity in communication/computation la-
tency (in particular, for distributed systems). We decided to take this approach
in addressing scalability on SMMPs, because even on machines that are con-
sidered to have good computation/communication ratios, the costs of sharing
can dominate can dominate the performance of many operations.

3.2 Utilize a Model

In our effort to address performance problems by improving locality, we have
found that it was key to first develop a model for distributed implementations.
In K42 we adopted the Clustered Object model, using it as the basis on which to
approach each new implementation. The Clustered Object model gave us a con-
crete set of abstractions with which to reason and design solutions. Solutions
for each performance problem could be approached within the context of the
model, with the goal of providing localized processing on performance-critical
paths. A key feature of the model is its ability to motivate and guide the devel-
oper in achieving good locality. Our current Clustered Object model has been
developed from experience and has specifically been designed to be simple.

The Clustered Object model helps encourage the developer to address ques-
tions. Specifically, it forces the developer to answer the following:

—What state should be placed in the Clustered Object Representatives and
hence be local?

—What state should be shared and placed in the Clustered Object Root?

—How should the Representatives be created and initialized? At what point
should new Representatives participate in the global operations of the
object?

—How should local operations and global operations synchronize?

—How should the Representatives be organized and accessed?

For example, consider constructing the in-kernel data structures that repre-
sent a process. As one declares the data fields that are associated with a process
and the operations in which they are used, the Clustered Object model forces the
developer to actively decide if and how to utilize distribution. If the developer
decides not to distribute any data fields, then she uses a single representative,
containing all data members, for all processors. If, however, it becomes clear
that servicing page faults incurs contention on the list of valid memory map-
pings for the process, the Clustered Object model gives the developer a basis
for distributing the list of valid memory mappings. Introducing a per-processor

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 15

local copy of the list of valid memory mappings is naturally achieved by using
multiple Representatives. The remainder of the data fields are placed in the
Root. Additionally, the Clustered Object model forces the developer to consider
how the process data structures should scale as new processors access the pro-
cess object. The developer must define how new Representatives are created
when the process object is accessed for the first time on a processor. Doing so,
she must also decide how the new Representative’s copy of the valid mappings
will be initialized and how and when global operations such as removing a
mapping will coordinate with the new representative.

3.3 Encapsulate Distribution

Having adopted object-oriented decomposition and a means for integrating dis-
tribution, we constructed our system with a focus on improving locality. Sup-
porting distribution within the encapsulation boundaries of an object-oriented
language preserved a number of object-oriented advantages.

Critical to operating systems development is the need to allow for incremen-
tal development and optimization. By encapsulating the use of distribution
within a component’s internals, we have been able to iteratively introduce dis-
tribution. For example, we were able to construct the virtual memory manage-
ment subsystem as a set of object implementations which utilized little or no
distribution. As experience was gained with each object, we iteratively changed
the implementation of individual objects to introduce more aggressive distribu-
tion on a per-implementation basis without breaking interoperability. A specific
example is the Global Page Manager object that manages the system-wide pool
of physical page frames. Over time we progressively localized more and more
of its functionality by locating its data members into its Representatives and
rewriting its methods. Each version we produced was functionally equivalent
to its predecessors and was able to participate in a functioning system without
impacting any other object implementations.

Encapsulating the distribution preserves the ability to leverage polymor-
phism. It allows us to selectively instantiate implementations with differing
distribution trade-offs for the same resource type. For example, a page cache
for a dynamic region, such as the heap for a single-threaded application, is best
served by a data structure that is optimized for the miss case and utilizes a
centralized structure. The page cache for a long-lived, multiply accessed set of
pages, such as those of an executable or data file, is best served using a data
structure that is optimized for the hit case and utilizes a distributed structure.

Finally, the encapsulation of the distribution preserves an object-oriented
functional interface model for the software components—the only access to an
object is through its method interface. We have leveraged the uniform functional
interface and associated calling convention to construct specialized objects that
can be interposed dynamically in front of any object regardless of its type. An
instance of such an interposer can intercept calls to the particular object it fronts
and can implement arbitrary call handling including: invocation of arbitrary
functions, manipulation of arguments, redirection of the call, passing of the
call on to the original target, and manipulation of return values. We have used
interposer objects to implement:

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 16 • J. Appavoo et al.

—Lazy distributed component construction On first method invocation
of an object on a processor, an object-specific resource allocation method is
called to locate or construct a representative of the given object for the pro-
cessor. Successive calls to the object go directly to the representative with no
interposition.

—Distributed resource reclamation When an object is destroyed, a special
object is interposed in front of the object that is being destroyed. The special
object returns a standard error code back to all callers without ever access-
ing the original object. When the destruction system has reclaimed all the
resources associated with the object and has determined that there are no
threads that have a reference to the object, the special object is removed.

—Hot-swapping of distributed objects We have implemented a method-
ology for dynamically swapping compatible object instances, including in-
stances which have a distributed representative structure in an efficient
multiprocessor fashion [Hui et al. 2001; Soules et al. 2003].10

4. MEMORY MANAGEMENT CASE STUDY

Virtual memory management (VMM) is one of the core services that a gen-
eral purpose operating system provides and is typically both complex in func-
tion and critical to performance. Complexity is primarily due to (i) the di-
versity of features and protocols that the virtual memory services must pro-
vide, and (ii) the highly asynchronous and concurrent nature of VMM re-
quests. The demand for performance is primarily on one VMM path—the res-
ident page fault path. Generally, each executing program must establish ac-
cess to the memory pages of its address space via page faults. “Resident” page
faults are those that can be resolved without involving disks or other slow
I/O devices, either because the content of the required pages can be computed
(e.g., zero-filled or copied from other pages) or because the content is already
resident in memory and can simply be mapped into the requester’s address
space.

The optimization of the K42 VMM service, to improve its scalability, has
served as a case study for the application of distributed data structures to a
core operating system service. In this section, we review how distributed data
structures encapsulated in the Clustered Objects of the K42 VMM are used to
achieve the optimizations.

Figure 4 depicts the K42 Kernel VMM objects used to represent and manage
the K42 virtual memory abstractions. Specifically, the figure illustrates the
instances of objects and their interconnections that represent an address space
with two independent files (File1 and File2) mapped in, as shown abstractly at
the top of the diagram above the dashed line. The associated network of kernel
objects is shown below the dashed line. Some of these objects were discussed
briefly in Section 2.1.

10A methodology for doing general dynamic system update built on top of hot-swapping is being

explored by Baumann et al. [2005].

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 17

Fig. 4. VMM object network representing an address space with two mapped files.

We have reimplemented each of the shaded objects (Process, Region, File
Cache Manager (FCM), Page Manager (PM) and Global Page Manager (Global
PM)) in a distributed fashion and each is discussed in subsequent subsections.
The other two objects, HATs, and FRs, are discussed in the following two
paragraphs.

HAT. The Hardware Address Translation (HAT) object is responsible for
implementing the functions required for manipulating the hardware mem-
ory management units and is used to add a page mapping to the hardware-
maintained translation services. In K42, the HAT object maintains page tables
on a per-processor basis. Hence, the default HAT implementation is distributed
by definition and naturally does not suffer contention.

FR. The File Representative (FR) objects are in-kernel representations of
files. An FR typically communicates with a specific file system server to per-
form the file IO. The only situations where FRs are heavily utilized are under
circumstances where the system is paging. Those scenarios may lead to more
substantial sharing of the FRs, in which case similar techniques to those we
describe would need to be applied. To date, we have not run benchmarks that
have placed significant paging burdens on the system to observe this potential
effect.

In order to gain insight into the performance implications of this imple-
mentation, let us consider a microbenchmark that we will call memclone.11

11This benchmark was sent to us by one of IBM’s Linux collaborators. The benchmark was developed

to demonstrate scalability problems in Linux.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 18 • J. Appavoo et al.

Memclone is designed to mimic the page-fault-inducing behavior of a typical sci-
entific application’s initialization phase. For each processor, it allocates a large
array and a thread that sequentially touches each array page. To understand
the implications of K42’s VMM structure on the performance of such a bench-
mark, we will briefly trace the behavior of K42’s VMM objects during execution
of the program.

When each thread allocates its large array (on the order of 100 Megabytes)
the standard Linux C library implementation of malloc will result in a new
memory mapping being created for each array. In K42, this mapping will result
in a new Region and File Cache Manager (FCM) being created for each array.
The FCM records and manages the physical pages that are backing the resident
data pages for the mapping. The FCM is attached to an FR which simply directs
the FCM to fill newly accessed page frames with zeros.

Thus, running the benchmark on n processors will result in the Process object
for the benchmark having n Regions, one per array, added to its list of regions.
As each thread of the benchmark sequentially accesses the virtual memory
pages of its array, page fault exceptions occur on the processor on which the
thread is executing.

K42’s exception handler directs each fault to the Process object associated
with the benchmark by invoking a method of the Process object. The Process
object will search its list of regions to find the Region responsible for the address
of the page that suffered the fault and then invoke a method of the Region. The
Region will translate the faulting address into a file offset and then invoke a
method of the FCM it is mapping. The FCM will search its data structures to
determine whether the associated file page is already present in memory. In
the case of the page faults induced by the benchmark, simulating initialization
of the data arrays, all faults will be for pages that are not present. As such,
the FCM will not find an associated page frame and will allocate a new page
frame by invoking a method of the Page Manager (PM) to which it is connected.
The PM will then invoke a method of the Global PM to allocate the page frame.
To complete the fault, the FCM initializes the new page frame with zeros, and
then maps the page into the address via the HAT object passed to it from the
Process.

In the following subsections, we review design alternatives for each of the
major objects and present the results of measurements to identify the effects
of data distribution and replication.

4.1 Process Object

The Process object represents a running process and all per-process operations
are directed to it. For example, every page fault incurred by a process is directed
to its Process object for handling.

The Process object maintains address space mappings as a list of Region
objects. When a page fault occurs, it searches its list of Regions in order to
direct the fault to the appropriate Region object. The left-hand side of Figure 5
illustrates the default nondistributed implementation of the Process object. A
single linked list with an associated lock is used to maintain the Region List.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 19

Fig. 5. Nondistributed and distributed Process objects.

To ensure correctness in the face of concurrent access, this lock is acquired on
traversals and modifications of the list.

In the nondistributed implementation, the list and its associated lock can
become a bottleneck in the face of concurrent faults. As the number of con-
current threads is increased, the likelihood of the lock being held grows,
which can result in dramatic performance drop-offs as threads stall and queue
on the lock. Even if the lock and data structures are not concurrently ac-
cessed, the read-write sharing of the cache line holding the lock and poten-
tial remote memory accesses for the region list elements can add significant
overhead.

The distributed variant of the Process object is designed to cache the re-
gion list elements in a per-processor Representative (see right-hand side of
Figure 5). A master list, identical to the list maintained in the nondistributed
version, is maintained in the root. When a fault occurs, the cache of the re-
gion list in the local Representative is first consulted, acquiring only the local
lock for uniprocessor correctness. If the region is not found there, the master
list in the root is consulted and the result is cached in the local list, acquiring
and releasing the locks appropriately to ensure the required atomicity. This
approach ensures that, in general, the most common operation (looking up a
region that has suffered a previous fault on a processor) will only access mem-
ory local to the processor and not require any inter-processor communication
or synchronization.

Using distribution is not the only alternative. Replacing the coarse-grain
lock and linked list with a fine-grain locked list or lock-free list would likely
yield similar benefit. Our goal, however, is not to consider all possible imple-
mentations of a concurrent linked list but rather to establish that locality-based
solutions are viable.

Figure 6 displays the performance of memclone (described earlier) running
on K42 with the nondistributed version and the distributed version of the
Process object. The experiments were run on an S85 Enterprise Server IBM

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 20 • J. Appavoo et al.

Fig. 6. Graph of average thread execution time for memclone running on K42. One thread is

executed per processor. Each thread touches 2500 pages of an independent memory allocation. Each

page touch results in a zero-fill page fault in the OS. The performance of using non-distributed and

distributed Process objects is shown. In both cases the distributed Global PM object is used. The

lower-bound for concurrent zero-filling of memory on the S85 is included for reference.

RS/6000 PowerPC bus-based cache-coherent multiprocessor with 24 600 MHz
RS64-IV processors and 16GB of main memory.

In these experiments, each thread of memclone touches 2500 pages of mem-
ory and one thread is executed per processor. The average execution time is
measured and plotted in the graph. Ideal scalability would correspond to a hor-
izontal line on the graph. We see that beyond 10 processors, the performance of
the nondistributed version degrades rapidly, whereas the distributed Process
object achieves significantly better scalability.

Scalability is not perfect because of subtle inherent hardware bottlenecks.
To isolate this effect, we constructed an in-kernel, zero-fill test that measures
the time it takes each processor to map and zero-fill an independent set of 2500
pages. On each processor we ran a kernel thread that executes a memset0 rou-
tine over a processor-specific 2500-page test memory region. The memset0 rou-
tine is architecture specific, and the PowerPC version used on our test hardware
utilizes the PowerPC data cache block zero (dcbz) instruction to efficiently zero
an entire cache line at a time. The kernel page fault handler was modified to use
a fixed calculation to map virtual to physical pages for the test memory region.
As such, page faults to the test region do not require any data structure access.

The bottom line in Figure 6 plots the performance of the zero-fill test. We see
that there is an intrinsic nonscalable cost for a parallel zero-filling workload on
our hardware. Since the core function that memclone exercises is the parallel
zero-filling of newly allocated user memory, the lowest line in Figure 6 is our

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 21

lower bound. The key difference for the memclone experiment compared to the
kernel zero-filling experiment is that each page fault induced by memclone is
a user-level page fault that requires kernel data structures to resolve. As such,
when evaluating memclone performance we do not expect to achieve the lower
bound but rather deem that scalable performance has been achieved if we are
adding a constant overhead that is independent of the number of processors.

The distributed object has greater costs associated with region attachment
and removal than the nondistributed implementation. For a region that is not
accessed, the distributed version adds approximately 1.2 microseconds to the
time of 20.19 for mapping and 0.85 microseconds to the time of 11.12 microsec-
onds for unmapping over the nondistributed version. In the worst case, to un-
map a region that has been accessed on all 24 processors, the distributed version
adds 73.1 microseconds to the time of 153 microseconds for the nondistributed
version. In the case of a multithreaded process, the overhead of the distributed
implementation for region attachment and removal has not proven to be prob-
lematic. For a single-threaded application, all faults occur on a single processor
and the distributed version provides no benefit, resulting in additional over-
heads both in terms of space and time. In Soules et al. [2003] we describe
techniques for dynamically swapping one instance of a Clustered Object for
another and believe that this approach could be used if the overheads of the
distributed implementation become prohibitive.

4.2 Global Page Manager Object

A hierarchy of Page Managers (PM) is used in K42. There is a PM associated
with each process, and a Global PM at the root that is responsible for phys-
ical page frame management across all address spaces in the system.12 The
PM associated with each process manages and tracks the physical page frames
associated with the process and is responsible for satisfying requests for page
frames as well as for reclaiming pages when requested to do so. It also tracks
the list of computational FCMs (FCMs that manage pages of anonymous map-
pings) created by the process. Currently, the per-processor PM simply redirects
memory allocation requests to the Global PM.13

FCMs for named files opened by processes are attached to the Global Page
Manager. The Global Page Manager implements reclamation by requesting
pages back from the FCMs attached to it and from the Page Managers below it.

The left-hand side of Figure 7 illustrates the simple, nondistributed imple-
mentation of the Global Page Manager that was first used in K42. It contains
a free list of physical pages and two hash tables to record the attached FCMs
and PMs. All three data structures are protected by a single, shared lock. On
allocation and deallocation requests, the lock is acquired and the free list ma-
nipulated. Similarly, when a PM or FCM is attached or removed, the lock is
acquired and the appropriate hash table updated. Reclamation is implemented

12K42 employs a working set page management strategy.
13The main purpose of the PM associated with each process is to provide a degree of freedom for

future exploration of more complex VMM implementations.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 22 • J. Appavoo et al.

Fig. 7. Nondistributed and distributed Global Page Managers.

as locked iterations over the FCMs and PMs in the hash tables with each FCM
and PM instructed to give back pages during the reclamation iterations.

As the system matured, we progressively distributed the Global Page Man-
ager object in order to alleviate the contention observed on the single lock. The
most recent distributed implementation is illustrated on the right-hand side
of Figure 7. The first change was to introduce multiple Representatives and
maintain the free lists on a per-processor basis. The next change was to dis-
tribute the FCM Hash Table on a per-processor basis by placing a separate
FCM Hash Table into each Representative and efficiently mapping each FCM
to a particular Representative.

In the distributed version, page allocations and deallocations are done on a
per-processor basis by consulting only the per-Representative free list in the
common case, which improves scalability. The free lists per-Rep are limited to
a maximum size, and an overflow list is maintained at the root to allow free
frames to be moved between processors.

The mapping of FCMs and PMs to an appropriate Global PM Representa-
tive is illustrative of the distributed techniques exploited to avoid contention.
The underlying clustered object infrastructure provides mechanisms to cheaply
identify the processor where an object was created. The allocating processor for
an FCM/PM is treated as its home processor, and the representative at that
home processor keeps track of that object. State is naturally distributed across
the representatives, with natural locality if the processor where an object is
created is the same processor where it is typically accessed.

In Figure 8, we plot the performance of an instrumented version of mem-
clone, measuring the average execution time of the threads using the various
combinations of Process and Global PM implementations. Each thread, again,
touches 2500 pages of memory, and one thread is executed on each processor.
Ideal scalability would be a horizontal line on the graph. Focusing on the two
curves labeled Distributed Process and Nondistributed Global PM Objects and
Distributed Process and Distributed Global PM Objects we can consider the
performance impact of the Global PM implementations. The nondistributed
version results in a sharp decrease in performance beyond 8 processors. The

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 23

Fig. 8. Similar to Figure 6. Graph of average thread execution time for memclone running on K42.

distributed version yields scalable performance that mirrors the limits of the
underlying hardware.

When we consider all curves of Figure 8, it is clear that using only one of
the distributed implementations is not sufficient. The use of distributed imple-
mentations of both the Process objects and the Global PM object are required
in order to obtain a significant improvement in scalability. This phenomenon
is indicative of our general multiprocessor optimization experience, where op-
timizations in isolation often affect performance in nonintuitive ways; that is,
the importance of one optimization over another is not obvious. A key benefit
of the Clustered Object approach is that every object in the system is eligible
for incremental optimization, not just the components or code paths that the
developer might have identified a priori.

4.3 Region

The Region object is responsible for representing the mapping of a portion of
a file to a portion of a process’s address space. It serves two purposes. First, it
translates the address of a faulting page to the appropriate offset into the file
that is being mapped at that portion of the address space. Second, it provides
synchronization between faults on that region and requests to create, resize,
and destroy regions.

For synchronization, the original version of the Region object uses a form
of reference counting. A single request counter is used to record all relevant
requests (method invocations). At the start of a request, an enter operation is
performed and on exit a leave operation is performed on the counter. Depending
on the state of the Region the enter operation will: (i) atomically increment
the counter, or (ii) fail, indicating that the request should be rejected, or (iii)

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 24 • J. Appavoo et al.

Fig. 9. Graph of average thread execution time for a modified memclone. One thread is executed

per processor. Each thread touches 2500 independent pages of a single large common memory allo-

cation. Each page touch results in a zero-fill page fault in the OS. The graph plots the performance

when using a nondistributed versus a distributed Region object to back the single common memory

allocation. The lower bound performance for concurrent zero-filling is included for reference.

internally block the request. The behavior of the request counter is controlled by
a control interface. Ignoring the details, the request counter is fundamentally a
single shared integer variable that is atomically incremented, decremented and
tested in all relevant methods of the Region object, including the handleFault
method that is on the resident page fault path.

Figure 9 displays a graph of the performance obtained when running a mod-
ified version of memclone on K42 using the nondistributed versus distributed
implementation of the Region object. In the modified version of memclone, in-
stead of allocating their own independent arrays, the threads access disjoint
2500-page segments of a single large allocated array. The zero-fill page faults
that the threads induce will therefore be serviced not only by a common Process
object and the Global PM but also by a common Region and the FCM represent-
ing the single memory allocation. For the experiments represented in the figure,
all objects other than the Region backing the allocation are using distributed
implementations so that we can focus on the impact of the Region in isolation.

As Figure 9 shows, there is a performance degradation with the original
version of the region. This performance degradation occurs even though there
are no locks in the Region for the page fault path and the critical section, the
atomic increment of a shared reference count, is small compared to the overall
cost of a page fault (which in the case of memclone includes zero filling the
page frames). This example demonstrates the importance of removing shared
accesses on critical paths even if an implementation with shared accesses has
good concurrency.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 25

Fig. 10. Distributed Region Clustered Object. The first Region Representative encapsulates the

core functionality and all other Representatives are proxies that contain only a request counter.

Most calls to the proxy are simply forwarded to the firstRep; however, the handleFault method

manipulates the request counter of the proxy and then forwards its call to a method of the firstRep

that implements the main logic of the call. Thus, with respect to the fault handling path the only

read-write variable is manipulated locally. The root maintains the list of proxies as well as the state

of the request counters globally in a single variable that can be updated atomically.

The distributed version that we constructed addresses the problem by using
a per-processor reference count that is independently incremented on the page
fault path (see Figure 10). It creates a single Representative (the firstRep) when
the distributed Region object is created. The Root for the distributed version is
constructed to create specialized Representatives, which we refer to as proxy
Representatives, for any additional processor that may access the Region in-
stance. For all methods other than the crucial page fault method, the proxy
Representatives invoke the centralized method on the firstRep. In the case of
the handleFault method, which is the only method that increments the refer-
ence counter, the proxy Representative version does an increment on its local
request counter and then invokes the body of the standard handleFault method
on the firstRep.

The majority of the complexity and new functionality associated with the
distributed Region is factored into the root class. The root object’s methods
are constructed to ensure correct behavior in the face of dynamic additions of
Representatives. As is standard for distributed Clustered Objects, new accesses
to the Region on other processors can require the creation of new Representa-
tives via a standard instantiation protocol. The protocol requires that a devel-
oper specify a createRep method in the root of the Clustered Object that creates
and initializes a new Representative for the processor that accessed the object.
In the case of the distributed Region’s root, this method creates a proxy Repre-
sentative and then initializes the state of the request counter associated with
the new Representative.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 26 • J. Appavoo et al.

As can be seen in Figure 9, with this experiment the distributed implemen-
tation of Region results in scalability that tracks the capability of the hardware.

4.4 File Cache Managers

Each region of an address space is attached to an instance of a File Cache
Manager (FCM), which caches the pages for the region.14 An FCM is responsible
for all aspects of resident page management for the file it caches. On a page
fault, a Region object asks its FCM to translate a file offset to a physical page
frame. The translation may involve the allocation of new physical pages and
the initiation of requests to a file system for the data. When a Page Manager
asks it to give back pages, an FCM must implement local page reclamation over
the pages it caches.

The FCM is a complex object, implementing a number of intricate synchro-
nization protocols including:

(1) race-free page mapping and unmapping,

(2) asynchronous I/O between the faulting process and the file system,

(3) timely and efficient page reclamation, and

(4) maintenance of UNIX fork relationships15 for anonymous files.

The standard, nondistributed FCM uses a single lock to reduce the complex-
ity of its internal implementation. When a file is accessed by a single thread,
the lock and centralized data structures do not pose a problem, but when many
threads access a file concurrently, the shared lock and data structures degrade
page fault performance.

Unlike the Process object and Global Page Manager, there is no straight-
forward way to distribute FCM’s data without adding considerable complexity
and breaking its internal protocols. Rather than redesigning every one of its
internal operations, we developed a new distributed version by replacing the
core lookup hash table with a reusable, encapsulated, distributed hash ta-
ble we designed. This replacement allowed the majority of the protocols to
be preserved, while optimizing the critical page lookup paths in an isolated
fashion.

As illustrated in Figure 11, a reusable distributed hash table (DHash) was
designed with two basic components, MasterDHashTable and LocalDHashTa-
bles, designed to be embedded into a Clustered Object’s root and representa-
tives, respectively. DHash has a number of interesting features:

(1) LocalDHashTables and MasterDHashTables automatically cooperate to
provide the semantics of a single shared hash table for common operations,
hiding its internal complexity;

(2) all locking and synchronization are handled internally;

(3) all tables automatically and independently size themselves;

14An FCM may be backed by a named file or swap space (for anonymous regions).
15When a process executes a UNIX fork we must ensure that the anonymous memory mappings,

such as the heap, preserve the hierarchical relationships between parent and children as implied

by UNIX fork semantics.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 27

Fig. 11. Reusable distributed hash table Clustered Object components.

(4) fine-grain locking is used—common accesses require an increment of a ref-
erence count and the locking of a single target data element;

(5) data elements with both shared and distributed constituents are supported;
and

(6) scatter and gather operations are supported for distributed data elements.

Our distributed hash table was designed and implemented with shared-
memory multiprocessor synchronization techniques, operating system require-
ments, and SMMP locality in mind so that it can be reused in the construction
of other Clustered Objects. As such, its constituent subparts are designed to
cooperate within the context of a containing Clustered Object. The hash was
been implemented to permit the local portions to be dynamically created when
a representative is created, and it was designed to provide a hot lookup path
that does not require remote memory accesses or synchronization. Section 6.2.4
discusses related work with respect to hash tables.

Although a complete description of the internals and interface of DHash are
beyond the space limitations of this paper, a brief description of the two key
methods follows:

findOrAllocateAndLock(key): query the hash table for the data item asso-
ciated with key. If it is found, the local copy is returned. Otherwise, a newly
allocated local data element is returned. In both cases the local data element
is locked on return. It is the caller’s responsibility to unlock the item. Inter-
nally, DHash ensures race-free allocation by coordinating around the Master-
DHashTable, ensuring that only one miss induces an allocation of an entry
associated with the key.

emptyData(data): logically deletes a data element from the hash tables so
that future lookups will fail to find it. Internally, the method ensures that the op-
eration occurs atomically across any replicas of the data element in the various

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 28 • J. Appavoo et al.

Fig. 12. Graph of distributed FCM and nondistributed FCM performance. One instance of grep is

executed on each processor. Each grep searches a common 111MB file for a common nonmatching

search pattern. The graph shows the average grep completion time.

hash tables. It also ensures that the data structures storing the data element
are destroyed or reused only when it is actually safe to do so, that is, no threads
are actively inspecting the associated memory.

The first demands for a distributed FCM came from concurrent access to a
shared file from a multiuser workload. This scenario motivated us to develop a
distributed FCM based on Dhash, in which the performance-critical path was
the remapping of the resident pages of a long-lived file. An FCM implementation
using the DHash constituent in a straightforward manner is sufficient in this
case, as the majority of page faults will result in accesses only to the local DHash
table in order to remap pages which have already been mapped on the processor
by a previous execution. This scenario can be explored with a microbenchmark,
in which instances of the UNIX “grep” utility are run on each processor, all
searching a common file. The programs will induce concurrent page faults to
the FCM that caches the pages of the executable, as well as concurrent faults
to the data file being searched. Figure 12 illustrates the performance of such
a microbenchmark using the nondistributed and the distributed version of the
FCM.

When we consider the performance of the modified version of memclone
(Figure 13) with the distributed FCM (line labeled Distributed DHash FCM),
however, we observe poor scalability. The distributed FCM was designed to op-
timize the resident page fault path in which the majority of faults would be to
pages that already exist in the FCM and have been previously accessed on the
processor. The memclone benchmark does not have this behavior. Most of its
page faults are to pages that do not yet exist. The local lookups fail and the new
zero-filled pages have to be added to the DHash master table. The distributed

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 29

Fig. 13. Similar to Figure 9. Graph of average thread execution time for a modified memclone, as

described in the text, running on K42. The graph plots the performance of using a nondistributed

FCM versus a distributed FCM, using DHash versus a partitioned FCM, to back the single common

memory allocation.

version acts like a central hash table with fine-grain locking, with the additional
overhead of creating replicas whose cost is never amortized over multiple ac-
cesses. These costs are justified only if there are additional faults to the pages
that can be satisfied from the replicas. As noted above, this amortization occurs
when a file is reused on a processor, as might be the case for a frequently used
executable. It is also possible that a better balance between creation cost and
reuse amortization can be achieved by assigning an FCM Rep, not to every pro-
cessor, but to small subsets of processors. All the processors in a subset would
benefit from the local replica created by the first processor to access a page. The
Clustered Object infrastructure provides the flexibility needed to explore this
type of trade-off. We think an intermediate level of distribution may be appro-
priate for the randomly accessed heap of a long-lived system server (or server
application such as a database), but this exploration is left for future work.

To address the zero-fill scenario presented by memclone, an FCM with a par-
titioned structure was constructed by reusing parts of the DHash constituent.
This version partitions the set of pages across a set of representatives but does
not distribute the page descriptors. A fixed number (m) of MasterDHashTa-
bles are used to manage the page descriptors for a fixed disjoint set of pages.
A new LocalDHashTable class is used to simply redirect invocations to one
of the m MasterDHashTables. All representatives have an instance of the Lo-
calDHashTable but only the first m representatives have a master hash table.
The policy for page assignment is determined by a specified shift value that
is applied to the page offset. The result is then mapped to one of the m mas-
ter tables via a modulo calculation. A prototype of the partitioned FCM was
constructed and its performance is also shown in Figure 13 (dashed line) with
much improved scalability.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 30 • J. Appavoo et al.

4.5 Findings

In summary, the K42 infrastructure (i.e., the object-oriented structure and Clus-
tered Objects introduced in Section 2), and the combination of the components
described in this section, result in a page fault path that is fully scalable; that
is, with our design of the page fault path, two threads of the same process can
fault on the same (cached) page of the same file without causing the kernel to
access any common memory or acquire any common locks. We would like to
stress again that we are not making the argument that designing system soft-
ware using our methodology and framework necessarily leads to solutions that
are better than any alternative solution, but rather that it leads to software
that can scale using a reasonably straightforward and manageable software
engineering process. Much of the prior work in improving data structure con-
currency (such as Gao’s work on a lock-free hash table [Gao et al. 2005] and
McKenney et al.’s work on Read-Copy-Update [McKenney et al. 2001; Torvalds
2002] is critically important, but does not address the issue of locality. Our case
study on the Region object in particular shows that just a single shared counter
can cause serious performance degradation (and that the motivating example
of Section 1.1 is not as contrived as it may seem).

The case studies and accompanying experiments presented in the previous
subsections allow us to validate the principles set out in Section 3.

First, we find that it is possible to design software that is reasonably scalable
by focusing primarily on locality instead of concurrency. We found that the re-
quired concurrency tends to fall out naturally when designing for locality. With
extreme microbenchmark stress tests we were able to demonstrate performance
and scalability that mirrors the limits of the underlying hardware.

Second, the patterns for deriving locality-optimized solutions in the different
case studies were similar. We start with a simple implementation and incremen-
tally add improvements as the need arises. In each case, one decides which data
to assign to the root object, which data to assign to the representative objects,
and how to coordinate amongst the objects to maintain consistency. Because a
consistent methodology was used in each case, the solutions have a common
structure even though the problems and solutions differ in detail. Overall, we
found that the methodology and framework allowed us to develop solutions that
met our scalability requirements with tractable complexity. It is our belief that
building a fully distributed page fault path (with similar fine-grain locality) into
a traditional operating system without a proper structure and accompanying
methodology would result in a system of unmanageable complexity.

Third, by leveraging the encapsulation offered by objects in our framework
in general and by Clustered Objects specifically, we were able to optimize indi-
vidual components in isolation. The code of a target (Clustered) object could be
modified without changing other parts of the code.

5. THE LARGER CONTEXT

In Section 4, we used the memclone microbenchmark to allow us to isolate
the impact of distributed objects in memory management, comparing the per-
formance of the distributed implementation to that of simpler nondistributed

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 31

implementations in our system. In this section we discuss this work in a larger
context, focusing on (i) overall system performance for three workloads, (ii)
other characteristics of the system that are synergistic with (or in conflict with)
the OO design and (iii) Clustered Objects.

5.1 System Performance

K42 was designed to explore a structure that would permit the construc-
tion and optimization of an operating system for large future systems. Given
that we would only be able to test on a multiprocessor of limited scale, we
focused our efforts on system structure and techniques for promoting local-
ity and progressively optimizing the locality of critical paths in the system.
Our aim was not to produce a scalable OS for commercial machines not yet
generally available, but rather to determine a structure and techniques that
practically could be used to construct scalable systems software for future
machines.

The performance issues examined in previous sections were exposed using
a micro-benchmark that aggressively exercised one aspect of the system. It is
natural to question whether the techniques we described are of any relevance to
smaller systems, and whether they are useful for traditional server workloads.
To explore these questions we use three OS-intensive benchmarks. All three
benchmarks are composed of multiple independent sequential applications ac-
cessing independent directories and files. The benchmarks are designed to be
simple and to offer a scalable concurrent load to the system. The chosen bench-
marks are not aggressively parallel applications, but are instead typical of the
workloads handled by large multiuser UNIX servers. The workloads are in-
herently scalable and target traditional UNIX functionality. Perhaps more im-
portantly, overall performance is not gated by application-level performance;
there is no explicit application concurrency to limit scalability. Analyzing the
scalability of an operating system with these benchmarks is appropriate, as
system-level function is criticial to their performance.

Large-scale parallel applications, including Web and database servers, are
clearly important workloads for SMMP systems. K42 includes specialized sup-
port for parallel applications, but that aspect of the system is not the focus of
this paper. For the purpose of evaluating the scalability of operating system ser-
vices, parallel applications are not necessarily ideal experimental workloads.
Highly tuned applications that scale well may not stress the OS, and the ones
that do not may mask scalability problems in the underlying system.

5.1.1 Details of Experiments. All the results in this paper were obtained
by running K42 or Linux on PowerPC hardware. We used the IBM S85 eServer
pSeries 680 RS/6000 bus-based cache-coherent multiprocessor with 16 GB of
main memory and 24 RS64-IV processors clocked at 600 MHz. Cache coherence
for this machine relies on distributed bus snooping, not a centralized directory.
The distributed mechanism places a cache block in any cache into one of four
states using the MESI protocol [Papamarcos and Patel 1984]. The L1 cache is
split into instruction and data caches, each of size 128 KB, with a line size of
128 bytes, and 2-way set-associative.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 32 • J. Appavoo et al.

The three benchmarks we ran to examine scalability were SPEC SDET, si-
multaneous Postmark, and simultaneous make, described in the following. To
stress operating-system rather than disk performance, each of the experiments
was run using a ramdisk file system. We ran identical experiments on K42 and
on Linux 2.4.19 as distributed by SuSE (with the O(1) scheduler patch). Linux
kernel components (device drivers, network stack, etc.) that are used inside
K42 are from the same version of Linux.

The SPEC Software Development Environment Throughput (SDET) bench-
mark [spec.org 1996] executes, in parallel, a specified number of “user” scripts,
each of which sequentially executes a series of common UNIX programs such
as ls, nroff, gcc, grep, and so on. We modified the benchmark slightly to avoid
the programs ps and df, which K42 does not yet fully support.

To examine scalability we ran one script per processor. The same program
binaries (for bash, gcc, ls, etc.) were used on both K42 and Linux. Glibc version
2.2.5 was used for both systems, but the K42 version was modified to intercept
and direct the system calls to the K42 implementations. The throughput num-
bers are those reported by the SDET benchmark and represent the number of
scripts executed per hour.

Postmark 1.5 [Katcher 1997] was designed to model a combination of elec-
tronic mail, netnews, and Web-based commerce transactions. It creates a large
number of small, randomly sized files and performs a specified number of
transactions on them. Each transaction consists of a randomly chosen pair-
ing of file creation or deletion with file read or append. A separate instance of
Postmark was created for each processor, with corresponding separate direc-
tories. We ran the benchmark with 20,000 files and 100,000 transactions, and
with unbuffered file I/O. Default values were chosen for all remaining options.
The total time reported is obtained by summing the times of the individual
instances.

The UNIX make program is typically used to build an application program
from source code. It sequentially executes multiple instances of compilers
and other utility programs. Make provides an option for executing subtasks in
parallel, but we chose to run multiple sequential makes, rather than a single
parallel make, in order to maximize the concurrency in the requests presented
to the operating system. For our third workload, we ran an instance of make
simultaneously on each processor, each building the arbitrarily chosen GNU
Flex program. We created one build directory for each processor and invoked a
sequential make in each of these directories in parallel. All the builds shared a
common source tree. A driver application synchronized the invocations to en-
sure simultaneous start times, tracked the runtime of each make, and reported
the final result as an average of all make run times. GNU Make 3.79 and GCC
3.2.2 were used for these experiments.

Figures 14, 15, and 16 show performance for each of the three bench-
marks for both K42 and Linux. For SDET (Figure 14), we show two curves
for K42, one using the original nondistributed (shared) implementations of all
K42 memory-management objects and another using the distributed (locality-
optimized) implementations. For the other two workloads (Figures 15 and 16),
we show only distributed-implementation results. The SDET curves show raw

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 33

Fig. 14. Throughput of SDET-inspired benchmark.

Fig. 15. Speedup of p independent instances of Postmark normalized to K42 uniprocessor result.

scripts-per-hour throughput, while the Postmark and make results are normal-
ized to K42’s execution times on one processor.

5.1.2 Discussion. The performance of Linux on these benchmarks (at the
time we were making our measurements) illustrates the fact that a mul-
tiuser operating system can exhibit scalability problems even for workloads

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 34 • J. Appavoo et al.

Fig. 16. Speedup of p independent instances of Make normalized to K42 uniprocessor result.

that are inherently scalable. Hence, developing models that help with improv-
ing scalability is relevant for even modest-sized systems running nonscientific
workloads.

The figures show that K42 scales reasonably well for these workloads. More-
over, we see that K42’s uniprocessor performance is comparable to that of
Linux—an important result, because this kind of OO design and code reuse
is thought to sacrifice base performance. Reasonable uniprocessor performance
also lends legitimacy to the scalability results. (Scaling is easier if you start
with bad uniprocessor numbers.)

For simultaneous independent sequential applications, K42’s OO design all
by itself provides a scalability advantage over more monolithic designs. How-
ever, the SDET results show that using an object-oriented approach alone is not
sufficient for good scalability. Even though the request streams from the SDET
multiuser workload are independent, there are still resources that are shared
(common executable and data files, for example). Compare the K42 “Shared”
and “Distributed” curves (the dashed and dotted lines) in Figure 14. Switching
to distributed, locality-optimized implementations of the core objects of K42’s
virtual memory system leads to considerable improvement in scalability, get-
ting us closer to the ideal in which many users can utilize the resources of the
system independently.

It is important to note that these results are not intended as statements
about either OS’s absolute performance on these benchmarks. The results are
a snapshot of the performance of the two systems at a particular point in time.
Operating systems are not static, and their performance naturally improves
as problems are identified and optimization efforts are made. An important

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 35

aspect of the Clustered Object model is its ability to facilitate incremental
optimization.

By the time this article was published, Linux had progressed to version 2.6.
Changes to improve scalability were incorporated (although not much of the
effort applies to the PowerPC virtual memory management code). Typical of
the x86-centric efforts to improve scalability is the work described in Bryant
et al. [2004], in which optimizations, similar to ours, are applied to the Linux
VMM, but in an ad hoc manner. The effort expended on Linux to improve con-
currency may ultimately make addressing locality more difficult. As systems
grow larger, and as processor performance continues to improve relative to that
of memory, we expect optimizing for locality to become more and more impor-
tant. New structures and techniques, such as those used in K42, will be critical
to achieving good locality, and therefore good scalability, in future systems.

5.2 Software Engineering Experience

Given our previous experience with SMMP operating systems, the simplicity
of some of the object designs we have found sufficient was a surprise. While
the simplicity results, in part, from a sophisticated infrastructure (e.g., mem-
ory allocator, IPC services, garbage collection strategy), we believe that it is
mainly attributable to the underlying object-oriented design of the system. In
previous systems, we had to develop a complicated implementation for each
performance-critical service, because a single implementation had to perform
well for a wide variety of workloads. In K42, individual object implementations
are designed to handle specific workloads. This customizability led to a sepa-
ration of concerns and allowed us to focus implementations on smaller sets of
requirements.

When we first obtained our 24-processor system we found that our scalability
was terrible. We were able to achieve reasonable scalability with about two
weeks’ work. We were able to progress rapidly because:

(1) While we had not experimented on a large system, the design had been
structured for good scalability from the start.

(2) The OO design meant that all the changes could be encapsulated within
objects. There were no cases where changes to a data structure resulted in
changes propagating to other parts of the system.

(3) Deferred object deletion (i.e., the RCU protocol [McKenney et al. 2002])
eliminates the need for most existence locks and hence locking hierarchies.
We found no cases where we had to modify complex locking protocols that
permeated multiple objects.

(4) The OO design allowed us to develop special-purpose object implementa-
tions to deal with some of the hard cases without polluting our common-case
implementations.

(5) Tracing infrastructure, which we had incorporated from the beginning, al-
lowed us to categorize and correlate performance problems, such as lock
contention, on an object-instance basis.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 36 • J. Appavoo et al.

While the K42 OO design has been very useful for our research, we found that
the approach splinters both the knowledge and implementation of system paths,
making reasoning about and designing global policies more difficult. To date we
have not found this concern to be prohibitive with respect to performance, but
have found that the decomposition can be a barrier to system comprehension
for new developers.

Specifically, there are a number of challenges presented by such a design.
First, as more and more implementations are developed, interface changes and
bug fixes might result in maintenance complexity. While we use inheritance ag-
gressively in the system, in many cases (e.g., nondistributed versus distributed
implementations) code cannot be shared easily. We are looking at various tech-
nical solutions to this problem.

Second, it can be difficult to ascertain a global state if all the data for achiev-
ing that understanding is scattered across many object instances. For example,
without a central page cache, there is no natural way to implement a global
clock algorithm for paging, although so far we have found that alternative algo-
rithms (e.g., working set) are feasible and adequate for the workloads we have
studied.

Third, while it is often possible to determine at instantiation time what object
type is best suited for a particular workload, in many cases the knowledge is
only available dynamically and may change over time. We have developed the
hot-swapping services in K42 to allow objects to be changed on the fly, but it is
not yet clear if this approach is sufficient.

Finally, we have noticed it is very difficult for new developers to understand
the system, since so much of it is in infrastructure. While individual objects are
simpler, the larger picture may be more obfuscated.

6. RELATED WORK

Much of the research into multiprocessor operating systems has been concerned
with how to support new, different, or changing requirements in OS services,
specifically focusing on user-level models of parallelism, resource management,
and hardware configuration. We will generically refer to this as support for flex-
ibility. In contrast, our research has pursued a performance-oriented approach.
Figure 17 pictorially places our work on K42 and Clustered Objects (both de-
scribed in Section 2) in context with prior work.

6.1 Early Multiprocessor OS Research Experience

Arguably the most complex computer systems are those with multiple process-
ing units. The advent of multiprocessor computer systems present operating
system designers with four intertwined issues:

(1) true parallelism (as opposed to just concurrency),

(2) new and more complex hardware features, such as multiple caches, multi-
staged interconnects, and complex memory and interrupt controllers,

(3) subtle and sensitive performance characteristics, and

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 37

Fig. 17. Illustration of related work with respect to K42 and Clustered Objects

(4) the demand to facilitate user exploitation of the system’s parallelism while
providing standard environments and tools.

Industrial work on SMMP operating systems can be summarized as a study
into how to evolve standard uniprocessor operating systems with the introduc-
tion of synchronization primitives [Denham et al. 1994; Kelley 1989; Kleiman
et al. 1992; LoVerso et al. 1991; Lycklama 1985; McCrocklin 1995; Peacock
et al. 1992; Russell and Waterman 1987]. This ensures correctness and permits
higher degrees of concurrency in the basic OS primitives. The fundamental ap-
proach taken was to apply synchronization primitives to the uniprocessor code
base in order to ensure correctness. Predominantly, the primitive adopted was
a shared-memory lock, implemented on top of the atomic primitives offered by
the hardware platform. The demand for higher performance led to successively
finer-grain application of locks to the data structures of the operating systems.
Doing so increased concurrency in the operating system at the expense of con-
siderable complexity and loss of platform generality.

In contrast to the industrial research work, the majority of the early academic
research work focused on flexibility and improved synchronization techniques.
Systems that addressed flexibility include: Hydra [Levin et al. 1975; Wulf et al.
1975], StarOS [Cohen and Jefferson 1975], Medusa [Ousterhout et al. 1980],
Choices [Campbell et al. 1993], Elmwood [Leblanc et al. 1989], Presto [Ber-
shad et al. 1988], Psyche [Scott et al. 1988], Clouds [Dasgupta et al. 1991].
With the exception of Hydra, StarOS and Medusa, very few systems actually
addressed unique multiprocessor issues or acknowledged specific multiproces-
sor implications on performance. In the remainder of this section we highlight
work that either resulted in relevant performance observations or attempted

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 38 • J. Appavoo et al.

to account for multiprocessor performance implications in operating system
construction.

In 1985 the Tunis operating system was one of the first systems to focus on the
importance of locality rather than flexibility [Ewens et al. 1985]. One of the aims
of the project was to explore the potential for cheap multiprocessors systems,
constructed from commodity single board microprocessors interconnected via a
standard backplane bus. Although limited in nature, Tunis was one of the first
operating systems to provide uniprocessor UNIX compatibility while employing
a novel internal structure.

The early 1980s not only saw the emergence of tightly coupled, shared-
memory multiprocessor systems such as the CM* [Ousterhout et al. 1980],
but also loosely coupled distributed systems composed of commodity worksta-
tions interconnected via local area networking. Projects such as V [Cheriton and
Zwaenepoel 1983] and Accent [Rashid 1986] attempted to provide a unified en-
vironment for constructing software and managing the resources of a loosely
coupled distributed system. Unlike the operating systems for the emerging
shared-memory multiprocessors, operating systems for distributed systems
could not rely on hardware support for sharing. As such, they typically were con-
structed as a set of autonomous lightweight independent uniprocessor operat-
ing systems that cooperated via network messages to provide a loosely coupled
unified environment. Although dealing with very different performance trade-
offs, the distributed systems work influenced and intertwined with SMMP oper-
ating systems research over the years. For example one of the key contributions
of V was microkernel support of lightweight user-level threads that were first-
class and kernel visible.

In the mid 1980s, the Mach operating system was developed at Carnegie Mel-
lon University based on the distributed systems Rig and Accent [Rashid et al.
1988; Young et al. 1987]. One of the key factors in Mach’s success was the early
commitment to UNIX compatibility while supporting user-level parallelism. In
spirit, the basic structure of Rig, Accent, and Mach is similar to Hydra and
StarOS. All these systems are built around a fundamental IPC (Inter-Process
Communication) model. Mach takes the traditional approach of fine-grain lock-
ing of centralized data structures to improve concurrency on multiprocessors.16

The later Mach work provides a good discussion of the difficulties associated
with fine-grain locking, covering issues of existence, mutual exclusion, lock hi-
erarchies, and locking protocols [Black et al. 1991].

The MOSIX researchers have similarly observed the need to limit and bound
communication when tackling the problems of constructing a scalable dis-
tributed system [Barak and La’adan 1998; Barak and Wheeler 1989]. MOSIX
focuses on the issues associated with scaling a single UNIX system image to
a large number of distributed nodes. The MOSIX work strives to ensure that
the design of the internal management and control algorithms imposes a fixed
amount of overhead on each processor, regardless of the number of nodes in
the system. Probabilistic algorithms are employed to ensure that all kernel

16Industrial systems such as Sequent’s Dynix [Beck and Kasten 1985; Garg 1990; Inman 1985],

one of Mach’s contemporaries, employed fine-grain locking.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 39

interactions involve a limited number of processors and that the network ac-
tivity is bounded at each node.

Cheriton et al. [1991] proposed an aggressive, distributed shared-memory
parallel hardware architecture called Paradigm and also described OS support
for it based on multiple cooperating instances of the V microkernel, a simple
hand-tuned kernel designed for distributed systems construction, with the ma-
jority of OS function implemented as user-level system servers. The primary
approach to supporting sharing and application coordination on top of the mul-
tiple microkernel instances was through the use of a distributed file system. The
authors state abstractly that kernel data structures, such as dispatch queues,
are to be partitioned across the system to minimize interprocessor interference
and to exploit efficient sharing, using the system’s caches. Furthermore, they
state that cache behavior is to be taken into account by using cache-friendly
locking and data structures designed to minimize misses, with cache alignment
taken into consideration. Finally they also assert that the system will provide
UNIX emulation with little performance overhead. It is unclear to what extent
the system was completed.

In 1994, as part of the Paradigm project, an alternative OS structure dubbed
the Cache Kernel was explored by Cheriton et al. [Cheriton and Duda 1994].
At the heart of the Cache Kernel model was the desire to provide a finer-grain
layering of the system, where user-level application kernels are built on top of a
thin cache kernel that only supports basic memory mapping and trap reflection
facilities via an object model. From a multiprocessor point of view, however,
its architecture remained the same as the previous work, where a cluster of
processors of the Paradigm system ran a separate instance of a Cache Kernel.

The RP3 project attempted to use the Mach microkernel to enable multipro-
cessor research [Bryant et al. 1991]. The RP3 authors found bottlenecks in both
the UNIX and Mach, code with congestion in memory modules being the major
source of slowdown. To reduce contention, the authors used hardware-specific
memory interleaving, low-contention locks, and localized free lists. We contend
that the same benefits could have been achieved if locality had been explicitly
exploited in the basic design. UNIX compatibility and performance were critical
to the RP3 team. In the end, the flexibility provided by Mach did not seem to
be salient to the RP3 researchers. Mach’s internal traditional shared structure
limited performance and its flexibility did not help to address these problems.

6.2 Distributed Data Structures

In this subsection we focus on the research related to the use of distributed
data structures.

6.2.1 Distributed Systems: FOs and DSOs. Fragmented Objects(FOs)
[Brun-Cottan and Makpangou 1995; Makpangou et al. 1994; Shapiro et al.
1989] and Distributed Shared Objects (DSOs) [Bal et al. 1989; Homburg et al.
1995; van Steen et al. 1997] both explore the use of a partitioned object model
as a programming abstraction for coping with the latencies in a distributed
network environment. Fragmented Objects represent an object as a set of frag-
ments that exist in address spaces distributed across the machines of a local

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 40 • J. Appavoo et al.

area network, while the object appears to the client as a single entity. When
a client invokes a method of an object, it does so by invoking a method of a
fragment local to its address space. The fragments, transparently to the client,
communicate amongst themselves to ensure a consistent global view of the ob-
ject. The Fragmented Objects work focuses on how to codify flexible consistency
protocols within a general framework.

In the case of Distributed Shared Objects, distributed processes communi-
cate by accessing a distributed shared object instance. Each instance has a
unique id and one or more interfaces. In order to improve performance, an
instance can be physically distributed with its state partitioned or replicated
across multiple machines at the same time. All protocols for communication,
replication, distribution, and migration are internal to the object and hidden
from clients. A coarse-grain model of communication is assumed, focusing on
the nature of wide area network applications and protocols such as that of the
World Wide Web. For example, global uniform naming and binding services
have been addressed.

Clustered Objects are similar to FOs and DSOs in that they dis-
tribute/replicate state but hide this from clients by presenting the view of a
single object. Clustered Object representatives correspond to FOs fragments.

6.2.2 Language Support: CAs and pSather. Chien et al. introduced Con-
current Aggregates (CAs) as a language abstraction for expressing parallel data
structures in a modular fashion [Chien and Dally 1990]. This work is concerned
with the language issues of supporting a distributed parallel object model for
efficient construction of parallel applications in a message-passing environ-
ment. Similar to several concurrent object-oriented programming systems, an
Actor model [Agha 1990] is adopted. An instance of an Aggregate has a sin-
gle external name and interface, however, each invocation is translated by a
runtime environment to an invocation on an arbitrary representative of the
Aggregate. The number of representatives for an Aggregate is declared by the
programmer as a constant. Each representative contains local instances of the
Aggregate fields. The language supports the ability for one representative of an
Aggregate to name/locate and invoke methods of the other representatives in
order to permit scatter and gather operations via function shipping and more
complex cooperation.

pSather explores language and associated runtime extensions to support
data distribution on NUMA multiprocessors for Sather, an Eiffel-like research
language [Lim 93]. Specifically, pSather adds threads, synchronization, and
data distribution to Sather. Unlike the previous work discussed, pSather ad-
vocates orthogonality between object-orientation and parallelism; it introduces
new language constructs independent of the object model for data distribution.
Unlike Chien’s Concurrent Aggregates, it does not impose a specific processing/
synchronization model, nor does it assume the use of system-provided con-
sistency models/protocols such as Distributed Shared Objects or Fragmented
Objects. In his thesis, Lim proposes two primitives for replicating reference
variables and data structures such that a replica is located in each cluster
of a NUMA multiprocessor. Since the data distribution primitives are not

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 41

integrated into the object model, there is no native support for hiding the dis-
tribution behind an interface. In contrast to our work, there is no support for
dynamic instantiation or initialization of replicas, nor facilities for distributed
reclamation.

Although the primary focus of the pSather work is on evaluating the overall
programmer experience, using the parallel primitives and the library of data
structures developed, the performance of the applications is also evaluated with
respect to scale. The author highlights some of the trade-offs in performance
with respect to remote accesses given variations in the implementation of the
data structures and algorithms of the applications. He points out that minimiz-
ing remote accesses, thus enhancing locality, is key to good performance for the
applications studied.

6.2.3 Topologies and DSAs. In the early 1990s there was considerable in-
terest in message-passing architectures, which typically leveraged a point-to-
point interconnection network and the promise of unlimited scalability. In an
attempt to ease the burden and generalize the use of such machines, Schwan
and Bo [1990] proposed OS support for a distributed primitive called a Topol-
ogy. A Topology attempts to isolate and encapsulate the communication proto-
col and structure among a number of identified communicating processes via
a shared object-oriented abstraction. A Topology’s structure is described as a
set of vertices and edges where the vertices are mapped to physical nodes of
the hardware and edges capture the communication structure between pairs
of nodes corresponding to vertices. The Topology is implemented to minimize
the number of nonlocal communication for the given architecture being used.
They are presented as heavyweight OS abstractions requiring considerable OS
support for their management and scheduling.

In subsequent work, motivated by significant performance improvements
obtained with distributed data structures and algorithms on a NUMA multi-
processor for Traveling Sales Person (TSP) programs [Mukherjee and Schwan
1993], Clémençon et al. [1993, 1996] proposed a distributed object model called
Distributed Shared Abstractions (DSAs). This work is targeted at increasing
the scalability and portability of parallel programs via a reusable user-level
library that supports the construction of objects that encapsulate a DSA. Each
object is composed of a set of distributed fragments similar to the Fragmented
Objects and Distributed Shared Objects discussed earlier. The runtime imple-
mentation and model are, however, built on the previous work on Topologies.

Clémençon et al. observed two factors that affect performance of shared data
structures on a NUMA multiprocessor: (1) contention due to concurrent access
(synchronization overhead), and (2) remote memory access costs (communica-
tion overhead).

They observed that distribution of state is key to reducing contention and
improving locality. When comparing multiple parallel versions of the TSP
program, they found that using a centralized work queue protected by a single
spin lock limited speedup to a factor of 4, whereas a factor of 10 speedup was
possible with a distributed work queue on a system with 25 processors. Further,
they found that, by leveraging application-specific knowledge, they were able to

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 42 • J. Appavoo et al.

specialize the distributed data structure implementation to further improve
performance. They demonstrated that despite additional complexities, dis-
tributed implementations with customized semantics can significantly improve
application performance. Note that in the results presented Clémençon et al. do
not isolate the influence of synchronization overhead versus remote access.17

6.2.4 Hash Tables. There has been a body of work that has looked at the
use of distributed hash tables in the context of specific distributed applica-
tions, including distributed databases [Ellis 1983], cluster-based Internet ser-
vices [Gribble et al. 2000], peer-to-peer systems [Dabek et al. 2001], and general
distributed data storage and lookup services [Cates 2003]. In general, the work
done on distributed data structures for distributed systems is primarily con-
cerned with the exploration of the distributed data structure as a convenient
abstraction for constructing network-based applications, increasing robustness
via replication. Like the Fragmented Object [Brun-Cottan and Makpangou
1995; Makpangou et al. 1994; Shapiro et al. 1989] and Distributed Shared
Object [Bal et al. 1989; Homburg et al. 1995; van Steen et al. 1997] work, the
use of distributed hash tables seeks a systematic way of reducing and hiding
network latencies. The coarse-grain nature and network focus of this type of
work results in few insights for the construction of performance-critical and
latency-sensitive shared-memory multiprocessor systems software.

With respect to motivation and purpose, our hash table work is similar to the
software set-associative cache architecture described in Peacock et al. [1992],
which was developed in the context of multithreading a traditional UNIX sys-
tem kernel. To avoid overheads associated with fine-grain locking, we developed
an alternative hash structure to serve the specific requirements of operating
system caches, trying to avoid synchronization. Our work not only differs sig-
nificantly with respect to implementation but also in our focus on locality. We
attempt to eliminate the need for synchronization on hot paths through the use
of distribution.

6.3 Modern Multiprocessor Operating Systems Research

A number of papers have been published on performance issues in shared-
memory multiprocessor operating systems, but mostly in the context of resolv-
ing specific problems in a specific system [Campbell et al. 1991; Chapin et al.
1995; Cheriton and Duda 1994; McCrocklin 1995; Presotto 1990; Talbot 1995].
These operating systems were mostly for small-scale multiprocessor systems,
trying to scale up to larger systems. Other work on locality issues in operating
system structure was mostly either done in the context of earlier non–cache-
coherent NUMA systems [Chaves, Jr. et al. 1993], or, as in the case of Plan 9, was
not published [Pike 1998]. Two projects that were aimed explicitly at large-scale
multiprocessors were Hive [Chapin et al. 1995] and Hurricane [Unrau et al.
1995]. Both independently chose a clustered approach by connecting multiple
small-scale systems to form either, in the case of Hive, a more fault-tolerant

17Concurrent centralized implementations that employ fine-grain locking or lock-free techniques

were not considered.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 43

system, or, in the case of Hurricane, a more scalable system. However, both
groups ran into complexity problems with this approach and both have moved
on to other approaches; namely Disco [Bugnion et al. 1997] and Tornado [Gamsa
1999], respectively.

Other more coarse-grain approaches for improving locality in general SMMP
software include automated support for memory page placement, replication,
and migration [LaRowe, Jr. and Ellis 1991; Marchetti et al. 1995; Verghese
et al. 1996] and cache-affinity-aware process scheduling [Devarakonda and
Mukherjee 1991; Gupta et al. 1991; Markatos and LeBlanc 1994; Squillante
and Lazowska 1993; Vaswani and Zahorjan 1991].

6.3.1 Operating Systems Performance. Poor performance of the operating
system can have considerable impact on application performance. For exam-
ple, for parallel workloads studied by Torrellas et al., the operating system
accounted for as much as 32% to 47% of the nonidle execution time [Torrellas
et al. 1992]. Similarly Xia and Torrellas [1996] showed that for a different set
of workloads, 42% to 54% of the time was spent in the operating system, while
Chapin et al. [1995] found that 24% of total execution time was spent in the
operating system for their workload.

The traditional approach to developing SMMP operating systems has been
to start with a uniprocessor operating system and then successively tune it
for concurrency. This is achieved by adding locks to protect critical resources.
Performance measurements are then used to identify points of contention. As
bottlenecks are identified, locks are split into multiple locks to increase con-
currency, leading to finer-grain locking. Several commercial SMMP operating
systems have been developed as successive refinements of a uniprocessor code
base. Denham et al. [1994] provides an excellent account of one such develop-
ment effort. This approach is ad hoc in nature and leads to complex systems,
while providing little flexibility. Adding more processors to the system, or chang-
ing access patterns, may require significant retuning.

The continual splitting of locks can also lead to excessive locking overheads.
In such cases, it is often necessary to design new algorithms and data structures
that do not depend so heavily on synchronization. Examples include: software
setassociative cache architecture [Peacock et al. 1992]; kernel memory alloca-
tion facilities [McKenney and Slingwine 1993]; fair, fast, scalable reader-writer
locks [Krieger et al. 1993]; performance-measurement kernel device driver
[Anderson et al. 1997]; and intranode data structures [Stets et al. 1997].

The traditional approach of splitting locks and selectively redesigning also
does not explicitly lead to increased locality. Chapin et al. [1995] studied the
memory system performance of a commercial UNIX system, parallelized to run
efficiently on the 64-processor Stanford DASH multiprocessor. They found that
the time spent servicing operating system data misses was three times the time
spent executing operating system code. Of the time spent servicing operating
system data misses, 92% was due to remote misses. Kaeli et al. [1997] showed
that careful tuning of their operating system to improve locality allowed them
to obtain linear speedups on their prototype CC-NUMA system, running OLTP
benchmarks.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 44 • J. Appavoo et al.

In the early to mid 1990s, researchers identified memory performance as
critical to system performance [Chapin et al. 1995; Chen and Bershad 1993;
Maynard et al. 1994; Rosenblum et al. 1995; Torrellas et al. 1992]. They noted
that cache performance and coherence are critical aspects of SMMP hardware
that must be taken into account by software, and that focusing on concurrency
and synchronization is not enough.

Rosenblum et al. [1995] explicitly advocated that operating systems be opti-
mized to meet the demands of users for high performance. However, they point
out that operating systems are large and complex and the optimization task
is difficult and, without care, tuning can result in increased complexity with
little impact on the end-user performance. The key is to focus on optimization
by identifying performance problems. They studied three important workloads:
(1) program development workload, (2) database workload, and (3) large simu-
lations that stress the memory subsystem.

They predicted that, even for small scale SMMPs, coherence overheads in-
duced by communication and synchronization overheads would result in MP
OS services consuming 30% to 70% more resources than uniprocessor counter-
parts. They also observed that larger caches do not help alleviate coherence
overhead, so the performance gap between MP OSes and UP OSes will grow
unless there is focus on kernel restructuring to reduce unnecessary commu-
nication. They pointed out that, as the relative cost of coherence misses goes
up, programmers must focus on data layout to avoid false sharing, and that
preserving locality in scheduling is critical to ensuring effectiveness of caches.
Rescheduling processes on different processors can result in coherence traffic
on kernel data structures.

Unlike many of the previously discussed MP OS research efforts, the work
from University of Toronto chose to first focus on multiprocessor performance,
thereby motivating, justifying, and evaluating the operating system design
and implementation based on the structure and properties of scalable mul-
tiprocessor hardware. Motivated by the Hector multiprocessor [Vranesic et al.
1991], representative of the architectures for large-scale multiprocessors of the
time [BBN Advanced Computers, Inc. 1988; Frank et al. 1993; Lenoski et al.
1992; Pfister et al. 1985], the group chose a simple structuring for the operating
system that directly mirrored the architecture of the hardware, hoping to lever-
age the strengths of the hardware structure while minimizing its weaknesses.

By focusing on performance rather than flexibility, the Hurricane group was
motivated to acknowledge, analyze, and identify the unique operating system
requirements with respect to scalable performance. Particularly, based on pre-
vious literature and queuing theory analysis, the following guidelines were
identified [Unrau et al. 1995]:

Preserving parallelism: The operating system must preserve the parallelism
afforded by the applications. If several threads of an executing application (or
of independent applications running at the same time) request independent op-
erating system services in parallel, they must be serviced in parallel; otherwise
the operating system becomes a bottleneck, limiting scalability and application
speedup.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 45

Bounding overhead: The overhead for each independent operating system
service call must be bounded by a constant, independent of the number of pro-
cessors. If the overhead of each service call increases with the number of proces-
sors, the system will ultimately saturate, so the demand on any single resource
cannot increase with the number of processors. For this reason, system-wide or-
dered queues cannot be used, and objects cannot be located by linear searches
if the queue lengths or search lengths increase with the size of the system.
Broadcasts cannot be used for the same reason.

Preserving locality: The operating system must preserve the locality of the
applications. Specifically it was noted that locality can be increased (i) by prop-
erly choosing and placing data structures within the operating system, (ii) by
directing requests from the application to nearby service points, and (iii) by
enacting policies that increase locality in the applications’ memory accesses.

Although some of these guidelines have been identified by other re-
searchers [Barak and Kornatzky 1987; Smith 1994], we are not aware of other
general-purpose shared-memory multiprocessor operating systems that perva-
sively utilize them in their design. Over the years, these guidelines have been
refined but have remained a central focus of our body of research.

Hurricane, in particular, employed a coarse-grain approach to scalability in
which a single large-scale SMMP was partitioned into clusters of a fixed number
of processors. Each cluster ran a separate instance of a small-scale SMMP
operating system, cooperatively providing a single system image. Hurricane
attempted to directly reflect the hardware structure, utilizing a collection of
separate instances of a small-scale SMP operating system. Despite many of the
positive benefits of clustering, it was found that: (i) the traditional intracluster
structures exhibit poor locality, which severely impacts performance on modern
multiprocessors; (ii) the rigid clustering results in increased complexity as well
as high overhead or poor scalability for some applications; (iii) the traditional
structures as well as the clustering strategy make it difficult to support the
specialized policy requirements of parallel applications [Gamsa 1999].

The work at Stanford on the Hive operating system [Chapin et al. 1995]
also focused on clustering, first as a means of providing fault containment and
second as a means for improving scalability. Having experienced similar com-
plexity and performance problems with the use of fixed clustering, the Stanford
research group began a new project in the late 1990s called Disco [Bugnion
et al. 1997; Govil et al. 1999]. The Disco project pursued strict partitioning as
a means for leveraging the resources of a multiprocessor. Rather than trying
to construct a kernel that can efficiently support a single system image, they
pursue the construction of a kernel that can support the execution of multiple
virtual machines (VMs). By doing so, the software within the virtual machines
is responsible for extracting the degree of parallelism it requires from the re-
sources allocated to the VM on which it is executing. Rather than wasting the
resources of a large-scale machine on a single OS instance that is incapable
of efficiently utilizing all the resources, the resources are partitioned across
multiple OS instances. There are three key advantages to this approach:

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 46 • J. Appavoo et al.

(1) The underlying systems software that enables the partitioning does not
itself require high concurrency.

(2) Standard workloads can be run by leveraging the Virtual Machine approach
to run standard OS instances.

(3) Resources of a large-scale machine can be efficiently utilized with standard
software, albeit without native support for large-scale applications and with
limited sharing between partitions.

To some extent this approach can be viewed as a trade-off that permits large-
scale machines to be leveraged using standard systems software.

Like the Stanford group, the Toronto researchers also pursued a new project
based on their experience with fixed clustering. In contrast, however, the
Toronto group chose to pursue an operating systems structure that relaxed
the boundaries imposed by clustering when constructing its new operating sys-
tem, called Tornado. The fundamental approach was to explore the structuring
of an operating system kernel so that a single system image could be efficiently
scaled without having to appeal to the fixed boundaries of clustering.

Like other systems, Tornado had an object-oriented design, but not primarily
for the software engineering benefits or for flexibility, but rather for multipro-
cessor performance benefits. Details of the Tornado operating system are given
elsewhere [Gamsa et al. 1999; Gamsa 1999]. The contributions of the Tornado
work include:

(1) an appropriate object decomposition for a multiprocessor operating system,

(2) scalable and efficient support in the object runtime that would enable de-
clustered (distributed) implementations of any object (Objects in Tornado
were thus dubbed Clustered Objects),

(3) a semi-automatic garbage collection scheme incorporated in the object run-
time system that facilitates localizing lock accesses and greatly simplifies
locking protocols,18 and

(4) a core set of low-level operating system facilities that are tuned for multi-
processor performance and show high degrees of concurrency and locality.

The key low-level OS facilities on which Tornado focused were:

—Scalable, efficient multiprocessor memory allocation.

—Light-weight protection-domain crossing that is focused on preserving local-
ity, utilizing only local processor resources in the common case.

In contrast with the work presented in this paper, the majority of the system
objects in Tornado did not utilize distribution. Gamsa’s work on Clustered Ob-
jects in Tornado focused on developing the underlying infrastructure and basic

18With the garbage collection scheme, no additional (existence) locks are needed to protect the

locks internal to the objects. As a result, Tornado’s locking strategy results in much lower locking

overhead, simpler locking protocols, and can often eliminate the need to worry about lock hierar-

chies. As part of Tornado’s garbage collection scheme, the Toronto research group independently

developed a lock-free discipline similar to that of Read-Copy-Update [McKenney and Slingwine

1998].

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 47

mechanisms [Gamsa 1999]. The work presented in this paper, developing the
Clustered Object model and studying the development and use of distributed
object implementations, began in Tornado [Appavoo 1998] utilizing the sup-
porting mechanisms developed by Gamsa.

The work described in Bryant et al. [2004] in improving Linux scalabil-
ity explores many locality optimizations in an ad hoc manner. Many fixes
discussed in the paper localize memory accesses on hot paths and use scat-
ter/gather operations on the less performance-sensitive paths. The authors
point out that relocating data into perprocessor storage is not a “panacea”
but must be balanced with appropriate use of global shared-memory ac-
cesses. Our work provides a framework for developing software in this
fashion.

7. CONCLUDING REMARKS

There is a pervasive belief that operating systems are fundamentally unable
to scale to large SMMPs except for specialized scientific applications with lim-
ited requirements for OS functionality. There is also a widespread belief that
any operating system that has reasonable scalability will exhibit poor base per-
formance and extreme complexity, making it inappropriate for general systems
and workloads. These beliefs, based on current OS structures and performance,
have had a large impact on how existing commercial hardware systems devel-
oped by IBM and others are constructed. In this work, we demonstrated that
a fully partitioned and locality-optimized implementation of a core OS service,
virtual memory management, is possible. The existence proof for such a dis-
tributed, high-performance implementation is, we believe, a major research
result.

We described how we distributed a number of key objects in K42 and showed
the effect of this distribution on SMMP performance, using both microbench-
marks and application benchmarks. The purpose of these distributions is to
optimize access to shared data on critical system paths. The techniques we de-
scribed are indicative of the approach we have taken across the whole system as
we identified performance problems. We believe that the object-oriented design,
and the infrastructure we developed to support it, greatly reduce the complexity
required to achieve good scalability. It allows the developer to focus on specific
objects, without having to worry about larger system-wide protocols, enabling
an incremental optimization strategy. Objects are specialized to handle specific
demands, leading to a separation of concerns and simplifying the development
of distributed implementations.

The sophisticated infrastructure we developed in K42, and the global use of
OO design, will likely not be adopted widely. However, while we believe that
such a design is critical for scaling to hundreds of processors, ideas from K42 can
be adopted incrementally for systems targeting smaller machines. For example,
K42 has a very aggressive implementation of read-copy-update [McKenney and
Slingwine 1998], and exploits state available from our object structure to make
it scalable. The same technology has been transferred to Linux and resulted
in performance gains in 4- and 8-way systems. Similarly, Linux adopted from

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 48 • J. Appavoo et al.

K42 an object-oriented approach to maintaining reverse mappings for memory
management. We believe that more OO structure can be incorporated into Linux
and other commercial systems, and that the use of OO design will enable the
kind of distributed implementations we have found useful in K42 to be used in
Linux as well.

K42 is available under the LGPL license, and is jointly being developed by
IBM and a number of universities.

REFERENCES

AGHA, G. 1990. Concurrent object-oriented programming. Comm. ACM 33, 9, 125–141.

ANDERSON, J. M., BERC, L. M., DEAN, J., GHEMAWAT, S., HENZINGER, M. R., LEUNG, S.-T. A., SITES, R. L.,

VANDERVOORDE, M. T., WALDSPURGER, C. A., AND WEIHL, W. E. 1997. Continuous profiling: Where

have all the cycles gone? In Proceedings of the 16th Symposium on Operating Systems Principles
(SOSP-16). ACM Press, 1–14.

APPAVOO, J. 1998. Clustered Objects: Initial design, implementation and evaluation. M.S. thesis,

Department of Computing Science, University of Toronto, Toronto, Canada.

APPAVOO, J. 2005. Clustered objects. Ph.D. thesis, University of Toronto, Toronto, Canada.

APPAVOO, J., AUSLANDER, M., EDELSOHN, D., SILVA, D. D., KRIEGER, O., OSTROWSKI, M., ROSENBURG, B.,

WISNIEWSKI, R. W., AND XENIDIS, J. 2003. Providing a linux API on the scalable K42 kernel. In

Freenix. San Antonio, TX.

APPAVOO, J., HUI, K., STUMM, M., WISNIEWSKI, R. W., DA SILVA, D., KRIEGER, O., AND SOULES, C. A. N.

2002. An infrastructure for multiprocessor run-time adaptation. In Proceedings of the 1st ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS’02). ACM Press, 3–8.

BAL, H. E., KAASHOEK, M. F., AND TANENBAUM, A. S. 1989. A distributed implementation of the

shared data-object model. In Proceedings of the 1st USENIX/SERC Workshop on Experiences
with Building Distributed and Multiprocessor Systems. E. Spafford, Ed. Ft. Lauderdale FL, 1–

19.

BARAK, A. AND KORNATZKY, Y. 1987. Design principles of operating systems for large scale multi-

computers. Tech. rep., IBM Research Division, T.J. Watson Research Center, Yorktown Heights,

NY.

BARAK, A. AND LA’ADAN, O. 1998. The MOSIX multicomputer operating system for high perfor-

mance cluster computing. Future Generat. Comput. Syst. 13, 4–5, 361–372.

BARAK, A. AND WHEELER, R. 1989. MOSIX: An integrated multiprocessor UNIX. In Proceedings
of the Winter 1989 USENIX Conference: San Diego, CA. USENIX, Berkeley, CA. 101–112.

BAUMANN, A., APPAVOO, J., SILVA, D. D., KERR, J., KRIEGER, O., AND WISNIEWSKI, R. W. 2005. Providing

dynamic update in an operating system. In USENIX Technical Conference. Anaheim, CA, 279–

291.

BBN Advanced Computers, Inc. 1988. Overview of the Butterfly GP1000. BBN Advanced Com-

puters, Inc.

BECK, B. AND KASTEN, B. 1985. VLSI assist in building a multiprocessor UNIX system. In Pro-
ceedings of the USENIX Summer Conference. Portland, OR. USENIX, 255–275.

BERSHAD, B. N., LAZOWSKA, E. D., LEVY, H. M., AND WAGNER, D. B. 1988. An open environment for

building parallel programming systems. In Proceedings of the ACM/SIGPLAN Conference on
Parallel Programming: Experience with Applications, Languages and Systems. ACM Press, 1–9.

BLACK, D. L., TEVANIAN, JR., A., GOLUB, D. B., AND YOUNG, M. W. 1991. Locking and reference count-

ing in the Mach kernel. In Proceedings of the International Conference on Parallel Processing.

Vol. II, Software. CRC Press, Boca Raton, FL, II–167–II–173.

BRUN-COTTAN, G. AND MAKPANGOU, M. 1995. Adaptable replicated objects in distributed environ-

ments. Tech. rep. BROADCAST TR No.100, ESPRIT Basic Research Project BROADCAST.

BRYANT, R., CHANG, H.-Y., AND ROSENBURG, B. 1991. Operating system support for parallel pro-

gramming on RP3. IBM J. Res. Devel. 35, 5/6 (Sept.), 617–634.

BRYANT, R., HAWKES, J., AND STEINER, J. 2004. Scaling linux to the extreme: from 64 to 512 proces-

sors. Ottawa Linux Symposium. Linux Symposium.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 49

BUGNION, E., DEVINE, S., AND ROSENBLUM, M. 1997. Disco: Running commodity operating systems

on scalable multiprocessors. In Proceedings of the 16th Symposium on Operating Systems Prin-
ciples (SOSP-16). ACM Press, 143–156.

CAMPBELL, M., BARTON, R., BROWNING, J., CERVENKA, D., CURRY, B., DAVIS, T., EDMONDS, T., HOLT, R.,

SLICE, J., SMITH, T., AND WESCOTT, R. 1991. The parallelization of UNIX system V release 4.0.

In USENIX Conference Proceedings. USENIX, Dallas, TX, 307–324.

CAMPBELL, R. H., ISLAM, N., RAILA, D., AND MADANY, P. 1993. Designing and implementing Choices:

An object-oriented system in C++. Comm. ACM 36, 9 (Sept.), 117–126.

CATES, J. 2003. Robust and efficient data management for a distributed hash table. M.S. the-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology.

CHAPIN, J., HERROD, S. A., ROSENBLUM, M., AND GUPTA, A. 1995. Memory system performance

of UNIX on CC-NUMA multiprocessors. In Proceedings of the ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS’95/PERFORMANCE’95). 1–13.

CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEODOSIU, D., AND GUPTA, A. 1995. Hive: Fault

containment for shared-memory multiprocessors. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP-15). ACM Press, 12–25.

CHAVES, JR., E. M., DAS, P. C., LEBLANC, T. J., MARSH, B. D., AND SCOTT, M. L. 1993. Kernel-kernel

communication in a shared-memory multiprocessor. Concurrency: Pract. Exper. 5, 3 (May), 171–

191.

CHERITON, D. R. , GOOSEN, H. A., AND BOYLE, P. D. 1991. Paradigm: A highly scalable shared-

memory multicomputer architecture. IEEE Comput. 24, 2 (Feb.), 33–46.

CHEN, J. B. AND BERSHAD, B. N. 1993. The impact of operating system structure on memory sys-

tem performance. In Proceedings of the 14th ACM Symposium on Operating Systems Principles
(SOSP-14). ACM Press, 120–133.

CHERITON, D. R. AND DUDA, K. J. 1994. A Caching model of operating system kernel functionality.

In Operating Systems Design and Implementation. 179–193.

CHERITON, D. R. AND ZWAENEPOEL, W. 1983. The distributed V kernel and its performance for disk-

less workstations. In Proceedings of the 9th ACM Symposium on Operating Systems Principles
(SOSP-9). ACM Press, 129–140.

CHIEN, A. A. AND DALLY, W. J. 1990. Concurrent Aggregates (CA). In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’90), ACM

SIGPLAN Notices. 187–196.

CLÈMENÇON, C., MUKHERJEE, B., AND SCHWAN, K. 1996. Distributed shared abstractions (DSA) on

multiprocessors. IEEE Trans. Softw. Engin. 22, 2 (Feb.) 132–152.

CLÈMENÇON, C., MUKHERJEE, B., AND SCHWAN, K. 1993. Distributed shared Abstractions (DSA) on

Large-scale multiprocessors. In Proceedings of the Symposium on Experience with Distributed
and Multiprocessor Systems. USENIX, San Diego, CA, 227–246.

COHEN, E. AND JEFFERSON, D. 1975. Protection in the Hydra operating system. In Proceedings of
the 5th ACM Symposium on Operating Systems Principles (SOSP-5). ACM Press, 141–160.

DABEK, F., BRUNSKILL, E., KAASHOEK, M. F., KARGER, D., MORRIS, R., STOICA, I., AND BALAKRISHNAN, H.

2001. Building peer-to-peer systems with Chord, a distributed lookup service. In Proceedings
of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII). IEEE Computer Society.

DASGUPTA, P., LEBLANC, JR., R. J., AHAMAD, M., AND RAMACHANDRAN, U. 1991. The clouds distributed

operating system. IEEE Comput. 24, 11 (Nov.), 34–44.

DENHAM, J. M., LONG, P., AND WOODWARD, J. A. 1994. DEC OSF/1 version 3.0 symmetric multipro-

cessing implementation. Digital Tech. J. Digital Equip. Corpo. 6, 3 (Summer), 29–43.

DEVARAKONDA, M. AND MUKHERJEE, A. 1991. Issues in implementation of cache-affinity scheduling.

In Proceedings of the Usenix Winter Technical Conference. USENIX, Berkeley, CA, 345–358.

ELLIS, C. S. 1983. Extensible hashing for concurrent operations and distributed data. In Proceed-
ings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. ACM

Press, 106–116.

EWENS, P., BLYTHE, D. R., FUNKENHAUSER, M., AND HOLT, R. C. 1985. Tunis: A distributed multipro-

cessor operating system. In Summer conference proceedings. Portland, OR. USENIX, Berkeley,

CA, 247–254.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 50 • J. Appavoo et al.

FRANK, S., ROTHNIE, J., AND BURKHARDT, H. 1993. The KSR1: Bridging the gap between shared

memory and MPPs. In IEEE Compcon Digest of Papers. 285–294.

GAMMA, E., HELM, R., AND JOHNSON, R. 1995. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley.

GAMSA, B. 1999. Tornado: Maximizing locality and concurrency in a shared-memory multipro-

cessor operating system. Ph.D. thesis, University of Toronto, Toronto, Canada.

GAMSA, B., KRIEGER, O., APPAVOO, J., AND STUMM, M. 1999. Tornado: maximizing locality and con-

currency in a shared memory multiprocessor operating system. In Symposium on Operating
Systems Design and Implementation. 87–100.

GAO, H., GROOTE, J. F., AND HESSELINK, W. H. 2005. Lock-free dynamic hash tables with open

addressing. Distrib. Comput. 18, 1 (July), 27–42.

GARG, A. 1990. Parallel STREAMS: A multiprocessor implementation. In Proceedings of the
Winter USENIX Conference, Washington, DC., USENIX, Berkeley, CA, 163–176.

GOVIL, K., TEODOSIU, D., HUANG, Y., AND ROSENBLUM, M. 1999. Cellular Disco: Resource manage-

ment using virtual clusters on shared-memory multiprocessors. In Proceedings of the 17th Sym-
posium on Operating Systems Principles (SOSP-17). ACM Press, 154–169.

GRIBBLE, S. D., BREWER, E. A., HELLERSTEIN, J. M., AND CULLER, D. 2000. Scalable, distributed data

structures for internet service construction. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI-00). USENIX, Berkeley, CA, 319–332.

GUPTA, A., TUCKER, A., AND URUSHIBARA, S. 1991. The impact of operating system scheduling

policies and synchronization methods on the performance of parallel applications. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems.

Stanford Univ., San Diego, CA, 120.

HOMBURG, P., VAN DOORN, L., VAN STEEN, M., TANENBAUM, A. S., AND DE JONGE, W. 1995. An object

model for flexible distributed systems. In 1st Annual ASCI Conference. Heijen, Netherlands,

69–78. http://www.cs.vu.nl/˜steen/globe/publications.html.

HUI, K., APPAVOO, J., WISNIEWSKI, R. W., AUSLANDER, M., EDELSOHN, D., GAMSA, B., KRIEGER, O., ROSEN-

BURG, B., AND STUMM, M. 2001. Position summary: Supporting hot-swappable components for

system software. In HotOS. IEEE Computer Society.

INMAN, J. 1985. Implementing loosely coupled functions on tightly coupled engines. In Proceed-
ings of the Summer Conference, Portland. OR USENIX, Berkeley, CA, 277–298.

KAELI, D. R., FONG, L. L., BOOTH, R. C., IMMING, K. C., AND WEIGEL, J. P. 1997. Performance Analysis

on a CC-NUMA prototype. IBM J. Res. Devl. 41, 3, 205.

KATCHER, J. 1997. Postmark: A new file system benchmark. Tech. Rep. TR3022, Network

Appliance.

KELLEY, M. H. 1989. Multiprocessor aspects of the DG/UX kernel. In Proceedings of the Winter
USENIX Conference: San Diego, CA. USENIX, Berkeley, CA, 85–99.

KLEIMAN, S., VOLL, J., EYKHOLT, J., SHIVALINGAH, A., WILLIAMS, D., SMITH, M., BARTON, S., AND SKINNER,

G. 1992. Symmetric multprocessing in Solaris. COMPCON, San Francisco, CA.

KRIEGER, O., STUMM, M., UNRAU, R. C., AND HANNA, J. 1993. A fair fast scalable reader-writer lock.

In Proceedings of the International Conference on Parallel Processing. Vol. II—Software. CRC

Press, Boca Raton, FL, II–201–II–204.

LAROWE, JR., R. P. AND ELLIS, C. S. 1991. Page placement policies for NUMA multiprocessors. J.
Parall. Distrib. Comput. 11, 2 (Feb.) 112–129.

LEBLANC, T. J., MELLOR-CRUMMEY, J. M., GAFTER, N. M., CROWL, L. A., AND DIBBLE, P. C. 1989. The

Elmwood multiprocessor operating system. Softw. Prac. Exper. 19, 11 (11), 1029–1056.

LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WEBER, W.-D., GUPTA, A., HENNESSY, J., HOROWITZ, M., AND

LAM, M. S. 1992. The Stanford Dash multiprocessor. IEEE Comput. 25, 3 (March), 63–80.

LEVIN, R., COHEN, E., CORWIN, W., POLLACK, F., AND WULF, W. 1975. Policy/mechanism separation

in Hydra. In Proceedings of the 5th ACM Symposium on Operating Systems Principles (SOSP-5).
ACM Press, 132–140.

LIEDTKE, J., ELPHINSTONE, K., SCHOENBERG, S., AND HAERTIG, H. 1997. Achieved IPC performance.

The 6th Workshop on Hot Topics in Operating Systems: Cape Cod, MA., IEEE Computer Society

Press, 28–31.

LIM, C.-C. 93. A Parallel Object-Oriented System for Realizing Reusable and Efficient Data

Abstractions. Tech. rep. TR-93-063, Oct. Berkeley University of California, CA.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Experience Distributing Objects in an SMMP OS • Article 6 / 51

LOVERSO, S., PACIOREK, N., LANGERMAN, A., AND FEINBERG, G. 1991. The OSF/1 UNIX filesystem

(UFS). In USENIX Conference Proceedings. USENIX, 207–218.

LYCKLAMA, H. 1985. UNIX on a microprocessor—10 years later. In Proceedings of the Summer
Conference, Portland, OR. USENIX, Berkeley, CA, 5–16.

MAKPANGOU, M., GOURHANT, Y., NARZUL, J.-P. L., AND SHAPIRO, M. 1994. Fragmented objects for

distributed abstractions. In Readings in Distributed Computing Systems, T. L. Casavant and

M. Singhal, Eds. IEEE Computer Society Press, Los Alamitos, CA, 170–186.

MARCHETTI, M., KONTOTHANASSIS, L., BIANCHINI, R., AND SCOTT, M. 1995. Using simple page place-

ment policies to reduce the cost of cache fills in coherent shared-memory systems. In Proceedings
of the 9th International Symposium on Parallel Processing (IPPS’95). IEEE Computer Society

Press, Los Alamitos, CA, 480–485.

MARKATOS, E. P. AND LEBLANC, T. J. 1994. Using processor affinity in loop scheduling on shared-

memory multiprocessors. IEEE Trans. Parall. Distrib. Syst. 5, 4 (Apr.), 379–400.

MAYNARD, A. M. G., DONNELLY, C. M., AND OLSZEWSKI, B. R. 1994. Contrasting characteristics

and cache performance of technical and multi-user commercial workloads. ACM SIGPLAN No-
tices 29, 11 (Nov.), 145–156.

MCCROCKLIN, D. 1995. Scaling Solaris for enterprise computing. In CUG 1995 Spring Proceed-
ings. Cray User Group, Inc., Denver, CO, 172–181.

MCKENNEY, P. E., SARMA, D., ARCANGELI, A., KLEEN, A., KRIEGER, O., AND RUSSELL, R. 2001. Read

Copy Update. Ottawa Linux Symposium. Linux Symposium.

MCKENNEY, P. E., SARMA, D., ARCANGELI, A., KLEEN, A., KRIEGER, O., AND RUSSELL, R. 2002. Read

copy update. In Proceedings of the Ottawa Linux Symposium (OLS). 338–367.

MCKENNEY, P. E. AND SLINGWINE, J. 1993. Efficient kernel memory allocation on shared-memory

multiprocessor. In USENIX Technical Conference Proceedings. USENIX, Berkeley, CA, 295–305.

MCKENNEY, P. E. AND SLINGWINE, J. 1998. Read-Copy Update: Using exeuction history to solve

concurrency problems. In Proceedings of the International Conference on Parallel and Distributed
Computing and Systems (PDCS), Y. Pan, S. G. Akl, and K. Li, Eds. IASTED/ACTA Press, Las

Vegas, NV.

MUKHERJEE, B. C. AND SCHWAN, K. 1993. Improving performance by use of adaptive objects: ex-

perimentation with a configurable multiprocessor thread package. In Proceedings of the 2nd
International Symposium on High Performance Distributed Computing. IEEE, 59–66.

OUSTERHOUT, J. K., SCELZA, D. A., AND SINDHU, P. S. 1980. Medusa: An experiment in distributed

operating system structure. Comm. ACM 23, 2 (Feb.), 92–104.

PAPAMARCOS, M. S. AND PATEL, J. H. 1984. A low-overhead coherence solution for multiprocessors

with private cache memories. In Proceedings of the 11th Annual International Symposium on
Computer Architecture (ISCA ’84). ACM Press, New York, NY, 348–354.

PEACOCK, J. K., SAXENA, S., THOMAS, D., YANG, F., AND YU, W. 1992. Experiences from multithreading

System V Release 4. In Symposium on Experiences with Distributed and Multiprocessor Systems
(SEDMS). USENIX, Berkeley, CA, 77–92.

PFISTER, G. F., BRANTLEY, W. C., GEORGE, D. A., HARVEY, S. L., KLEINFELDER, W. J., MCAULIFFE, K. P.,

MELTON, E. A., NORTON, V. A., AND WEISE, J. 1985. The IBM research parallel processor prototype

(RP3): Introduction. In Proceedings of the International Conference on Parallel Processing.

PIKE, R. 1998. Personal communication.

PRESOTTO, D. L. 1990. Multiprocessor streams for Plan 9. In Proceedings of the Summer UKUUG
Conference London, OR 11–19.

RASHID, R. 1986. From RIG to accent to mach: The evolution of a network operating system. In

Proceedings of the ACM/IEEE Computer Society Fall Joint Computer Conference. 1128–1137.

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

RASHID, R., TEVANIAN, JR., A., YOUNG, M., GOLUB, D., BARON, R., BLACK, D., BOLOSKY, W. J., AND CHEW,

J. 1988. Machine-independent virtual memory management for paged uniprocessor and mul-

tiprocessor architectures. IEEE Trans. Comput. 37 8, 896–908.

ROSENBLUM, M., BUGNION, E., HERROD, S. A., WITCHEL, E., AND GUPTA, A. 1995. The impact of archi-

tectural trends on operating system performance. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP-15). ACM Press, 285–298.

RUSSELL, C. H. AND WATERMAN, P. J. 1987. Variations on UNIX for parallel-programming comput-

ers. Comm. ACM 30, 12 (Dec.), 1048–1055.

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

Article 6 / 52 • J. Appavoo et al.

SCHWAN, K. AND BO, W. 1990. Topologies: distributed objects on multicomputers. ACM Trans.
Comput. Syst. 8, 2, 111–157.

SCOTT, M. L., LEBLANC, T. J., AND MARSH, B. D. 1988. Design rationale for Psyche, a general-purpose

multiprocessor operating system. In Proceedings of the International Conference on Parallel Pro-
cessing. Pennsylvania State University Press, St. Charles, IL, 255. (Also published in the Univ.

of Rochester 1988-89 CS and Computer Engineering Research Review.)

SHAPIRO, M., GOURBANT, Y., HABERT, S., MOSSERI, L., RUFFIN, M., AND VALOT, C. 1989. SOS:

An object-oriented operating system—assessment and perspectives. Comput. Syst. 2, 4, 287–

337.

SMITH, B. 1994. The quest for general-purpose parallel computing. www.cray.com/products/

systems/mta/psdocs/nsf-agenda.pdf.

SOULES, C. A. N., APPAVOO, J., HUI, K., WISNIEWSKI, R. W., DA SILVA, D., GANGER, G. R., KRIEGER, O.,

STUMM, M., AUSLANDER, M., OSTROWSKI, M., ROSENBURG, B., AND XENIDIS, J. 2003. System support

for online reconfiguration. In USENIX Conference Proceedings. San Antonio, TX, 141–154.

SPEC.ORG. 1996. SPEC SDM suite. http://www.spec.org/osg/sdm91/.

SQUILLANTE, M. S. AND LAZOWSKA, E. D. 1993. Using processor-cache affinity information in shared-

memory multiprocessor scheduling. IEEE Trans. Parall. Distrib. Syst. 4, 2 (Feb.), 131–143.

STETS, R., DWARKADAS, S., HARDAVELLAS, N., HUNT, G., KONTOTHANASSIS, L., PARTHASARATHY, S., AND

SCOTT, M. 1997. Cashmere-2L: Software coherent shared memory on a clustered remote-write

network. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP-
16).

TALBOT, J. 1995. Turning the AIX operating system into an MP-capable OS. In Proceedings of the
USENIX Technical Conference.

TORRELLAS, J., GUPTA, A., AND HENNESSY, J. L. 1992. Characterizing the caching and synchro-

nization performance of a multiprocessor operating system. In Proceedings of the 5th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems.

Boston, MA, 162–174.

TORVALDS, L. 2002. Posting to linux-kernel mailing list: Summary of changes from v2.5.42 to

v2.5.43. http://marc.theaimsgroup.com/?l=linux-kernel&m=103474006226829&w=2.

UNRAU, R. C., KRIEGER, O., GAMSA, B., AND STUMM, M. 1995. Hierarchical clustering: A structure

for scalable multiprocessor operating system design. J. Supercomput. 9, 1–2, 105–134.

VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A. S. 1997. The architectural design of Globe: A

wide-area distributed sytem. Tech. rep. IR-442, Vrige Universiteit, De Boelelann 1105, 1081 HV

Amsterdam, The Netherlands.

VASWANI, R. AND ZAHORJAN, J. 1991. The implications of cache affinity on processor scheduling for

multiprogrammed, shared memory multiprocessors. In Proceedings of 13th ACM Symposium on
Operating Systems Principles (SOSP-13). ACM Press, 26–40.

VERGHESE, B., DEVINE, S., GUPTA, A., AND ROSEMBLUM, M. 1996. Operating system support for

improving data locality on CC-NUMA compute servers. In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating Systems. ACM

Press, MA 279–289.

VRANESIC, Z. G., STUMM, M., LEWIS, D. M., AND WHITE, R. 1991. Hector: A hierarchically structured

shared-memory multiprocessor. IEEE Comput. 24, 1 (Jan.), 72–80.

WULF, W., LEVIN, R., AND PIERSON, C. 1975. Overview of the Hydra operating system development.

In Proceedings of the 5th ACM Symposium on Operating Systems Principles (SOSP-5). ACM

Press, 122–131.

XIA, C. AND TORRELLAS, J. 1996. Improving the Performance of the data memory hierarchy for mul-

tiprocessor operating systems. In Proceedings of the 2nd IEEE Symposium on High-Performance
Computer Architecture (HPCA-2).

YOUNG, M., TEVANIAN, JR., A., RASHID, R., GOLUB, D., EPPINGER, J. L., CHEW, J., BOLOSKY, W. J., BLACK,

D., AND BARON, R. 1987. The duality of memory and communication in the implementation of

a multiprocessor operating system. In Proceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP-11). ACM Press, 63–76.

Received December 2005; revised August 2006; January 2007; accepted January 2007

ACM Transactions on Computer Systems, Vol. 25, No. 3, Article 6, Publication date: August 2007.

