
Customization Lite
�

Marc Auslander
�

Hubertus Franke
�

Ben Gamsa
�

Orran Krieger
�

Michael Stumm
�

�
IBM T.J. Watson Research Center
Yorktown Heights, New York�

marc,franke,okrieg � @watson.ibm.com

�
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada�
ben,stumm � @eecg.toronto.edu

Abstract

There has been a great deal of interest in recent years in devel-
oping operating systems that can be customized to meet the per-
formance and functionality needs of particular applications while
being extensible to support new policies, new implementations
and new interfaces. We describe a structuring technique, called
building-block composition, that we are employing for this pur-
pose. The customizability this technique provides to untrusted ap-
plications is, while large, less than that provided by some other
techniques. However, it results in a more extensible and maintain-
able system, is easier for untrusted applications to use, and pro-
vides a better foundation for overall improved performance, par-
ticularly for multiprocessors.

1. Introduction

Conventional operating systems provide poor support for
applications to customize resource management policies,
implementations, and interfaces. Recognizing this, the re-
search community has responded by developing operating
systems that are customizable. Examples include SPIN [1],
VINO [15], Exokernel [4], Fluke [5], L4 [11], and the Cache
Kernel [3]. All of these systems provide for customizability
by allowing applications to extend operating system func-
tionality with user code, either by having the operating sys-
tem direct its requests to user code or by downloading the
code into the kernel. In these systems, extensions are in-
tended to be used by trusted and untrusted applications alike.

�
Appeared in Proc. 6th Workshop on Hot Topics in Operating Systems

(HotOS-VI), May, 1997.

The approach these systems have adopted can be consid-
ered an extreme solution to the problem of providing cus-
tomizability, as it allows any application to extend the oper-
ating system. We believe that this degree of customizability,
while very flexible, is largely unnecessary, comes at a sig-
nificant cost in terms of complexity and performance, and is
beyond the ability of most application programmers to ex-
ploit (in that it takes a systems programmer to write an ex-
tension). In this paper, we describe our own lighter-weight
form of customization, based on a structuring technique
called building-block composition. In this approach we sep-
arate the notion of extensibility (i.e., adding new code) and
customizability (i.e., selecting code). This separation makes
it possible to restrict the ability to add extensions to trusted
parties only, but allow all applications to customize operat-
ing system functionality (albeit in a more limited way than
that allowed by the other systems).

Building-block composition is an object-oriented struc-
turing technique, where each virtual resource (i.e. virtual
memory region, network connection, file, process, etc.) is
implemented by a different set of objects, allowing resource
management policies and implementations to be controlled
on a per virtual resource basis. We refer to the objects as
building blocks, and the overall implementation of a virtual
resource as a building-block composition. Customizability
is achieved by letting the application specify the building-
block composition of the virtual resources created on its be-
half, and by letting the application dynamically change the
compositions at any time. This allows, for example, every
open file to have a different pre-fetching policy, every mem-
ory region to have a different page size, and every process to
have a different exception handling policy.

In specifying building-block compositions, applications

1

choose from a set of building blocks provided by the
operating system and (trusted) third party building block
providers, and specify how they are to be connected. Ap-
plication writers need not be system programming experts,
since they do not need to write code, but only need to com-
pose a set of predefined modules. Safety is not an issue
for the same reason and because the building blocks ver-
ify type safety when they are connected. Because building-
block compositions are expected to cover the vast majority
of customization needs, it is only infrequently necessary to
add new building blocks, and such extensions can then be
restricted to trusted agents. �

Our solution to customizability can be considered to
be much more conservative than the techniques chosen by
other research groups. In many ways, building-block com-
position is not much different from other object-oriented
techniques [6] and can be viewed as a specific realization
of the Framework approach [7]. These OO techniques have
already successfully been applied in commercial operating
systems; for example the Unix Vnode interface [8] and
Streams facility [14]. We build on this previous work, taking
advantage of its strengths with respect to maintainability, ex-
tending it to all components of the operating system, and, for
customizability, providing a powerful mechanism for appli-
cations to control the objects used. Overall, we believe that
building-block composition is simpler to use than the other
more radical techniques, and results in better maintainabil-
ity and performance because it does not require the system
designer to deal with many of the complexity and security
problems the other approaches must face.

The building-block composition structuring technique
was first developed for the Hurricane file system [9, 10],
and is now being employed both for the Kitchawan operat-
ing system at IBM research and the Tornado operating sys-
tem [13] at the University of Toronto. This paper is joint
work of the Kitchawan and Tornado groups.

We first describe the motivation for employing building-
block composition, then describe the technique, and finally
compare our technique to other techniques for making oper-
ating systems customizable.

2. Motivation

In this section we describe our motivation for having cho-
sen to use building-block composition for customizability
instead of the extensibility techniques chosen by other re-
search groups.

�
This can be viewed to be similar to, say, the installation of new dynam-

ically loadable device drivers in conventional systems.

Customizability

Our goals for customizability are as follows. First, we ex-
pect the main motivation will be to improve performance,
and hence we require a mechanism with very low over-
head. Second, customizations introduced for one applica-
tion should add no overhead to other applications running
concurrently. Third, untrusted applications should be able
to customize the virtual resources they use without affect-
ing the security of the system or other applications. Fourth,
it should be easy for applications to perform simple cus-
tomizations (e.g., choosing particular prefetching policies),
and hence the mechanism should be simple to use. Finally,
the mechanism should be sufficiently powerful to meet the
needs of a wide variety of applications, and it should be pos-
sible over time to extend the system to be more customiz-
able. We believe building-block composition best meets
these goals, as will become evident in the next section.

In our work, we differentiate between customizability
and extensibility. Informally, a system is extended when
new functionality (i.e., new code) is added, and customized
when an application specifies the functionality to be invoked
on its behalf. It is one of the fundamental differences be-
tween our approach and those employed by others. In our
opinion, systems that employ a single mechanism for ex-
tensibility and customizability face the following challeng-
ing problems. First, because writing system code in the ap-
plication is just as complex as when written at the system
level, creating extensions is beyond the capabilities of most
programmers. Second, the same safety mechanism must be
used for both trusted and untrusted extensions, with an at-
tendant performance overhead for both. Third, the interface
required for extending the system becomes, in effect, part of
a larger system API that must continue to be maintained and
kept stable for many years if the applications are to remain
operational without change. Finally, compared to the APIs
of current conventional systems, the richer APIs are even
more difficult to test for correctness, in particular to ensure
that there are no security holes. It is partly for these reasons
that the extensions these systems allow are often restricted.

Maintainability and Extensibility

Another motivation for using building-block composition is
that it requires the system to be developed in a highly modu-
lar fashion so that it is easier to extend to support new func-
tionality, new applications, and new platforms. The cost
of maintaining current systems has grown to such an ex-
tent that it is extremely difficult to extend them, and we be-
lieve that this is due to the choice previous operating system
designers made to sacrifice modularity for performance. A
good example of this is the way IBM’s AIX operating sys-
tem integrates the virtual memory manager and native file
system [2]. The memory manager knows the structure of

A
�

B

C
	

D

Figure 1. Building blocks implementing a virtual resource
such as a file. C and D may each store data on a sin-
gle disk, B might be a distribution building block that dis-
tributes the file data to C and D, and A might be a compres-
sion/decompression building block that decompresses data
read from B and compresses data being written to B.

the file system meta data, and traverses this data itself to re-
solve page faults more efficiently. This optimization makes
changing the native file system difficult and makes interac-
tions with other file systems more expensive.

In general, there are a number of reasons why violating
modularity leads to long term maintainability and perfor-
mance problems. First, by doing so, the initial system de-
signer makes the task of future developers, who are often
less experienced, more difficult. The interaction between
different components of the system may be hard to under-
stand, and hence developers may make incremental changes
in a brute force fashion (e.g., cloning code), resulting in poor
performance and increased complexity. Second, optimiza-
tions typically apply to a particular set of operations consid-
ered critical by the designer, and often result in greater com-
plexity and poorer performance for operations which the de-
signer did not consider. Finally, over time, the requirements
of the system may change, and the optimizations that were
useful initially may make it difficult to adapt the system to
the changed requirements. A good example of this is the dif-
ficulties many operating systems have had achieving good
performance on shared-memory multiprocessors, where op-
timizations useful for uniprocessor systems (e.g., turning off
interrupts to ensure atomicity) resulted in concurrency or
complexity problems in multiprocessor systems.

Multiprocessor performance

One of the major differences between our systems and other
customizable operating systems is our emphasis on mul-
tiprocessor performance. We believe that in the near fu-
ture single chip shared-memory multiprocessors will be-
come available and soon thereafter the majority of comput-

ers will be small-scale multiprocessors. Moreover, we be-
lieve that large-scale shared-memory multiprocessors will
become increasingly important.

Optimizing for shared-memory multiprocessors requires
that the system data be structured to maximize temporal
and spatial locality in order to avoid cache conflicts, limit
memory and lock contention, and (for large systems) mini-
mize remote memory accesses. To do this, one should avoid
global data structures and instead maintain data structures
on a per virtual and physical resource basis. For example,
the physical pages associated with a memory region should
be managed on the basis of that region rather than main-
tained in a global page cache. This allows the sharing of
those data structures (and associated locks) to be constrained
to the processors running processes that are actually access-
ing the corresponding resource, minimizing sharing in the
processor caches and avoiding lock contention.
 With com-
positions being defined on a per-resource basis, building-
block composition directly addresses these issues.

3. Building-block compositions

With building-block composition, each virtual resource
instance (e.g., a particular file, open file instance, mem-
ory region) is implemented by combining a set of build-
ing blocks. Each building block implements a particular ab-
straction and might (1) manage some part of the virtual re-
source, (2) manage some of the physical resources back-
ing the virtual resource, or (3) manage the flow of control
through the building blocks. A building block may be an ob-
ject (e.g., a C++ object), or might itself be implemented as
a composition of other building blocks.

The particular composition of building blocks that im-
plement a virtual resource (i.e., the set of objects and the
way they are connected) determines the behavior and per-
formance of the resource. As a simple example, Figure 1
shows four building blocks that might implement some part
of a file. � contains references to � and
 , and in turn is
referenced by � . � and
 might each store data on a differ-
ent disk, � might be a distribution building block that dis-
tributes the file data to � and
 , and � might be a compres-
sion/decompression building block that decompresses data
read from � and compresses data being written to � .

It is important to note that each virtual resource instance
will have a different building-block composition. Thus, two
open file instances will be implemented by different sets of
building blocks, possibly with different topologies, making
it possible to offer highly customized services. An applica-
tion can (optionally) specify the composition of resources
created on its behalf. Also, the composition is dynamic and
�

On a large system, system data structures should be de-clustered; that
is, distributed (e.g., replicated, migrated, partitioned) among the different
memory modules according to the demands placed on the data [13, 16].

can, in principle, be changed repeatedly by an application
(assuming interface requirements are respected).

Customizability

In our building-block framework, customizability can be
achieved in a number of ways. First, given a particular com-
position, it is possible to exchange one building block with
another as long as the interfaces of the two are the same.
For example, in Figure 1, � could be replaced by another
building block ��� that implements a different distribution.
Thus for each type of building block, multiple implementa-
tions may exist, each supporting a different policy or opti-
mized for a different application behavior. Even with only a
few implementations of building blocks, the combinatorial
effect on the behavior of an entire composition can be huge. �

Third, building blocks can be added to an existing struc-
ture if the connecting interfaces match, thus modifying the
topology. This can be used to add new functionality to the
composition. For example, a new building block � (that,
say, implements prefetching of some sort) can be inserted
between � and � , as long as both the imported and the ex-
ported interface of � is the same as that exported by � .
Building blocks that import the same interface they export
can be arbitrarily stacked. As another example, to imple-
ment a replicated file, one can imagine just adding a repli-
cation building block � between � and � that is connected
to both � and a second subtree rooted by another distribu-
tion object similar to � .

Finally, it is possible to present different interfaces to ap-
plications by employing building blocks that export these in-
terfaces, but import standard interfaces so that they can be
connected to existing structures.

Operation and structure

When an application is instantiating a building-block com-
position, it instantiates each building block and specifies to
the building-block constructor the other objects that build-
ing block should interact with. Once the entire composition
is complete, the building blocks verify that each referenced
object is of the correct type and that any other required con-
straints are met. Hence, if some building block requires, say,
that a particular file block size be supported, it verifies that
all building blocks it is connected to can in fact support that
block size. This type of checking makes it safe for untrusted
users to customize the building-block compositions.

For maintainability (and to make validation feasible), it
is necessary to keep the number of building-block interfaces
small. This is done by the system designer imposing a struc-
ture that defines the types of building blocks that can be in
�

For an extra degree of customizability, many of our building blocks are
also parameterizable (i.e. prefetch distance, page size, etc.).

a composition. For example, there are four types of build-
ing blocks in the Tornado memory manager that: (1) control
the TLB entries specific to a region of memory, (2) provide
the mapping between a range of virtual addresses and a file,
(3) control the caching of file blocks in main memory, and
(4) for each file provide an interface to the corresponding
file system. These four define the (only) four basic building
block interfaces in the memory manager.

The building blocks that make up one of the basic com-
positions may each be an object, or a composition of other
building blocks. For example, the memory management
building block that controls file block caching can be imple-
mented as a composition of one building block for manag-
ing the cache with another building block for prefetching file
blocks. In this case, both building blocks support the same
interface and are composed in a standardized fashion that al-
lows for validation of the composition. (The details are be-
yond the scope of this paper.)

In some cases, such as the building blocks that control
the disk layout of a file, it does not make much sense to
change the composition after instantiation. However, gen-
erally building blocks do support modifying a composition
at run time. For example, an application may want to re-
place an existing prefetching building block of an open file
instance with one that implements a different policy in or-
der to adjust to the access pattern expected in the upcoming
phase of the computation. To do this, the client instantiates
a new prefetching building block, asks the existing block to
transfer the state of any physical resources and connections
to the new block, and to deallocate itself. In the specific
case of the prefetching building block, there is little state
that needs to be transferred. However, in the case of a mem-
ory management building block that manages the cache of a
file’s blocks, this state can be substantial.

Performance considerations

The modularity of building-block composition results in
some overhead. However, with a proper design this over-
head is typically small for a number of reasons. First, even
if a resource is implemented with many layers of objects, re-
quests are often serviced by traversing only a small number
of layers. For example, in the Hurricane file system [10],
objects typically cache data, and most read and write re-
quests can be satisfied from a cache managed by an object
close to the client. Second, building-block composition nat-
urally minimizes the number of cross address space object
invocations, because the customization occurs in the server
(or kernel) providing the service. In contrast, some of the
other mechanisms for customization require the customiza-
tions to be implemented in the application space or a sep-
arate user-level server. Third, because building blocks are
trusted, no checking for security is necessary, and hence

object-invocation overhead is low. Finally, since the func-
tions and data of a building block are specific to the (typi-
cally) simple policies it implements, it is feasible to choose
an implementation that has less (code and data) overhead
than a general purpose implementation.

If the use of many building blocks happens to result in
poor performance for some important new workload, then
it is feasible for a system programmer to define and add a
new object class specifically to handle the demands of this
workload, possibly by combining a set of simple building
blocks into a single more complex one.

For multiprocessors, the modularity imposed by
building-block composition, rather than entailing overhead,
is actually required in order to achieve good performance.
That is, one can only achieve locality in accessing the state
of a virtual resource if that state is encapsulated by objects
specific to that resource. In previous work, we described a
particular technique for implementing building blocks that
exploits the modularity to achieve good multiprocessor per-
formance [13]. It provides a structured (and somewhat auto-
mated) way to design building blocks that match any local-
ity in application requests, enabling optimizations for lock-
ing and cache/memory locality. � For example, the state of
the building blocks that manage the physical memory of an
application that spans many processors might be distributed
across all of those processors, while the state of the build-
ing blocks that manage the physical memory of a sequential
application might migrate with that application to the pro-
cessor on which it is executing. We believe that the per-
formance advantages that accrue from optimizing for local-
ity will more than make up for any overhead entailed by an
object-oriented design.

4. Comparison to other approaches

Recent examples of other approaches for developing cus-
tomizable systems include those taken by the SPIN [1, 12],
VINO [15], Exokernel [4], Fluke [5], L4 [11], and Cache
Kernel [3] projects. The SPIN and VINO operating sys-
tems allow applications to extend and customize the op-
erating system by allowing them to down-load untrusted
code into the kernel. Distinguishing features of SPIN in-
clude the compiler based techniques used to ensure that
down-loaded code is safe and the event mechanism used to
dispatch down-loaded code. A very interesting feature of
VINO is the transactional model used to guarantee error re-
covery. While these two systems are very different, from
our perspective they both (to one degree or another) suf-
�

With this technique, called clustered objects, a reference to an object
might actually refer to just one component of a larger distributed object.
That is, a single object reference can point to different objects on different
processors, thus efficiently supporting replication, migration, and distribu-
tion of objects behind a uniform object-oriented interface.

fer from performance overheads resulting from the security
mechanisms as well as maintainability difficulties which re-
sult from exposing internal interfaces that become part of the
API. Also, SPIN restricts extensibility by limiting the inter-
nal interfaces available to extensions.

The Exokernel, Fluke, L4 and Cache Kernel all allow
for customizability by having the kernel redirect hardware
events to external address spaces where they can be cus-
tomized on a per-application basis. An Exokernel is a small
kernel that directs hardware-specific events to untrusted
user-level libraries that implement all policies. Fluke, L4
and Cache Kernel employ a virtual machine model, where
each application can have a different operating system run-
ning in a virtualized version of the hardware. To one degree
or another, these approaches suffer from the overhead re-
quired to cross address space boundaries and they make the
sharing of resources between applications desiring different
extensions difficult.

The most fundamental difference between our approach
and these others is that we have chosen to use separate mech-
anisms for customizability and extensibility. Customizabil-
ity is provided by allowing untrusted applications to com-
pose already existing building blocks in new ways. Exten-
sibility is provided by a highly modular object-oriented de-
sign that allows system and third party developers to add
new functionality to the system. This distinction has the
following impact on our system. First, it leads to lower
overhead. Since building-block composition is applied on a
per-resource basis, an application does not affect the over-
head of applications using other resources when it cus-
tomizes its own resources. In fact, it can be argued that
there is no overhead for either customizability or extensibil-
ity in our system. Any overhead is intrinsic to the modu-
larity of the system, and this modularity pays for itself by
increased maintainability and by improved multiprocessor
performance. Second, the interface available for customiz-
ability (i.e., specifying and changing compositions) is sim-
ple and hence easily maintained. The internal interfaces
(between building-blocks) are not exposed to the applica-
tions, and hence are not part of the API that needs to remain
stable. � Third, our system does not need to deal with many
of the security issues the other systems face. Finally, the cus-
tomizability we provide is easy to use — applications com-
pose existing functionality to adapt the system to their needs
rather than writing new code.

On the surface, the customizability provided by our ap-
proach appears to be more restrictive than that provided by
the other customizable systems. While this is indeed the
case for untrusted applications, for trusted agents, our sys-
tem is actually less restrictive than the other systems. All

�
Of course, stability of the internal interfaces is still important to the

development community that is exposed to these interfaces, but it is less
critical than the stability of the general application API.

internal interfaces are available to new code in our system,
while the other systems often restrict the interfaces for safety
reasons. Also, it should be noted that we are willing to
trust code provided to us by authenticated (trusted) appli-
cations such as a data base, and allow it to be dynamically
linked into the system. Finally, while it is not central to our
work, building-block composition can be used as a frame-
work for some of the other techniques being developed for
customization. For example, a trusted building block can
be provided that accepts and restricts the access of down-
loaded code from an untrusted application, and another one
might be capable of reflecting events into the application ad-
dress space.

5. Concluding remarks

It is feasible to provide for operating system customiz-
ability along a spectrum of possibilities. At one extreme,
conventional operating systems offer essentially only min-
imal customizability. Recently, a number of systems have
been designed that lie at the other extreme in that they al-
low any application to extend and override operating system
functionality. In this paper, we presented an alternative solu-
tion that lies between the above two extremes; it allows any
application to specify how virtual resources are to be imple-
mented by choosing from a set of existing building blocks
and connecting them together, but restricts the addition of
new building blocks to trusted parties.

Hence, our solution restricts the degree to which any ap-
plication can customize the system, but we believe that in
return, it results in a more efficient system, one that is eas-
ier to customize for average application programmers, one
that is easier to maintain, and one in which it is much easier
to ensure safety. An important question that remains open is
how much customizability is really required in the common
case, and at what cost. Years of experience running produc-
tion systems will be required to fully understand many of the
tradeoffs involved.

Building-block composition was first developed for the
Hurricane file system, and has proven to be successful in the
context of the requirements of a file system. However many
specific issues have to be re-examined in the more challeng-
ing context of a total operating system. Kitchawan is in a
very early stage in its design, and Tornado is in a relatively
early implementation stage (although it is currently opera-
tional) and hence there are many issues still to be resolved.
Specific mechanisms that require more work are those for
validating that compositions are valid and those for enabling
applications to efficiently specify compositions to the sys-
tem. We will have to have substantially more experience
with a full operating system implementation before we have
validated our claims of low overhead, extensibility, main-
tainability, and good multiprocessor performance.

References

[1] B. Bershad, S. Savage, P. Pardyak, E. Sirer, D. Becker, M. Fi-
uczynski, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. In Proc.
15th Symp. on Operating Systems Principles, pages 267–
284, 1995.

[2] A. Chang, M. Mergen, R. Rader, J. Roberts, and S. Porter.
Evolution of storage facilities in AIX Vers. 3 for RISC Sys-
tem/6000 processors. IBM J. of Research and Development,
34:105–110, 1990.

[3] K. Duda and D. Cheriton. A caching model of operating sys-
tem kernel functionality. In Proc. 1st Symp. on Operating
Systems Design and Implementation, pages 179–193, 1994.

[4] D. Engler, F. Kaashoek, and J. O. Jr. Exokernel: An operat-
ing system architecture for application-level resource man-
agement. In Proc. 15th Symp. on Operating Systems Princi-
ples, pages 251–267, 1995.

[5] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In Proc. 2nd Symp. on Operating Systems Design and Imple-
mentation, pages 137–152, 1996.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, 1995.

[7] N. Islam. Distributed Objects: Methodologies for Customiz-
ing Systems Software. IEEE-CS Press, 1996.

[8] S. Kleiman. Vnodes: An architecture for multiple file sys-
tem types in Sun UNIX. In Proc. USENIX Conference,pages
238–247, 1986.

[9] O. Krieger. HFS: A flexible file system for shared memory
multiprocessors. PhD thesis, Dept. of Electrical and Com-
puter Engineering, University of Toronto, 1994.

[10] O. Krieger and M. Stumm. HFS: A performance-oriented
flexible file system based on building-block compositions.
In Proc. 4th Workshop on Input/Output in Parallel and Dis-
tributed Systems, pages 95–108, 1996.

[11] J. Liedtke. On micro-kernel construction. In Proc. 15th
ACM Symp. on Operating System Principles, pages 237–
250, 1995.

[12] P. Pardyak and B. Bershad. Dynamic binding for an extensi-
ble system. In Proc. 2nd Symp. on Operating Systems Design
and Implementation, pages 201–212, 1996.

[13] E. Parsons, B. Gamsa, O. Krieger, and M. Stumm. (De-)-
clustering objects for multiprocessor system software. In
Proc. 4th Intl. Workshop on Object Orientation in Operating
Systems 95 (IWOOOS’95), pages 72–81, 1995.

[14] D. Ritchie. A stream intput-output system. AT&T Bell Lab-
oratories Technical Journal, 63(8):1897–1910, 1984.

[15] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In Proc.
2nd Symp. on Operating Systems Design and Implementa-
tion, pages 213–228, 1996.

[16] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hier-
archical clustering: A structure for scalable multiproces-
sor operating system design. Journal of Supercomputing,
9(1/2):105–134, 1995.

	Text16: Appeared in Proc. 6th Workshop on Hot Topics in Operating Systems, Cape Cod, MA, USA, May 1997, pp. 43-48.

