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Abstract

Hardware performance counters (HPCs) are increasingly being
used to analyze performance and identify the causes of performance
bottlenecks. However, HPCs are difficult to use for several reasons.
Microprocessors do not provide enough counters to simultaneously
monitor the many different types of events needed to form an over-
all understanding of performance. Moreover, HPCs primarily count
low–level micro–architectural events from which it is difficult to
extract high–level insight required for identifying causes of perfor-
mance problems.

We describe two techniques that help overcome these difficulties,
allowing HPCs to be used in dynamic real–time optimizers. First,
statistical sampling is used to dynamically multiplex HPCs and
make a larger set oflogical HPCs available. Using real programs,
we show experimentally that it is possible through this sampling
to obtain counts of hardware events that are statistically similar
(within 15%) to complete non-sampled counts, thus allowing us
to provide a much larger set of logical HPCs. Second, we observe
that stall cycles are a primary source of inefficiencies, and hence
they should be major targets for software optimization. Based on
this observation, we build a simple model in real–time that specu-
latively associates each stall cycle to a processor component that
likely caused the stall. The information needed to produce this
model is obtained using our HPC multiplexing facility to monitor a
large number of hardware components simultaneously. Our analy-
sis shows that even in an out–of–order superscalar micro–processor
such a speculative approach yields a fairly accurate model with run–
time overhead for collection and computation of under 2%.

These results demonstrate that we can effective analyze on–line per-
formance of application and system code running at full speed. The
stall analysis shows where performance is being lost on a given pro-
cessor.
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1 Introduction

Hardware Performance Counters (HPCs) are an integral part of
modern microprocessor Performance Monitoring Units (PMUs).
They can be used to monitor and analyze performance in real time.
HPCs allow counting of detailed micro–architectural events in the
processor [15, 24, 13, 2], enabling new ways to monitor and an-
alyze performance. There has been considerable work that has
used HPCs to explore the behavior of applications and identify per-
formance bottlenecks resulting from excessively stressed micro–
architecture components [1, 8, 25]. However, exploiting HPCs at
run–time for dynamic optimization purposes has proven to be chal-
lenging for a number of reasons:

Limited Hardware Resources:PMUs typically have a small num-
ber of HPCs (e.g. up to 8 in IBM PowerPC processors, 4 in Intel
Itanium II, and 4 in AMD Athlon processors). As a result, only
a limited number of low-level hardware events can be monitored
at any given time. Moreover, only specific subsets of hardware
events can be programmed to be counted together due to hardware–
level programming constraints. This is a serious limitation con-
sidering that detecting performance bottlenecks in complex super-
scalar microprocessors often requires detailed and extensive per-
formance knowledge of several processor components. One way to
get around this limitation is to execute several runs of an applica-
tion, each time with a different set of events being captured. Such
an approach can become time–consuming for offline performance
analysis, and is completely inappropriate for online analysis. Merg-
ing the traces for offline analysis generated from several application
runs is not straightforward, because there are asynchronous events
(e.g. interrupts and I/O events) in each run that may cause signifi-
cant timing drifts.

Complex Interface: The events that can be monitored by HPCs are
typically low–level and specific to a micro–architecture implemen-
tation and, as a result, they are hard to interpret correctly without
detailed knowledge of the micro-architecture implementation. In
fact, in the processors we have considered most high–level perfor-
mance metrics such asCycles Per Instruction(CPI), cache miss ra-
tio, and memory bus contention, can only be measured by carefully
combining the occurrence frequencies of several hardware events.
At best, this makes HPCs hard to use by average application devel-
opers, but even for seasoned systems programmers, it is challeng-
ing to translate the frequency of particular hardware–level events
to their actual impact on end performance due to the complexity of
today’s micro–architectures.

High Overhead: Because PMU resources are shared among all
system processes, they can only be programmed in supervisor



mode. Thus, whenever a user process needs to change the set of
the events being captured, it must call the operating system. These
expensive kernel boundary crossings can happen frequentlywhen a
wide range of hardware events needs to be captured for a single run
of the application.

In this paper, we describe techniques to address the above prob-
lems. First, to overcome the limitation in the number of HPCs, we
use multiplexing of HPCs in a fine–grained way, instead of count-
ing them fully. This method allows us to provide a much largerset
of logical counters to the user, making it is possible to count the oc-
currences of many micro-architectural events during a single appli-
cation run. A similar technique is implemented in PAPI [7, 20], but
in our approach multiplexing HPCs is done in the operating system
kernel so as to reduce run–time overhead significantly. As a result it
is possible to multiplex HPCs at a much finer granularity (up to tens
of thousands of HPC switches per second). Such a fine multiplex-
ing granularity enables us to capture short–lived fluctuations in the
hardware events occurrence rate. Moreover, we present a statistical
analysis to show that our multiplexing approach provides sufficient
accuracy for performance tuning and optimization purposes.

Secondly, we use our multiplexing approach to interpret theimpact
of different hardware events on the applications end–performance.
We developed an aggregate model calledStatistical Stall Break-
down(SSB)that provides accurate and timely information on which
micro–architecture components are most stressed. SSB categorizes
the sources of stalls in the microprocessor pipeline, and quantifies
how much each hardware component (e.g. the caches, the branch
predictor, and individual functional units) contributes to overall stall
in a way that is simple and easy to understand for the user. SSB
information is collected as the program runs and can be used,for
example, by a dynamic optimizer to apply effective optimizations.
The results of our analysis show that the SSB model can accurately
identify and quantify hardware bottlenecks. Furthermore,we show
that the run–time overhead of collecting the SSB information is
small.

In the next section, we describe the design of our HPC–based per-
formance monitoring facility and the features it provides.We fol-
low this by describing the details of the SSB model and the com-
putations it requires at run–time. We have implemented our ideas
on a real system and evaluate the implementation under realistic
workloads in terms of accuracy and run–time overhead. We present
the platform we used for our implementation and describe theim-
plementation issues we faced. We describe how we evaluate the
sampling accuracy, the accuracy of the SSB model, and the run–
time overhead of our facility. Finally, we discuss related work and
then present our conclusions and directions for future work.

2 System Design

We designed and implemented an HPC–based performance moni-
toring facility that can be used with sampling and instrumentation.
The key features of this facility are (i) it provides an easy–to–use
interface to the hardware PMU features, and (ii) it uses statistical
sampling to continuously identify microprocessor bottlenecks. Fig-
ure 1 shows the block diagram of our facility. Users are provided
with a programming interface through a user–level library.Thus, an
application can be instrumented by manually–inserted library calls
or by dynamic instrumentation tools. Users’ calls are received by
the operating system component consisting of the programming in-
terface module, and the sampling engine.

User Applications
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Control Registers
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Context
Switch

PMU Log  
PMU Library
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Programing
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Figure 1. The block diagram of the HPC–based performance
monitoring facility.

The sampling engine implements both HPC multiplexing and the
the SSB model which we discuss in detail later. The programming
interface module allows for both programming the PMU directly
and configuring the sampling engine. In the former case, it re-
ceives the specification of a set of hardware events to be counted
and automatically configures the hardware PMU. The values ofthe
HPCs can be read directly by the user program, or logged in a per–
processPMU Logby the sampling engine. To minimize the cost of
user–kernel boundary crossings, the sampling engine operates as a
component inside the kernel.

The sampling engine can obtain counter values either periodically
or after a designated number of a hardware event occurrences. In
both cases, we use PMU overflow exceptions. For periodic sam-
pling we use one of the HPCs as thecycle counter, allowing sam-
pling intervals accurate down to the CPU cycle.

The sampling frequency is a critical parameter. Sampling too in-
frequently may result in inaccuracies because changes in system
behavior might be missed. On the other hand, too fine-grained
sampling may result in unnecessarily high overhead. Our experi-
ence shows we can afford to take samples every 200,000 cycles
(100 microseconds on a 2GHz CPU) with approximately 2% over-
head. This rate is our default sampling frequency, althoughit can
be overridden by the user.

In order to be able to isolate measurements of individual applica-
tions and the operating system, the sampling engine maintains a set
of HPC contexts. HPC contexts are switched whenever the operat-
ing system switches processes. For this, the operating system must
notify the sampling engine of all process creations and exits, as well
as context switches.

For each process, there are three modes of operations:kernel only,
user only,and full system. In kernel–only mode, hardware events
are only counted when the hardware is in supervisor mode. This
mode is appropriate if we are interested in monitoring operating
system activities incurred by a particular target process.We as-
sume kernel activities that occur in a process time slice arerelated
to the target process. This assumption may not be valid when sev-
eral operating system intensive applications tightly share the CPU.
This, kernel–only mode is best suitable when a given application
runs in isolation for a long time (on the order of several seconds).
In user–only mode, logical HPCs (including the cycle counters) are
suspended when the processor switches into the kernel. Finally,
in full–system mode, HPCs count all hardware events whetherdue
to kernel or application code. When a context switch occurs,the
hardware events occurring both in the kernel and user mode will be
counted by the HPCs of the new process.



We use the notion of an address space as the main indicator of a
context. Therefore, the sampling engine is capable of reporting per-
formance numbers for individual processes as well as the operating
system. At this time, we do not differentiate between the user–
level threads that share the same address space. One possible way
of addressing this issue is to send a performance monitoringup-
call to the user process when a hardware exception occurs so that a
user–defined handler can associate the recorded HPCs with the cur-
rent user-level context (e.g. user-level thread ID). Such atechnique
seems to be plausible only if there is a fast (low perturbation) upcall
delivery mechanism. We are currently working on supportingthis.

3 Multiplexing HPCs

Most microprocessors’ PMU offer a limited number of HPCs. For
instance, the IBM POWER4 and PowerPC970 provide 8 HPCs, the
POWER5 6 per SMT (2 of which are hard-wired), Intel Itanium
II has 4 generic HPCs and 5 registers for holding instructionand
data address samples, and AMD Athlon has 4 generic HPCs. In
addition to the limited number of HPCs, there are often restrictions
on the combinations of hardware events that the HPCs can count
due to restrictions on how the PMU is interconnected to the CPU
components. For instance, although Intel P4 and Xeon have 18
HPCs, but they are divided in 9 groups, each of which can count
events only from a specific subset of 48 available hardware events.

In many performance monitoring scenarios, several low–level hard-
ware events must be counted simultaneously to obtain information
of interest. For instance, to obtain the L1 data cache miss rate
on an IBM POWER4 processor, at least 4 separate events must be
counted (L1 load misses, L1 store misses, L1 loads, and L1 stores).
Also, two HPCs are often reserved to count cycles and instruc-
tions retired. The two remaining HPCs are not sufficient to count
L2 cache misses, L3 cache misses, branch mispredictions, TLB
misses, instruction mix (integer/floating point), ICache misses, or
other events that are important for obtaining a complete picture of
an application’s performance.

To address this issue, we dynamically multiplex the set of hardware
events counted by the HPCs using fine–grained time slices. The
programming interface component takes a large set of eventsto be
counted as input and automatically assigns them to a number of
HPC groups such that in each group there are no conflicts due to
PMU constraints. The sampling engine assigns each group a frac-
tion of g cycles out of a sampling roundR that is the time period
that all groups are guaranteed to have been given a PMU context.
At the end of each HPC group’s time slice, the sampling engine
automatically assigns another HPC group to the PMU. The value
that is read from an HPC afterg cycles is scaled up linearly as if
that group it had counted during the entireR–cycle period. As a re-
sult, the user program (e.g. a run–time optimizer) is presented with
N logical counters on top ofn physicalHPCs whereN can be an
order of magnitude larger thann.

The system can easily be programmed to favor certain HPC groups
by counting them for longer periods of time. This is accomplished
by allocating multipleg-cycle time slices to the group. In fact, one
can treat a period ofg cycle as a unit for PMU time allocation. This
PMU multiplexing scheme is analogous to the time–sharing ofa
CPU among processes. Figure 2 shows an example of four event
groups, where each is given a time share (one or more time slices)
of the sampling period. The share size of each group depends on
the desired accuracy of the hardware events that are included in
the group and on the expected rate of fluctuation of such events.

Moreover, the accuracy may differ for different hardware events
with the same share size. A default share assignment scheme might
be overridden by explicit requests from the user that is interested in
closely monitoring a specific hardware event.

Without loss of generality, for the rest of the paper, we assume all
groups are given equal time shares, which is one time slice (g cy-
cles). We callRg theSampling Ratio. Larger sampling ratios allow a
larger number of logical HPCs. For instance, a sampling ratio of 10
can provide roughly 80 logical HPCs on an 8-HPC processor. This
has to be traded–off with the fact that sampling accuracy decreases
as the sampling ratio increases.

An issue that must be addressed is the fact that a sampling period
may happen to coincide with loop iterations in the program. If the
order of HPC groups within a period is fixed and a sampling pe-
riod happens to coincide with a loop iteration, then an HPC group
always counts the events occurring in a fixed part of the iteration.
To avoid this scenario, we randomize the order of the HPC groups
in each sampling period. As a result, each HPC will have an equal
chance of being located at any given spot of the iteration.

Time

Sampling Round 

(R cycles)

HPC Group 1

HPC Group 2

HPC Group 3

HPC Group 4

Allocation 

Unit (g cycles)

Figure 2. Time-Based Multiplexing example: There are four
HPC groups in this example. Each HPC group is a collection
of events that are counted simultaneously. An HPC group is
counted in a number of time slices of g cycles within sampling
period of R cycles. The order of the HPC groups is changed
randomly in different sampling periods to avoid accidentalcor-
relations.

With multiplexing, time is usually measured in terms of CPU cy-
cles. Therefore, one counter in each HPC group is reserved tocount
the CPU cycles. The use of cycle counters as timers allows us to
define arbitrary fine time–slices down to a few thousand cycles. An-
other metric that can be used to define HPC group share sizes isthe
number of instructions retired. The main advantage of instruction–
based multiplexing is that the HPC group share sizes are aligned
more closely with the progress of the application. Share sizes will
differ in terms of real time depending on the available instruction
level parallelism (ILP) and the frequency of the miss events.

A pathological case for the multiplexing engine is the existence
of a large number of short–lived bursts of a particular hardware
event. If the burst time is shorter thanRcycles, the HPC that counts
that hardware event might be inaccurate because the PMU actually
counts the event only in a fraction ofR, and thus it may miss short–
lived bursts. However, we expect the execution of most applications
to go through several phases, each longer thanR, in which the oc-
currence rate of hardware events is stable in the common case. In
Section 6, we provide experimental evaluation that demonstrates
that the statistical distance between the sampled and real rates of
hardware events is small in most cases.
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Figure 3. The basic hardware model for a super-scalar multi-
dispatch out–of–order processor. FPU stands for Floating-Point
Unit, IU stands for Integer Unit, LSU stands for Load/Store
Unit, BU stands for Branch prediction Unit, and FU stands for
Functional Unit.

4 The SSB Model

Traditionally, CPI breakdown has been used to describe the perfor-
mance characteristics of hardware components and program behav-
ior [11]. In CPI breakdown, each hardware componenth accounts
for CPIh cycles per instruction out of the real CPI on average.
However, in the context of complex superscalar out–of–order mi-
croprocessors with multi–level memory hierarchies, it is extremely
difficult to obtain accurate CPI breakdown because many micro–
architectural events overlap with each other.

We propose an alternative to the CPI breakdown model which we
call Statistical Stall Breakdown(SSB). Bystall, we mean a pro-
cessor cycle in which no instruction retires. In SSB, each stall is
speculatively attributed to a particular hardware event, where if that
hardware event had not occurred, the stall would not have occurred.
The key observation is that, in most cases, the latency of hardware
components in processing instructions will result in stalls. In Sec-
tion 6.3 we show that stalls are one of the primary contributions
to the often dramatic gap between the measured CPI and theideal
CPI that is defined by (i) available ILP in the applications and (ii)
the system pipeline width defined by the micro–architecture. There-
fore, an accurate breakdown of stall sources can be used as anap-
proximation for hardware bottleneck analysis.

The basic hardware support required for computing SSB is to have
a way to assign a source to each stall. While such an assignment
may be speculative (mainly due to the fact that stalls from different
sources may overlap), our analysis in Section 6.3 shows thatsuch
speculation is sufficiently accurate in most cases.

We collect SSB statistics at run–time using a simple model for a
superscalar, out–of–order processor. Our model is influenced by
the architecture of the IBM PowerPC processor, but it is sufficiently
generic to be used for other modern microprocessors with minor
modifications.

Figure 3 depicts the hardware model used. Instructions are fed from
the ICache to the front–end pipeline in program order (Figure 4 de-
picts the state–transition diagram for each instruction.). Up toW
ISA (Instruction Set Architecture) instructions can be fetched from

Dispatched Issued

Finished

RetiredFlushed

Fetched
Decoded 

(micro-instr)

Figure 4. The state transition diagram for instruction execu-
tion.

the ICache in each cycle. These instructions are decoded andpos-
sibly translated intoµ–instructions. The front-end pipeline gener-
atesbundlesof B µ–instructions, associated with one or more ISA
instructions. µ–instructions within a bundle may depend on each
other. That means the output of one may be used as an input for
another. In RISC architectures, we expect most ISA instructions to
be translated into a singleµ–instruction, and hence, we assume at
mostB ISA instructions can co–exist in a bundle.

At most one bundle can bedispatchedin a cycle and eachµ–
instruction within the bundle is dispatched to a different functional
unit (FU). The instruction bundles are dispatched in the program
order. At most oneµ–instruction is dispatched to an FU at a time,
although may be several FUs of the same type. The total number
of FUs may exceed the number ofµ–instructions in each bundle, so
some FUs may not receive newµ–instructions every cycle.

Before a µ–instruction bundle can be dispatched to the func-
tional units, the following resources must be available foreachµ–
instruction in the bundle:

1. Rename Buffer Entries: Rename buffers are logical registers
that are used to eliminateWrite-After-ReadandWrite-After-
Write dependencies.

2. A Reorder Buffer Entry : The reorder buffer is a queue that
keeps track of the status of the dispatched bundles. Instruction
bundles retire from the reorder buffer in the order they were
dispatched after all of theirµ–instructions havefinished, and
all the older bundles have retired.

3. Load/Store Buffer Entries: Load/Store buffers are used to
buffer the values read by the load instructions or written by
the store instructions.

4. FUs Issue Queue Entries: Each FU has a separate issue
queue. Eachµ–instruction in the bundle needs an entry in
the corresponding FU’s issue queue.

If any of these resources are not available, the instructiondispatch
will be delayed until they become available. Typically, this only
occurs when there are long latencies in the FUs so that one of the
structures mentioned above becomes full.

Once aµ–instruction bundle is dispatched, eachµ–instruction in
it will be queued in the corresponding FU issue queue. The in-
struction remains in the issue queue until all the data it depends
on becomes available, after which it can beissued. An issuedµ–
instruction will be processed by the FU core to produce the result.
Once the result is ready, the instruction’s state becomesfinished.
The FU core may reject aµ–instruction for a number of reasons, in
which case the instruction will be put back in the FU issue queue
and will be re–issued later. Instruction issue occurs out–of–order
with respect to program order. Once theµ–instruction bundle retires



Miss Event Effect Description
ICache Miss Empty Reorder Buffer Instructions must be brought into the ICache either from L2 or memory.
Branch Misprediction Empty Reorder Buffer All in–flight instructions older than the mispredicted branch are flushed.
Data Cache Miss Retirement Stops A delay in the LSUs to finish a load or store instruction due to adata cache miss.
Address Translation Misses Retirement Stops A miss occurs in the hardware accessed address translation structures (e.g. TLB).

The miss either delays processing a load/store instructionin the LSU, or results
in the rejection of the instruction from the LSU.

Rejections Retirement Stops Any of the FUs rejects an instruction for any (e.g. hitting a resource limit). The
instruction must be reissued after some delay or reordering.

FPU Latency Retirement Stops A delay in FPU to finish the computation for an issued instruction.
IU Latency Retirement Stops A delay in IU to finish the computation for an issued instruction.

Table 1. Miss event types with their potential effect.

(completes) all resources allocated to it, including the entries in the
rename buffers, the reorder buffers, and the load store buffers, will
be released. An instruction may beflushedfor different reasons,
including branch mispredictions.

A finished µ–instruction mayretire only if , and (i) all otherµ–
instructions in the instruction’s bundle have also finishedand (ii)
all older (with respect to the program order) bundles in the reorder
buffer have already retired. Bundle retirement happens in program
order. At most one bundle can retire per cycle. Therefore, the max-
imum number of ISA instructions that in theory can retire in acycle
is equal toB.

The key idea behind the SSB model is that most bottlenecks canbe
detected by speculatively attributing asourceto each stall, i.e., a
cycle in which no bundle from the reorder buffer can retire. There
are two major categories of such stalls:

• The reorder buffer is empty. This implies that the front–end
has not been able to feed the back–end in time. Assuming
the micro–architecture is designed and tuned properly, such
situations happen mostly when there is an ICache miss, or
when a branch misprediction occurs. We assume the hardware
designates the most recent event (an ICache miss, or a branch
mispredication) as the source of the stall.

• The reorder buffer is not empty, but the oldest bundle in the
reorder buffer cannot retire because one or more of itsµ–
instructions have not yet finished (i.e. they are waiting for
an FU to provide the results). We assume in this case that
once allµ-instructions of a bundle finish and the retirement
resumes, the hardware will designate the source of the stallas
the last FU that finished aµ–instruction so that the instruction
retirement could resume.

We call the hardware events that can cause a stallmiss events. The
miss events we consider in this study are listed in Table 1 along
with the type of stalls they cause and the potential effect they may
have.

The association between a stall and a miss event is not necessar-
ily precise because of the dependencies among instructionswithin
the same bundle. For instance, an instructioni may depend on the
output of another instruction,j , of the same bundle. In this case,
stalls caused by miss events during the execution ofj are charged
to i because it is the lastµ–instruction in the bundle to finish.

Finally, even if a stall is identified as being caused by a particular
event, removing that event does not necessarily translate into an
elimination of the stall. This is because of the highly concurrent
nature of superscalar out–of–order microprocessors and the fact that
events may overlap so that removing one of them may not regain
all the performance lost because of the stall. This issue is discussed

extensively in other work [9, 10, 26]. Addressing this issuein the
general case is complex because in today’s out–of–order processors
hundreds of instructions may be in–flight simultaneously. To solve
the problem in its generality it is necessary to consider allpossible
interactions of any subset of concurrently executing instructions,
which is beyond the scope of an on–line tool.

In our SSB model, we justify ignoring both intra–bundle dependen-
cies and miss event concurrencies by statistically comparing cer-
tain miss events captured when running workloads in three different
processor modes (a) out–of–order multi–dispatch mode (real), (b)
out–of–order single–dispatch mode (single) and (c) inorder single–
dispatch mode (inorder). When running the processor in single
mode, only one ISA instruction is dispatched in aµ–instruction bun-
dle, and therefore, the instruction can independently finish when-
ever all itsµ–instructions finish. When running the processor in
inorder mode, only one ISA instruction is dispatched in a bundle,
and also, the instruction is not issued until the preceding instruc-
tion bundle retires. In this mode, most overlaps between themiss
events caused by separate ISA instructions are removed, because
their execution is serialized. Comparing the operation of the pro-
cessor when running in real mode (with full concurrency) to when
the processor runs in single or in inorder mode yields interesting
information. As we show in Section 6.3, the statistical difference
between the three modes above is not significant for most of the
applications we examined.

Based on this observation, we propose the following formulato
detect bottlenecks at each phase in the program execution:

CPIReal=
n

∑
i=0

Stalli +CPIC

where,Stalli is the number of stalls caused by miss eventi in the
monitoring period, andCPIC is an estimate for the CPI that can be
achieved by idealizing all miss events.CPIReal is easily computed
by dividing the number of elapsed cycles by the number of ISA in-
structions retired at any period of time. We also rely on hardware
PMU features to provide values forStalli . As a result, we can ac-
curately show how much gain is potentially achievable by reducing
the miss events of a certain type.

5 Experimental Environment

5.1 Hardware

We have implemented and evaluated our HPC–based performance
monitoring facility on the IBM PowerPC970 processor [14], in an
Apple PowerMac G5 workstation. Evaluating sampling on a real
microprocessor as opposed to a cycle–accurate simulator offers two
advantages. The higher speed allows us to collect considerably



more data, making the analysis more complete and accurate. Fur-
ther, simulators may not reflect some of the limitations of a real
microprocessor. For example, in a simulator we can easily assume
that certain hardware events can be counted at no cost. But ona
real microprocessor, both the number and the type of the events
that can be counted simultaneously is constrained. The downside of
using a real microprocessor is that because of its complexity, under-
standing the semantics of the hardware events requires significant
internal (and potentially proprietary) knowledge of the processor
implementation.

The PowerPC970 processor we used operates at 1.8GHz. It features
a 64-KByte ICache and a 32-KByte L1 data cache. The level 1
caches are backed by a 512-KBtye unified L2 cache. The processor
has two IUs, two FPUs, two LSUs, and one BU. The PowerPC 970
can dispatch a bundle of up to fiveµ-instructions (including one
branch) per cycle. Each FU can independently issue one instruction
per cycle. One bundle (up to fiveµ-instructions) can complete in a
cycle (i.e. B = 5). Because the PowerPC architecture is RISC–
based, most ISA instructions are converted to oneµ–instruction.
Therefore, the ideal CPI is approximately 0.2.

The PowerPC970 processor has 8 HPCs and can count a large va-
riety of hardware events. The processor has counters that count the
number of stalls caused by miss events including the ones listed in
Table 1. When a stall occurs, a counter starts counting the number
of cycles the CPU is in stall. The first event that causes the resump-
tion of instruction retirement (i.e. a data item is receivedfrom the
data cache), the value of the counter will be charged to this event
as the number of stall cycles caused by the event. The assignment
of stall to cause is speculative, since (i) several events can happen
in a single cycle and the PMU chooses one of them to attribute the
just–ended stall, and (ii) multiple stall causes may overlap, yet the
stall length is attributed to just a single cause. Such hardware sup-
port for identifying stall sources is not specific to PowerPC970; for
example, Intel Itanium II processor provides similar features [15].

5.2 Operating System

Our performance monitoring facility is implemented in the K42 op-
erating system [12]. K42 is an open–source research operating sys-
tem designed to scale well on large, cache–coherent, 64-bitmulti-
processor systems. It provides compatibility with Linux API and
ABI. The K42 kernel is designed in an object–oriented fashion, a
feature that allows for easier prototyping.

The kernel module we built in K42 operates independently from
the kernel. There are two major types of interactions with the ker-
nel. First, the sampling engine must be able to dynamically install
custom exception handlers for the PMU overflow exceptions. Sec-
ondly, the kernel must be modified to notify the sampling engine
of all process creations, exits, and context switches. We did not
modify K42 for this purpose. Instead, we exploit the fact that in
K42, all major process management events (along with other the
operating system events) are recorded in performance monitoring
trace buffers. Upon each overflow exception, the sampling engine
checks whether a context switch has recently occurred by consult-
ing the trace buffer. Using this scheme, there is a delay in detecting
context switches, but because the granularity of context switches
is usually around 10 milliseconds, which is two orders of magni-
tude larger than the sampling granularity, the imprecisionadded by
a small delay in detecting context switches is insignificant.

In order to record the gathered HPC values, we used the K42 perfor-

mance monitoring infrastructure that is already in place [28]. The
infrastructure provides for an efficient, unified and scalable tracing
facility that allows for correctness debugging, performance debug-
ging and on–line performance monitoring. Variable–lengthevent
records are locklessly logged on a per processor basis in thetrace
buffer mentioned above. The infrastructure is uniformly accessible
to the operating system and user programs. The recorded events
are encoded using XML, and thus, much of the implementation of
adding and processing new events is automated [29]. Both HPC
and SSB values gathered by the sampling engine are added to the
buffers and thus available to any interested party.

6 Experimental Results

We developed and ran a number of experiments to evaluate our sta-
tistical sampling approach. In this section we describe these exper-
iments and present their results. First, we briefly describehow we
validate the basic values we read from the HPCs for differenthard-
ware events. We then present the results of our statistical analysis
of sampling accuracy and show how the sampling accuracy changes
as a function of sampling granularity and sampling ratio. Finally,
we analyze the accuracy and usefulness of computing SSB values.

We present the results of our analysis for four integer and four float-
ing point applications from the SPEC2000 benchmark suite1. The
integer benchmarks aregcc, gzip, crafty, and perlbmk. The
floating point benchmarks aremgrid, applu, art, andmesa.

6.1 Basic Validation

Previous work [19] has shown that validating the numbers read
from HPCs is not trivial. In today’s processors, HPCs are so spe-
cific to the micro–architecture implementation that their semantics
cannot be completely understood without detail knowledge of the
micro–architecture. This information is often proprietary and not
publicly available. For instance, the significance of L1 cache misses
may differ depending on the effectiveness of the prefetch structures.
Also, a load instruction that incurs an L1 cache load access may be
rejected by the LSU a few cycles later due to a TLB miss, or some
other LSU constraints, and as a result, literally reading the number
of L1 cache accesses can be misleading.

To reach a clear understanding of the semantics of the hardware
events and we created a large set of micro–benchmarks, each care-
fully designed to a produce a specific scenario in which a specific
set of hardware events can be monitored in isolation. Such anap-
proach may not be feasible for some hardware events, becauseit
requires comprehensive knowledge of the internal implementation
of the microprocessor. However, the results of our experiments (not
shown here) gave us confidence that our infrastructure correctly
captures most of the hardware events we examined.

6.2 Sampling Accuracy

In order to measure the accuracy of sampling versus fully counting
the hardware events, we use a statistical approach. When counting
events fully, we associate with each hardware event,e, a probability
distributionPe(Ri) representing the probability of eventeoccurring
in the time intervalRi . Pe(Ri) can be simply calculated by dividing
the frequency ofe re-occurring in the intervalRi by the total num-
ber ofeevents during a monitoring session. That is ifNe is the total

1We also examined several other applications from the same suite with similar

results.



Application gzip gcc perlbmk crafty applu mgrid art mesa
Instructions Retired 0.01 0.06 0 0 0 0.05 0 0.12

L1 DCache Loads 0.09 0.04 0 0 0.02 0.07 0.03 0.22
L1 DCache Stores 0.13 0.08 0 0 0 0.03 0 0.10
L1 DCache Misses 1.21 0.05 0 0 0.02 0.07 0.07 0.05

ICache Misses N/A 0.12 0.02 0.09 0.02 N/A 0.03 N/A
TLB Misses N/A 0.11 N/A N/A 0.01 0.15 N/A N/A

ERAT Misses 0.79 0.13 0.01 0.02 0.07 0.71 0.42 0.21
L2 Cache Misses (Data) 0.24 0.01 0.07 0.02 0.02 0.06 N/A 0.17

Branch Mispredicts 0.36 0.05 0.01 0 0.02 0.18 0 0.13

Table 2. KL-distance between probability distribution P, which is obtained by fully counting hardware events andP′, which is
obtained by sampling. The sampling ratio is 10 and the sampling round R is 2 million cycles. The value0 stands for any value less
than 0.01. The N/A implies the event is less frequent than once every 10,000 cycles on average.
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(d) Fully Counted

Figure 5. Comparing fully counted events with sampling whenrunning gcc: Left: average instructions retired per cycle; Right:
average number of L1 DCache misses per cycle.

number of occurrences of evente, andNe(Ri) is the number of oc-
currences of evente in intervalRi , theprobability of evente occur-

ring within Ri is calculated asPe =
Ne(Ri)

Ne
so that∑N

i=0 Pe(Ri) = 1.

With sampling on the other hand, we count how many timese oc-
curs in a subinterval ofRi , and linearly scale it to the entire interval,
which will give us another probability distributionP′

e(Ri). A key
question is how the two distributions,Pe andP′

e, corresponding to
the actual counts and sampled counts, differ. To answer thisques-
tion, we useKullback Leibler distance(KL-distance), which is of-
ten used to measure similarity (or distance) between two probability
distributions[5]. KL-distance is defined as:

K(Pe,P
′
e) = ∑Pe(x) log

Pe(x)
P′

e(x)

and computes the geometric mean overPe(x)/P′
e(x). The reason

we use KL-distance (as opposed to, for instance, the mean over
|Pe(x)−P′

e(x)|) is that in the context of a dynamic–optimizer the
absolute values of the hardware event counts are often not a deter-
mining factor because there are many short transient statesin the
hardware. What is more important is whether there is a significant
and stable shift in the rate of occurrences of a particular hardware
event that lasts for a sufficiently long period of time to be worth
considering. Therefore, although there may be sampling intervals
in which the values ofPe andP′

e differ significantly, if such intervals
are limited in number and isolated, they do not distort the distance
measure due to the log factor in KL-distance.

In this study, we consider any value ofK(Pe,P′
e) below 0.20 to be

acceptable. Informally speaking, we consider the samplingade-
quate if the difference between the values of two probability distri-
butions on average does not exceed 15%.

We measuredK(Pe,P′
e) for a large number of hardware events for

the selected SPEC2000 applications. Table 2 shows the results for
several important hardware events. The 0 entries imply the ac-
tual value ofK(Pe,P′

e) was less than 0.01. The N/A entries imply
that the hardware event was on average less frequent than once per
10,000 cycles, and hence, insignificant. The samples are collected
over 6-billion cycles (after skipping over the first billioninstruc-
tions). The sampling interval R is 2 million cycles, and the sam-
pling ratio is 10.

As it can be seen in Table 2, the KL-distance value is small formost
hardware events in a majority of applications, with a few exceptions
we discuss later in this section. In Figure 5 we depict graphically
the rate of occurrences for two hardware events, instruction retired
and L1 data cache miss, using the same setup as above except for
the fact that only the first two billion cycles are included inthe
graphs. Note that we chose to show occurrence rate (i.e. the average
number of occurrences per cycle) only for visualization purposes.
The probability distributionsPe andP′

e can be directly derived from
these graphs by dividing each point byNe. It can be seen that the
sampling distribution accurately follows all significant and steady
changes in the real occurrence rate of the hardware events (even
though there are differences over small periods of time).

There are a few cases in Table 2 with unacceptably high values.
However, we note that these cases all correspond to fairly infre-
quent events (one per 100 cycles on average). Although infrequent
events are unlikely to cause performance bottlenecks, we explored
this issue further by varying the sampling granularity and sampling
ratio for them. We ran several experiments withgzip for which
at least three hardware events have a relatively large KL-distance:
L1 data cache miss, ERAT (Effective to Real Address Table) miss,
and branch misprediction. Figure 6 shows the results of the ex-
periments. The graph on the left shows how the accuracy changes
as a function of the sampling granularity. As a general rule,larger
granularities have higher sampling accuracies for infrequent events.



Therefore, we change the sampling granularity from 200,000to
500,000 cycles. We then wanted to know how sensitive the ac-
curacy is to the sampling ratio in this sampling granularity. The
graph on the right shows the results of our experiments. It appears
that none of the three hardware events is highly sensitive tothe
sampling ratio. The general conclusion we draw from these exper-
iments is that it is better to use larger granularities (witha fixed
sampling ratio) for infrequent hardware events.

100 1000
Sampling Granularity in 1000 Cycles.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

K
L-

di
st

an
ce

 

(a) 

5 10 15 20
Sampling Ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

K
L-

di
st

an
ce

 

(b)

L1 DCache Miss

ERAT Miss

Branch Mispredictions 

Figure 6. Tuning sampling ratio and sampling granularity for
gzip: (a) The KL-distance generally decreases as the sampling
granularity increases. (b) Fixing the granularity to 500,000 cy-
cles, all three hardware events seem to be fairly stable when
changing the sampling ratio within a realistic range.

6.3 Computing SSB

In Figure 7, we show the result of computing the SSB values for
gcc over a period of 50 billion cycles. There are several obser-
vations that can be made from the graph. First, the entire runis
divided into several fairly long phases in which either CPI is stable,
or CPI changes in a regular fashion. In each phase, the SSB pattern
is reasonably stable, so that it is possible to pinpoint one or more
major sources of stalls. Secondly, there is often a large gapbe-
tween the real, measured CPI and the ideal CPI, most of which can
be explained by the stalls. Thirdly, in this particular example, data
cache misses seem to be the single most important source of stalls.
There are also a significant number of LSU rejections. An LSU
rejection usually occurs if either an address translation miss occurs
(which is accounted for separately), or if the LSU resourcesare ex-
hausted. Therefore, many of the rejections are caused indirectly by
data cache misses which keep the LSU busy with an instructionfor
a long time. There is also a significant number of stalls caused by
ICache misses and branch mispredictions in the early phasesof the
run which disappear later on.

The SSB computed by our sampling engine can provide accurate
and timely hints to a run–time optimizer, allowing it to focus, in
this case, on techniques to reduce data cache misses for mostof
the program and preventing it from focusing on optimizations that
might reduce the computation, branch mispredictions, or ICache
misses as they will not have significant effect unless they manage
to also reduce data cache misses. Also, the online availability of
the SSB information allows the run–time optimizer to monitor the
results of the applied optimizations, and measure their benefits and
potential negative side effects in a feed-back loop.

In order to estimate the effect of intra–bundle dependencies and
miss event concurrencies, we executed all of our benchmarks
in three different processor modes: multi–dispatch out–of–order
(real), single–dispatch out–of–order (single), and single–dispatch
in-order (inorder). We used KL-distance to measure the statistical
distance between the distribution of stalls for each particular source
in the different execution modes. In order to make the comparison
precise, we used instruction–based multiplexing, insteadof time–

based multiplexing. In instruction-based multiplexing, periods are
calculated in terms of retirement of a certain number of ISA instruc-
tions. Therefore, all sampling points in the three execution modes
are aligned to each other in terms of the number of instructions re-
tired between the two sampling points. Of course, both the single
and inorder modes take a significantly longer time to finish than the
real mode. Also, by monitoring user–level code only, we makesure
the exact same stream of instructions are executed in the three runs.

Table 3 shows the results of our analysis.KLS is the the KL-
distance between the real mode and the single mode, andKLI is
the KL-distance between real mode and inorder mode runs. Again,
0 implies any value less than 0.01, andN/A implies the average oc-
currence rate of the particular stall is less than once per 10,000 ISA
instructions, and hence not significant for bottleneck analysis.

For the great majority of entries, both theKLS andKLI values are
very small, suggesting that, in most cases, the distortionsdue to
intra-bundle dependencies and overlapping miss events canbe ig-
nored in quantifying a particular source of stall. There area few
exceptions, most pronounced inmgrid. A closer investigation of
mgrid shows that its stalls are dominated by data cache misses and
the FPU latencies for bothKLI andKLS is reasonably small. Other
sources of stall, such as branch misprediction or rejections are in
fact insignificant. We are currently exploring these anomalies fur-
ther.

Sampling Frequency (kHz) 1 2 5 20 100 200 1000
Runtime Overhead (%) 0.2 0.5 0.8 2 12 22 63

Table 4. The runtime overhead of computing and logging SSB.

Table 4 shows the run–time overhead of continuously gathering the
SSB values and recording them into the trace log. We measured
the overhead for different sampling frequencies. The overhead in-
creases linearly with the sampling frequency within the range we
examined. At 20,000 samples per second, the run–time overhead is
around 2%. We believe that with such a low run–time overhead our
sampling engine is suitable for run–time optimization purposes.

7 Related Work

Related work closest to our work is DCPI which uses fine–grained
sampling of the HPCs to identify system–wide hot spots at run–
time [3]. It also attempts to identify pipeline stalls at theinstruction
level. There are some hints that event multiplexing is implemented
in this system, but no details of the design nor statistical analysis is
provided. Moreover, we argue that with the increase in the number
of concurrent in–flight instructions, the imprecision of a software–
only approach to attribute stalls to the instructions can behigh.

PAPI [7] is a public domain tool that is implemented on many plat-
forms. Its main emphasis is on platform–independence rather than
efficiency. The portable interface is implemented in software, and
as a result, it may incur significant overhead in some scenarios.
PAPI also implements HPC multiplexing at user level [20]. A fine–
grained timer is used as a means for HPC group switch. The timer
will send a signal to the process that has requested a multiplexed
set of hardware events. A major limitation of this approach is that
due to the large overhead of HPC group switch (the cost of sig-
nal delivery plus the cost of kernel/user context switches), the sam-
pling granularity must be large and as a result, the samplingerror
may become high for some applications. Another problem with
switching HPC groups in user space is that there is a potentially
large latency between the time when the timer expires and thetime
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Figure 7. Statistical Stall Breakdown for an instance ofgcc run for a 50 billion cycle period.

Application gzip gcc perlbmk crafty applu mgrid art mesa
Stall Source KLS KLI KLS KLI KLS KLI KLS KLI KLS KLI KLS KLI KLS KLI KLS KLI

ICache Miss 0.01 0.01 0.05 0.05 0 0 0.01 0.01 0.06 0.06 N/A N/A 0.28 0.19 0.15 0.15
DCache Miss 0.02 0.02 0.05 0.06 0.03 0.05 0 0.01 0.08 0.08 0.12 0.42 0.03 0.03 0.03 0.05
ERAT Miss 0.36 0.36 0.28 0.30 N/A N/A 0.03 0.13 0.13 0.13 N/A N/A N/A N/A N/A N/A

FPU Latency N/A N/A N/A N/A 0.01 0.02 0.13 0.13 0 0 0.25 0.25 0 0 0.01 0.02
Int. Latnecy 0.10 0.10 0.15 0.14 0 0 0 0 N/A N/A N/A N/A 0.05 0.05 0.06 0.06

Misprediction 0.02 0.02 0.06 0.06 0 0.01 0.01 0.01 0.06 0.06 1.68 1.68 0.28 0.28 0.15 0.15
Rejection 0.47 0.22 0.17 0.21 0.13 0.14 0.03 0.03 0.15 0.15 0.40 1.47 0.02 0.02 0.50 0.50

Table 3. KL-distance between the stall distributions.KLS is the KL-distance between the stall distribution when executing in real
mode versus the stall distribution when executing in singledispatch mode.KLI is the KL-distance between the stall distribution when
executing in real mode and the stall distribution when executing in inorder mode.

when the signal is actually delivered and the signal handler(where
the current HPC group is read and stored) is called. This delay
adds to the imprecision of multiplexing. Finally, to the best of our
knowledge, there is no quantitative study on the overhead and ac-
curacy of PAPI’s multiplexing engine. In fact, one can buildPAPI’s
high–level platform–independent interface transparently on top of
our low–level and efficient multiplexing scheme.

ProfileMe usesinstruction sampling, where individual instructions
are selected randomly to be monitored by the processor hardware
when the instructions pass through the different stages of the system
pipeline [6]. Their main goal is to gather accurate information on
instructions that cause miss events or have long latencies.Although
the instruction sampling can be effective, there is little analysis in
the paper that shows the actual run–time overhead of building an
instruction–level profile. We believe our approach can be comple-
mented by approaches such as ProfileMe to search for bottleneck in
a multi–level fashion.

Intel’s VTune [16] is one of the most widely used tools to makethe
facilities of the PMU available to developers. It provides both sam-
pling and binary instrumentation facilities, and outputs agraphical
display of the programs hot spots as well as call graph. Thereare
several other tools built for various hardware platforms with simi-
lar sets of features such as Apple’s CHUD [4] and PCL [22]. They
provide facilities to identify program hot spots and the frequency of
important hardware events such as cache misses or branch mispre-
dictions. To the best of our knowledge, none of these tools allows
for profiling more events than the number of HPCs at the same time.
Also, they often only expose the hardware PMU features directly to
the user. It is up to the user to interpret the semantics of thelow–
level hardware events.

Wassermann et. al [27] presented an analysis of microprocessor
performance where a model similar to SSB is used to characterize
the effect of stalls caused by cache and memory latencies. Esti-
mating the number of stalls caused by a source is done in software
by multiplying the number of accesses to the source by its average

access latency. Our approach extends this effort in two directions.
First, we exploit hardware support to measure the stalls more accu-
rately. Secondly, their approach mainly focused only on cache and
memory stalls, while we include all possible sources of stall into
our analysis.

SMARTS [30] and SimPoint [23] use sampling in a different con-
text as a means to accelerate detailed micro–architecture simula-
tions. In both approaches, the detailed simulation of the program is
done only for small intervals during the program execution.There
are strong evidences in both work that show their sampling tech-
niques would result in accurate estimates of important hardware
metrics such as CPI.

Studies have been done to model the behavior of superscalar micro-
processors either through analytical modeling [17] or through sta-
tistical simulation [21]. In both cases, a simple and aggregate model
is constructed that can provide accurate and high–level insight of
hardware bottlenecks. These models are simple and efficient, even
though, they often make unrealistic simplifying assumptions. Our
SSB model was inspired by some of this work.

Slack [9] and Interaction Costs [10] are two models for accurately
estimating how much performance gain can be achieved by idealiz-
ing latencies of individual instructions. Although these approaches
provide accurate information about potential gain of idealizing in-
dividual instructions, they require additional hardware support and
extensive postmortem analysis which make them difficult to use in
the context of run–time optimization.

Lemieux [18] has extensively explored issues in designing the in-
terface and also the implementation of the PMU of microproces-
sors with an emphasis shared memory multiprocessor systems. The
main focus of the work is also to account for stalls (memory and
non-memory) that that attribute to significant performancepenalty.



8 Concluding Remarks

Hardware performance counters (HPCs) are useful for analyzing
and understanding performance, but there are challenges inusing
them on line. There are a small number of HPCs available in most
today’s microprocessors. Moreover, the definitions of the hardware
events that can be counted by HPCs are low–level and complex.

In this paper, we described two techniques that overcome thethe
limitations we identified of microprocessor HPCs. First, wepro-
vide larger set of logical HPCs by dynamically multiplexingHPCs
using statistical sampling of the hardware events. Using real pro-
grams, we showed experimentally that counts of hardware events
obtained through sampling is statistically similar (i.e. within 15%)
to real counts of the events. Secondly, we proposed a technique that
speculatively associates each stall cycle to a processor component
that likely caused the stall, and built this technique usingour HPC
multiplexing engine. Our experiments showed that identification
of the stalls is reasonably accurate for most of the applications we
examined. The run-time overhead of our sampling engine is under
2% allowing it to be used online.

The facility we have implemented is useful for detailed on–line per-
formance analysis of application and system code running atfull
speed with small overhead. It is also effective in reportinghard-
ware bottlenecks to tools such as a dynamic optimizer that might
guide dynamic adaptation actions in a running system. A number of
outside groups have started using our statistical samplingtool. Our
research group is interested in using the tool to help guide dynamic
optimizations within the operating system. Much of this work has
just started, and it is an open question how difficult it will be to map
hardware behavior to the responsible software component.

Our work and other previous work has identified the challenges of
correctly interpreting HPC values. Counter descriptions are pro-
prietary, documented poorly, or designed for hardware architects.
Our techniques and tools for extending the number of logicalHPCs
available and for providing a easy to understand characterization of
sub-optimal processor performance alleviate some of the difficul-
ties faced with HPCs.
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