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Abstract 1 Introduction

Hardware performance counters (HPCs) are increasingly beingHardware Performance Counters (HPCs) are an integral part of
used to analyze performance and identify the causes of performancenodern microprocessor Performance Monitoring Units (PMUS).
bottlenecks. However, HPCs are difficult to use for several reasons. They can be used to monitor and analyze performance in real time.
Microprocessors do not provide enough counters to simultaneouslyHPCs allow counting of detailed micro—architectural events in the
monitor the many different types of events needed to form an over- processor [15, 24, 13, 2], enabling new ways to monitor and an-
all understanding of performance. Moreover, HPCs primarily count alyze performance. There has been considerable work that has
low—level micro—architectural events from which it is difficult to used HPCs to explore the behavior of applications and identify per-
extract high—level insight required for identifying causes of perfor- formance bottlenecks resulting from excessively stressed micro—
mance problems. architecture components [1, 8, 25]. However, exploiting HPCs at
run—time for dynamic optimization purposes has proven to be chal-
We describe two techniques that help overcome these difficulties, lenging for a number of reasons:
allowing HPCs to be used in dynamic real-time optimizers. First,
statistical sampling is used to dynamically multiplex HPCs and Limited Hardware Resources: PMUs typically have a small num-
make a larger set dbgical HPCs available. Using real programs, ber of HPCs (e.g. up to 8 in IBM PowerPC processors, 4 in Intel
we show experimentally that it is possible through this sampling Itanium II, and 4 in AMD Athlon processors). As a result, only
to obtain counts of hardware events that are statistically similar a limited number of low-level hardware events can be monitored
(within 15%) to complete non-sampled counts, thus allowing us at any given time. Moreover, only specific subsets of hardware
to provide a much larger set of logical HPCs. Second, we observe events can be programmed to be counted together due to hardware—
that stall cycles are a primary source of inefficiencies, and hence level programming constraints. This is a serious limitation con-
they should be major targets for software optimization. Based on sidering that detecting performance bottlenecks in complex super-
this observation, we build a simple model in real-time that specu- scalar microprocessors often requires detailed and extensive per-
latively associates each stall cycle to a processor component thaformance knowledge of several processor components. One way to
likely caused the stall. The information needed to produce this get around this limitation is to execute several runs of an applica-
model is obtained using our HPC multiplexing facility to monitor a tion, each time with a different set of events being captured. Such
large number of hardware components simultaneously. Our analy-an approach can become time—consuming for offline performance
sis shows that even in an out—of—order superscalar micro—processoanalysis, and is completely inappropriate for online analysis. Merg-
such a speculative approach yields a fairly accurate model with run—ing the traces for offline analysis generated from several application
time overhead for collection and computation of under 2%. runs is not straightforward, because there are asynchronous events
(e.g. interrupts and I/O events) in each run that may cause signifi-
These results demonstrate that we can effective analyze on-line pereant timing drifts.
formance of application and system code running at full speed. The
stall analysis shows where performance is being lost on a given pro-Complex Interface: The events that can be monitored by HPCs are
cessor. typically low—level and specific to a micro—architecture implemen-
tation and, as a result, they are hard to interpret correctly without
detailed knowledge of the micro-architecture implementation. In
fact, in the processors we have considered most high—level perfor-
mance metrics such &ycles Per InstructiofCPI), cache miss ra-
tio, and memory bus contention, can only be measured by carefully
combining the occurrence frequencies of several hardware events.
At best, this makes HPCs hard to use by average application devel-
opers, but even for seasoned systems programmers, it is challeng-
ing to translate the frequency of particular hardware—level events
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mode. Thus, whenever a user process needs to change the set of

the events being captured, it must call the operating systdrase
expensive kernel boundary crossings can happen frequehéy a
wide range of hardware events needs to be captured for &singl
of the application.

In this paper, we describe techniques to address the abote pr
lems. First, to overcome the limitation in the number of HP@s
use multiplexing of HPCs in a fine—grained way, instead ofntou
ing them fully. This method allows us to provide a much largetr
of logical counters to the user, making it is possible to ¢dbe oc-
currences of many micro-architectural events during asiagpli-
cation run. A similar technique is implemented in PAPI [7], 2t

in our approach multiplexing HPCs is done in the operatirgiesy
kernel so as to reduce run—time overhead significantly. Asalrit

is possible to multiplex HPCs at a much finer granularity @uehs

of thousands of HPC switches per second). Such a fine mudtiple
ing granularity enables us to capture short—lived fluctunatiin the
hardware events occurrence rate. Moreover, we presenisgistd
analysis to show that our multiplexing approach providdggcsent
accuracy for performance tuning and optimization purposes

Secondly, we use our multiplexing approach to interpretrigact
of different hardware events on the applications end—pedoce.
We developed an aggregate model calfdtistical Stall Break-
down(SSB)hat provides accurate and timely information on which
micro—architecture components are most stressed. SSgocates
the sources of stalls in the microprocessor pipeline, arsohtifies
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Figure 1. The block diagram of the HPC-based performance
monitoring facility.

The sampling engine implements both HPC multiplexing ared th
the SSB model which we discuss in detail later. The progrargmi
interface module allows for both programming the PMU direct
and configuring the sampling engine. In the former case,-it re
ceives the specification of a set of hardware events to betedun
and automatically configures the hardware PMU. The valugiseof
HPCs can be read directly by the user program, or logged im-a pe
procesPMU Logby the sampling engine. To minimize the cost of
user—kernel boundary crossings, the sampling engine t&seas a
component inside the kernel.

The sampling engine can obtain counter values either geithyl

how much each hardware component (e.g. the caches, thenbrancor after a designated number of a hardware event occurremees

predictor, and individual functional units) contributesierall stall

both cases, we use PMU overflow exceptions. For periodic sam-

in a way that is simple and easy to understand for the user. SSBpling we use one of the HPCs as ttycle counterallowing sam-

information is collected as the program runs and can be dsed,
example, by a dynamic optimizer to apply effective optintizas.
The results of our analysis show that the SSB model can detyra
identify and quantify hardware bottlenecks. Furthermore show
that the run—time overhead of collecting the SSB infornmai®
small.

In the next section, we describe the design of our HPC—based p
formance monitoring facility and the features it provid&se fol-

low this by describing the details of the SSB model and the-com
putations it requires at run—time. We have implemented deas

on a real system and evaluate the implementation undestieali
workloads in terms of accuracy and run—time overhead. Wseptte
the platform we used for our implementation and describérthe
plementation issues we faced. We describe how we evaluate th
sampling accuracy, the accuracy of the SSB model, and the run
time overhead of our facility. Finally, we discuss relatearkvand
then present our conclusions and directions for future work

2 System Design

pling intervals accurate down to the CPU cycle.

The sampling frequency is a critical parameter. Samplimgite
frequently may result in inaccuracies because changessieray
behavior might be missed. On the other hand, too fine-grained
sampling may result in unnecessarily high overhead. Oueréxp
ence shows we can afford to take samples every 200,000 cycles
(200 microseconds on a 2GHz CPU) with approximately 2% over-
head. This rate is our default sampling frequency, althatughn

be overridden by the user.

In order to be able to isolate measurements of individualiegp
tions and the operating system, the sampling engine magéeset

of HPC contextsHPC contexts are switched whenever the operat-
ing system switches processes. For this, the operatingraysiust
notify the sampling engine of all process creations ancgeag well

as context switches.

For each process, there are three modes of operatiensel only,
user only,andfull system In kernel-only mode, hardware events
are only counted when the hardware is in supervisor modes Thi
mode is appropriate if we are interested in monitoring ojirega
system activities incurred by a particular target procedée as-

We designed and implemented an HPC-based performance monisume kernel activities that occur in a process time sliceeleted

toring facility that can be used with sampling and instrutagan.
The key features of this facility are (i) it provides an edsydse
interface to the hardware PMU features, and (ii) it usegssizdl
sampling to continuously identify microprocessor bottlelks. Fig-
ure 1 shows the block diagram of our facility. Users are ptedli
with a programming interface through a user—level librdityus, an
application can be instrumented by manually—insertectibcalls
or by dynamic instrumentation tools. Users’ calls are nesetiby
the operating system component consisting of the progragimi
terface module, and the sampling engine.

to the target process. This assumption may not be valid wéen s
eral operating system intensive applications tightly stine CPU.
This, kernel-only mode is best suitable when a given apjica
runs in isolation for a long time (on the order of several ses).

In user—only mode, logical HPCs (including the cycle cotsjtare
suspended when the processor switches into the kernel.llyFina
in full-system mode, HPCs count all hardware events whether
to kernel or application code. When a context switch occilms,
hardware events occurring both in the kernel and user moltibevi
counted by the HPCs of the new process.



We use the notion of an address space as the main indicator of aMoreover, the accuracy may differ for different hardwareres

context. Therefore, the sampling engine is capable of tegpper-
formance numbers for individual processes as well as theatipg
system. At this time, we do not differentiate between ther-use
level threads that share the same address space. One pogsbl
of addressing this issue is to send a performance monitanng
call to the user process when a hardware exception occursta t
user—defined handler can associate the recorded HPCs witith
rent user-level context (e.g. user-level thread ID). Sutdchnique
seems to be plausible only if there is a fast (low perturlpatigpcall
delivery mechanism. We are currently working on supportinig.

3 Multiplexing HPCs

Most microprocessors’ PMU offer a limited number of HPCsr Fo
instance, the IBM POWER4 and PowerPC970 provide 8 HPCs, the
POWERS5 6 per SMT (2 of which are hard-wired), Intel Itanium

Il has 4 generic HPCs and 5 registers for holding instrucéind
data address samples, and AMD Athlon has 4 generic HPCs. In
addition to the limited number of HPCs, there are often ietstns

on the combinations of hardware events that the HPCs cart coun
due to restrictions on how the PMU is interconnected to th&J CP
components. For instance, although Intel P4 and Xeon have 18
HPCs, but they are divided in 9 groups, each of which can count
events only from a specific subset of 48 available hardwazatey

In many performance monitoring scenarios, several lovetllesrd-
ware events must be counted simultaneously to obtain irgtom
of interest. For instance, to obtain the L1 data cache migs ra

on an IBM POWERA4 processor, at least 4 separate events must be

counted (L1 load misses, L1 store misses, L1 loads, and ésto
Also, two HPCs are often reserved to count cycles and instruc
tions retired. The two remaining HPCs are not sufficient tonto
L2 cache misses, L3 cache misses, branch misprediction8, TL
misses, instruction mix (integer/floating point), ICachissas, or
other events that are important for obtaining a completaupgcof

an application’s performance.

To address this issue, we dynamically multiplex the set odware
events counted by the HPCs using fine—grained time slicee Th
programming interface component takes a large set of eters
counted as input and automatically assigns them to a nunfber o

with the same share size. A default share assignment schéghé m
be overridden by explicit requests from the user that is@sted in
closely monitoring a specific hardware event.

Without loss of generality, for the rest of the paper, we assall
groups are given equal time shares, which is one time sy
cles). We callga theSampling RatioLarger sampling ratios allow a
larger number of logical HPCs. For instance, a sampling i@ftiLO
can provide roughly 80 logical HPCs on an 8-HPC processds Th
has to be traded—off with the fact that sampling accuracyedeses
as the sampling ratio increases.

An issue that must be addressed is the fact that a samplimadper
may happen to coincide with loop iterations in the prografthé
order of HPC groups within a period is fixed and a sampling pe-
riod happens to coincide with a loop iteration, then an HP&gr
always counts the events occurring in a fixed part of thetitara

To avoid this scenario, we randomize the order of the HPCpgou
in each sampling period. As a result, each HPC will have amlequ
chance of being located at any given spot of the iteration.

Sampling Round
(R cycles)

R
Allocation
Unit (g cycles)

HPC Group 1
HPC Group 2
HPC Group 3
HPC Group 4

BRO0O

Figure 2. Time-Based Multiplexing example: There are four
HPC groups in this example. Each HPC group is a collection
of events that are counted simultaneously. An HPC group is
counted in a number of time slices of g cycles within sampling
period of R cycles. The order of the HPC groups is changed
randomly in different sampling periods to avoid accidentalcor-
relations.

HPC groups such that in each group there are no conflicts due toWith multiplexing, time is usually measured in terms of CPJ ¢

PMU constraints. The sampling engine assigns each grouca fr
tion of g cycles out of a sampling rourd that is the time period
that all groups are guaranteed to have been given a PMU ¢ontex
At the end of each HPC group’s time slice, the sampling engine
automatically assigns another HPC group to the PMU. Theevalu
that is read from an HPC aftercycles is scaled up linearly as if
that group it had counted during the entirecycle period. As a re-
sult, the user program (e.g. a run—time optimizer) is presewith

N logical counters on top of physicalHPCs whereN can be an
order of magnitude larger tham

The system can easily be programmed to favor certain HPGpgrou
by counting them for longer periods of time. This is accostpid
by allocating multipleg-cycle time slices to the group. In fact, one
can treat a period @ cycle as a unit for PMU time allocation. This
PMU multiplexing scheme is analogous to the time—sharing of

cles. Therefore, one counter in each HPC group is resenealit

the CPU cycles. The use of cycle counters as timers allows us t
define arbitrary fine time—slices down to a few thousand syde-
other metric that can be used to define HPC group share sittes is
number of instructions retiredThe main advantage of instruction—
based multiplexing is that the HPC group share sizes areealig
more closely with the progress of the application. Sharessixill
differ in terms of real time depending on the available stion
level parallelism (ILP) and the frequency of the miss events

A pathological case for the multiplexing engine is the exise
of a large number of short-lived bursts of a particular hanew
event. If the burst time is shorter th&tycles, the HPC that counts
that hardware event might be inaccurate because the PMUligctu
counts the event only in a fraction Bf and thus it may miss short—
lived bursts. However, we expect the execution of most apptins

CPU among processes. Figure 2 shows an example of four eventto go through several phases, each longer an which the oc-

groups, where each is given a time share (one or more times}lic
of the sampling period. The share size of each group depemds o
the desired accuracy of the hardware events that are irttlide
the group and on the expected rate of fluctuation of such svent

currence rate of hardware events is stable in the common tase
Section 6, we provide experimental evaluation that denatest
that the statistical distance between the sampled and at=d of
hardware events is small in most cases.



micro-instruction
Bundle

BU

Issue Queusg
Ry

FU Core

| Reorder
Buffer

Retirement f-{--N-fF-4--1--
< Lo]-2

Figure 3. The basic hardware model for a super-scalar multi-
dispatch out—of—order processor. FPU stands for Floatind?oint
Unit, IU stands for Integer Unit, LSU stands for Load/Store
Unit, BU stands for Branch prediction Unit, and FU stands for
Functional Unit.

4 The SSB Model

Traditionally, CPI breakdown has been used to describeghenp
mance characteristics of hardware components and progrhavb
ior [11]. In CPI breakdown, each hardware comporteatcounts
for CPl, cycles per instruction out of the real CPI on average.
However, in the context of complex superscalar out—of—omlie
croprocessors with multi—-level memory hierarchies, ibigsemely
difficult to obtain accurate CPI breakdown because manyamnicr
architectural events overlap with each other.

We propose an alternative to the CPI breakdown model which we
call Statistical Stall BreakdowSSB). By stall, we mean a pro-
cessor cycle in which no instruction retires. In SSB, eaall &
speculatively attributed to a particular hardware evehen if that
hardware event had not occurred, the stall would not haveroexd.
The key observation is that, in most cases, the latency ofwee
components in processing instructions will result in stalh Sec-
tion 6.3 we show that stalls are one of the primary contrimgi
to the often dramatic gap between the measured CPI andehé
CPI that is defined by (i) available ILP in the applicationsl i)
the system pipeline width defined by the micro—architectuitesre-
fore, an accurate breakdown of stall sources can be usedas an
proximation for hardware bottleneck analysis.

The basic hardware support required for computing SSB iste h

Decoded
(micro-instr)

AN D A v,
Figure 4. The state transition diagram for instruction exea-
tion.

the ICache in each cycle. These instructions are decodegasd
sibly translated intqinstructions. The front-end pipeline gener-
atesbundlesof B p-instructions, associated with one or more ISA
instructions. p—instructions within a bundle may depend on each
other. That means the output of one may be used as an input for
another. In RISC architectures, we expect most ISA insoostto

be translated into a sing|e-instruction, and hence, we assume at
mostB ISA instructions can co—exist in a bundle.

At most one bundle can bdispatchedin a cycle and each—
instruction within the bundle is dispatched to a differamdtional

unit (FU). The instruction bundles are dispatched in thegmam
order. At most ongrinstruction is dispatched to an FU at a time,
although may be several FUs of the same type. The total number
of FUs may exceed the numbersfinstructions in each bundle, so
some FUs may not receive newinstructions every cycle.

Before a p—instruction bundle can be dispatched to the func-
tional units, the following resources must be availabledachpy—
instruction in the bundle:

1. Rename Buffer Entries Rename buffers are logical registers
that are used to eliminat@rite-After-Readand Write-After-
Write dependencies.

. A Reorder Buffer Entry : The reorder buffer is a queue that
keeps track of the status of the dispatched bundles. Iigruc
bundles retire from the reorder buffer in the order they were
dispatched after all of thejeinstructions havéinished and
all the older bundles have retired.

. Load/Store Buffer Entries: Load/Store buffers are used to
buffer the values read by the load instructions or written by
the store instructions.

4. FUs Issue Queue Entries Each FU has a separate issue
queue. Eachuinstruction in the bundle needs an entry in

the corresponding FU’s issue queue.

a way to assign a source to each stall. While such an assignmen|f any of these resources are not available, the instructispatch

may be speculative (mainly due to the fact that stalls froffedint
sources may overlap), our analysis in Section 6.3 showsstrait
speculation is sufficiently accurate in most cases.

We collect SSB statistics at run—time using a simple modehfo
superscalar, out—of-order processor. Our model is infeexy
the architecture of the IBM PowerPC processor, but it is cieffitly
generic to be used for other modern microprocessors witlomin
modifications.

Figure 3 depicts the hardware model used. Instructionsear&dm
the ICache to the front—end pipeline in program order (Féglide-
picts the state—transition diagram for each instructioblp to W
ISA (Instruction Set Architecture) instructions can befetd from

will be delayed until they become available. Typically,sttnly
occurs when there are long latencies in the FUs so that orteeof t
structures mentioned above becomes full.

Once ap—instruction bundle is dispatched, eagghinstruction in

it will be queued in the corresponding FU issue queue. The in-
struction remains in the issue queue until all the data iteddp

on becomes available, after which it canibsued An issuedy—
instruction will be processed by the FU core to produce tkalte
Once the result is ready, the instruction’s state becofiméshed
The FU core may rejectja-instruction for a number of reasons, in
which case the instruction will be put back in the FU issueugue
and will be re—issued later. Instruction issue occurs duroer
with respect to program order. Once thénstruction bundle retires



Miss Event

Effect

Description

ICache Miss

Empty Reorder Buffer

Instructions must be brought into the ICache either from tBemory.

Branch Misprediction

Empty Reorder Buffer

All in—flight instructions older than the mispredicted behrare flushed.

Data Cache Miss

Retirement Stops

A delay in the LSUs to finish a load or store instruction due tata cache miss.

Address Translation Misse$

Retirement Stops

A miss occurs in the hardware accessed address translatiotuses (e.g. TLB).
The miss either delays processing a load/store instrugtithe LSU, or results
in the rejection of the instruction from the LSU.

Rejections

Retirement Stops

Any of the FUs rejects an instruction for any (e.g. hittingeaaurce limit). The

instruction must be reissued after some delay or reordering

FPU Latency Retirement Stops

A delay in FPU to finish the computation for an issued instarct

IU Latency Retirement Stops

A delay in IU to finish the computation for an issued instrooti

Table 1. Miss event types with their potential effect.

(completes) all resources allocated to it, including thieiesin the
rename buffers, the reorder buffers, and the load storets,fivill
be released. An instruction may flashedfor different reasons,
including branch mispredictions.

A finished p—instruction mayretire only if , and (i) all otherp—
instructions in the instruction’s bundle have also finished (ii)
all older (with respect to the program order) bundles in garder
buffer have already retired. Bundle retirement happensagram
order. At most one bundle can retire per cycle. Therefoentbx-
imum number of ISA instructions that in theory can retire tyale
is equal toB.

The key idea behind the SSB model is that most bottleneckbean
detected by speculatively attributingsaurceto each stall, i.e., a
cycle in which no bundle from the reorder buffer can retirbefie
are two major categories of such stalls:

e The reorder buffer is empty. This implies that the front—end
has not been able to feed the back—end in time. Assuming
the micro—architecture is designed and tuned properlyh suc
situations happen mostly when there is an ICache miss, or

extensively in other work [9, 10, 26]. Addressing this isgu¢he
general case is complex because in today’s out—of—ordeegpsors
hundreds of instructions may be in—flight simultaneoustysdlve
the problem in its generality it is necessary to considepadisible
interactions of any subset of concurrently executing uciions,
which is beyond the scope of an on-line tool.

In our SSB model, we justify ignoring both intra—bundle degen-
cies and miss event concurrencies by statistically compager-
tain miss events captured when running workloads in thriéerdit
processor modes (a) out—of—order multi—-dispatch maei)( (b)
out—of—order single—dispatch modgr(gle and (c) inorder single—
dispatch modeiigorder). When running the processor in single
mode, only one ISA instruction is dispatched iganstruction bun-
dle, and therefore, the instruction can independentlyHimiben-
ever all itsp—instructions finish. When running the processor in
inorder mode, only one ISA instruction is dispatched in adbein
and also, the instruction is not issued until the precedirsgric-
tion bundle retires. In this mode, most overlaps betweemtiss
events caused by separate ISA instructions are removedugec
their execution is serialized. Comparing the operationhef firo-
cessor when running in real mode (with full concurrency) teew

when a branch misprediction occurs. We assume the hardwareth® processor runs in single or in inorder mode yields iistarg
designates the most recent event (an ICache miss, or a brancinformation.  As we show in Section 6.3, the statistical efiéince

mispredication) as the source of the stall.

e The reorder buffer is not empty, but the oldest bundle in the
reorder buffer cannot retire because one or more oftts
instructions have not yet finished (i.e. they are waiting for
an FU to provide the results). We assume in this case that
once allp-instructions of a bundle finish and the retirement
resumes, the hardware will designate the source of theastall
the last FU that finished ja-instruction so that the instruction
retirement could resume.

We call the hardware events that can cause arsiigah eventsThe
miss events we consider in this study are listed in Table hgalo
with the type of stalls they cause and the potential effegy thay
have.

The association between a stall and a miss event is not recess
ily precise because of the dependencies among instruatithis

the same bundle. For instance, an instructiomy depend on the
output of another instruction, of the same bundle. In this case,
stalls caused by miss events during the executiopare charged
toi because it is the lagt-instruction in the bundle to finish.

Finally, even if a stall is identified as being caused by aipalar
event, removing that event does not necessarily transtidean
elimination of the stall. This is because of the highly canent
nature of superscalar out—of—order microprocessors @fdththat
events may overlap so that removing one of them may not regain
all the performance lost because of the stall. This issustudsed

between the three modes above is not significant for mosteof th
applications we examined.

Based on this observation, we propose the following formala
detect bottlenecks at each phase in the program execution:

n
CPlreal= Z)StaIEJrCPlc
i=

where,Stall is the number of stalls caused by miss eueint the
monitoring period, an€Plc is an estimate for the CPI that can be
achieved by idealizing all miss eventSPIrey is easily computed
by dividing the number of elapsed cycles by the number of ISA i
structions retired at any period of time. We also rely on hear
PMU features to provide values f@tall. As a result, we can ac-
curately show how much gain is potentially achievable byioaa
the miss events of a certain type.

5 Experimental Environment

5.1 Hardware

We have implemented and evaluated our HPC—based perfoemanc
monitoring facility on the IBM PowerPC970 processor [141,an
Apple PowerMac G5 workstation. Evaluating sampling on d rea
microprocessor as opposed to a cycle—accurate simuldgos ofvo
advantages. The higher speed allows us to collect consigera



more data, making the analysis more complete and accurate. F
ther, simulators may not reflect some of the limitations okal r
microprocessor. For example, in a simulator we can easilyras
that certain hardware events can be counted at no cost. Bat on
real microprocessor, both the number and the type of thetgven
that can be counted simultaneously is constrained. The sideof
using a real microprocessor is that because of its complexitier-
standing the semantics of the hardware events requiresican
internal (and potentially proprietary) knowledge of th@gessor
implementation.

The PowerPC970 processor we used operates at 1.8GHz ultdeat

a 64-KByte ICache and a 32-KByte L1 data cache. The level 1
caches are backed by a 512-KBtye unified L2 cache. The prarcess
has two 1Us, two FPUs, two LSUs, and one BU. The PowerPC 970
can dispatch a bundle of up to fiyeinstructions (including one
branch) per cycle. Each FU can independently issue oneiatigin

per cycle. One bundle (up to fiyeinstructions) can complete in a
cycle (i.e. B=5). Because the PowerPC architecture is RISC—
based, most ISA instructions are converted to prmstruction.
Therefore, the ideal CPI is approximately20

The PowerPC970 processor has 8 HPCs and can count a large va-

riety of hardware events. The processor has counters that tiee
number of stalls caused by miss events including the ontesllia
Table 1. When a stall occurs, a counter starts counting thebeu
of cycles the CPU is in stall. The first event that causes themg-
tion of instruction retirement (i.e. a data item is receifemnn the
data cache), the value of the counter will be charged to treste
as the number of stall cycles caused by the event. The assignm
of stall to cause is speculative, since (i) several eventshe@pen
in a single cycle and the PMU chooses one of them to attrilhate t
just—ended stall, and (ii) multiple stall causes may oyeneet the
stall length is attributed to just a single cause. Such harewup-
port for identifying stall sources is not specific to Powe#8?G; for
example, Intel Itanium Il processor provides similar feaf[15].

5.2 Operating System

Our performance monitoring facility is implemented in thé<op-
erating system [12]. K42 is an open-source research opgrays-
tem designed to scale well on large, cache—coherent, G#bit-
processor systems. It provides compatibility with Linux|Ad
ABI. The K42 kernel is designed in an object—oriented fashi
feature that allows for easier prototyping.

The kernel module we built in K42 operates independentlynfro
the kernel. There are two major types of interactions withkér-
nel. First, the sampling engine must be able to dynamicabyail
custom exception handlers for the PMU overflow exceptiors- S
ondly, the kernel must be modified to notify the sampling eagi
of all process creations, exits, and context switches. \Wendt
modify K42 for this purpose. Instead, we exploit the factt tima
K42, all major process management events (along with otier t
operating system events) are recorded in performance ammgt
trace buffers. Upon each overflow exception, the samplirgnen
checks whether a context switch has recently occurred bgutbn
ing the trace buffer. Using this scheme, there is a delay teatieg
context switches, but because the granularity of contexiches
is usually around 10 milliseconds, which is two orders of mag
tude larger than the sampling granularity, the imprecisidded by
a small delay in detecting context switches is insignificant

In order to record the gathered HPC values, we used the K4@rper

mance monitoring infrastructure that is already in plad.[Zhe
infrastructure provides for an efficient, unified and sclatacing
facility that allows for correctness debugging, perforegmdebug-
ging and on-line performance monitoring. Variable—lengtent
records are locklessly logged on a per processor basis itrebe
buffer mentioned above. The infrastructure is uniformlgessible

to the operating system and user programs. The recordedseven
are encoded using XML, and thus, much of the implementatfon o
adding and processing new events is automated [29]. Both HPC
and SSB values gathered by the sampling engine are added to th
buffers and thus available to any interested party.

6 Experimental Results

We developed and ran a number of experiments to evaluatdaur s
tistical sampling approach. In this section we describedhexper-
iments and present their results. First, we briefly desdnive we
validate the basic values we read from the HPCs for diffeiand-
ware events. We then present the results of our statisticaysis

of sampling accuracy and show how the sampling accuracygesan
as a function of sampling granularity and sampling raticnaliy,
we analyze the accuracy and usefulness of computing SSBszalu

We present the results of our analysis for four integer andffoat-
ing point applications from the SPEC2000 benchmark $uitdhe
integer benchmarks armgec, gzip, crafty, andperl bnk. The
floating point benchmarks angri d, appl u, art, andnesa.

6.1 Basic Validation

Previous work [19] has shown that validating the numbersl rea
from HPCs is not trivial. In today’s processors, HPCs arep® s
cific to the micro—architecture implementation that theimantics
cannot be completely understood without detail knowledgthe
micro—architecture. This information is often proprigtand not
publicly available. For instance, the significance of Llleamisses
may differ depending on the effectiveness of the prefetalctires.
Also, a load instruction that incurs an L1 cache load accesslma
rejected by the LSU a few cycles later due to a TLB miss, or some
other LSU constraints, and as a result, literally readirgrthmber

of L1 cache accesses can be misleading.

To reach a clear understanding of the semantics of the haedwa
events and we created a large set of micro—benchmarks, aeeh c
fully designed to a produce a specific scenario in which aifipec
set of hardware events can be monitored in isolation. Sudmpan
proach may not be feasible for some hardware events, bedause
requires comprehensive knowledge of the internal impleatzm

of the microprocessor. However, the results of our expemm@ot
shown here) gave us confidence that our infrastructure abyre
captures most of the hardware events we examined.

6.2 Sampling Accuracy

In order to measure the accuracy of sampling versus fullytog
the hardware events, we use a statistical approach. Wheicgu
events fully, we associate with each hardware e&at probability
distributionPe(R;) representing the probability of evembccurring
in the time intervaR;. Pe(R) can be simply calculated by dividing
the frequency o re-occurring in the intervaR; by the total num-
ber ofe events during a monitoring session. That isifis the total

1We also examined several other applications from the saiite with similar
results.



Application gzip gcc | perlbmk crafty applu | mgrid art mesa
Instructions Retired 0.01 | 0.06 0 0 0 0.05 0 0.12
L1 DCache Loads 0.09 | 0.04 0 0 0.02 0.07 0.03 0.22
L1 DCache Stores 0.13 | 0.08 0 0 0 0.03 0 0.10
L1 DCache Misses 1.21 | 0.05 0 0 0.02 0.07 0.07 0.05
ICache Misses N/A 0.12 0.02 0.09 0.02 N/A 0.03 N/A
TLB Misses N/A 0.11 N/A N/A 0.01 0.15 N/A N/A
ERAT Misses 0.79 | 0.13 0.01 0.02 0.07 0.71 0.42 0.21
L2 Cache Misses (Data) | 0.24 | 0.01 0.07 0.02 0.02 0.06 N/A 0.17
Branch Mispredicts 0.36 | 0.05 0.01 0 0.02 0.18 0 0.13

Table 2. KL-distance between probability distribution P, which is obtained by fully counting hardware events andP’, which is
obtained by sampling. The sampling ratio is 10 and the samptig round R is 2 million cycles. The valueO stands for any value less
than 0.01. The N/Aimplies the event is less frequent than once every 10,000 &gs on average.
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Figure 5. Comparing fully counted events with sampling wherrunning gcc: Left: average instructions retired per cycle; Right:

average number of L1 DCache misses per cycle.

number of occurrences of evestandNe(R;) is the number of oc-
currences of evergin interval R;, theprobability of evente occur-

ring within R; is calculated af. = %s‘) o) thatzi'\‘:0 Pe(R) =1.

With sampling on the other hand, we count how many times-
curs in a subinterval d®;, and linearly scale it to the entire interval,
which will give us another probability distributiof,(R)). A key
question is how the two distributionBs and P, corresponding to
the actual counts and sampled counts, differ. To answenqtles-
tion, we useKullback Leibler distanc€KL-distance), which is of-
ten used to measure similarity (or distance) between twgindity
distributions[5]. KL-distance is defined as:

— 3 Pa(log Lok

K (Pe,PL) = x|
e Og X)

and computes the geometric mean oRe(x)/Ps(x). The reason
we use KL-distance (as opposed to, for instance, the mean ove
|Po(x) — P4(x)]) is that in the context of a dynamic—optimizer the
absolute values of the hardware event counts are often netead
mining factor because there are many short transient statbe
hardware. What is more important is whether there is a sogmifi
and stable shift in the rate of occurrences of a particuledvaare
event that lasts for a sufficiently long period of time to bertivo
considering. Therefore, although there may be samplirervats

in which the values of. andP; differ significantly, if such intervals
are limited in number and isolated, they do not distort tletadice
measure due to the log factor in KL-distance.

In this study, we consider any value &fPe, P) below 0.20 to be
acceptable. Informally speaking, we consider the samdicher
quate if the difference between the values of two probatilistri-

butions on average does not exceed 15%.

We measured (P, P;) for a large number of hardware events for

the selected SPEC2000 applications. Table 2 shows thagdsul
several important hardware events. The 0 entries imply the a
tual value ofK (Pe,P.) was less than.01. The N/A entries imply
that the hardware event was on average less frequent tharpenc
10,000 cycles, and hence, insignificant. The samples alected
over 6-billion cycles (after skipping over the first billianstruc-
tions). The sampling interval R is 2 million cycles, and tlzens
pling ratio is 10.

As it can be seen in Table 2, the KL-distance value is smalifost
hardware events in a majority of applications, with a fewsptons
we discuss later in this section. In Figure 5 we depict gregdhyi
the rate of occurrences for two hardware events, instmicgtired
and L1 data cache miss, using the same setup as above except fo
the fact that only the first two billion cycles are includedtire
graphs. Note that we chose to show occurrence rate (i.evénage
number of occurrences per cycle) only for visualizationposes.
The probability distribution® andP; can be directly derived from
these graphs by dividing each point Ny. It can be seen that the
sampling distribution accurately follows all significantcasteady
changes in the real occurrence rate of the hardware everdgn (e
though there are differences over small periods of time).

There are a few cases in Table 2 with unacceptably high values
However, we note that these cases all correspond to faifitg-in
guent events (one per 100 cycles on average). Althoughojuéret
events are unlikely to cause performance bottlenecks, wored
this issue further by varying the sampling granularity aachgling
ratio for them. We ran several experiments wgth p for which

at least three hardware events have a relatively large Istadce:
L1 data cache miss, ERAT (Effective to Real Address Tablesmi
and branch misprediction. Figure 6 shows the results of xke e
periments. The graph on the left shows how the accuracy esang
as a function of the sampling granularity. As a general raleger
granularities have higher sampling accuracies for infeagevents.



Therefore, we change the sampling granularity from 200,@00

500,000 cycles. We then wanted to know how sensitive the ac-

curacy is to the sampling ratio in this sampling granularifthe

graph on the right shows the results of our experiments. dears
that none of the three hardware events is highly sensitiviheo
sampling ratio. The general conclusion we draw from thepeiex
iments is that it is better to use larger granularities (vétfixed

sampling ratio) for infrequent hardware events.
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Figure 6. Tuning sampling ratio and sampling granularity for
gzi p: (a) The KL-distance generally decreases as the sampling
granularity increases. (b) Fixing the granularity to 500,00 cy-
cles, all three hardware events seem to be fairly stable when

changing the sampling ratio within a realistic range.

6.3 Computing SSB

In Figure 7, we show the result of computing the SSB values for
gcc over a period of 50 billion cycles. There are several obser-
vations that can be made from the graph. First, the entireésun
divided into several fairly long phases in which either GPstable,

or CPI changes in a regular fashion. In each phase, the S&Bpat
is reasonably stable, so that it is possible to pinpoint aneare
major sources of stalls. Secondly, there is often a largebgap
tween the real, measured CPI and the ideal CPI, most of which c
be explained by the stalls. Thirdly, in this particular exden data
cache misses seem to be the single most important sourcallef st
There are also a significant number of LSU rejections. An LSU
rejection usually occurs if either an address translati@s mccurs
(which is accounted for separately), or if the LSU resousresex-
hausted. Therefore, many of the rejections are causecuoibjiby
data cache misses which keep the LSU busy with an instrufdion

a long time. There is also a significant number of stalls cdise
ICache misses and branch mispredictions in the early pludises

run which disappear later on.

based multiplexing. In instruction-based multiplexingripds are
calculated in terms of retirement of a certain number of I8gtruc-
tions. Therefore, all sampling points in the three executimdes
are aligned to each other in terms of the number of instrostie-
tired between the two sampling points. Of course, both thglsi
and inorder modes take a significantly longer time to finisimttne
real mode. Also, by monitoring user—level code only, we make
the exact same stream of instructions are executed in tée thns.

Table 3 shows the results of our analysikLs is the the KL-
distance between the real mode and the single modeKéands
the KL-distance between real mode and inorder mode runsnAga
0 implies any value less thandld, andN/A implies the average oc-
currence rate of the particular stall is less than once p&0DOISA
instructions, and hence not significant for bottleneck ysisl

For the great majority of entries, both tK&.g andKL, values are
very small, suggesting that, in most cases, the distortituesto
intra-bundle dependencies and overlapping miss eventbeag-
nored in quantifying a particular source of stall. There arfew
exceptions, most pronouncedrigri d. A closer investigation of

mgri d shows that its stalls are dominated by data cache misses and
the FPU latencies for botkL; andKLg is reasonably small. Other
sources of stall, such as branch misprediction or rejestame in

fact insignificant. We are currently exploring these andesaiur-

ther.

[ Sampling Frequency (kHz) [ T [ 2 [ 5 [ 20 [ 100 | 200 [ 1000 |
| RuntimeOverhead(%) | 02 [ 05[08] 2 | 12 | 22 | 63 |

Table 4. The runtime overhead of computing and logging SSB.

Table 4 shows the run—time overhead of continuously gathehie

SSB values and recording them into the trace log. We measured
the overhead for different sampling frequencies. The maalin-
creases linearly with the sampling frequency within thegewe
examined. At 20,000 samples per second, the run—-time cagike
around 2%. We believe that with such a low run—time overhemd o
sampling engine is suitable for run—time optimization yosgs.

7 Related Work

Related work closest to our work is DCPI which uses fine—gin
sampling of the HPCs to identify system—wide hot spots at-run
time [3]. It also attempts to identify pipeline stalls at thetruction
level. There are some hints that event multiplexing is im@ated

The SSB computed by our sampling engine can provide accuratein this system, but no details of the design nor statistinalysis is

and timely hints to a run—time optimizer, allowing it to fagun
this case, on techniques to reduce data cache misses forofnost
the program and preventing it from focusing on optimizaditmat
might reduce the computation, branch mispredictions, @che
misses as they will not have significant effect unless thepaga

to also reduce data cache misses. Also, the online aviétiyaof
the SSB information allows the run—time optimizer to monitee
results of the applied optimizations, and measure theiefitsrand
potential negative side effects in a feed-back loop.

In order to estimate the effect of intra—bundle dependenared

provided. Moreover, we argue that with the increase in thalrer
of concurrent in—flight instructions, the imprecision ofaite/are—
only approach to attribute stalls to the instructions cahibh.

PAPI [7] is a public domain tool that is implemented on maratpl
forms. Its main emphasis is on platform—-independence rrétlaa
efficiency. The portable interface is implemented in sofeyand

as a result, it may incur significant overhead in some scesari
PAPI also implements HPC multiplexing at user level [20]. Aef:
grained timer is used as a means for HPC group switch. The time
will send a signal to the process that has requested a naxiégl

miss event concurrencies, we executed all of our benchmarksset of hardware events. A major limitation of this approacthat

in three different processor modes: multi—dispatch outexfer
(real), single—dispatch out—of—order (single), and sindispatch
in-order (inorder). We used KL-distance to measure théssitzl
distance between the distribution of stalls for each paldicsource
in the different execution modes. In order to make the compar
precise, we used instruction—based multiplexing, instfaime—

due to the large overhead of HPC group switch (the cost of sig-
nal delivery plus the cost of kernel/user context switchi sam-
pling granularity must be large and as a result, the samgingy
may become high for some applications. Another problem with
switching HPC groups in user space is that there is a potlntia
large latency between the time when the timer expires antirttee
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Figure 7. Statistical Stall Breakdown for an instance ofgcc run for a 50 billion cycle period.

Application gzip gcc perlbmk crafty applu mgrid art mesa
Stall Source KLs KL, KLs KL, KLs KL, KLs KL, KLs KL, KLs KL, KLs KL, KLs KL,
[CacheMiss | 0.0I _0.01| 0.05 0.05| 0 0 [ 001 001] 006 006 NJA NA | 028 019] 015 0.15
DCache Miss | 0.02 0.02] 0.05 0.06| 0.03 0.05] 0 0.01] 0.08 0.08] 0.12 042 003 0.03| 0.03 0.05
ERAT Miss | 0.36 0.36| 028 0.30| NJ/A N/A [ 0.03 0.13] 013 013| NNA NA | NA NA | NNA NA
FPULatency | N/A N/A | NNA  N/A | 001 0.02| 0.13 0.13] 0 0 [ 025 025] 0 0 [001 002
int. Latnecy | 0.10 0.10] 0.15 0.4 0 0 0 0 [ NNA NA | NNA_ NA | 005 005 0.06 0.06
Misprediction | 0.02 0.02| 006 0.06| 0 001 | 001 0.01] 0.06 0.06] 1.68 168 028 0.8 0.15 0.5
Rejection | 0.47 0.22] 0.17 021] 013 0.14[ 0.03 0.03] 015 0.15] 040 1.47] 0.02 0.02[ 050 050
Table 3. KL-distance between the stall distributions.KLs is the KL-distance between the stall distribution when exeating in real

mode versus the stall distribution when executing in singlélispatch mode.KL, is the KL-distance between the stall distribution when
executing in real mode and the stall distribution when execting in inorder mode.

when the signal is actually delivered and the signal har{élbere
the current HPC group is read and stored) is called. Thisydela
adds to the imprecision of multiplexing. Finally, to the besour
knowledge, there is no quantitative study on the overheadaan
curacy of PAPI's multiplexing engine. In fact, one can buriPI's
high—level platform—-independent interface transpayeotti top of
our low—level and efficient multiplexing scheme.

ProfileMe usesnstruction samplingwhere individual instructions
are selected randomly to be monitored by the processor laaedw
when the instructions pass through the different stagdseafystem
pipeline [6]. Their main goal is to gather accurate inforimiaton
instructions that cause miss events or have long laten&lg®ugh
the instruction sampling can be effective, there is litthalgsis in
the paper that shows the actual run—time overhead of bgildin
instruction—level profile. We believe our approach can bepe-
mented by approaches such as ProfileMe to search for batkiéme
a multi-level fashion.

Intel's VTune [16] is one of the most widely used tools to méie
facilities of the PMU available to developers. It providettbsam-
pling and binary instrumentation facilities, and outputgraphical
display of the programs hot spots as well as call graph. Taere
several other tools built for various hardware platformghvgimi-
lar sets of features such as Apple’s CHUD [4] and PCL [22].yThe
provide facilities to identify program hot spots and theyfrency of
important hardware events such as cache misses or branptremis
dictions. To the best of our knowledge, none of these todtsval
for profiling more events than the number of HPCs at the same ti
Also, they often only expose the hardware PMU features thréz
the user. It is up to the user to interpret the semantics ofoive
level hardware events.

Wassermann et. al [27] presented an analysis of micropsoces
performance where a model similar to SSB is used to charaeter
the effect of stalls caused by cache and memory latencies: Es
mating the number of stalls caused by a source is done in a@ftw
by multiplying the number of accesses to the source by itsagnee

access latency. Our approach extends this effort in twatiines.
First, we exploit hardware support to measure the stalleraocu-
rately. Secondly, their approach mainly focused only orheand
memory stalls, while we include all possible sources ofl stab
our analysis.

SMARTS [30] and SimPoint [23] use sampling in a different-con
text as a means to accelerate detailed micro—architectmdss
tions. In both approaches, the detailed simulation of tlog@am is
done only for small intervals during the program executidhere
are strong evidences in both work that show their sampling-te
niques would result in accurate estimates of important vaare
metrics such as CPI.

Studies have been done to model the behavior of superscigiar-m
processors either through analytical modeling [17] or tlyfosta-
tistical simulation [21]. In both cases, a simple and aggregqodel
is constructed that can provide accurate and high—leveghnsf
hardware bottlenecks. These models are simple and effieeen
though, they often make unrealistic simplifying assumpugioOur
SSB model was inspired by some of this work.

Slack [9] and Interaction Costs [10] are two models for aately
estimating how much performance gain can be achieved blizdea
ing latencies of individual instructions. Although theggpeaches
provide accurate information about potential gain of ideady in-
dividual instructions, they require additional hardwaneort and
extensive postmortem analysis which make them difficults® in
the context of run—time optimization.

Lemieux [18] has extensively explored issues in desigrigim-
terface and also the implementation of the PMU of micropsece
sors with an emphasis shared memory multiprocessor sysiémes
main focus of the work is also to account for stalls (memorgt an
non-memory) that that attribute to significant performapeealty.



8 Concluding Remarks

Hardware performance counters (HPCs) are useful for aimglyz
and understanding performance, but there are challengesing

them on line. There are a small number of HPCs available irt mos

today’s microprocessors. Moreover, the definitions of thedtvare
events that can be counted by HPCs are low—level and complex.

In this paper, we described two techniques that overcoméhthe
limitations we identified of microprocessor HPCs. First, pre-
vide larger set of logical HPCs by dynamically multiplexidgCs
using statistical sampling of the hardware events. Usiad) peo-
grams, we showed experimentally that counts of hardwareteve
obtained through sampling is statistically similar (i.gthin 15%)
to real counts of the events. Secondly, we proposed a teohthigt
speculatively associates each stall cycle to a processopaoent
that likely caused the stall, and built this technique usingHPC
multiplexing engine. Our experiments showed that ideratiftm
of the stalls is reasonably accurate for most of the apjicatwe
examined. The run-time overhead of our sampling enginedgun
2% allowing it to be used online.

The facility we have implemented is useful for detailed ame-per-
formance analysis of application and system code runnirfgliat
speed with small overhead. It is also effective in reportiagd-
ware bottlenecks to tools such as a dynamic optimizer thghmi
guide dynamic adaptation actions in a running system. A rasrab
outside groups have started using our statistical samioig Our
research group is interested in using the tool to help gudeuhic
optimizations within the operating system. Much of this kbas
just started, and it is an open question how difficult it wélto map
hardware behavior to the responsible software component.

Our work and other previous work has identified the challerafe
correctly interpreting HPC values. Counter descriptiores @o-
prietary, documented poorly, or designed for hardwareitacts.
Our techniques and tools for extending the number of logi#EaCs
available and for providing a easy to understand charaeton of
sub-optimal processor performance alleviate some of tffiewdt
ties faced with HPCs.
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