
PATH: Page Access Tracking to Improve Memory Management

Reza Azimi, Livio Soares, Michael Stumm
Department of Electrical and Computer Engineering

University of Toronto{azimi,livio,stumm}�eeg.toronto.edu Thomas Walsh, Angela Demke Brown
Department of Computer Science

University of Toronto{tom,demke}�s.toronto.edu
Abstract
Traditionally, operating systems use a coarse approximation of
memory accesses to implement memory management algorithms
by monitoring page faults or scanning page table entries. With
finer-grained memory access information, however, the operating
system can manage memory much more effectively. Previous work
has proposed the use of a software mechanism based on virtual
page protection and soft faults to track page accesses at finer gran-
ularity. In this paper, we show that while this approach is effective
for some applications, for many others it results in an unacceptably
high overhead.

We propose simple Page Access Tracking Hardware (PATH) to
provide accurate page access information to the operating system.
The suggested hardware support is generic and can be used by var-
ious memory management algorithms. In this paper, we show how
the information generated by PATH can be used to implement (i)
adaptive page replacement policies, (ii) smart process memory al-
location to improve performance or to provide isolation andbetter
process prioritization, and (iii) effectively prefetch virtual memory
pages when applications have non-trivial memory access patterns.
Our simulation results show that these algorithms can dramatically
improve performance (up to 500%) with PATH-provided informa-
tion, especially when the system is under memory pressure. We
show that the software overhead of processing PATH information
is less than 6% across the applications we examined (less than 3%
in all but two applications), which is at least an order of magnitude
less than the overhead of existing software approaches.

1. Introduction
Computer system physical memory sizes have increased consis-
tently over the years, yet counter to popular conception, optimiz-
ing the allocation and management of memory continues to be
important. Numerous scientific and engineering applications exist
that can exhaust even large physical memory [1, 8, 31]. Moreover,
while physical memory is generally considered to be inexpensive,
it continues to be one of the dominant factors in the cost of today’s
medium to large scale computer systems, and also a major factor in
energy consumption.

To use memory effectively, accurate information about the
memory access pattern of applications is needed. Traditionally, op-
erating systems track application memory accesses at a relatively

coarse granularity, either by monitoring page faults or by periodi-
cally scanning page table entries for specific bits set by hardware.
While these approaches provide a coarse approximation of the re-
cencyof page accesses, important information about thesequence
of accesses, which is required by most sophisticated memoryman-
agement algorithms, is absent.

In systems with software-managed TLBs, page accesses can be
recorded and processed on each TLB miss. While this approach
can provide significantly more fine-grained information on page
accesses, it adds prohibitively large overhead to a software TLB
miss handler, which is already a performance-critical component.

A software-only alternative in which virtual pages are divided
into anactive setand aninactive sethas been suggested by recent
research [30, 33]. Pages in the inactive set are protected byappro-
priately setting page-table bits, so that every access to them will
generate an exception so that the operating system can record the
access. Pages in the active set are not protected, and as a result,
accesses to these are efficient and not directly tracked. Pages are
moved from the inactive set to the active set on access, and a sim-
ple replacement algorithm such as CLOCK [5] is used to move stale
pages out of the active set. The active set, although much smaller
than the inactive set, is meant to absorb the majority of pageac-
cesses, thus greatly reducing the software overhead compared to
raising an exception on every access.

Although this software approach is shown to be effective with
certain types of applications, its overhead for many memory-
intensive applications is unacceptably high. Adaptive resizing of
the active set can be used to control the overhead [30]. However,
the larger the active set, the more accesses it absorbs and, hence, the
lessaccuratethe sequence of recorded page accesses will be, mak-
ing the memory management algorithms less effective. An example
of such a case is shown in Figure 1. On the left, the performance
of LIRS [13], a well-known memory management algorithm, is
compared against LRU assuming no overhead for collecting page
access information. The graph on the right shows how the per-
formance of LIRS degrades as the active set size increases, while
the overhead of recording page accesses naturally decreases. To
achieve LIRS’ potential in improving performance, a high runtime
overhead must be paid, otherwise, much of the advantage of LIRS
over LRU disappears.

To cope with this potentially large overhead, custom hardware
is suggested by Zhou et al. [33]. While their approach effectively
tracks physical memoryMiss Ratio Curves, it does not provide raw
page access information to the operating system, and thus cannot
be used for memory management algorithms other than the one
for which it is intended. Moreover, the hardware required bythis
approach is substantial and grows with the size of physical memory.

In this paper, we propose Page Access Tracking Hardware
(PATH) to be added to the processor micro-architecture to mon-
itor application memory access patterns at fine granularityand
with low overhead. Similar to the software approach, PATH isde-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 450 500 550 600 650 700 750 800

P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
(b

il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

 70

 80

 90

 100

 110

 120

 130

32K16K8K4K2K512128
 0

 50

 100

 150

 200

 P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

S
o

ft
w

a
re

 O
v
e
rh

e
a
d

 (
%

)

Active Set Size (# of Pages)

Exec. Time
Overhead

(a) Performance of LIRS vs. LRU (b) The effect of active set size

Figure 1. Graph (a) shows how LIRS manages to outperform LRU for different memory sizes forFFT. Graph (b) shows, for a fixed memory
size (703Mbytes), how LIRS’ performance changes as the active set size increases, while the runtime overhead of maintaining the active set
deceases (the projected execution time does not include theruntime overhead).

signed based on two observations. First, a relatively smallset ofhot
pages are responsible for a large fraction of the total page accesses.
Second, the exact order of page accesses within the hot set isunim-
portant since these pages should always be in memory. By ignoring
accesses to hot pages, we can vastly reduce the number of accesses
that must be tracked, while focusing on the set of pages that are
interesting candidates for memory management optimizations.

The key innovation with PATH lies in the tradeoff between func-
tionality assigned to hardware and functionality assignedto soft-
ware. The hardware we propose is (i) small and simple, (ii) scal-
able, in that it is independent of system memory size, and (iii) low
overhead, imposing no delays on the common execution path ofthe
micro-architecture. We delegate to software (specifically, an excep-
tion handler) the online maintenance of data structures to be used
by the memory manager when making policy decisions.

Section 2 presents our hardware design for PATH and Section 3
shows how key low-level data structures can be constructed by
software. We show in Section 4 that the operating system can use
PATH-generated information to enhance memory management by
(i) implementing more adaptive page replacement policies,(ii) al-
locating memory to processes or virtual machines so as to provide
better isolation and to enforce process priorities more precisely,
and (iii) prefetching pages from virtual memory swap space or
memory-mapped files when applications have non-trivial memory
access patterns. Section 5 describes our experimental methodology.
Our simulation results, presented in Section 6, show that substan-
tial performance improvements (up to 500% in some cases) canbe
achieved, especially when the system is under memory pressure.
While the algorithms based on PATH have different time and space
overhead tradeoffs, the basic overhead of providing fine-grained
page-access information to the operating system is less than 6%
across all the applications we examined (less than 3% in all but
two applications) – at least an order of magnitude less than that of
existing software approaches.

2. Design of PATH Architecture
Memory management algorithms are often first described theoreti-
cally under the assumption that a complete page access sequence is
available. Later, they are implemented using a coarse approxima-
tion of this sequence, collected by system software. For example,
the well-known least-recently-used (LRU) page replacement algo-
rithm requires the complete access sequence to implement exactly,
but is commonly approximated by the CLOCK algorithm which
coarsely groups pages into recently-used, somewhat recently used,
and not recently used categories. Optimizations to the basic LRU

Figure 2. Page Access Tracking Hardware (PATH) Architecture.

algorithm, and other sophisticated memory management strategies,
require more detailed page access information than systemscur-
rently provide. Trackingall accesses, however, is prohibitively ex-
pensive and generates too much information for online processing.
The key question, then, is how to reduce the volume of information
to a manageable level, while retaining sufficient detail on the order
of page accesses.

Current memory management hardware already contains an
effective filter to catch accesses to the hottestN pages, namely
the Translation Lookaside Buffer (TLB). Thus, one way to track
page accesses is to augment existing hardware or software TLB
miss handlers to record a trace of all TLB misses. Aside from
the overhead that this would add to the critical path of address
translation, the primary problem with this strategy is thatfirst-level
TLBs are too small (with up to 128 entries) to capture the set of hot
pages, leading to traces that are still too large for online use. Simply
increasing the size of the first-level TLB is not a viable option, since
the size is limited by fast access requirements.

Thus, we propose the addition of a new hardware structure that
essentially functions as a significantly larger TLB for the purpose
of filtering out accesses to hot pages, while recording a trace of ac-
cesses to all other pages. We call this structurePage Access Track-
ing Hardware (PATH). Figure 2 depicts the three major components
of PATH. ThePage Access Buffer(PAB) and theAssociative Filter

work together to remove accesses to hot pages from the trace;all
other accesses are recorded in thePage Access Log(PAL) which
raises an exception to allow for software processing when itbe-
comes full.

The Page Access Buffer (PAB) contains the set of recently
accessed virtual pages, augmented with an address space identifier
to distinguish between pages from different processes. ThePAB is
structurally similar to a TLB except that (i) it is updated only on
a TLB miss, (ii) it need not contain the physical addresses ofthe
pages it holds, and (iii) it is significantly larger than a typical TLB.
As the PAB size increases, more pages are consideredhotand more
accesses are filtered out of the trace, thus reducing both processing
overhead and accuracy. In Section 6.4, we examine in detail the
tradeoff between overhead and usefulness of the traces withvarying
PAB sizes. Our experiments show that a PAB with 2048 entries
is a good point in this tradeoff. Moreover, with a 2K-entry PAB,
PATH will have a very small chip footprint. Finally, some existing
architectures such as IBM POWER and AMD Opteron already
have a fairly large (e.g. 512 to 1024 entry) second-level TLB.1 One
can envision integrating PATH with a slightly larger version of such
a second-level TLB. We show in Section 6.5 that using the same
2K size for the active set in the software approach will result in
unacceptably high overhead.

A page access is considered for recording only if it misses inthe
PAB. However, because of the limited associativity of the PAB, it
can be susceptible to repeated conflict misses from the same small
set of (hot) pages. To deal with this problem, PATH includes an
Associative Filter that functions somewhat like a victim cache. The
associative filter is a small (e.g., 64 entries), fully-associative table
with an LRU replacement policy that is updated on every PAB miss.
Its purpose is to prevent the recording of accesses to hot pages
caused by short term conflict misses in the PAB.

Misses in the associative filter are recorded in the Page Access
Log (PAL) which is a small (e.g., 128 entries) buffer. When the log
becomes full, an exception is raised, causing an operating system
exception handler to read the contents of the PAL and mark it empty
by resetting the PAL pointer.

Given this architecture, PATH provides a fine-grained approxi-
mation of the sequence of pages that are accessed. Hot pages will
always reside in the PAB, while sequential or looping accesspat-
terns over an area larger than that covered by the PAB (e.g., 8MB)
are very likely to be completely recorded by PATH in their proper
order. For “less hot” pages, the reuse distance can also be accurately
captured by PATH due to the subsequent PAB misses it causes. In
the following section, we show how system software can use the in-
formation recorded in PAL to construct a variety of data structures
useful for memory management.

Finally, PATH must also include an interface for the operating
system to control it and to perform lookup operations on it. The
operating system can also dynamically turn off PATH when the
system is not under memory pressure, thereby reducing both the
processing overhead and power consumption.

3. Low-level Software Structures
The benefits of having LRU stacks and/or Miss Rate Curves (MRC)
available are well recognized [33]. In this section we arguethat
these data structures can be constructed efficiently in software from
the information obtained by PATH. Specifically, we show how
both LRU stacks and Miss Rate Curves can be maintained on-
line by the PAL overflow exception handler. Both structures can, in
turn, be used by memory management software to make informed
decisions. By delegating the maintenance of these structures to

1 IBM POWER’s first level address translation cache is 128 entries and is
called the Effective-to-Real Address Table (ERAT).

software, our design provides greater flexibility and customizability
than previous proposed hardware support.

3.1 LRU Stack

The LRU stack maintains a recency order among the pages within
an address range. The top of the stack is the most recently accessed
page, while the bottom of the stack is the least recently accessed
page. In our scheme, each page accessed (as recorded by the PAL)
is moved from its current location in the stack to the top of the
stack. The LRU stack is updated for every entry recorded in the
PAL.

To enable fast page lookup and efficient update in the LRU
stack, we suggest using a structure similar to those used to maintain
page tables. Each element in this structure represents a virtual page
and contains two references: one to the previous page in the LRU
stack and one to the next page in the LRU stack. Conceptually,the
LRU stack is a doubly-linked list, and elements are repositioned
within the stack by adjusting references to neighboring elements.
Thus, a virtual page can be looked up with a few (usually 2 or 3)
linear indexing operations, and moving a page to the top of the
LRU stack involves updating at most 6 reference fields in the stack:
2 references associated with the page being moved, 2 of its previous
neighbors, 1 at the previous head of the list, and the head of the list
itself.

The LRU stack has an element for each page that was ever
accessed (not just the pages currently in memory). Assuming4
KB virtual pages, 32-bit page references can be used for address
ranges up to 16 TB, resulting in a space overhead of 8 bytes per
virtual page used. The working set size of the LRU stack is roughly
proportional to the working set size of the address range. Hence,
a working set size of several GB implies that several MB will be
consumed by the LRU stack.

3.2 Miss Rate Curve (MRC)

An MRC depicts the page miss rate for different memory sizes,
given a page replacement strategy. More formally, MRC is a func-
tion λr,p(M), defined for address ranger and page replacement
policy p, identifying the number of page misses the process will
incur onr over a certain time period ifM physical pages are avail-
able. Often, the slope ofλ at a given memory size is of more inter-
est than its actual value. If the slope is flat then making additional
pages available will not significantly reduce the miss rate,but if
the slope is steep then even a few additional pages can significantly
reduce the page miss rate.

Our method of maintainingλ on-line is based on Mattson’s
stack algorithm [19] and Kimet al.’s algorithm [17]. We augment
the elements of the LRU stack described in Section 3.1 with a
rank field used to record the distance of the element from the
top of the stack (i.e., the reuse distance). Eachλ is maintained
as a histogram. Conceptually, whenever a page is accessed, the
histogram values corresponding to memory sizes smaller than the
rank of the accessed page are incremented by one. In addition, the
page is moved to the top of the stack, while setting its rank field to
zero and decrementing the rank field of every element betweenthe
original position of the page and the previous top of stack byone.

Time is divided into a series ofepochs(e.g., a few seconds).
At the end of each epoch, the value ofλ is saved and reset. Each
process may store a history of values ofλ for several epochs
to be able to make more accurate decisions about the memory
consumption of that process.

To reduce overhead, page groups of sizeg can be defined and
the rank field can be redefined to record the distance to the topof the
stack in terms of the number of page groups. By keeping an array of
references to the head of each page group, the cost of updating the
rank fields can be reduced by a factor ofg. Figure 3 shows how the

Stack
 Top

Stack
 Bottom

Group Boundary

LRU Group Headers

Group Rank

99 99 99 99 98 98 98 98 1 1 1 1 0 0 0 0

Figure 3. The LRU stack with group headers.

Algorithm 1. UpdateλLRU and the LRU stack on each recorded
pageVaddr.

1: lruRank ⇐ Stack[V addr].rank
2: moveV addr element to the top of the LRU stack
3: Stack[V addr].rank = 0

{ update group headers and page ranks for groups lower than
lruRank}

4: for i = 0 to lruRank do
5: GroupHeaders[i] ⇐ Stack[GroupHeaders[i]].prev
6: Stack[GroupHeaders[i]].rank + +
7: end for

{ update MRC for LRU}
8: for j = 0 to lruRank do
9: λLRU [j] + +

10: end for

11112222

Stack
 Top

Stack
 Bottom

LRU Group Headers

Current Physical Memory
Size

0 0

Figure 4. The optimized structure for LRU group headers.

group header array is used to find the group boundaries, sinceonly
the elements at these boundaries need to be updated. Algorithm 1
shows the basic steps that must be taken for every page recorded in
the PAL to maintainλ histograms for the LRU replacement policy.
Note that the group sizeg is defined by software and can change
according to the desired level of precision forλ.

A further optimization is possible based on the observationthat
at any instance in time, we are only interested inλ at the point
corresponding to the amount of physical memory allocated tothe
virtual address range under study and the slope ofλ around that
point. Hence, the LRU stack can be divided into 4 groups as shown
in Figure 4: the topM − g pages, whereM is the current physical
memory allocated to the address range, two groups ofg pages on
both sides ofM , and all the remaining pages at the bottom of the
LRU stack. With this optimization, only four entries need tobe
updated on each page access to maintainλ.

4. Example Use Cases
In this section we describe several ways that the information pro-
vided by PATH, and the LRU stacks and MRC curves that are con-
structed by software, can be used to implement sophisticated mem-
ory management strategies, including adaptive page replacement,
improved process memory allocation, and virtual memory prefetch-
ing. In Section 6 we evaluate their effectiveness.

4.1 Adaptive Replacement Policies

There is a large body of research on page replacement policies [2,
7, 9, 10, 12, 13, 14, 16, 20, 23, 26, 32]. Many of the algorithms
proposed are approximations of LRU with extensions to deal with
sequential and looping patterns for which LRU performs poorly.
The effectiveness of most of these algorithms has only been shown
in the context of file system caching, where precise information on
the timing and order of accesses is available.

Using information from PATH, we have implemented two adap-
tive page replacement algorithms. The first one,Region-Specific
Replacement, attempts to automatically apply the appropriate re-
placement policy on a per-region basis for different memoryre-
gions defined in the application’s virtual address space. The sec-
ond one is the recently proposed adaptive policy calledLow Inter–
Reference Set (LIRS)[13]. We chose to implement LIRS because
it is fairly simple and, for file system caching, has proven tobe
competitive with the best algorithms.

We should note that the algorithms or models that can exploit
information provided by PATH are not limited to the examples
presented in this section. For instance Vilayannur et al. [28] present
a model to proactively predict when a page is not actively used and
hence is ready to be replaced. The model is based on accurately
measuring the distance between consecutive accesses to a page,
which can easily be provided by PATH.

4.1.1 Region-Specific Replacement

The rationale behind region-specific page replacement is the desire
to be able to react individually to the specific access patterns of
each large data structure within a single application. Studies in the
context of file system caching [7] have shown that by analyzing
the accesses to individual files separately, one can model the access
pattern of the applications more accurately. We argue that memory-
consuming data structures (e.g., multidimensional arrays, hash-
tables, graphs) usually have stable access patterns, and bydetecting
these patterns, one can optimize the caching scheme for eachof
these data structures individually.

Most large data structures either reside in contiguous regions
in the virtual address space (e.g., arrays), or could reasonably be
made to do so. For example, one can use custom allocators thatal-
locate correlated data from a pre-allocated pool of virtualmemory.
Lattner and Adve [18] show how to cluster individually allocated,
but correlated, memory items automatically. As a result, large data
structures (e.g., a graph of millions of nodes) have a high probabil-
ity of being located in a large contiguous region of address space.
The contiguity of data structure memory is not an essential factor,
but it simplifies the implementation of region-specific replacement.
For our simulation study, we have assigned a separate regionfor
each large static data structure as well as any largemmapped areas.

We choose the replacement policy by separately, but simultane-
ously, computingλ for each region for both LRU and MRU poli-
cies; and picking the policy that would result in a lower missrate.
To computeλMRU we use the same scheme shown in Figure 4
and Algorithm 1, but with pages ranked in reverse order. Hence,
for each page, we maintain two ranks, one for LRU and the other
for MRU. Given that the rank value is at most 4, the rank can be
represented by two bits, so the space overhead is negligible.

We switch to a new policy only if it is consistently better than
the current policy. The default policy is LRU. If a region is being
accessed in a looping pattern, it will have lower values forλMRU ,
but if the region is being accessed in temporal clusters,λLRU will
have lower value.

With region-specific page replacement, it is necessary to decide
how many physical pages to allocate to each region. At the endof
each epoch, we use the computedλ values for the epoch to calculate

how much memory each region actually needs. We definebenefit
andpenalty functions for each region as follows:

benefitr(g) = λr,p(M − g) − λr,p(M)
penaltyr(g) = λr,p(M) − λr,p(M + g)

and balance memory among regions within a process address space
by taking pages away from regions with low penalty and awarding
them to the regions with higher benefit. The number of regionsin
an application is typically small (e.g., usually less than 10). Thus,
balancing memory within a single application at the end of each
epoch is not a costly operation.

4.2 Process Memory Allocation

In most general-purpose operating systems today, memory isallo-
cated to a process on-demand, in response to a page fault, from a
global pool of pages. All pages are equal candidates for replace-
ment, irrespective of the process to which they belong. The actual
amount of memory allocated to each process is a direct function of
its page fault rate and the page replacement policy in use. Processes
that access more pages than others over a period of time will be al-
located a larger number of pages, since they fault on more pages
and keep their own pages recent. Global page replacement hastwo
major advantages. First, it is simple and easy to implement with
little overhead. Second, for workloads in which applications have
similar access patterns, global page replacement naturally tends to
minimize the total number of page-faults. Despite its wide adop-
tion, global page replacement has two significant shortcomings:

Sub–optimal System Throughput:Global page replacement
assumes each application receives the same benefit when given an
extra page. In reality, however, one application’s throughput may
rise sharply as it is given more pages, whereas others may see
no performance gains. If the goal is to maximize overall system
throughput, pages should be taken away from processes that derive
little benefit from them and given to processes that benefit the most.

Lack of Isolation and Unfair Prioritization: Global page re-
placement does not guarantee any level of service for applications.
So-called “memory hogs” can starve applications with even asmall
working set size [4]. Similarly, in a system under memory pressure,
process prioritization done only through CPU scheduling can be-
come ineffective. Chapin identified the prioritization problem due
to lack of memory isolation in operating systems, and motivated
the concept ofmemory prioritization[6].

Our approach to optimizing throughput is similar to the greedy
algorithm used by Zhouet al.[33] with a different level of hardware
integration. In this approach, each process is initially allocated an
equal amount of physical memory. At each memory allocation step,
λ is calculated for all processes, andpenaltyP andbenefitP for
processP are calculated as follows:

benefitP (g) = λp(M) − λp(M + g)
penaltyP (g) = λp(M − g) − λp(M)

The greedy algorithm takesg pages away from the process with the
least value forpenaltyP (g), and assigns them to the process with
the highest value forbenefitP (g).

To address unfair prioritization, different policies can be imple-
mented usingλ. For example, physical memory may be partitioned
to balance the miss rates of concurrently running applications. We
are continuing to explore different schemes for fairness and process
isolation using fine-grained memory access information provided
by PATH.

4.3 Virtual Memory Prefetching

Increases in I/O bandwidth over the years now allow for aggres-
sive and speculative prefetching of memory pages. An aggressive
prefetching scheme, however, risks replacing pages that are more
valuable (to the same or other applications) than those prefetched.

Proximity
Set

P5
P4

P7

P3

P2

P1

P63

8

1 4

4
11

Figure 5. Page Proximity Graph. The shaded area shows the
prefetch set for page P1 when traversing to a depth of 2.

A simple operating system-level prefetching approach is based
onspatial locality: pages adjacent to the faulted page in the virtual
address space are candidates for prefetching on the assumption
that they will be accessed soon. More precisely, whenever a page-
fault happens, the nextw pages in the address space are prefetched
from the swap space, wherew could be either fixed or dynamically
adjusted based on how accurately the prefetching policy hasbeen
performing. This scheme is effective in many cases, since large,
memory-consuming applications often access pages in contiguous
chunks that are much larger than a virtual page. However, there are
important classes of applications that have stable access patterns,
but with little or no spatial locality.

As an alternative, we have implemented a prediction model
similar to a Markov predictor [15] that incorporates the temporal
proximity of accesses to pages as the key factor. We use the LRU
stack to find temporal proximity among pages, similar to recency-
based prediction models, such as the one proposed by Saulsbury
et al. [25]. Note that the LRU stack must be precise to provide
accurate information on the proximity of page accesses. As we
showed in Section 3.1, the LRU stack is accurately maintained by
using the PATH-generated information.

Our model uses a weighted graph, called thePage Proximity
Graph (PPG), which identifies how often two virtual pages are
accessed shortly after each other. For each pagep, we maintain a
Proximity Set, Xp, where|Xp| is at mostD pages. Figure 5 shows
a simple example of a PPG whereD is equal to 8.

The PPG is updated on each page fault as follows. A window
of Wscan pages in the LRU stack is considered, starting from the
current location of the faulted page,p, towards the top of the stack.
If any page,q, in the scan window is already inXp, the weight
on (p, q) is incremented by one. Otherwise,q is considered as a
candidate to be added toXp. The weight to all other nodes inXp

that do not appear in the scan window is decremented to decay
obsolete proximity information. If the weight on any edge(p, s)
reaches zero,s is removed fromXp.

Prefetching is initiated whenever a page fault occurs on a page,
such asp. To generate the set of pages to prefetch, the PPG is
traversed, starting fromp, in a breadth-first fashion, and all pages
encountered are added to the prefetch set. If a page in the prefetch
set is already resident in memory, it will be artificially touched
to prevent the page replacement algorithm from evicting it,under
the assumption that it will likely be accessed soon. In Figure 5,
the gray region shows the prefetch set when starting fromP1 and
traversing to a depth of 2. The deeper the breadth-first traversal,
the more speculative prefetching will be. One can dynamically
adjust the depth of the traversal according to the current prefetching
effectiveness and available I/O bandwidth.

5. Experimental Framework
We used Bochs [3], a widely used full-system functional simulator
for the IA-32 architecture, to run the applications and record their

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 300 350 400 450 500 550 600 650 700 750 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 450 500 550 600 650 700 750 800 850 900

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

(a) LU cont. (FMM, MG, and SP) (b) Ocean cont. (Ocean non-cont.)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 550 600 650 700 750 800 850 900 950 1000 1050

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

(c) BT (FFT and MrBayes) (d) SPECJbb (LU non-cont. and CG)

Figure 6. Projected execution time of selected applications with different replacement policies. The applications in parenthesis are those
with similar behavior.

memory accesses. This memory trace was then fed to a simula-
tor that simulates the memory-management algorithms in a multi-
programmed environment to obtain the page fault rate. To estimate
execution time, we first timed the execution of all workloadson an
AMD Athlon 1.5GHz system with enough memory to ensure that
no page faults occurred. Then, we calculated aprojected execution
timegiven the page fault rate determined by simulation.

The projected execution time is calculated as follows:

Projected_Exec_Time = Exec_Time0 + WaitPF

WaitPF = Average_LatencyPage_Fault ∗ Total_Page_Faults

whereExec_T ime0 is the execution time measured when no page
fault occurs. We assume that once a process faults on a page, it will
be blocked forAverage_LatencyPage_F ault cycles; we use a fixed
value of one million CPU cycles forAverage_LatencyPage_F ault.
This value conservatively underestimates the cost of page faults as
the average disk access latency of even fast disks is on the order of
a few milliseconds.

5.1 Applications

We evaluated the effectiveness of PATH on a set of memory-
consuming applications that we chose from various benchmark
suites: six applications from Splash-2 [29], four from the NAS Par-
allel Benchmark (NPB) suite [22], SPECjbb2000 [27], MMCubing
from the Illimine data mining suite [11], and MrBayes, a Bayesian
inference engine for phylogeny [21]. We did not include SPEC
CPU benchmarks, since they have fairly small memory footprints.

We ran the applications with large problem sizes within the
practical limits of the simulation environment (e.g., on the order
of a few hundred megabytes). However, all of these applications
will consume up to tens of gigabytes of memory for large but still
realistic problem sizes. For our experiments, we collectedmemory
traces that cover the execution of a few hundred billion instructions
for each application. Awarm uptime is considered at the beginning
of the simulation in which no measurement is done.

6. Experimental Results
6.1 Adaptive Replacement Policies

Figure 6 shows the effect of using different replacement policies
on execution time as memory size is varied. Due to space limita-
tions, we show the results only for a set of four applicationswith
representative behavior.

For the great majority of applications, using one of the adaptive
policies resulted in a significant improvement in the projected exe-
cution time (e.g., around 500% forLU ont.). Comparing region-
specific and LIRS policies, in some cases one performs slightly
better than the other and vice versa, but generally their difference is
not significant. There are also rare cases in which one of the adap-
tive policies performs slightly worse than the basic LRU algorithm
(e.g.,Oean for LIRS andSPECJbb for region-specific). Note that
most of the benefit of both LIRS and region-specific policies are
the result of having accurate page access information from PATH.

6.2 Process Memory Allocation

To demonstrate the benefits of fine-grained memory access pattern
information for local (per-process) page replacement schemes, we
show that total system throughput (in terms of InstructionsPer Cy-
cle) can be improved over a traditional global replacement strategy.
In this experiment, we simulate two applications running simulta-
neously:SPECJbb andBT. Without loss of generality, to make the
experiment more clear, we assumed that the IPC of both applica-
tions is 1 when running in isolation. As noted in Section 5, each
page fault is assumed to have a fixed latency of one million cycles.
We used a warm-up time of 30 billion instructions and a running
time of 60 billion instructions combined.

Figure 7 (a) shows the average IPC for both applications when
run with global LRU replacement; Figure 7 (b) shows the average
IPC when the applications run with local LRU replacement and
memory allocation set to maximize throughput. The trend in IPC
is similar for both setups; however, our local allocation policy
achieves higher overall IPC, needing roughly 18% fewer cycles

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

IP
C

Cycles (billion)

Multi-Process Global LRU

SpecJBB
BT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

IP
C

Cycles (billion)

Local Allocation (Performance)

SpecJBB
BT

(a) Global LRU (IPC) (b) Local (Maximizing Throughput) (IPC)

Figure 7. Global and Local Allocation policy in multi-programmed scenario: SpecJBB and BT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 300 350 400 450 500 550 600 650 700 750 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 1000

 2000

 3000

 4000

 5000

 6000

 150 200 250 300 350 400 450 500

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 550 600 650 700 750 800 850 900

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

(a) LU Non-cont. (MMCubing, and MrBayes) (b) MG (SP, LU cont., BT, FFT, and Ocean) (c) SPECJbb (FMM)

Figure 8. The effect of prefetching on the projected execution time. In parenthesis are applications which present similar behavior.

 0

 50

 100

 150

 200

 250

 300 350 400 450 500 550 600 650 700 750 800

I/
O

 (
M

B
 i

n
 a

 b
il

li
o

n
 i

n
s

tr
s

)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 250 300 350 400 450 500

I/
O

 (
M

B
 i

n
 a

 b
il

li
o

n
 i

n
s

tr
s

)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

 0

 50

 100

 150

 200

 250

 300

 550 600 650 700 750 800 850 900

I/
O

 (
M

B
 i

n
 a

 b
il

li
o

n
 i

n
s

tr
s

)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

(a) LU Non-cont. (MMCubing, and MrBayes) (b) MG (SP, LU cont., BT, FFT, and Ocean) (c) SPECJbb (FMM)

Figure 9. The effect of prefetching on the required I/O bandwidth. In parenthesis are applications which present similar behavior.

to execute the same number of instructions (145 billion cycles vs.
178 billion cycles for the global strategy). This is mainly becauseSPECJbb derives a higher benefit from extra pages thanBT, while a
global scheme considers the utility of each page to be the same for
both applications.

6.3 Virtual Memory Prefetching

For a selected set of applications, we show the effects of prefetching
on projected execution time and on required I/O bandwidth for both
page-in and page-out operations in Figures 8 and 9, respectively.
The rest of the applications we examined perform similarly to the
ones of shown here, and are, again, classified based on similarity
and listed in parenthesis in the figures.

For the spatial locality-based policy, we set the initial prefetch-
ing window,w, to 64, which can dynamically grow depending on
achieved precision. For the temporal locality-based policy, we set

the size of the proximity set for each page to 10 and the scan win-
dow sizeWscan to 64 pages. The depth of the breadth–first traver-
sal in the PPG graph was limited to 3. Finally, for both algorithms
we set the size of the pool of the pages that are prefetched, but not
accessed yet, to be at most 10% of physical memory.

For many applications, such asMG andFFT, the spatial locality-
based policy is quite effective, both in terms of recall and precision.
The temporal locality-based algorithm (that monitors the sequence
of the accessed pages) is also able to detect regularity in the ac-
cess pattern with similar effectiveness. There are applications, such
asLU non-ont. andMMCubing, however, for which the tempo-
ral locality-based algorithm significantly outperforms the spatial
locality-based one, both in terms of improving performanceand be-
ing precise. Note that the temporal-locality based approach needs
fine-grained information on the sequence of page accesses, which
in our setup is produced by PATH. Remarkably, temporal locality-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

128 256 512 1K 2K 4K 8K 16K 32K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800

128 256 512 1K 2K 4K 8K 16K 32K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

(a) LU Contiguous LIRS (575 MB) (b) Ocean Contiguous LIRS (780 MB)

 0

 50

 100

 150

 200

 250

 300

 350

 400

128 256 512 1K 2K 4K 8K 16K 32K
 0

 10

 20

 30

 40

 50

 60

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

32K16K8K4K2K1K512256128
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

(c) FFT Region-Specific Replacement (576 MB) (d) BT Region-Specific Replacement (515 MB)

Figure 10. The effect of PAB size on the projected execution time and runtime overhead for page replacement algorithms.

 0

 50

 100

 150

 200

 250

 300

128 256 512 1K 2K 4K 8K 16K 32K
 0

 1

 2

 3

 4

 5

 6

 7

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

128 256 512 1K 2K 4K 8K 16K 32K
 0

 1

 2

 3

 4

 5

 6

 7

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

(a) MMCubing Prefetching (234 MB) (b) LU Non Contiguous Prefetching (312 MB)

Figure 11. The effect of PAB size on the projected execution time and runtime overhead for prefetching algorithms.

based prefetchingreducesthe I/O bandwidth requirements forLUnon-ont. because artificially touching pages in the prefetched set
prevents them from being replaced. Finally, for some applications
such asSPECJbb, neither prefetching algorithm is effective.

6.4 Effect of PAB Size

For some of the applications that benefit from fine-grained page ac-
cess information, we evaluate the effect of different PAB sizes on
the projected execution time and the runtime overhead. Figures 10
and 11 show this effect for page replacement and prefetchingalgo-
rithms, respectively. In these experiments, we vary the size of the
PAB from 128 to 32K entries. As the PAB size increases, we expect
that an increased number of page accesses are filtered by PATHand
thus the page access information generated becomes less accurate.
At the same time, we expect processing overhead to decrease as
fewer page accesses are recorded.

As we see in these graphs, runtime overhead drops significantly
as PAB size increases. At the same time, the projected execution
time does not seem to be very sensitive as the PAB size is increased
from 128 to 2K entries. One exception isFFT with LIRS (shown
in Figure 1). Overall, a 2K-entry PAB seems to be a good tradeoff
between overhead and accuracy.

6.5 Analysis of Overhead

In this section, we compare PATH’s runtime overhead to the
software-only approach. To measure PATH’s basic overhead,we
emulatedexceptions generated by PATH in a real environment us-
ing a 1.5GHz AMD Athlon processor. For each application, we
collected a trace of PAL overflow exceptions along with the con-
tent of the PAL at the time of exception. Each overflow event is
time-stamped using the number of instructions retired since the
start of the application. We thenreplayedthese traces by artificially
generating exceptions at the same rate as in the trace by using hard-
ware performance counter overflow exceptions. At each exception,
we read the contents of the PAL from the trace and updated the
LRU stack and MRC data structures. To calculate the overhead, we
measure the total number of CPU cycles needed to execute a cer-
tain number of application instructions (e.g. a few tens of billions),
with and without PATH exceptions.

The software-only approach was implemented in Linux-2.6.15.
We measure only the cost of maintaining the active set which
includes the cost of extra page protection faults, page table walks
to set the protection bits, flushing the corresponding TLB entries,
and occasionally trimming the active set using CLOCK.

O
ce

an
 (P

AT
H

)

O
ce

an
 (S

O
FT

)

LU
-n

on
c.

 (P
AT

H
)

LU
-n

on
c.

 (S
O

FT
)

M
G

 (P
AT

H
)

M
G

 (S
O

FT
)

M
rB

ay
es

 (P
AT

H
)

M
rB

ay
es

 (S
O

FT
)

C
G

 (P
AT

H
)

C
G

 (S
O

FT
)

M
M

C
ub

in
g

(P
AT

H
)

M
M

C
ub

in
g

(S
O

FT
)

FF
T

(P
AT

H
)

FF
T

(S
O

FT
)

LU
-c

on
. (

PA
TH

)

LU
-c

on
. (

SO
FT

)
FM

M
 (P

A
TH

)

FM
M

 (S
O

FT
)

BT
 (P

AT
H

)
BT

 (S
O

FT
)

SP
EC

JB
B

(P
AT

H
)

SP
EC

JB
B

(S
O

FT
)

SP
 (P

AT
H

)
SP

 (S
O

FT
)�

��

��

��

��

��

��

��

	�

�

���
���

���

��

��

��

���

���

�
�

��
�
��
�
��

��
��

�
��
�
�

Figure 12. Runtime overhead of PATH-generated information compared to the software-only approach (SOFT). To help visualize the
comparison, all runtime overhead numbers larger than 100% are truncated.

Figure 12 shows the runtime overhead of both PATH and the
software-only approach across the selected set of applications, as a
function of active set size (PAB size in PATH). There are a num-
ber of important observations. First, the overhead of the software-
only approach is high for a number of applications (e.g.,FFT,LU-non., MMCubing andSPECJbb) even with a fairly large ac-
tive set size. Second, the runtime overhead of PATH is very small in
all applications if a large PAB (e.g., 32K) is used. For the designed
2K size, the overhead of the PATH remains less than 3% in all but
two applications (LU-non., and SPECJbb for both of which the
overhead is less than 6% with a 2K-entry PAB). Such a small over-
head is easily paid off by the substantial performance improvement
achieved by the PATH-generated information when the systemis
under memory pressure. Note that the OS can turn off PATH when
the system is not under memory pressure, and as a result therewill
not be any unwanted runtime overhead.

7. Related Work
Zhou et al. [33] suggest the use of a custom-designed hardware
monitor on memory bus to efficiently calculate MRC online. In
their approach much of the overhead of computing MRC can be
avoided by offloading to hardware almost completely. In contrast,
we argue in favor of having a simpler hardware that provides lower-
level but more generic information about page accesses thatcan
be used to solve many problems including the memory allocation
problem. We have shown that with the use of fine-grained page
access information the operating system can make better decisions
on at least three different problems. In terms of hardware resources
required, the data structures in PATH are simpler and smaller, and
unlike the MRC monitor in Zhouet al.’s approach, do not grow
proportionally with the size of system physical memory.

Cooperative Robust Automatic Memory Management(CRAMM)
collects detailed memory reference information to be used to adjust
the heap size of a Java virtual machine dynamically in order to pre-
vent a severe performance drop during garbage collection due to
paging [30]. The authors have used the software-only approach to
track MRC in order to predict memory usage and adjust the JVM

heap size accordingly. To reduce overhead, CRAMM dynamically
adjusts the size of the active set by monitoring runtime overhead.
Such an approach is presumably effective in tracking MRC for
JVM’s heap size. However, our results show that for many mem-
ory intensive applications, increasing the size of the active set will
result in significant performance degradation of memory manage-
ment algorithms.

Tracking memory accesses at the hardware level has been sug-
gested by other researchers, although to address differentproblems.
For instance, Qureshi et al. [24] suggested the use of hardware util-
ity monitorsto monitor memory accesses solely to compute MRC
at the granularity of individual CPU cache lines.

8. Concluding Remarks
Traditionally, operating systems track application memory accesses
either by monitoring page faults or by periodically scanning page
table entries. With this approach, important information on the
reuse distance and temporal proximity of virtual page accesses
that can be used for improving memory management algorithms
is unavailable. Previous work has suggested the use of a purely
software-based approach that uses virtual page protectionto track
page accesses more accurately. While this software-based approach
is effective for some applications, for many applications it incurs
unacceptably high overhead.

In this paper, we proposed novel Page Access Tracking Hard-
ware (PATH) that records page access sequences in a relatively
accurate yet efficient way. We showed how the operating system
can exploit the information provided by PATH to improve mem-
ory management in three different ways: adaptive page replace-
ment, process memory allocation, and virtual memory prefetching.
Our experimental analysis showed that with this hardware support,
significant performance improvements, as high as 500%, can be
achieved for applications under memory pressure. Unlike software-
only approaches, the runtime overhead of PATH remains small(un-
der 3%-6%) across a wide range of applications.

We believe that additional uses of information provided by
PATH will become apparent over time, as we experiment with

a wider variety of memory intensive applications. Two possible
ideas are super page management and page placement in a NUMA
architecture.

An important extension is to explore the use of PATH in a
multiprocessor setup. There are important open issues, such as
how to collectively use PATH traces of parallel applications that
are generated on multiple processors. Similarly, work needs to be
done in perfecting PATH support for multithreaded applications.
Currently, the PATH trace generated for an application running on
a CPU is processed into a single LRU stack or the Page Proximity
Graph. If the application is multithreaded, this approach results
in intermingling traces of several threads into a single aggregate
data structure. As a result, important information about both reuse
distance and temporal proximity of page accesses on a per thread
basis is lost. To solve this problem, simple extensions can be made
to the software layer to keep track of multiple LRU stacks on aper
thread basis.

References
[1] D. A. Bader, U. Roshan, and A. Stamatakis. Computationalgrand

challenges in assembling the tree of life: Problems and solutions.
Proc. of ACM/IEEE conference on Supercomputing (SC), tutorial
session, 2005.

[2] S. Bansal and D. S. Modha. CAR: Clock with adaptive replacement.
In Proc. of the USENIX Conference on File and Storage Technologies
(FAST), 2004.

[3] Bochs. An open source IA-32 emulator.http://bochs.sourceforge.net/.

[4] A. D. Brown and T. C. Mowry. Taming the memory hogs: Using
compiler-inserted releases to manage physical memory intelligently.
In Proc. of the 4th Symposium on Operating System Design and
Implementation (OSDI), San Diego, CA, 2000.

[5] R. W. Carr and J. L. Hennessy. WSCLOCK: a simple and effective
algorithm for virtual memory management. InProc. of the 8th ACM
symposium on Operating systems principles, (SOSP), Pacific Grove,
CA, 1981.

[6] J. Chapin. A fresh look at memory hierarchy management. In Proc.
of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI),
page 130, 1997.

[7] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards application/file-
level characterization of block references: a case for fine-grained
buffer management. InProc. of the 2000 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer
Systems, Santa Clara, CA, 2000.

[8] M. Cox and D. Ellsworth. Application-controlled demandpaging
for out-of-core visualization. InProc. of the 8th conference on
Visualization ’97 (VIS), 1997.

[9] G. Glass and P. Cao. Adaptive page replacement based on memory
reference behavior. InProc. of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems,
Seattle, WA, 1997.

[10] G. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-base pattern
classification in buffer caching. InProc. of the 6th Symp. on Operating
System Design and Implementation(OSDI), San Francisco, CA, 2004.

[11] Illimine. An open–source data mining toolset.http://illimine.cs.uiuc.edu/.

[12] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: an effective
improvement of the clock replacement. InProc. of the Usenix
Technical Conference (USENIX’05), Anaheim, CA, 2005.

[13] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache performance.
SIGMETRICS Performance Evaluation Review, 30(1), 2002.

[14] T. Johnson and D. Shasha. 2Q: a low overhead high performance
buffer management replacement algorithm. InProc. of the 20th
International Conference on Very Large Databases (VLDB), Santiago,
Chile, 1994.

[15] D. Joseph and D. Grunwald. Prefetching using markov predictors.
IEEE Transactions on Computers, 48(2):121–133, 1999.

[16] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive caching for
demand prepaging. InProc. of the 3rd International Symposium on
Memory Management (ISMM), Berlin, Germany, 2002.

[17] Y. H. Kim, M. D. Hill, and D. A. Wood. Implementing stack
simulation for highly-associative memories. InProc. of the 1991
ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, San Diego, CA, 1991.

[18] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In Proc.
of the 2005 ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI), Chicago, IL, 2005.

[19] R. L. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
techniques and storage hierarchies.IBM Systems Journal, 9(2):78–
117, 1970.

[20] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead
replacement cache. InProc. of the 2nd USENIX Conference on File
and Storage Technologies (FAST), San Francisco, CA, 2003.

[21] MrBayes. Bayesian inference of phylogeny.http://mrbayes.csit.fsu.edu.

[22] NASA Advanced Supercomputing. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[23] V. Phalke and B. Gopinath. An inter-reference gap modelfor
temporal locality in program behavior. InProc. of the ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, Ottawa, Canada, 1995. ACM Press.

[24] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. InProc. of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 423–432, Washington,
DC, USA, 2006.

[25] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-based TLB
preloading. InProc. of the 27th Intl. Symposium on Computer
Architecture (ISCA), Vancouver, Canada, 2000.

[26] Y. Smaragdakis, S. Kaplan, and P. Wilson. The EELRU adaptive
replacement algorithm.Performance Evaluation, 53(2):93–123,
2003.

[27] Standard Performance Evaluation Corporation (SPEC).SPECjbb2000.
http://www.spec.org/jbb2000.

[28] M. Vilayannur, A. Sivasubramaniam, and M. Kandemir. Pro-
active page replacement algorithm for scientific applications: A
characterization. InProc. IEEE Intl. Symposium on Performance
Analysis of Systems and Software (ISPASS), Austin, TX, 2005.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and methodological
considerations.SIGARCH Computer Architecture News, 23(2):24–
36, 1995.

[30] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. InProc.
of the Symposium on Operating System Design and Implementation
(OSDI), Seattle, WA, 2006.

[31] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A.
Langston, and N. F. Samatova. Genome-scale computational
approaches to memory-intensive applications in systems biology. In
Proc. of the ACM/IEEE conference on Supercomputing (SC), Seattle,
WA, 2005.

[32] F. Zhou, R. von Behren, and E. Brewer. AMP: Program context
specific buffer caching. InProc. of the USENIX Technical Conference
(USENIX’05), Anaheim, CA, 2005.

[33] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic tracking of page miss ratio curve for memory
management. InProc. of the 11th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
Boston, MA, 2004.

	Introduction
	Design of PATH Architecture
	Low-level Software Structures
	LRU Stack
	Miss Rate Curve (MRC)

	Example Use Cases
	Adaptive Replacement Policies
	Region-Specific Replacement

	Process Memory Allocation
	Virtual Memory Prefetching

	Experimental Framework
	Applications

	Experimental Results
	Adaptive Replacement Policies
	Process Memory Allocation
	Virtual Memory Prefetching
	Effect of PAB Size
	Analysis of Overhead

	Related Work
	Concluding Remarks

	undefined:
	undefined_2:
	undefined_3:
	Software Overhead: Off
	undefined_4: Off
	Text6: Appeared in Proc. Intl. Symposium on Memory Management, October 2007, pp. 31-42.

