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Abstract
Multicore processors contain new hardware characteristics that are
different from previous generation single-core systems ortradi-
tional SMP (symmetric multiprocessing) multiprocessor systems.
These new characteristics provide new performance opportunities
and challenges. In this paper, we show how hardware performance
monitors can be used to provide a fine-grained, closely-coupled
feedback loop to dynamic optimizations done by a multicore-aware
operating system. These multicore optimizations are possible due
to the advanced capabilities of hardware performance monitoring
units currently found in commodity processors, such as execution
pipeline stall breakdown and data address sampling.

We demonstrate three case studies on how a multicore-aware
operating system can use these online capabilities for (1) deter-
mining cache partition sizes, which helps reduce contention in the
shared cache among applications, (2) detecting memory regions
with bad cache usage, which helps in isolating these regionsto
reduce cache pollution, and (3) detecting sharing among threads,
which helps in clustering threads to improve locality. Using real-
istic applications from standard benchmark suites, the following
performance improvements were achieved: (1) up to 27% improve-
ment in IPC (instructions-per-cycle) due to cache partition sizing;
(2) up to 10% reduction in cache miss rates due to reduced cache
pollution, resulting in up to 7% improvement in IPC; and (3) up to
70% reduction in remote cache accesses due to thread clustering,
resulting in up to 7% application-level improvement.

Categories and Subject Descriptors C.4 [Computer Sys-
tems Organization]: Performance of Systems—measurement
techniques, modeling techniques; D.4.8 [Operating Sys-
tems]: Performance—measurements, modeling and predic-
tion

General Terms Experimentation, Performance

1. Introduction
The recent emergence of multicore processor architectures
represents a fundamental shift in design and not simply a
transient technology trend. Multicore architectures address
three fundamental challenges in further increasing proces-
sor clock frequencies. First, the widening gap between pro-
cessor and memory speeds has caused processors to spend
most of their time waiting for memory to provide data, mak-

ing frequency increases ineffective. Secondly, energy con-
sumption and heat dissipation of processors, which are tied
to frequency, are approaching their physical limits [12]. Fi-
nally, higher frequencies require deeper execution pipelines,
making the design and verification of already complex pro-
cessors even more challenging. For these reasons, multicore
processors have become the new mainstream architecture,
and hence warrant prime attention from software develop-
ers.

From a software perspective, the ability to utilize the full
potential of numerous execution cores in a single computer
has proven to be difficult, as it involves several layers of
software. At the highest level, either each core is utilized
to run a different application, or a single application mustbe
parallelized, either manually or automatically, into multiple
threads. However, even when application level parallelismis
extracted and expressed explicitly, there are at least two chal-
lenges in achieving scalable performance that are inherentto
multicore architectures:

Contention on Shared Resources: Compared to tradi-
tional SMP (symmetric multiprocessor) systems, individual
cores in a multicore architecture have more shared resources
on the common path. Some of these shared resources include
on-chip shared caches, the memory controller, and the inter-
connect to other processor sockets or the I/O fabric. Having
unregulated contention in any of these shared resources may
result in suboptimal system throughput and hinder scalable
performance.

Non-Uniform Inter-Core Communication Latency:
Unlike conventional SMP systems, due to the increasingly
hierarchical nature of multicore systems, the communication
latency between two cores may vary substantially depending
on their physical proximity. For example, cores on the same
chip or subchip bundle can communicate at least an order of
magnitude faster with each other, through on-chip caches,
than cores that reside on different chips. This aspect of mul-
ticore architectures has similarities to traditional NUMA
(non-uniform memory access latency) multiprocessor sys-
tems. In essence, multicore systems add extra levels to the
memory hierarchy and, as a result, make the non-uniformity
of communication latency much more pronounced than in
traditional NUMA systems.



We believe that dealing with these challenges lies, in part,
within the scope of the operating system. In addition to be-
ing aware of the underlying hardware architecture, the oper-
ating system can extract and incorporate information about
the dynamic nature of the running system, including how
well the hardware, and how well the software applications
are performing, enabling the operating system to manage re-
sources more effectively. In order to do this, the operating
system needs to accurately identify and quantify the latency-
inflicting events in a complex multicore system.

HardwarePerformance Monitoring Units (PMUs), avail-
able in most modern processors, are prime sources of in-
formation on system performance and potential bottlenecks.
PMU capabilities, such as counting and sampling detailed
micro-architectural events, can be used in higher-level anal-
ysis in order to identify the causes of suboptimal system
performance as well as the instructions or data addresses
that are involved in high-latency events. In addition, PMUs
are capable of providing quantitative data on the interaction
among cores in a multicore environment.

In this paper, we provide an overview of our collective ef-
fort, over the last several years, in utilizing the advancedca-
pabilities of modern PMUs to enhance operating system sup-
port on multicore processor systems. Using three case stud-
ies, we demonstrate the agility and low runtime overhead
of PMU-based monitoring, which enables new opportunities
for multicore runtime optimizations at the operating system
level. We show how raw, low-level PMU-generated infor-
mation can be used to build higher level abstractions that
accurately identify the intensity of communication or con-
tention among threads. In all three cases, with minor mod-
ifications to the operating system, much of the inter-thread
communication or contention can be reduced, resulting in
substantial performance improvements when running work-
loads such as SPECcpu2000, SPECcpu2006, SPECjbb2000,
SPEComp2001, VolanoMark, and RUBiS.

We have structured this paper as follows. First, we de-
scribe the challenges of bottleneck analysis on a traditional
single-core processor. Techniques developed for bottleneck
analysis serve as conceptual building blocks for analyz-
ing the performance of multiprocessor systems built out of
several multicore chips. We then present two approaches
for dealing with the issue of contention in shared on-chip
caches. The first approach, which we describe in Case
Study 1, uses guided software cache partitioning to address
the issue of uncontrolled contention among applications in
a multiprogrammed environment, resulting in up to 27%
IPC (instructions-per-cycle) improvement. The second ap-
proach, which we describe in Case Study 2, reduces the
harmful effects of pollution in a shared cache within a single
multithreaded application, resulting in up to 10% reduction
in cache miss rates, leading up to 7% IPC improvement. Fi-
nally, in Case Study 3, we describe our effort in addressing
the issue of non-uniform inter-core communication latency

by automatically detecting sharing among threads and then
migrating threads to improve locality, which results in up to
70% reduction in remote cache accesses, leading up to 7%
application-level improvement.

2. Hardware Performance Monitoring
Most modern microprocessors contain PMUs that can be
used to monitor and analyze performance in real time. By
using several registers, often calledhardware performance
counters (HPCs), PMUs support the counting or sampling
of detailed micro-architectural events. The number of HPCs
in today’s PMUs is often too small for online performance
monitoring of a system. To cope with this, we use fine-
grained HPC multiplexing to make a much larger set of
logical HPCs available [3]. In this section, we describe the
two PMU features that we have extensively utilized in our
operating system-level optimizations:stall breakdown, and
data address sampling.

2.1 Stall Breakdown

It is often difficult to directly interpret the values of perfor-
mance counters because they count detailed low-level micro-
architectural events of a complex system consisting of many
interacting components. Measuring the impact of each indi-
vidual event on processor performance is non-trivial because
several unpredictable factors are involved. For instance,the
significance of having a 1% miss rate in the L2 cache de-
pends on the penalty that each L2 miss incurs directly (by
causing latency in the execution of instructions) or indirectly
(by causing other execution pipeline structures to saturate, or
other useful cache lines to be replaced). This penalty is even
more difficult to measure in out-of-order processors because
many instructions are simultaneously in-flight so as to hide
memory latency.

Our approach in tackling this problem on out-of-order
pipelined processors is to build a simplified average cycles-
per-instruction (CPI) breakdown model, where processor cy-
cles are attributed to eithercompletion cycles or stall cy-
cles [3]. A completion cycle is a cycle in which there is at
least one instruction at the end of the execution pipeline,
which can be retired. In contrast, a stall cycle is a cycle
in which there are no instructions at the end of the execu-
tion pipeline, due to a variety of reasons, and therefore there
are no instructions that can be retired. By exploiting PMU
features, such as on IBM POWER processors, stall cycles
can be attributed to specific causes, such as a cache miss,
branch misprediction, or TLB (translation look-aside buffer)
miss. Figure 1 shows an example of the stall breakdown for
fft during execution. The key observation in this particular
example is that misses in the TLB address translation data
structures are a primary source of many stalls during certain
phases of the program.

While the stall breakdown model may involve some in-
accuracies, focusing solely on stall cycles is adequate to



Figure 1. The stall breakdown offft over a period of 40 billion-
cycles, obtained using the IBM POWER5 PMU.

.

identify potential performance bottlenecks in the processor,
which often cause many of these stall cycles. Our experience
with this model in several case studies shows that having the
operating system focus on alleviating significant sources of
stall indeed results in substantial performance gains at the
application level [31, 34, 36, 40].

2.2 Data Address Sampling

Hardware support for data address sampling is present
in many modern micro-architectures including the IBM
POWER5 [30], Intel Itanium [16], Sun UltraSparc [26], and
AMD 10h processors (e.g., Barcelona and Shanghai) [1]. In
most architectures, a specialdata address register (DAR) is
dedicated for sampling data addresses. The DAR is automat-
ically updated by the PMU with the operand of a memory
instruction (load or store) upon certain user-specified events
such as a data cache miss or a TLB miss.

Hardware data address sampling is particularly useful for
analyzing the performance of multicores since the interac-
tion among cores typically occurs through the sharing of
data. Therefore, if the PMU is capable of identifying the
source from which a sampled data address is fetched, one
can characterize the specific data sharing and general con-
tention patterns of multithreaded applications running on
multiple cores. In Section 5 we show how the operating sys-
tem can characterize the sharing patterns of threads using
data sampling features of the POWER5 multicore processor
in order to co-locate sharing threads as close to each other as
possible.

Furthermore, by having accurate information on the gen-
eral cache access pattern of applications, one can measure
the intensity of contention on the shared on-chip cache and
identify its patterns. In this paper we will provide two exam-
ple case studies of this type of analysis. The first example, in
Section 3, is based on the fact that the cache requirements of
applications can be estimated by knowing the reuse-distance
of individual cache lines. The second example, in Section 4,
is based on the observation that some address regions con-
stantly pollute the cache without benefiting from it.

Figure 2. Partitioning a shared cache.

2.3 Summary and Preview

In the subsequent sections, we present three case studies
in which we implement operating system-level optimiza-
tions that target multithreaded or multiprogrammed work-
loads on multicore systems. We show how stall breakdown
and data address sampling can be used effectively in these
optimization techniques. At the end, we propose minimal
PMU extensions that we believe will facilitate the develop-
ment of additional runtime optimization techniques for mul-
ticore systems, and are sufficiently simple to be implemented
in future mainstream multicore processors. i

3. Case Study 1: Reducing Cache Contention
3.1 Problem Description

On-chip shared caches that exist in most multicore proces-
sors are often contended resources because several cores can
freely access the entire cache. This cache is traditionallynot
managed by the operating system, leading to uncontrolled
cache contention among applications. This contention oc-
curs because the current cache line replacement policy of
least-recently-used (LRU), implemented in hardware, does
not differentiate between cache lines belonging to different
applications. This indifference can lead to scenarios where
an application running on one core continually evicts use-
ful cache content belonging to another application running
on another core without obtaining a significant improvement
for itself. Consider, for example, an MP3 player that streams
through a lot of data without reuse. It severely and continu-
ously pollutes the entire shared cache with an attendant dras-
tic effect on the performance of other applications running
on other cores of the processor.

Uncontrolled cache sharing also reduces the ability to
enforce priorities and to provide quality-of-service (QoS)
guarantees. For example, a low priority application may run
on one core, rapidly consuming the entire shared cache,
causing it to remove the working set of a higher priority
application that is running on another core.

3.2 Our Solution

The problem of contention, caused by uncontrolled cache
sharing among applications, can be addressed by partition-
ing the shared cache among the applications, such as shown
in Figure 2. In effect, a large shared cache is partitioned into



Figure 3. Page and cache line mapping.

several smaller private caches, with each partition assigned
to a different application. Extensions could include creating
partitions that allow various degrees of sharing among spe-
cific applications, ranging from completely private to fully
shared.

Assuming that the partitioning mechanism is in place, the
next requirement is to determine an appropriate cache par-
tition size to allocate to each application while considering
global system benefit. In general, the larger the allocated par-
tition, the better the performance. However, marginal gains
typically diminish as the partition size becomes larger, and at
some point, it may be more profitable to allocate larger parti-
tion sizes to other applications that would experience larger
marginal gains.

Below, we describe how the cache partition mechanism
can be implemented purely in software by the operating
system, and we describe offline and online techniques to
determining the appropriate partition sizes using PMUs.

3.2.1 Software-Based Cache Partitioning

Our software-based implementation of the cache partition-
ing mechanism is described fully in [34]. We implemented
the mechanism in the operating system to enable partitioning
of the on-chip shared L2 cache by guiding the allocation of
physical pages. More specifically, to provide software-based
cache partitioning, we simply apply the classic technique
of operating system page-coloring [5, 23, 29]. When a new
physical page is required by a target application, the operat-
ing system allocates a page that maps onto a section of the
L2 cache assigned to the target application. By doing so for
every new physical page request of the target application, we
isolate L2 cache usage of the application.

Figure 3 illustrates the page-mapping technique in gen-
eral. In a physically indexed L2 cache, every physical page
has a fixed (unchangeable) mapping to a physically contigu-
ous group of cache lines. The figure shows that there are
several physical pages labeledColor A that all map to the
same group of physically contiguous L2 cache lines labeled
Color A. The figure also shows that physical pages of the
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Figure 4. (a) The cache stall-rate curve ofvortex obtained using
PMUs, and (b) The cache miss-rate curve ofvortex obtained both
offline and online. The sampling frequency in both cases is set to
1 billion cycles.

same color are given to the same application. For example,
physical pages ofColor A have been assigned solely to ap-
plication processA. The operating system is responsible for
this mapping of virtual-to-physical memory pages and it is
this capability that enables control of L2 cache usage and
isolation.

We implemented this mechanism in Linux by modify-
ing the physical page allocation component of the operating
system. Other researchers have also applied this technique,
demonstrating its viability [9, 10, 21, 22]. Architecture re-
searchers have even proposed hardware designs and imple-
mentations of the cache partitioning mechanism for poten-
tial inclusion in future multicore processors [7, 14, 17, 18,
19, 27, 28, 33].

3.2.2 Determining Partition Size

In terms of determining the appropriate partition size, there
are three possibilities: (1) the appropriate size could already
be well-known to the system administrator based on domain
expertise; (2) it could be determined by trying all possible
sizes; (3) the appropriate size could be predicted by using
an analytical model of allocated cache partition size versus
resulting performance impact.

One simple offline method of determining the appropri-
ate partition size is to run each application multiple times
in isolation, each time using a different partition size and
measuring its resulting performance. The metric for measur-
ing performance could be instructions-per-cycle (IPC), ex-
ecution pipeline stall rate due to data cache misses such as
shown in Figure 1, or cache miss rate, which can all be mea-
sured using PMUs. Higher application-level metrics are also
possible, such as total run time, throughput, latency, or inter-
active response times.

This particular offline method identifies the entire trade-
off spectrum between allocated cache partition size and re-
sulting performance of an application. An example of such a
trade-off spectrum, obtained using PMUs, is shown in Fig-
ure 4(a). It shows the resulting execution pipeline stalls due
to cache misses as a function of the cache size. We refer to
this particular graph as the cachestall-rate curve.



Combo twolf+equake vpr+applu ammp+3applu’s
IPC 27% fortwolf 12% forvpr 14% forammp

Improvement 0% forequake 0% forapplu 0% for 3 applu’s

Table 1. The effect of cache partitioning using online L2 MRCs on the
IPC of selected multiprogrammed workloads. The IPC improvements are
measured compared to the default Linux scheduler (uncontrolled sharing).

As far as software-basedonline methods of determining
the appropriate partition size, only trial and error techniques
have been employed so far, although they typically use a
form of binary search to reduce the number of trials [19, 22].
With these approaches, determining the best sizes for more
than two applications is non-scalable because the number
of possible size combinations grows exponentially with the
number of applications.

Using PMUs, however, we have developed a technique
to obtain the L2 cachemiss-rate curve (MRC) online [35].
MRC is a curve that shows the cache miss rate as a func-
tion of cache size for an application at a particular point
in time. We show that using MRCs is a practical online
means to determining the optimal cache partition size, capa-
ble of running on commodity processors. Figure 4(b) shows
an example of the L2 MRC captured online, with the miss
rate expressed in terms of misses-per-thousand-instructions
(MPKI).

To obtain the online L2 MRC on a POWER5 multicore
processor, we exploit its data address sampling capability, as
described in 2.2. We record the data address upon L1 data
cache miss events to create a trace of nearly all L2 cache
accesses over a short period of time. This trace is then fed
into Mattson’s stack algorithm to produce the L2 MRC [24].

3.3 Performance Results

We demonstrate in [34] that a software-based cache parti-
tioning mechanism can rectify the problem of uncontrolled
cache sharing. Our implementation, in the Linux 2.6.15 op-
erating system running on an IBM POWER5 multicore pro-
cessor, is effective in reducing cache contention in multipro-
grammed SPECcpu2000 and SPECjbb2000 workloads. By
exploiting the PMU, our online method of determining cache
partition sizes is capable of producing accurate MRCs for the
L2 cache [35]. Figure 4(b) illustrates an example of this ac-
curacy. Using online L2 MRCs to size cache partitions, IPC
improvements of up to 27% were achieved for one of the
applications without affecting the IPC of the other simulta-
neously running applications, as shown in Table 1.

4. Case Study 2: Reducing Cache Pollution
4.1 Problem Description

Cachepollution can be defined as the displacement of a
cache element by a less useful one. In the context of proces-
sor caches, cache pollution occurs whenever a non-reusable
cache line is installed into a cache set, displacing a reusable

cache line. Reusability is determined by the number of times
a cache line is accessed after it is initially installed intothe
cache but before its eviction.

Processor cache pollution is an important contributor to
performance degradation caused by interference between
threads sharing a cache on a multicore processor. The use of
multithreaded applications is particularly interesting since it
is one class of applications for which coarse-grain, process-
level cache partitioning, as discussed in the previous section,
is not applicable.

4.2 Our Solution

To attack the problem of pollution in shared caches, we
extend the operating system-based cache-filtering system
presented in [31]. The idea behind the operating system-
based cache-filtering system is to identify application pages
that receive little benefit from caching, and restrict those
pages to a small portion of the cache, which we refer to as
the pollute buffer. Restricting the cache space occupied by
pages that cause cache pollution allows for more efficient
use of the remainder of the cache space. The expected result
is an overall increase in cache performance.

4.2.1 Detecting Cache Pollution Online

A metric commonly used to classify polluting cache lines is
reuse distance. That is, cache lines with a large or infinite
reuse distance, pollute the cache by displacinguseful cache
lines, which are those with a smaller reuse distance.

As a practical online approximation of reuse distance, we
usemiss rate, which can be calculated from events available
in the PMU of the processor. To identify pages that cause
pollution in the shared cache, our system monitors L2/L3
cache hits and misses, recording their virtual addresses and
constructing an online page-granularity cache profile of the
application. This is done by using the data address sampling
technique described in Section 2.2. Specifically, we are in-
terested in monitoring cache pollution at the last-level cache
(L3, in our platform) before reaching main memory. For this
purpose, we apply data sampling to monitor L3 hits and
misses, and derive per-page L3 miss rates.

In a multicore system, all cores cooperate in constructing
the profile by independently monitoring the locally sched-
uled thread. Samples from all cores are aggregated per ad-
dress space. This enables the creation of online cache pro-
files for both multiprocessed workloads, which have sepa-
rate address spaces, and multithreaded applications, which
have a single shared address space.

An example of a multithreaded page-granularity online
cache profile is depicted in Figure 5. It shows the online
L3 profile of the swim benchmark from SPEComp2001,
executing with 2 threads on a POWER5 multicore processor.
The depicted profile clearly shows that there are regions in
the address space that do not benefit from caching because
their pages exhibit low hit rates. For example, the region
spanning virtual page index 100,000 to 150,000 does not
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Figure 5. Page-granularity L3 cache miss rate characterization of
swim-OMP with 2 concurrent threads, obtained using PMUs. The
histogram shows a compact view of the address space, with each
bar representing the number of accesses to a page.

benefit from the cache because it experiences all misses and
no hits.

4.2.2 Software-Based Cache Pollute Buffer

With PMUs providing online information about cache pol-
lution, the operating system can effectively reduce this prob-
lem by restricting the pages identified as cache polluters to
a small partition in the cache, called thepollute buffer. The
pollute buffer serves as a staging area for cache lines that ex-
hibit bursty or no reuse before eviction. By restricting cache
unfriendly pages to the pollute buffer, we eliminate compe-
tition between pages that pollute the cache and pages that
benefit from caching.

In our system, the pollute buffer is implemented using
page coloring as described in Section 3.2.1. In essence, a
single partition of the cache is designated as the pollute
buffer. The cache indexing of the POWER5 processor allows
for 16 separate partitions. Therefore, our implementation
of the pollute buffer comprises 1/16th of the cache, which
equals to 120 kB of the L2 cache and 2.25 MB of the L3
cache.

Since the address space, and hence virtual-to-physical
page mapping, is shared among multiple threads of a pro-
cess, the pollute buffer is naturally shared among all threads.
In addition, initial experiments with multiprocessed work-
loads indicate that it is beneficial for all processes to share
the same pollute buffer. Therefore, our implementation ded-
icates a single fixed partition to serve as a global pollute
buffer, irrespective of the address space.

4.3 Performance Results

We have evaluated our pollute buffer-based technique on the
SPEComp2001 benchmark suite using the reference inputs,
on a POWER5 multicore processor. In our experiments, we
enabled 2 threads, scheduled on 2 cores located on the same
chip. These cores share a 1.8 MB L2 cache and a 36 MB L3
cache. L3 miss rate reductions of up to 10% were observed,
leading to 7% improvement in IPC.

(a) default (b) clustered

Figure 6. Default versus clustered scheduling. The solid lines
represent high-latency cross-chip communication traffic,while the
dashed lines represent low-latency intra-chip communication traffic
via the on-chip L1 and L2 caches.

5. Case Study 3: Improving Locality
5.1 Problem Description

A key difference between traditional SMP multiprocessors
and systems built out of several multicore processors is that
the communication latency between two cores is not con-
stant but varies depending on their physical proximity. For
cores that reside on the same chip, communication typically
occurs through the shared on-chip cache, with a latency of
10 to 30 cycles. However, cores that reside on separate chips
communicate through the memory interconnect with an av-
erage latency of hundreds of cycles.

Operating system schedulers typically do not take the
non-uniform sharing latencies into account. As a result,
threads that heavily share data will not typically be co-
located on the same chip. Figure 6 shows an example where
two clusters of threads are distributed across the processing
units of two chips. The distribution is usually done as a result
of a dynamic load-balancing scheme in the operating system
scheduler. If the volume of intra-cluster sharing is high, a
traditional scheduling algorithm may place threads as shown
in Figure 6(a), resulting in a lot of high-latency cross-chip
communication, shown by the solid lines. If the operating
system can detect thread sharing patterns and schedule the
threads accordingly, then threads that communicate heavily
could be scheduled to run on the same chip, causing most of
the communication to occur in the form of on-chip L1 or L2
cache sharing, as shown by the dashed lines in Figure 6(b).

However, automatically detecting sharing patterns of
threads is challenging and has been thought to require either
special hardware monitoring support or intrusive instrumen-
tation. In this case study, we briefly demonstrate how the
data address sampling capabilities of the POWER5 PMU
can be used online to efficiently identify high-latency shar-
ing among threads, allowing the operating system to cluster
threads accordingly.

5.2 Our Solution

Our thread clustering approach consists of four phases. In
the first phase, by using the stall breakdown model described
in Section 2.1, execution pipeline stall cycles are broken
down and attributed to various processor components, en-
abling the operating system to determine whether cross-chip



Figure 7. The stall breakdown of VolanoMark, obtained using
PMUs. Stalls due to data cache misses are further decomposed
according to the source of resolution.

communication is substantial. Figure 7 shows an example of
the stall break down for VolanoMark, a multithreaded chat
server workload, where remote cache misses are shown to be
responsible for approximately 7% of the stall cycles. In the
second phase, sharing patterns among threads are tracked us-
ing the data address sampling features of the PMU described
in Section 2.2. In the third phase, threads are clustered based
on their sharing patterns so that threads with a high degree
of data sharing are placed into the same cluster. Finally, the
operating system scheduler attempts to migrate threads so
that threads of the same cluster are as close together as pos-
sible. In this paper, we only briefly describe our PMU-based
scheme for detecting sharing patterns. However, the full de-
tails of our method for sharing detection and thread cluster-
ing are described in [36].

5.2.1 Detecting Sharing Patterns Online

We use data address sampling to monitor the addresses of
remote cache misses and construct a summary data structure
for each thread, calledshMap. Each shMap is essentially a
vector of 8-bit wide saturating counters. Each vector is given
only 256 of these counters (entries) so as to limit overall
space overhead. In essence, each counter corresponds to a
region in the virtual address space and its value represents
the amount of detected sharing of that region for that thread.
We use a region size of 128 bytes, which is the unit of cache
coherence in our system.

Since the number of regions is much larger than the
number of entries in a shMap vector, we use a simple hash
function to map these regions to corresponding entries in
the shMap. A shMap entry is incremented only when the
corresponding thread incurs a remote cache access on the
region. Note that threads that share data but happen to be
located on the same chip will not cause their shMaps to
be updated because they do not incur any remote cache
accesses.

We rely on the PMU to provide us with the addresses
of remote cache accesses. Unfortunately, this feature is not

VolanoMark RUBiS SPECjbb2000
Cache Stall Reduction (%) 32 25 70

Speedup (%) 5 7 6

Table 2. Thread Clustering performance results.

directly available in most PMUs, including our POWER5
PMU. Instead, we use an indirect method to capture the
address of remote cache accesses with reasonable accu-
racy [36]. In this method the addresses of L1 cache misses
are recorded continuously, using the PMU features of the
POWER5 processor. However, a data address sample is
taken only when a performance counter that counts the num-
ber of access to a remote source overflows. As a result, the
“last” L1 data cache miss is likely to be the one to have re-
quired a remote cache access and caused its corresponding
performance counter to overflow.

To cope with the high volume of data, we record and
process only one inN occurrences of remote cache access
events. The value ofN is further adjusted by taking two fac-
tors into account: (i) the frequency of remote cache accesses,
which is measured by the PMU, and (ii) the runtime over-
head.

Also, given the small size of the shMap vector, the poten-
tial rate of hash collisions may become too high. In order to
reduce the collision rate and eliminate its undesired aliasing
effects, we usespatial sampling. Rather than monitor the en-
tire virtual address space, we select a fairly small sample set
of regions to be monitored for remote cache accesses. The
regions are selected somewhat randomly, but there must be
at least one remote cache access on a region to make it eligi-
ble to be selected. These inaccuracies and relaxed conditions
are acceptable because we are only looking for rough indi-
cations of sharing and do not need full accuracy. The under-
lying idea is that once a high level of sharing is detected on
a subset of cache lines, it is a clear indication that the actual
intensity of sharing is high enough to justify clustering.

5.3 Performance Results

We have designed and implemented our thread cluster-
ing scheme in Linux 2.6.15. We used three multithreaded
commercial server workloads to evaluate our work: (1)
VolanoMark, which is an Internet chat server workload;
(2) SPECjbb2000, which is a Java-based application server
workload; and (3) RUBiS, which is an online transaction
processing (OLTP) database workload. The multiprocessor
used in our experiments is an IBM OpenPower 720 com-
puter. It is an8-way IBM POWER5 machine consisting of
2 chips, each with 2 cores, each core containing 2 SMT
(simultaneous multithreading) hardware threads. Table 2
demonstrates a summary of our experimental results which
shows a reduction in remote cache access stalls by up to
70%, and performance improvements of up to 7% accross
the selected applications.



6. Discussion
Advanced PMU capabilities, especially those that are rel-
evant to multicore processor systems, allow us to observe
hardware behavior more precisely and make smarter deci-
sions at the operating system level. We have shown how
advanced PMU features, such as stall breakdown and data
address sampling can be used to create new monitoring ca-
pabilities such as (i) identifying shared data at a fine gran-
ularity, such as at a single cache line, and (ii) measuring
the level of contention in shared on-chip caches. With these
new capabilities, we have demonstrated the value of hard-
ware performance monitoring in dynamically enhancing the
performance of a system composed of multicore processors.

We should note that many of the optimization techniques
that target multicore systems, such as the thread cluster-
ing method presented in this paper, are also applicable to
traditional NUMA (non-uniform memory access latency)
multiprocessor systems, as both architectures share some
basic hardware characteristics such as non-uniform inter-
processor communication latency. In fact, there has been a
vast amount of work done on improving software perfor-
mance in the realm of NUMA systems research from which
the research effort on multicore systems can learn many
lessons [2, 4, 6, 8, 11, 13, 20, 25, 37, 38, 39]. However, in
retrospect, we observe that an important component that was
missing in NUMA systems research is the advanced PMU
features that are now available on commodity processors.

6.1 PMU Extensions

Although we have shown some uses of existing PMUs in
helping us achieve improved performance on multicore sys-
tems, we argue that there are additional PMU features that
would enable further online optimization opportunities, and
yet are sufficiently simple to be implemented in mainstream
processors.

6.1.1 Trace Buffer

The existing mechanism of raising and handling an excep-
tion in order to record each data sample has several draw-
backs. First, it incurs high overhead and substantial measure-
ment perturbation if used at high frequency. Secondly, due
to execution pipeline flushes at exception handler invocation
time, many concurrent memory instructions in the execution
pipeline that are potentially eligible to be sampled will pass
unnoticed, and therefore, the collected data access trace will
be incomplete. Finally, data sampling cannot be conducted
in critical areas such as in the operating system kernel where
interrupts are temporarily disabled.

Based on these observations, we believe that it would be
useful for the PMU to be capable oftracing data addresses
into a small trace buffer without having to interrupt the pro-
cessor to record each individual sample. In this scheme, an
overflow exception would be raised only when the buffer is
full, amortizing the cost of exception handling over many

data samples and also substantially reducing perturbation.
The PMU would also then be capable of recording all eligi-
ble memory instructions, despite having potentially several
of them in-flight.

Intel’s Precise Event-Based Sampling (PEBS) mech-
anism currently implements a similar buffering mecha-
nism [32]. In this mechanism, the user allocates a buffer
in main memory and configures a sampling performance
counter. Once the sampling counter overflows, amicro-assist
consisting of hardware microcode is triggered, which saves
the current state of the execution into the user-designated
memory buffer. In this design, a memory overflow exception
is triggered only when the user buffer is full.

However, there are three important drawbacks with the
PEBS mechanism. First, PEBS does not directly provide the
data address operand of memory instructions. In order to ob-
tain data addresses, the operating system would have to per-
form complex and potentially costly decoding tasks on the
running binary to identify the register operands of memory
instructions. Secondly, PEBS savesall architectural registers
into the memory buffer, making the mechanism unnecessar-
ily expensive, both in terms of its effect on the common-path
execution of the processor and its potentially large mem-
ory foot-print. For most data analysis, recording only data
addresses and their sources would suffice. Finally, PEBS is
aninstruction tagging-based scheme, where specific instruc-
tions are randomly selected and tagged to be monitored by
the PMU while they pass through the stages in the execu-
tion pipeline. The problem with instruction tagging schemes
is that among the many instructions that are flowing in the
execution pipeline, very few instructions (usually one) have
a chance to be tagged, and as a result, potentially many im-
portant data accesses pass unnoticed through the execution
pipeline. This becomes particularly problematic, for exam-
ple, when attempting to capture and analyze reuse-distances
of cache lines, such as done in Section 3.2.2 for online L2
MRC generation, where, at least for a short period of time,
every cache access should be recorded.

6.1.2 Precise Data Source Information

In our experience, it is important to be able to precisely iden-
tify the storagesource from which the data is fetched. Dif-
ferent storage sources include the L1 cache, the local shared
L2 or neighboring private L2 caches (in multicores), remote
L2 caches (in SMP systems), local or remote L3 caches (in
some SMP systems), and local or remote DRAM memory
modules (in NUMA systems). Having the source informa-
tion helps the operating system determine what data item is
experiencing performance problems at which location in the
hierarchy. Currently, there are two alternatives for extract-
ing the data source information, and both have their own
drawbacks. The first, is to use instruction tagging available in
most mainstream processors, which are capable of providing
the source of a cache miss to some extent. This capability is
calledInstruction Marking in the IBM POWER [15] and In-



tel processors [32], andInstruction-Based Sampling (IBS) in
the AMD 10h processors (e.g., Barcelona and Shanghai) [1].
However, as explained above, these instruction tagging ap-
proaches can miss an unknown number of eligible events,
and as a result, it is difficult to precisely control the sam-
pling rate of a particular event.

An alternative is theContinuous Data Address Sampling
capability implemented in the IBM POWER5 processor: the
data address register is continuously updated by the PMU
as memory instructions with operands that match a selec-
tion criterion arrive in the pipeline and are issued. The main
advantage of this approach is that all data addresses used as
operands for memory instructions have an equal chance to be
seen by software. This is an important property as it ensures
that the software has full control over the actual sampling
scheme. Unfortunately, the POWER5 does not provide accu-
rate data source information for each update in the data ad-
dress register, and as result, one must use speculative meth-
ods to determine the source of data indirectly, as described
in Section 5.2.1 for detecting sharing patterns, with some at-
tendant inherent inaccuracies. In essence, what is required
is a continuous data sampling mechanism that records the
source of data along with each data address that is sampled.

7. Concluding Remarks
Multicore processors address fundamental challenges that
have appeared in the evolution of processor architectures,
such as the memory wall, power wall, and design complex-
ity. This fundamental shift in processor architecture requires
extensive support from systems software in order to achieve
the full potential in terms of performance and power effi-
ciency. In this paper, we have demonstrated our effort in
utilizing the hardware performance monitoring features of
modern multicore processors to serve as a component in dy-
namic optimization techniques. PMUs provide fine-grained
and real-time information about the performance of a run-
ning system. We have demonstrated how simple features,
such as hardware data sampling, can be used either to char-
acterize cache contention and pollution in on-chip shared
caches, or to identify sharing patterns among threads. Based
on the features that are available in the IBM POWER5 mul-
ticore processor, such as data sampling and stall breakdown,
we have implemented three runtime optimization techniques
in the operating system that all result in significant perfor-
mance improvements. By showing the utility of the PMU
features of a real server processor for online optimizations,
we intend to motivate the adoption of similar features in
other mainstream processors (e.g., the X86 families).

Our experience shows that PMUs are capable of provid-
ing accurate and timely information on the low-level be-
havior of multicore software, including inter-thread commu-
nication patterns and their contention on system resources.
While existing PMU designs could certainly be enhanced in
many ways, including the type of information they provide

and the runtime overhead they incur, we believe that oper-
ating system designers should provide more cases of real
performance improvements, which are only made possible
by using accurate PMU-generated information, in order to
further motivate the evolution of PMUs.

Perhaps the largest impediment to utilizing PMUs more
generally is the fact that their capabilities and interfaces
vary considerably across different processor architectures,
or even within the same family of processors. We strongly
argue that PMU interfaces and functionality should be stan-
dardized in an implementation-independent fashion so that
they can be visible in the Instruction Set Architecture (ISA)
specification. Otherwise, the large costs of constantly port-
ing software as PMU features change from one processor
revision to another, will seriously hinder the wide adoption
of PMU capabilities.
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