
Software Error Early Detection System Based on Run-time Statistical
Analysis of Function Return Values

Alex Depoutovitch and Michael Stumm
Department of Computer Science and Department Electrical and Computer Engineering

University of Toronto
{depout,stumm}@eecg.utoronto.ca

Abstract

Large software systems are extremely complex and based

on code that is constantly changing with bug fixes and new
features. As a result, these systems will likely never be free of
bugs. The bugs typically don't expose themselves until they
are triggered by a new workload, and when triggered, they
are rarely immediately fatal, but result in a system that
continues to with corrupt internal state, deteriorating over
time to the point where it becomes inoperable. Having a
method to identify corrupt state early would allow the
initiation of defensive actions such as flushing page caches
or redirecting external requests to another service in the
cluster.

In this paper, we propose a statistical method of detecting
problems in software at run-time based on analyzing
function return values. The methodology, at this time,
requires the availability of source code, but does not require
understanding the source code. Our experimental results
indicate that our method can be effective in identifying
problems early on, potentially allowing for defensive
measures. The overhead is negligible at less than 1%.

1 Introduction

Large software systems, such as operating systems

or databases, are extremely complex, with internal state
defined by many thousands of parameters. These
systems can be in any one of a very large number of
states at any given time. Moreover, these systems tend
to be in a constant flux with frequent bug fixes and
addition of new features, so it is impossible to fully test
these systems or predict how they will behave precisely
in future scenarios, and it is unlikely these types of
systems will ever be entirely free of bugs.

Operating system kernels are a good example of
such a complex software system. An operating system
has thousands of internal functions that interact with
each other and with the outside world, and it has

thousands of data structures maintaining the internal
state of the system. The system must be preemptible, be
able to run concurrently on multiple processors sharing
state, and must scale reasonably well. In addition, a
modern operating systems typically contains third-party
extension modules that are loaded into the kernel
dynamically at the run-time and that interact with the
rest of the operating system. Often, those writing a
kernel component or an extension use only a small part
of published interface and do not fully understand how
other parts of the system work internally or interact
with each other. Hence, operating systems will likely
always have bugs.

Our goal is to measure the general well-being of a
target software system and assess the likelihood of a
pending failure at run-time. Our approach is inspired
by other areas of science, such as thermodynamics or
economics, that use statistical methods to describe
complex systems. They typically define a small set of
global parameters (e.g., temperature or key macro-
economic indexes) which are derived from many
micro-parameters (e.g., velocities of all molecules or
multiple detailed economic indicators) using averages
or other more elaborate statistical functions. Then, an
approximate model of the system is defined based on
the global parameters and a set of rules that describe
expected relationships and behavior.
In the remainder of the paper, in Section 2 we first
describe related approaches and then in Section 3 give
an overview of the general framework we. In Section 4,
we propose a specific approach based on monitoring
function return values in real-time, identifying periods
when the percentage of error return codes exceeds a
threshold. Our implementation is described in Section
5, and in Section 6, we present preliminary results of
our experiments that show that our method can be
effective in identifying problems at an early stage while
imposing minimal overhead.

2 Related Work

A number of groups have applied statistical

methods to predict pending software faults, to assist in
identifying the existence of bugs, and to detect sub-
optimal operating conditions. Goldszmidt et al.
published a nice article summarizing common
problems in applying machine learning and statistical
methods in systems research [1]. They show the
benefits of statistical analysis and machine learning,
such as the ability to automatically adapt algorithms to
system and environmental changes.

Gross et al. give examples of software aging
problems, where an application can work well for some
(often very long) time but then requires a restart [2].
The authors suggest using statistical pattern recognition
to predict the time when a restart is required. Their
approach has two key disadvantages: (i) it requires
detailed knowledge of the software, and (ii) the method
must be adapted whenever the software is modified.

Our approach, that will be discussed in next section
is similar to the one implemented by S. Hagal et al. in
DIDUCE tool [3]. In order to detect abnormal software
behavior, they monitor values of all class members and
global variables defined in the application. However,
this approach introduces 1-2 orders of magnitude run-
time overhead and makes it unsuitable for monitoring
production system or detecting bugs that occur
infrequently.

E. Kiciman et al. use unusual run-time component
interaction patterns to detect anomalies in a running
program [4]. Their tool uses a modified middleware
server to trace inter-component calls and a decision
tree algorithm to detect unusual patterns. Similarly, G.
Jiang et al. monitor run-time execution paths and uses
n-grams and automata to detect anomalies [5]. All of
these tools were implemented for programs running in
Java–based middleware environment and are not
capable of predicting failures in standalone software
compiled into native code, i.e. C++ applications.
Having such capability, however, is desirable, and
feasible because, as Hennessy noted [6], catastrophic
failures rarely occur in real systems without being
preceded by many smaller non-fatal errors. Gradual
failures are often not visible, because the software

tends to ignore them, work around them, or correct
them.

3 General Framework

The methodology we propose to detect abnormal

software system state falls under the general framework
depicted in Figure 1. Micro-parameters that describe
many tiny aspects of the system, such as function return
values or the time spent waiting for a lock, are
monitored and collected at run-time. However, each of
these micro-parameters may not be very meaningful on
their own, and the amount of data generated will be too
voluminous for direct consumption. For this reason,
statistical methods can be used to process the large
amount of fine-grained data, filtering out irrelevant
noise to produce more meaningful global parameters.
With an appropriate set of global parameters, it is
possible to define acceptable ranges for their values, as
well as rules as to how the global parameters are
expected to relate to one another. System state can then
be viewed as having been corrupted if global parameter
values lie outside the acceptable ranges or if the rules
are violated.

With such a framework, four questions need to be
addressed:
1. Which micro-parameters can and should be

monitored in a system?
2. What global parameters can be defined that can be

effectively calculated from the micro-parameters
and are meaningful at the same time?

3. How do the defined global parameters relate to each
other and what ranges are acceptable for their
values?

4. How can these relationships be used to discover
bugs, predict system failures, and measure the
general well-being of the system?
Collecting the right set of micro-parameters is the

most critical step because they provide the foundation
for all subsequent statistical calculations. The following
list contains examples of the micro-parameters that are
well suited for describing system state:
• commonly used performance metrics such as: CPU,

memory and I/O load introduced by specific parts
of the system, various queue lengths, cache miss
rates, and data from various hardware counters;

• size of data allocated; e.g., it may be number of
instantiated objects of each type;

• error values returned by individual functions;
• the time it takes to execute each function.

These parameters have the property that they are
applicable to all parts of the software system and
require minimal knowledge of the specifics of the

Figure 1. The general framework

Micro-parameters

Software system

Online Bug
detection

Heuristic rules

Warning!

Statistical algorithm Global parameters

software. For example, for function return values, we
only need to know what return values indicate a fault.
Very often there are known specific values that indicate
an error, or in case of functions returning a pointer, a
null pointer typically indicates a fault. More
importantly, what constitutes an error return value can
be determined automatically using statistical methods.

In this general framework, code is injected into
the software to monitor and collect micro-parameters,
and to periodically invoke a statistical engine. The
statistical engine processes the micro-parameters to
obtain values for global parameters and then to (i)
identify violated rules, and (ii) identify parameter
values that lie outside acceptable ranges.

To automatically identify acceptable ranges for
the global parameters, it is possible to generate the
global parameters on a running system assumed to
operate correctly with a reference workload, recording
the ranges encountered. Then, when the target software
is run with new workloads, parameter values that lie
outside the ranges encountered with the reference
workload may indicate an abnormal situation.

4 Analyzing Return Values

The particular method we propose uses the above

framework based on monitoring function return values.
Specifically, we attempt to monitor the rate at which
functions return an error value. To determine which
function return values represent an error, we initially
assume that error is indicated with 0 for functions
returning pointers and 0 or –1 for all other functions,
and we validate this assumption on each function
individually by running a reference load that exercises
the full functionality of the system. We refer to the
recorded data as reference results. Running the
reference load allows us to determine the frequency at
which each function is expected to return what is
assumed to be an error value. Experimentally, we have
found that the reference results are not sensitive to the
specific set of applications we use as a load, as long as
the load exercises most of the system functionality.
However, to obtain meaningful reference results, the
system from which reference results are obtained must
be stable.

After producing the reference results, we can then
run the system under real workloads and measure the
number of error values returned by its functions
relative to the reference results. The absolute number
will, of course, depend on the particular system
workload, so normalization is required. We normalize
by dividing by the total number of function calls (i.e.
percent of functions returning error codes).

More precisely, the global parameter we monitor is

the difference between the number of functions
returning errors and the same number calculated from
the reference results, normalized by total number of
function calls. In an ideal situation, where the reference
load is representative of future workloads, we expect
this parameter to be close to zero if the software has
not encountered any bugs. We have found that it is
legitimate for this parameter to be slightly greater than
zero (~0.01%), i.e. a helper function that allocates a
chunk of memory from a heap may return an error
when the current heap size is not enough to
accommodate an incoming request and needs to be
increased. On the other hand, if the state of the system
has become corrupted, then we expect the parameter to
significantly deviate from zero.

The advantage of the proposed approach is that it
can be applied to any large software system without
understanding the code base and without knowing
which function return values indicate error.

5 Implementation

We have applied the techniques described in the

previous section to the K42 open source operating
system [7]. K42 is written mostly in C++. We selected
K42 for our experiments in part because it is a system
still under active development that we understand well
and for which we have bugs we can easily inject.
However, we envision using K42’s hot-swapping
capability to replace objects at run-time when the early
warning system identifies a problem.
We implemented a C++ preprocessor that
automatically scans C++ source files, finds functions
that return either system status code or a pointer. K42
contains approximately 4,500 functions. Roughly 1,800
of them return either a system status code or a pointer
and we only record the return values of these functions.
(System status code values are usually the same
throughout the system.) The preprocessor injects code
that records the return value along with the address of
the corresponding return statement. The return address
will help us identify functions that returned error values
and execution paths in offline analysis. The injected
code also increments a counter of function calls, and
once in every N calls, triggers the statistical analysis
engine to process and analyze the collected data.

The statistical engine periodically computes the
global parameter from the collected set of micro-
parameters and analyzes it in the hope of detecting
when the system enters a state that might be of interest.
Specifically, the engine considers the system to have
gotten into an abnormal state when the normalized
number of functions returning an error value exceeds
some threshold. This analysis must be done frequently

enough so that the system entering an abnormal state
can be detected soon after the state becomes corrupted
in order to have time be able to react to it and possibly
take corrective or recovery actions. At the same time,
the analysis cannot be too frequent so as not to
introduce too much overhead.

6 Experimental Results

In this section, we present our findings from

experiments using the K42 operating system running
the MySQL database server with a benchmark load.
The benchmark suite we used was created by the
MySQL team to test the performance of MySQL server
on different platforms [8]. We ran a number of tests
from this suite using the K42 operating system with
known bugs to determine (i) whether we could detect
the existence of the bugs in the system by monitoring
the global parameter we defined, and (ii) whether the
resulting abnormal system state could be detected early
enough to provide sufficient time for corrective actions.
With a positive answer to both of these questions,
several attractive applications are possible as described
in section 7.

For our experiments, we modified the K42 kernel
by adding the statistical analysis engine, and used the
preprocessor to inject the code to collect the function
return values. The reference load we used was the full
set of regression tests built up by the K42 team over the
years, and when run, we made sure these tests produce
the expected results. We ran the same workload on the
system with and without the instrumentation. The total
overhead introduced by both the injected code and the
statistical engine was less than 1%, which can be
considered negligible.

After running the reference load, we ran the
MySQL load with two real bugs. One of the bugs, a
resource leakage in the file access code, was
discovered beforehand and was reintroduced in order
to test our approach. The second one, an I/O

synchronization problem, was discovered accidentally
by our approach and we had been unaware of it before
we ran our experiments.

While running the system, we collected the
statistics in real time until the system or application
crashed or froze. After that, we determined whether the
difference between the global parameter values
observed in the system with and without the bugs was
large enough to be noticeable and measured the time
period between the point where the abnormal situation
is clearly identifiable for the first time and the time the
system crashed or froze.

Figure 2 depicts the percentage of functions that
return error values over the total number of function
calls. The workload that was used to produce these
curves was the table creation test from the MySQL
benchmark suite. The figure contains three curves for
three different system runs we measured. The first run
(curve 1) used the kernel that did not have any known
bugs. The error rate is around 0.01% with small spikes
up to 3.5%. The spikes, however, are very short, for
periods of at most 0.1-0.5 seconds and a simple criteria
based on minimal duration of abnormally high error
rate can filter such false positive events out.

For the second run (curve 2), the kernel contained
both bugs described above. The second curve ends at
the point where the benchmark test stopped running
because the system ran out of resources. The
percentage of the function calls returning error values
starts to increase dramatically at approximately 400
seconds after the start of the benchmark. From that
point on, the percentage of functions calls returning
error values stays at 1-1.5% for another 300 seconds
and after that increases even further to 4-7%, remaining
high until the system fails.

For the third run, we used the kernel with the
resource leakage bug fixed, but with the I/O bug
remaining. In this case, the benchmark test completes
successfully, but our statistical analysis shows that
there are still some problems. The percentage of

0 500 1000 1500 2000 2500 3000 3500 4000
Time (sec)

0.0

2.0

4.0

6.0

8.0

P
er

ce
nt

ag
e

of
 fu

nc
tio

ns
 fa

ile
d

(%
)

Curve 2

Curve 3

Curve 1

 0 2000 4000 6000 8000 10000
Time (sec)

0.0

1.0

2.0

3.0

4.0

P
er

ce
nt

ag
e

of
 fu

nc
tio

ns
 fa

ile
d

(%
)

No known bugs (curve 1)

Test is stuck, memory leak and fsync bug (curve 2)

Curve 2

Curve 1

Figure 2. Percentage of function failed during

MySQL table creation benchmark
Figure 3. Percentage of function failed during

MySQL data insertion benchmark

functions calls returning error values is consistently
larger than zero and stays at 0.5-2% with spikes up to
4.5% until the benchmark finishes. This made us
suspect there was another bug. After carefully
analyzing which functions return error values and
inspecting the code, the second bug in the I/O
synchronization routine was found.

The third run demonstrates, in our view, that the
methodology we are proposing can be used in a real
life situation to detect and identify bugs even if
regression tests pass successfully. As we can see from
the curves, with the bug in the system, the percentage
of the functions returning error values is abnormally
high (i.e. 0.5-2%) for a prolonged period of time (i.e.
thousands of seconds). This is sufficient to react,
should we decide to do so.

Figure 3 depicts the results of another benchmark,
namely the data insertion benchmark from the same
MySQL benchmark suite. Again, running the kernel
with the resource leakage bug causes the system to run
out of resources and freeze before the benchmark ends,
but the synchronization bug does not reveal itself, since
the code that contains the bug is not exercised. Because
of this, only two curves are presented. We can see
again that when there is a problem in the operating
system kernel (curve 2), our analysis discovers it well
in advance. The percentage measured is around 1-1.5%
for long periods of times (i.e. hundreds of seconds)
with spikes up to 3.5%. In contrast, the curve for the
run with the bug-free version of the kernel (curve 1) is
difficult to see because the error rate very close to zero;
i.e., constantly less then 0.01%.

7 Possible Applications

We see two main areas where our proposed method

may be used: for regression testing of the system in
development and for the run-time monitoring of large
mission critical applications.

As we have shown, it is possible that even
regression testing may leave a serious bug undetected
since regression tests only consider output. Our
statistical method can be used to detect bugs that don’ t
affect the output of the program, for example when
load on the system is not heavy or the run is not long
enough. This allows earlier detection of newly
introduced bugs.

For mission critical systems, our method can detect
abnormal operating conditions, giving an early warning
signal to the operator by putting the system into a
“high-alert” state until the global parameters return
back to normal. An early warning system also
allows autonomic remedial actions such as disabling

write-back caches so that all disk writes occur
immediately, minimizing the amount of lost data, or
automatically redirecting user requests to another
computer in a fail-safe cluster and rebooting the system
in abnormal state. As shown by Qin et al., rebooting the
system and re-executing a request in a different
environment is often enough to solve many problems
without dropping the request [9].

8 Concluding Remarks

We described a new approach for detecting

software problems at run time by statistically analyzing
function return values. While our work is still at an
early stage, initial experiments using the K42 operating
system show promise. Our method was able to detect
abnormal states early, and it incurs only a negligible
amount of overhead. We intend to do much more
extensive experimentation with other workloads and
bugs. Moreover we intend to expand our method to
include the analysis of additional parameters and rules
that define their relationship.

9 References

[1] M. Goldszmidt, I. Cohen, A. Fox, S. Zhang. Three

research challenges at the intersection of machine learning,
statistical induction, and systems. In Proc. 10th Workshop on
Hot Topics in Operating Systems, 2005.

[2] K. C. Gross, V. Bhardwaj, R. L. Bickford Proactive
Detection of Software Aging Mechanisms in Performance-
Critical Computers. 7th Annual IEEE/NASA Software
Engineering Symposium, 2002.

[3] S. Hangal, M. Lam. Tracking down software bugs
using automatic anomaly detection. In Proc. 24th
International Conference on Software Engineering, 2002

[4] E. Kiciman, A. Fox. Detecting application-level
failures in component-based Internet services. IEEE
Transactions on Neural Networks, September 2005

[5] G. Jiang, H. C. Ungureanu, K. Yoshihira. Multi-
resolution Abnormal Trace Detection Using Varied-length
N-grams and Automata. In Proc. 2nd International Conference
on Autonomic Computing

[6] J. Hennessy. The Future of Systems Research. IEEE
Computer, pages 27--33, August 1999.

[7] J. Appavoo, M. Auslander, M. Burtico, D. Da Silva,
O. Krieger, M. Mergen, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, J. Xenidis. K42: an Open-Source Linux-
Compatible Scalable Operating System Kernel. IBM Systems
Journal pp. 427-440 Vol. 44, No. 2, 2005

[8] The MySQL Benchmark Suite
http://dev.mysql.com/doc/refman/5.1/en/

[9] F. Qin, J. Tucek, J. Sundaresan, Y. Zhou. Rx:
treating bugs as allergies - a safe method to survive software
failures. In Proc. 20th Symposium on Operating Systems
Principles, 2000

	Text3: A variant of this paper appeared in Proc. First Workshop on Hot Topics in Autonomous Computing
 (HotAC 06), June 2006, pp.17-21.

