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Abstract 

 
Large software systems are extremely complex and based 

on code that is constantly changing with bug fixes and new 
features. As a result, these systems will likely never be free of 
bugs. The bugs typically don't expose themselves until they 
are triggered by a new workload, and when triggered, they 
are rarely immediately fatal, but result in a system that 
continues to with corrupt internal state, deteriorating over 
time to the point where it becomes inoperable. Having a 
method to identify corrupt state early would allow the 
initiation of defensive actions such as flushing page caches 
or redirecting external requests to another service in the 
cluster. 

In this paper, we propose a statistical method of detecting 
problems in software at run-time based on analyzing 
function return values. The methodology, at this time, 
requires the availability of source code, but does not require 
understanding the source code. Our experimental results 
indicate that our method can be effective in identifying 
problems early on, potentially allowing for defensive 
measures. The overhead is negligible at less than 1%.  

 

1 Introduction 
 
Large software systems, such as operating systems 

or databases, are extremely complex, with internal state 
defined by many thousands of parameters. These 
systems can be in any one of a very large number of 
states at any given time. Moreover, these systems tend 
to be in a constant flux with frequent bug fixes and 
addition of new features, so it is impossible to fully test 
these systems or predict how they will behave precisely 
in future scenarios, and it is unlikely these types of 
systems will ever be entirely free of bugs. 

Operating system kernels are a good example of 
such a complex software system. An operating system 
has thousands of internal functions that interact with 
each other and with the outside world, and it has 

thousands of data structures maintaining the internal 
state of the system. The system must be preemptible, be 
able to run concurrently on multiple processors sharing 
state, and must scale reasonably well. In addition, a 
modern operating systems typically contains third-party 
extension modules that are loaded into the kernel 
dynamically at the run-time and that interact with the 
rest of the operating system. Often, those writing a 
kernel component or an extension use only a small part 
of published interface and do not fully understand how 
other parts of the system work internally or interact 
with each other. Hence, operating systems will likely 
always have bugs. 

Our goal is to measure the general well-being of a 
target software system and assess the likelihood of a 
pending failure at run-time. Our approach is inspired 
by other areas of science, such as thermodynamics or 
economics, that use statistical methods to describe 
complex systems. They typically define a small set of 
global parameters (e.g., temperature or key macro-
economic indexes) which are derived from many 
micro-parameters (e.g., velocities of all molecules or 
multiple detailed economic indicators) using averages 
or other more elaborate statistical functions. Then, an 
approximate model of the system is defined based on 
the global parameters and a set of rules that describe 
expected relationships and behavior.  
In the remainder of the paper, in Section 2 we first 
describe related approaches and then in Section 3 give 
an overview of the general framework we. In Section 4, 
we propose a specific approach based on monitoring 
function return values in real-time, identifying periods 
when the percentage of error return codes exceeds a 
threshold. Our implementation is described in Section 
5, and in Section 6, we present preliminary results of 
our experiments that show that our method can be 
effective in identifying problems at an early stage while 
imposing minimal overhead. 



  

  

2 Related Work 
 
A number of groups have applied statistical 

methods to predict pending software faults, to assist in 
identifying the existence of bugs, and to detect sub-
optimal operating conditions. Goldszmidt et al. 
published a nice article summarizing common 
problems in applying machine learning and statistical 
methods in systems research [1]. They show the 
benefits of statistical analysis and machine learning, 
such as the ability to automatically adapt algorithms to 
system and environmental changes.  

Gross et al. give examples of software aging 
problems, where an application can work well for some 
(often very long) time but then requires a restart [2]. 
The authors suggest using statistical pattern recognition 
to predict the time when a restart is required. Their 
approach has two key disadvantages: (i) it requires 
detailed knowledge of the software, and (ii) the method 
must be adapted whenever the software is modified.  

Our approach, that will be discussed in next section 
is similar to the one implemented by S. Hagal et al. in 
DIDUCE tool [3]. In order to detect abnormal software 
behavior, they monitor values of all class members and 
global variables defined in the application. However, 
this approach introduces 1-2 orders of magnitude run-
time overhead and makes it unsuitable for monitoring 
production system or detecting bugs that occur 
infrequently.  

E. Kiciman et al. use unusual run-time component 
interaction patterns to detect anomalies in a running 
program [4]. Their tool uses a modified middleware 
server to trace inter-component calls and a decision 
tree algorithm to detect unusual patterns. Similarly, G. 
Jiang et al. monitor run-time execution paths and uses 
n-grams and automata to detect anomalies [5]. All of 
these tools were implemented for programs running in 
Java–based middleware environment and are not 
capable of predicting failures in standalone software 
compiled into native code, i.e. C++ applications. 
Having such capability, however, is desirable, and 
feasible because, as Hennessy noted [6], catastrophic 
failures rarely occur in real systems without being 
preceded by many smaller non-fatal errors. Gradual 
failures are often not visible, because the software 

tends to ignore them, work around them, or correct 
them.  

 

3 General Framework 
 
The methodology we propose to detect abnormal 

software system state falls under the general framework 
depicted in Figure 1. Micro-parameters that describe 
many tiny aspects of the system, such as function return 
values or the time spent waiting for a lock, are 
monitored and collected at run-time. However, each of 
these micro-parameters may not be very meaningful on 
their own, and the amount of data generated will be too 
voluminous for direct consumption. For this reason, 
statistical methods can be used to process the large 
amount of fine-grained data, filtering out irrelevant 
noise to produce more meaningful global parameters. 
With an appropriate set of global parameters, it is 
possible to define acceptable ranges for their values, as 
well as rules as to how the global parameters are 
expected to relate to one another. System state can then 
be viewed as having been corrupted if global parameter 
values lie outside the acceptable ranges or if the rules 
are violated. 

With such a framework, four questions need to be 
addressed: 
1. Which micro-parameters can and should be 

monitored in a system? 
2. What global parameters can be defined that can be 

effectively calculated from the micro-parameters 
and are meaningful at the same time? 

3. How do the defined global parameters relate to each 
other and what ranges are acceptable for their 
values? 

4. How can these relationships be used to discover 
bugs, predict system failures, and measure the 
general well-being of the system? 
Collecting the right set of micro-parameters is the 

most critical step because they provide the foundation 
for all subsequent statistical calculations. The following 
list contains examples of the micro-parameters that are 
well suited for describing system state: 
• commonly used performance metrics such as: CPU, 

memory and I/O load introduced by specific parts 
of the system, various queue lengths, cache miss 
rates, and data from various hardware counters; 

• size of data allocated; e.g., it may be number of 
instantiated objects of each type; 

• error values returned by individual functions; 
• the time it takes to execute each function. 

These parameters have the property that they are 
applicable to all parts of the software system and 
require minimal knowledge of the specifics of the  
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software. For example, for function return values, we 
only need to know what return values indicate a fault. 
Very often there are known specific values that indicate 
an error, or in case of functions returning a pointer, a 
null pointer typically indicates a fault. More 
importantly, what constitutes an error return value can 
be determined automatically using statistical methods. 

In this general framework, code is injected into 
the software to monitor and collect micro-parameters, 
and to periodically invoke a statistical engine. The 
statistical engine processes the micro-parameters to 
obtain values for global parameters and then to (i) 
identify violated rules, and (ii) identify parameter 
values that lie outside acceptable ranges. 

To automatically identify acceptable ranges for 
the global parameters, it is possible to generate the 
global parameters on a running system assumed to 
operate correctly with a reference workload, recording 
the ranges encountered. Then, when the target software 
is run with new workloads, parameter values that lie 
outside the ranges encountered with the reference 
workload may indicate an abnormal situation. 

 

4 Analyzing Return Values 
 
The particular method we propose uses the above 

framework based on monitoring function return values. 
Specifically, we attempt to monitor the rate at which 
functions return an error value. To determine which 
function return values represent an error, we initially 
assume that error is indicated with 0 for functions 
returning pointers and 0 or –1 for all other functions, 
and we validate this assumption on each function 
individually by running a reference load that exercises 
the full functionality of the system. We refer to the 
recorded data as reference results. Running the 
reference load allows us to determine the frequency at 
which each function is expected to return what is 
assumed to be an error value. Experimentally, we have 
found that the reference results are not sensitive to the 
specific set of applications we use as a load, as long as 
the load exercises most of the system functionality. 
However, to obtain meaningful reference results, the 
system from which reference results are obtained must 
be stable. 

After producing the reference results, we can then  
run the system under real workloads and measure the 
number of error values returned by its functions 
relative to the reference results. The absolute number 
will, of course, depend on the particular system 
workload, so normalization is required. We normalize 
by dividing by the total number of function calls (i.e. 
percent of functions returning error codes). 

More precisely, the global parameter we monitor is 

the difference between the number of functions 
returning errors and the same number calculated from 
the reference results, normalized by total number of 
function calls. In an ideal situation, where the reference 
load is representative of future workloads, we expect 
this parameter to be close to zero if the software has 
not encountered any bugs. We have found that it is 
legitimate for this parameter to be slightly greater than 
zero (~0.01%), i.e. a helper function that allocates a 
chunk of memory from a heap may return an error 
when the current heap size is not enough to 
accommodate an incoming request and  needs to be 
increased. On the other hand, if the state of the system 
has become corrupted, then we expect the parameter to 
significantly deviate from zero. 

The advantage of the proposed approach is that it 
can be applied to any large software system without 
understanding the code base and without knowing 
which function return values indicate error. 

 

5 Implementation 
 
We have applied the techniques described in the 

previous section to the K42 open source operating 
system [7]. K42 is written mostly in C++. We selected 
K42 for our experiments in part because it is a system 
still under active development that we understand well 
and for which we have bugs we can easily inject. 
However, we envision using K42’s hot-swapping 
capability to replace objects at run-time when the early 
warning system identifies a problem.  
We implemented a C++ preprocessor that 
automatically scans C++ source files, finds functions 
that return either system status code or a pointer. K42 
contains approximately 4,500 functions. Roughly 1,800 
of them return either a system status code or a pointer 
and we only record the return values of these functions. 
(System status code values are usually the same 
throughout the system.) The preprocessor injects code 
that records the return value along with the address of 
the corresponding return statement. The return address 
will help us identify functions that returned error values 
and execution paths in offline analysis. The injected 
code also increments a counter of function calls, and 
once in every N calls, triggers the statistical analysis 
engine to process and analyze the collected data. 

The statistical engine periodically computes the 
global parameter from the collected set of micro- 
parameters and analyzes it in the hope of detecting 
when the system enters a state that might be of interest. 
Specifically, the engine considers the system to have 
gotten into an abnormal state when the normalized 
number of functions returning an error value exceeds 
some threshold. This analysis must be done frequently 



enough so that the system entering an abnormal state 
can be detected soon after the state becomes corrupted 
in order to have time be able to react to it and possibly 
take corrective or recovery actions. At the same time, 
the analysis cannot be too frequent so as not to 
introduce too much overhead. 

 

6 Experimental Results 
 
In this section, we present our findings from 

experiments using the K42 operating system running 
the MySQL database server with a benchmark load. 
The benchmark suite we used was created by the 
MySQL team to test the performance of MySQL server 
on different platforms [8]. We ran a number of tests 
from this suite using the K42 operating system with 
known bugs to determine (i) whether we could detect 
the existence of the bugs in the system by monitoring 
the global parameter we defined, and (ii) whether the 
resulting abnormal system state could be detected early 
enough to provide sufficient time for corrective actions. 
With a positive answer to both of these questions, 
several attractive applications are possible as described 
in section 7.  

For our experiments, we modified the K42 kernel 
by adding the statistical analysis engine, and used the 
preprocessor to inject the code to collect the function 
return values. The reference load we used was the full 
set of regression tests built up by the K42 team over the 
years, and when run, we made sure these tests produce 
the expected results. We ran the same workload on the 
system with and without the instrumentation. The total 
overhead introduced by both the injected code and the 
statistical engine was less than 1%, which can be 
considered negligible. 

After running the reference load, we ran the 
MySQL load with two real bugs. One of the bugs, a 
resource leakage in the file access code, was 
discovered beforehand and was reintroduced in order 
to test our approach. The second one, an I/O 

synchronization problem, was discovered accidentally 
by our approach and we had been unaware of it before 
we ran our experiments.  

While running the system, we collected the 
statistics in real time until the system or application 
crashed or froze. After that, we determined whether the 
difference between the global parameter values 
observed in the system with and without the bugs was 
large enough to be noticeable and measured the time 
period between the point where the abnormal situation 
is clearly identifiable for the first time and the time the 
system crashed or froze. 

Figure 2 depicts the percentage of functions that 
return error values over the total number of function 
calls. The workload that was used to produce these 
curves was the table creation test from the MySQL 
benchmark suite. The figure contains three curves for 
three different system runs we measured. The first run 
(curve 1) used the kernel that did not have any known 
bugs. The error rate is around 0.01% with small spikes 
up to 3.5%. The spikes, however, are very short, for 
periods of at most 0.1-0.5 seconds and a simple criteria 
based on minimal duration of abnormally high error 
rate can filter such false positive events out.  

For the second run (curve 2), the kernel contained 
both bugs described above. The second curve ends at 
the point where the benchmark test stopped running 
because the system ran out of resources. The 
percentage of the function calls returning error values 
starts to increase dramatically at approximately 400 
seconds after the start of the benchmark. From that 
point on, the percentage of functions calls returning 
error values stays at 1-1.5% for another 300 seconds 
and after that increases even further to 4-7%, remaining 
high until the system fails. 

For the third run, we used the kernel with the 
resource leakage bug fixed, but with the I/O bug 
remaining. In this case, the benchmark test completes 
successfully, but our statistical analysis shows that 
there are still some problems. The percentage of 
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Figure 2. Percentage of function failed during 

MySQL table creation benchmark 
Figure 3. Percentage of function failed during     
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functions calls returning error values is consistently 
larger than zero and stays at 0.5-2% with spikes up to 
4.5% until the benchmark finishes. This made us 
suspect there was another bug. After carefully 
analyzing which functions return error values and 
inspecting the code, the second bug in the I/O 
synchronization routine was found.  

The third run demonstrates, in our view, that the 
methodology we are proposing can be used in a real 
life situation to detect and identify bugs even if 
regression tests pass successfully. As we can see from 
the curves, with the bug in the system, the percentage 
of the functions returning error values is abnormally 
high (i.e. 0.5-2%) for a prolonged period of time (i.e. 
thousands of seconds). This is sufficient to react, 
should we decide to do so.   

Figure 3 depicts the results of another benchmark, 
namely the data insertion benchmark from the same 
MySQL benchmark suite. Again, running the kernel 
with the resource leakage bug causes the system to run 
out of resources and freeze before the benchmark ends, 
but the synchronization bug does not reveal itself, since 
the code that contains the bug is not exercised. Because 
of this, only two curves are presented. We can see 
again that when there is a problem in the operating 
system kernel (curve 2), our analysis discovers it well 
in advance. The percentage measured is around 1-1.5% 
for long periods of times (i.e. hundreds of seconds) 
with spikes up to 3.5%. In contrast, the curve for the 
run with the bug-free version of the kernel (curve 1) is 
difficult to see because the error rate very close to zero; 
i.e., constantly less then 0.01%.  

 

7 Possible Applications 
 
We see two main areas where our proposed method 

may be used: for regression testing of the system in 
development and for the run-time monitoring of large 
mission critical applications. 

As we have shown, it is possible that even 
regression testing may leave a serious bug undetected 
since regression tests only consider output. Our 
statistical method can be used to detect bugs that don’ t 
affect the output of the program, for example when 
load on the system is not heavy or the run is not long 
enough. This allows earlier detection of newly 
introduced bugs. 

For mission critical systems, our method can detect 
abnormal operating conditions, giving an early warning 
signal to the operator by putting the system into a 
“high-alert”  state until the global parameters return 
back to normal. An early warning system also 
allows autonomic remedial actions such as disabling 

write-back caches so that all disk writes occur 
immediately, minimizing the amount of lost data, or 
automatically redirecting user requests to another 
computer in a fail-safe cluster and rebooting the system 
in abnormal state. As shown by Qin et al., rebooting the 
system and re-executing a request in a different 
environment is often enough to solve many problems 
without dropping the request [9]. 

 

8 Concluding Remarks 
 
We described a new approach for detecting 

software problems at run time by statistically analyzing 
function return values. While our work is still at an 
early stage, initial experiments using the K42 operating 
system show promise. Our method was able to detect 
abnormal states early, and it incurs only a negligible 
amount of overhead. We intend to do much more 
extensive experimentation with other workloads and 
bugs. Moreover we intend to expand our method to 
include the analysis of additional parameters and rules 
that define their relationship.  
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