
Optimizing Space Amplification in RocksDB

Siying Dong1, Mark Callaghan1, Leonidas Galanis1,
Dhruba Borthakur1, Tony Savor1 and Michael Stumm2

1Facebook, 1 Hacker Way, Menlo Park, CA USA 94025
{siying.d, mcallaghan, lgalanis, dhruba, tsavor}@fb.com

2Dept. Electrical and Computer Engineering, University of Toronto, Canada M8X 2A6
stumm@eecg.toronto.edu

ABSTRACT
RocksDB is an embedded, high-performance, persistent key-
value storage engine developed at Facebook. Much of our
current focus in developing and configuring RocksDB is to
prioritize resource efficiency over more standard performance
metrics, such as response time latency and throughput, as
long as they remain acceptable. In particular, we optimize
space efficiency as long as read/write latencies are able to
meet target service-level requirements for the intended work-
loads, because storage space is most often the bottleneck
when using Flash SSDs under typical production workloads
at Facebook. RocksDB uses Log-structured Merge Trees
(LSM) to obtain significant space efficiency and better write
throughput while still being good at read performance.

We describe how we apply a number of approaches to
reduce storage usage in RocksDB. We discuss how we are
able to trade off storage efficiency and CPU overhead, as
well as read and write amplification. Based on results of ex-
perimental evaluations of MySQL with RocksDB as the em-
bedded storage engine (using TPC-C and LinkBench bench-
marks) and based on measurements taken from production
databases, we show that RocksDB uses less than half the
storage that InnoDB uses, yet performs well and in many
cases even better than the B-tree-based Innodb storage en-
gine. To the best of our knowledge, this is the first time
an LSM-based storage engine has shown competitive perfor-
mance when running OLTP workloads at large scale.

1. INTRODUCTION
At Facebook (FB), we have made resource efficiency the pri-
mary objective in our storage systems strategy: performance
needs to be sufficient to meet the needs of our services, but
efficiency should be as good as possible to allow for scale.

FB has one of the largest MySQL installations in the
world, storing many 10s of petabytes of online data. The
underlying storage engine for the FB MySQL instances is
increasingly being switched over from InnoDB to MyRocks,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIDR ’17 January 8–11, 2017, Santa Cruz, CA, USA
c© 2016 ACM. ISBN 978-1-4503-2138-9. . . $15.00

DOI: 10.1145/1235

which in turn is based on RocksDB. The switchover is pri-
marily motivated by the fact that MyRocks uses half the
storage InnoDB needs and has higher average transaction
throughput, yet has only marginally worse read latencies.

RocksDB is an embedded, high-performance, persistent
key-value storage system [1] that was developed by FB after
forking the code from Google’s LevelDB [2]. It was open-
sourced in 2013. MyRocks is a variant of RocksDB but con-
figured and tuned to be MySQL’s storage engine.

RocksDB is used in many applications beyond just MySQL,
both within and outside of FB. Within FB, RocksDB is used
as a storage engine for Laser, a high query throughput, low
latency key-value storage service [3], ZippyDB, a distributed
key-value store with Paxos-style replication [3], Dragon to
store indices of the Social Graph [4], and Stylus, a stream
processing engine [3], to name a few. Outside of FB, both
MongoDB [5] and Sherpa, Yahoo’s largest distributed data
store [6], use RocksDB as one of their storage engines. Fur-
ther, RocksDB is used by LinkedIn for storing user activity
and by Netflix to cache application data, to list a few exam-
ples.

With MyRocks, each MySQL table row is stored as a
RocksDB key-value pair: the primary keys are encoded in
the RocksDB key and all other row data is encoded in the
value. Secondary keys, which are not necessarily unique, are
stored as separate key-value pairs, where the RocksDB key
encodes the secondary key appended with the correspond-
ing target primary key, and the value is left empty; thus
secondary index lookups are translated into RocksDB range
queries. All RocksDB keys are prefixed by a 4-byte table-
ID or index-ID so that multiple tables or indexes can co-
exist in one RocksDB key space. Finally, a global sequence
ID, incremented with each write operation, is stored with
each key-value pair to support snapshots. Snapshots are
used to implement multiversion concurrency control, which
in turn enables us to implement ACID transactions within
RocksDB.

Our primary goal with RocksDB at FB is to make the
most efficient use of hardware resources while ensuring all
important service level requirements can be met, including
target transaction latencies. This focus on efficiency in-
stead of performance is perhaps unique in the community in
that database systems are typically compared using perfor-
mance metrics such as transactions per minute (e.g., tpmC)
or response-time latencies. Our focus on efficiency does not
imply that we treat performance as unimportant, but rather
that once our performance objectives are achieved, we op-

timize for efficiency. Our approach is driven in part by the
data storage needs at FB (that may differ from that of other
organizations):

1. SSDs are increasingly being used to store persistent
data and are the primary target for RocksDB;

2. FB primarily relies on shared nothing configurations of
commodity hardware in their data centers [7], where
data is distributed across a large number of simple nodes,
each with 1-2 SSDs;

3. the amount of data that needs to be stored is huge;

4. the read-write ratio is relatively low at roughly 2:1 in
many (but not all) cases, given the fact that large mem-
ory-based caches are used extensively.

Minimizing space amplification is the key to efficient hard-
ware use because storage space is the bottleneck in environ-
ments like the one described above. In a typical production
MySQL environment at FB, SSDs service far fewer reads/s
and writes/s during peak times under InnoDB than what the
hardware is capable of. The throughput level under InnoDB
is low, not because of any bottleneck on the SSD or the pro-
cessing node — e.g., CPU utilization remains below 40% —
but because the query rate per node is low. The per node
query rate is low, because the amount of data that has to be
stored (and be accessible) is so large, it has to be sharded
across many nodes to be able to fit, and the more nodes, the
fewer queries per node.

If the SSD could store twice as much data, then we would
expect storage node efficiency to double, since the SSDs
could easily handle the expected doubling of IOPS, and we
would need far fewer nodes for the workload. Hence our fo-
cus on space amplification. Moreover, minimizing space am-
plification will make SSDs become an increasingly attractive
alternative to spinning disks for colder data storage, as SSD
prices continue to sink. In our pursuit to minimize space
amplification, we are willing to trade off some extra read or
write amplification. Such a tradeoff is necessary because it
is not possible to reduce space, read, and write amplification
together, as shown by Athanassoulis et al. [8].

In this paper, we describe our techniques for reducing
space amplification within RocksDB. Some of the techniques,
we believe, are being described for the first time, i.e., dy-
namic LSM level size adjustment; tiered compression; shared
compression dictionary; prefix bloom filter; and different
size multipliers at different LSM levels. We discuss how the
space amplification techniques affect read and write ampli-
fication, and the various tradeoffs involved. Using empiri-
cal measurements, we show that RocksDB requires roughly
50% less storage space than InnoDB on average and has
a higher transaction throughput, yet increases read laten-
cies only marginally, remaining well within the margins of
acceptability. We also discuss tradeoffs between space am-
plification and CPU overhead, since the CPU may become a
bottleneck once space amplification is significantly reduced.

RocksDB is based on Log-Structured Merge-Trees (LSM).
The LSM tree was originally designed to minimize random
writes to storage as it never modifies data in place, but only
appends data to files located in stable storage to exploit the
high sequential write speeds of hard drives [9]. As technology
changed, LSM trees became attractive because of their low
write amplification and low space amplification characteris-
tics. We demonstrate that an LSM-based storage engine can

be performance competitive when used on OLTP workloads,
which we believe is the first time this is shown.

In the next section, we provide brief background on LSM
trees for those unfamiliar with them and then describe our
techniques to reduce space amplification in §3. We describe
in §4 how to balance space amplification with read ampli-
fication and CPU overhead. Finally, in §5 we present the
results of experimental evaluations using realistic produc-
tion workloads (TPC-C and LinkBench) and measurements
taken from production instances of the database. We close
with concluding remarks.

2. LSM-TREE BACKGROUND
Log Structured Merge Trees (LSM trees) are used in many
popular systems today, including BigTable [10], LevelDB,
Apache Cassandra [11], and HBase [12]. Here we briefly de-
scribe the LSM-tree as implemented and configured in My-
Rocks at FB by default.

Whenever data is written to the LSM-tree, it is added to
an in-memory write buffer called mem-table, implemented as
a skiplist having O(log n) inserts and searches, and at the
same time appended to a Write Ahead Log (WAL) for re-
covery purposes. If, after a write, the size of the mem-table
reaches a predetermined size, then (i) the current WAL and
mem-table become immutable, and a new WAL and mem-
table are allocated for capturing subsequent writes, (ii) the
contents of the mem-table are flushed out to a “Sorted Se-
quence Table” (SST) data file, and when that is complete,
(iii) the WAL and mem-table containing the data just flushed
are discarded. This general approach has a number of favor-
able consequences: new writes can be processed concurrently
to the flushing of an older mem-table; all I/O is sequential,1

and except for the WAL, only entire files are ever written.
Each of the SSTs stores data in sorted order, divided into

unaligned 16KB blocks (when uncompressed). Each SST
also has an index block for binary search with one key per
SST block. SSTs are organized into a sequence of levels of
increasing size, Level-0 – Level-N, where each level will have
multiple SSTs. Level-0 is treated specially in that its SSTs
may have overlapping key ranges, while the SSTs of higher
levels have distinct non-overlapping key ranges. When the
number of files in Level-0 exceeds a threshold (e.g., 4), then
the Level-0 SSTs are merged with the Level-1 SSTs that have
overlapping key ranges; when completed, all of the merge
sort input (L0 and L1) files are deleted and replaced by
new (merged) L1 files. For L>0, when the combined size

of all SSTs in level-L exceeds a threshold (e.g., 10(L−1)GB)
then one or more level-L SSTs are selected and merged with
the overlapping SSTs in level-(L+1), after which the merged
level-L and level-(L+1) SSTs are removed.

The merging process, implemented using multiple threads,
is called compaction, as it removes data marked as deleted
and data that has been overwritten (if it is no longer needed).2

Compaction also has the effect of gradually migrating new
updates from Level-0 to the last level, which is why this
particular approach is referred to as “leveled” compaction.

1There are usually concurrent streams of sequential IO that
will cause seeks. However, the seeks will be amortized over
LSM-tree’s very large writes (many MB rather than KB).
2We described leveled compaction here, which is different
than the compaction methods used by HBase and Cassan-
dra [13]. In this paper, all uses of the term compaction refer
to leveled compaction.

The process ensures that at any given time, each SST will
contain at most one entry for any given key and snapshot.
The I/O that occurs during compaction is efficient, as it only
involves bulk reads and writes of entire files: if a level-L file
being compacted overlaps with only part of a level-(L+1)
file, then still the entire level-(L+1) file is used as an input
to the compaction and ultimately removed. A compaction
may trigger a set of cascading compactions.

A single manifest file maintains a list of SSTs at each
level, their corresponding key ranges, and some other meta
data. It is maintained as a log to which changes to the SST
information are appended. Its information is cached in an
efficient format in memory to enable quick identification of
SSTs that may contain a target key.

A search for a key continues across the levels until the key
is found or it is determined that the key is not present in the
last level. First, all mem-tables are searched, followed by all
Level-0 SSTs and then the SST’s at next following levels.
At each of these following levels, three binary searches are
necessary: one to locate the target SST by searching the
Manifest data, one to find the target data block within the
SST file by using the index block, and one to search for
the key within the data block. Bloom filters (kept in files
but cached in memory) are used to eliminate unnecessary
SST searches, so mostly only 1 data block needs to be read
from disk. Moreover, recently read SST blocks are cached
in a block cache maintained by RocksDB and the operating
system’s page cache, so access to recently fetched data need
not result in I/O operations. The MyRocks block cache is
typically configured to be 12GB large.

Range queries are more involved and always require a
search through all levels since all keys that fall within the
range must be located. First the mem-table is searched for
keys within the range, then all Level-0 SSTs, followed by all
subsequent levels, while disregarding duplicate keys within
the range from lower levels. Prefix Bloom filters (§4) can
reduce the number of SSTs that need to be searched.

3. SPACE AMPLIFICATION
LSM is typically far more space efficient than a B-tree. Un-
der read/write workloads similar to those at FB, B-tree
space utilization will be poor [14] with its pages only 1/2
to 2/3 full (as measured in FB production databases). This
fragmentation causes space amplification to be worse than
1.5 in B-tree-based storage engines. Compressed InnoDB
has fixed page sizes on disk which further wastes space.

In contrast, LSM does not suffer from fragmentation be-
cause it does not require data to be written to SSD page-
aligned. LSM space amplification is mostly determined by
how much stale data is yet to be garbage-collected. If we
assume that the last level is filled to its target size with
data and that each level is 10X larger than the previous
level, then in the worst case, LSM space amplification will
be 1.111..., considering that all of the levels up to the last
level combined are only 11.111...% the size of the last level.

RocksDB uses two strategies to reduce space amplifica-
tion: (i) adapting the level sizes to the size of the data, and
(ii) applying a number of compression strategies.

3.1 Dynamic level size adaptation
If a fixed size is specified for each level, then in practice it
is unlikely that the size of the data stored at the last level
will be 10X the target size of the previous level. In a worse

case, the size of the data stored at the last level will only be
slightly larger than the target size of the previous level, in
which case space amplification would be larger than 2.

However, if we dynamically adjust the size of each level to
be 1/10-th the size of the data on the next level, then space
amplification will be reduced to less than 1.111....

The level size multiplier is a tunable parameter within
LSM. Above, we assumed it is 10. The larger the size multi-
plier is, the lower the space amplification and the read am-
plification, but the higher the write amplification. Hence,
the choice represents a tradeoff. For most of the FB produc-
tion RocksDB installations, a size multiplier of 10 is used,
although there are a few instances that use 8.

An interesting question is whether the size multiplier at
each level should be the same. The original paper on LSM
proved that it is optimal to have the same multiplier at each
level when optimizing for write amplification [9].3 It is an
open question of whether this also holds true when optimiz-
ing for space amplification, especially when considering that
different levels may use different compression algorithms re-
sulting in different compression ratios at each level (as de-
scribed in the next section). We intend to analyze this ques-
tion in future work.4

3.2 Compression
Space amplification can be further reduced by compressing
the SST files. We apply a number of strategies simultane-
ously. LSM provides a number of properties that make ap-
plying compression strategies more practical. In particular,
SSTs and their data blocks in LSM are immutable.

Key prefix encoding. Prefix encoding is applied on the
keys by not writing repeated prefixes of previous keys. We
have found this reduces space requirements by 3% – 17% in
practice, depending on the data workload.

Sequence ID garbage collection. The sequence ID
of a key is removed if it is older than the oldest snapshot
needed for multiversion concurrency control. Users can ar-
bitrarily create snapshots to refer to the current database
state at a later point in time. Removing snapshot IDs tends
to be effective because the 7 byte large sequence ID does
not compress well, and because most of the sequence IDs
would no longer be needed after the corresponding snap-
shots that refer to them have been deleted. In practice,
this optimization reduces space requirements, depending on
the data workload, from between 0.03% (e.g., for a database
storing social graph vertexes that will have large values) and
23% (e.g., for a database storing social graph edges that will
have empty values) .

Data compression. RocksDB currently supports several
compression algorithms, including LZ, Snappy, zlib, and zs-
tandard. Each level can be configured to use any or none
of these compression algorithms. Compression is applied
on a per-block basis. Depending on the composition of the
data, weaker compression algorithms can reduce space re-
quirements down to as low as 40%, and stronger algorithms

3The original LSM paper uses a fixed number of levels and
varies the multiplier as the database gets larger, but keeping
the multiplier the same at each level. LevelDB/RocksDB
use a fixed multiplier but varies the number of levels as the
database gets larger.
4Initial results indicate that adapting the size targets at each
level to take into account the compression ratios achieved at
each level lead to better results.

down to as low as 25%, of their original sizes on production
FB data.

To reduce the frequency of having to uncompress data
blocks, the RocksDB block cache stores blocks in uncom-
pressed form. (Note that recently accessed compressed file
blocks will be cached by the operating system page cache
in compressed form, so compressed SSTs will use less stor-
age space and less cache space, which in turn allows the file
system cache to cache more data.)

Dictionary-Based Compression. A data dictionary
can be used to further improve compression. Data dictio-
naries can be particularly important when small data blocks
are used, as smaller blocks typically yield lower compression
ratios. The dictionary makes it possible for smaller blocks to
benefit from more context. Experimentally, we have found
that a data dictionary can reduce space requirements by an
additional 3%.

LSM trees make it easier to build and maintain dictionar-
ies; they tend to generate large immutable SST files that can
be hundreds of megabytes large; a dictionary that is applied
to all data blocks can be stored within the file so when the
file is deleted, the dictionary is dropped automatically.

4. TRADEOFFS
LSM-trees have many configuration parameters and op-

tions that allow an installation to control a number of trade-
offs. Prior work by Athanassoulis et al. established that
one can optimize for any two of space-, read-, and write-
amplification, but at the cost of the third [8]. Thus, for
example, increasing the number of levels (say by decreas-
ing the level multiplier) decreases write amplification, but
increases space and read amplification.

As another example, in LSM trees, a larger block size leads
to improved compression without degrading write amplifi-
cation, but negatively affects read amplification (since more
data must be read per query). This observation allows us
to opt for a larger block size for better compression ratios
when dealing with write heavy applications. (In B-Trees,
larger blocks degrade both write and read amplification.)

Tradeoffs in many cases involve judgement calls and de-
pend on the expected workload and perceived minimal ac-
ceptable quality of service levels. When focusing on effi-
ciency (as we do), it is exceedingly difficult to configure the
system to properly balance CPU, disk I/O, and memory
utilization, especially because it is strongly dependent on a
highly varying workload.

As we show in the next section, our techniques reduce
storage space requirements by 50% over InnoDB. This allows
us to store twice as much data on each node, which in turn
enables significant consolidation of existing hardware. But
that also means we double the workload (QPS) per server
and must be careful that we have enough CPU, random I/O
capacity and RAM to support that.

Tiered compression. Compression generally decreases
the amount of storage space required, but increases CPU
overheads, since data has to be compressed and decom-
pressed. The stronger the compression, the higher the CPU
overhead. In our installations, a strong compression algo-
rithm (like zlib or zstandard) is typically used at the last
level even though it incurs higher CPU overhead, because
most (close to 90%) of the data is located at that level, yet
only a small fraction of reads and writes go to it. In vari-
ous use cases, applying strong compression to the last level

saves an additional 15%–30% in storage space over using
lightweight compression only.

Conversely, we do not use any compression at levels 0–2
to allow for lower read latencies at the cost of higher space-
and write-amplification, because (i) they tend to be accessed
more frequently, and (ii) they use up only a small propor-
tion of the total storage space. Level-3 up to the lest level
use lightweight compression (like LZ4 or Snappy) because its
CPU overhead is acceptable, yet it reduces space and write
amplification. Reads to data located in the first three lev-
els will more likely be located in (uncompressed) file blocks
cached by the operating system because these blocks are fre-
quently accessed. However, reads to data located in levels
higher than 2 will have to be uncompressed whether they
are located in the operating system file cache or not (unless
they are also located in the RocksDB block cache).

Bloom filters. Bloom filters are effective in reducing I/O
operations and attendant CPU overheads, but at the cost of
somewhat increased memory usage since the filter (typically)
requires 10 bits per key. However, as an illustration that
some tradeoffs are subtle, we do not use a Bloom filter at
the last level. While this will result in more frequent accesses
to last-level files, the probability of a read query reaching the
last level is relatively small. More importantly, the last-level
bloom filter is large (∼10X as large as all lower-level Bloom
filters combined) and the space it would consume in the
memory-based caches, would prevent the caching of other
data that would be being accessed. Measurements indicated
that not having a Bloom filter for the last level improved
read amplification overall, given our workloads.

Prefix Bloom filters. Bloom filters do not help with
range queries. We have developed a prefix Bloom filter
that helps with range queries, based on the observation that
many range queries are often over a prefix; e.g., the userid
part of a (userid,timestamp) key or postid of a (postid,likerid)
key. We allow users to define prefix extractors to determin-
istically extract a prefix part of the key from which we con-
struct a Bloom filter. When querying a range, the user can
specify that the query is on a defined prefix. We have found
this optimization reduces read amplification (and attendant
CPU overheads) by up to 64% on our systems for otherwise
costly range queries.

5. EVALUATION
A review of numerous MySQL installations at FB generally
reveal that

1. the storage space used by RocksDB is about 50% lower
than the space used by InnoDB with compression,

2. the amount of data written to storage by RocksDB is
between 10% and 15% of what InnoDB writes out, and

3. the number and volume of reads is 10% – 20% higher in
RocksDB that for InnoDB (yet well within the margin
of acceptability).

For more meaningful metrics from controlled environments,
we present the results of extensive experiments using two
benchmarks with MySQL. The first benchmark, LinkBench,
is based on traces from production databases that store ”so-
cial graph” data at FB; it issues a considerable number of
range queries [15]. We ran 24 1 hour intervals of LinkBench
and measured statistics for the 24th interval to obtain num-
bers from a steady-state system.5 The second benchmark is
5We also gathered statistics when loading the full LinkBench

the standard TPC-C benchmark.
For both benchmarks, we experimented with two variants:

one where the database fit in DRAM so that disk activity
was needed only for writes to achieve durability, and one
where the database did not fit in memory. We compare the
behavior of RocksDB, InnoDB, and TokuDB, configured to
use a variety of compression strategies. (TokuDB is another
open source, high-performance storage engine for MySQL

database; the results (not shown due to space) are inline
with the steady-state numbers.

50M	Vertices	
300GB	DRAM	

1B	Vertices		
50GB	DRAM	

Tr
an

s.
	/

	m
in

.	
Si

ze
	(G

B)
	

KB
	re

ad
	/

	
tr

an
s.

	
KB

	w
rit

te
n	

/	
tr

an
s.

	
CP

U
	o

ve
rh

ea
d	

/	
tr

an
s.

	

-

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

-

10,000	

20,000	

30,000	

40,000	

-10

40

90

140

-

500	

1,000	

1,500	

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

-

500	

1,000	

1,500	

2,000	

-
500	

1,000	
1,500	
2,000	
2,500	
3,000	
3,500	

(No SSD reads)

Figure 1: LinkBench benchmark. Statistics gathered from
the 24th hour of 24 hour runs with 16 concurrent clients for 3
different storage engines: RocksDB (from FB MySQL 5.6) shown
in red, InnoDB (from MySQL 5.7.10) shown in blue, and TokuDB
(Percona Server 5.6.26-74.0) shown in green, configured to use the
compression scheme(s) listed in brackets. (Sync-on-commit was
disabled, binlog/oplog and redo logs were enabled.)

System setup: The hardware consisted of an Intel Xeon E5-
2678v3 CPU with 24-cores/48-HW-threads running at 2.50GHz,
256GB of RAM, and roughly 5T of fast NVMe SSD provided via
3 devices configured as SW RAID 0. The operating system was
Linux 4.0.9-30

Left hand side graphs: Statistics from LinkBench configured to
store 50M vertices, which fits entirely in DRAM.

Right hand side graphs: Statistics from LinkBench configured to
store 1B vertices, which does not fit in memory after constraining
DRAM memory to 50GB: all but 50GB of RAM was mlocked by
a background process so the database software, OS page cache
and other monitoring processes had to share those 50GB. The
MyRocks block cache was set to 10GB.

which at its core uses a fractal tree index tree data structure
to reduce space and write amplification [16].)

Figure 1 shows the results from our LinkBench experi-
ments. The hardware and software setup used is described

0
1
2
3
4
5
6
7

LinkBench	Quality	of	Service
99th	percentile	Latencies	(ms)

Update	Vertex Get	Vertex
Update	Link Get	Link

Figure 2: 99th percentile latencies for: Update Vertex, Get
Vertex, Update Link, Get Link. The setup of the hardware and
storage engines as described in Figure 1. The database with 1B
vertices was used with available DRAM constrained to 50GB.

40	warehouses		
10	concurrent	clients	

1,000	warehouses		
20	concurrent	clients	

Tr
an

s.
	/
	m

in
.	

Si
ze
	(G

B)
	

KB
	re

ad
	/
	

tr
an

s.
	

KB
	w
rit
te
n	
/	

tr
an

s.
	

CP
U
	o
ve
rh
ea
d	
/	

tr
an

s.
	

-

20,000	

40,000	

60,000	

-

20,000	

40,000	

60,000	

80,000	

100,000	

0

50

100

0

50

100

150

200

0

1

2

3

4

5

0

1

2

3

4

5

0

10

20

30

0

10

20

30

-

500	

1,000	

1,500	

-

500	

1,000	

1,500	

(No SSD reads)

Figure 3: TPC-C. Metrics obtained using the same setup as in
Figure 1. The left hand side: configuration of 40 warehouses
and 10 concurrent clients; the database fits in memory. The
statistics were gathered during the 15th hour interval after 14
hours of operation. The right hand side: configuration of 1,000
warehouses and 20 concurrent clients. The statistics shown were
gathered during the 12th hour interval after 11 hours of opera-
tion. The transaction isolation levels used is marked as “rc” for
READ COMMITTED or“rr” for REPEATABLE READ.

in the figure caption. Some observations for the LinkBench
benchmark with a database that does not fit in memory:

• Space usage: RocksDB with compression uses less stor-
age space than any of the alternatives considered; with-
out compression, it uses less than half as much storage
space as InnoDB without compression.

• Transaction throughput: RocksDB exhibits higher
throughput than all the alternatives considered: 3%-16%
better than InnoDB, and far better than TokuDB. Not
visible in the graph: in all cases, CPU is the bottleneck
preventing throughput to further increase.

• CPU overhead: When stronger compression is used,
then RocksDB exhibits less than 20% higher CPU over-
head per transaction compared to InnoDB with no com-
pression, but less than 30% as much CPU overhead as
TokuDB. RocksDB with strong compression incurs only
80% as much CPU overhead as InnoDB with compres-
sion.

• Write Volume: The volume of data written per trans-
action in RocksDB is less than 20% of the volume of
data written by InnoDB.6 RocksDB write volume is sig-
nificantly lower than TokuDB write volume.

• Read Volume: The volume of data read per read trans-
action in RocksDB is 20% higher than InnoDB when no
compression is used, and between 10% and 22% higher
when compression is used. RocksDB read volume is sig-
nificantly less than TokuDB read volume.

Figure 2 depicts the quality of service achieved by the dif-
ferent storage engines. Specifically, it shows the 99-th per-
centile latencies for read and write requests on both ver-
tices and edges in the LinkBench database. The behavior of
RocksDB is an order of magnitude better than the behavior
of all the other alternatives considered.

The results of the TPC-C benchmark are shown in Fig-
ure 3. The database size statistics are more difficult to inter-
pret here because the TPC-C database grows with the num-
ber of transactions. As a result, for example, InnoDB with
compression is shown to generate a small-sized database, but
this is only the case because this InnoDB variant was able
to process far fewer transactions up until the measurements
were taken; in fact, InnoDB database size grows much faster
in transaction time than RocksDB.

The figure clearly shows that RocksDB is not only com-
petitive on OLTP workloads, but generally has higher trans-
action throughput while requiring significantly less storage
space than the alternatives. RocksDB writes out less data
per transaction than all the other configurations tested, yet
reads only marginally more and requires only marginally
more CPU overhead per transaction.

6. CONCLUDING REMARKS
We described how RocksDB was able to reduce storage space
requirements by 50% over what InnoDB would need, while

6The I/O volume numbers were obtained from iostat. The
write volume numbers had to be adjusted because io-
stat counts TRIM as bytes written when in fact none
are. RocksDB frequently deletes entire files (in contrast to
InnoDB) and uses TRIM for that, which iostat reports as if
the entire file had been written.

at the same time increasing transaction throughput and sig-
nificantly decreasing write amplification yet increasing av-
erage read latencies by a marginal amount. It did this by
leveraging LSM trees and applying a variety of techniques
to conserve space.

A number of these techniques are being described for the
first time, including: (i) dynamic LSM level size adjustment
based on on current DB size; (ii) tiered compression where
different levels of compression are used at different LSM lev-
els; (iii) use of a shared compression dictionary; (iv) applica-
tion of bloom filter to key prefixes; and (v) use of different
size multipliers at different LSM levels. Moreover, we be-
lieve this is the first time an LSM-based storage engine has
been shown to have competitive performance when running
traditional OLTP workloads.

7. REFERENCES
[1] http://rocksdb.org.
[2] http://leveldb.org.
[3] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei,

N. Simha, W. Wang, K. Wilfong, T. Williamson, and
S. Yilmaz, “Realtime data processing at Facebook,” in
Proc. Intl. Conf. on Mgmt. of Data, 2016, pp.
1087–1098.

[4] A. Sharma, “Blog post: Dragon: A distributed graph
query engine,”
https://code.facebook.com/posts/1737605303120405/
dragon-a-distributed-graph-query-engine/, 2016.

[5] https://www.mongodb.com.
[6] https://yahooeng.tumblr.com/post/120730204806/

sherpa-scales-new-heights.
[7] http://opencompute.org.
[8] M. Athanassoulis, M. S. Kester, L. M. Maas,

R. Stoica, S. Idreos, A. Ailamaki, and M. Callaghan,
“Designing access methods: The RUM conjecture,” in
Proc. Intl. Conf. on Extending Database Technology
(EDBT), 2016.

[9] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The
log-structured merge-tree (LSM-tree),” Acta
Informatica, vol. 33, no. 4, pp. 351–385, 1996.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for
structured data,” ACM Trans. on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[11] A. Lakshman and P. Malik, “Cassandra: a
decentralized structured storage system,” ACM
SIGOPS Operating Systems Review, vol. 44, no. 2, pp.
35–40, 2010.

[12] A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania,
P. Khemani, K. Muthukkaruppan, K. Ranganathan,
N. Spiegelberg, L. Tang, and M. Vaidya, “Storage
infrastructure behind facebook messages: Using hbase
at scale.” IEEE Data Eng. Bull., vol. 35, no. 2, pp.
4–13, 2012.

[13] T. Hobbs, “Blog post: When to use leveled
compaction,” http://www.datastax.com/dev/blog/
when-to-use-leveled-compaction, june 2012.

[14] A. C.-C. Yao, “On random 2—3 trees,” Acta Inf.,
vol. 9, no. 2, pp. 159–170, Jun. 1978.

[15] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan, “Linkbench: A database benchmark
based on the facebook social graph,” in Proc. 2013
ACM SIGMOD Intl. Conf. on Management of Data,
2013, pp. 1185–1196.

[16] I. Tokutek, “TokuDB: MySQL performance, MariaDB
performance,” http:
//www.tokutek.com/products/tokudb-for-mysql/,
2013.

