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Abstract
RocksDB is a key-value store targeting large-scale distributed
systems and optimized for Solid State Drives (SSDs). This pa-
per describes how our priorities in developing RocksDB have
evolved over the last eight years. The evolution is the result
both of hardware trends and of extensive experience running
RocksDB at scale in production at a number of organizations.
We describe how and why RocksDB’s resource optimization
target migrated from write amplification, to space amplifica-
tion, to CPU utilization. Lessons from running large-scale
applications taught us that resource allocation needs to be
managed across different RocksDB instances, that data for-
mat needs to remain backward and forward compatible to
allow incremental software rollout, and that appropriate sup-
port for database replication and backups are needed. Lessons
from failure handling taught us that data corruption errors
needed to be detected earlier and at every layer of the system.

1 Introduction

RocksDB [19, 54] is a high-performance persistent key-
value storage engine created in 2012 by Facebook, based
on Google’s LevelDB code base [22]. It is optimized for the
specific characteristics of Solid State Drives (SSDs), targets
large-scale (distributed) applications, and is designed as a
library component that is embedded in higher-level appli-
cations. As such, each RocksDB instance manages data on
storage devices of just a single server node; it does not handle
any inter-host operations, such as replication and load balanc-
ing, and it does not perform high-level operations, such as
checkpoints — it leaves the implementation of these opera-
tions to the application, but provides appropriate support so
they can do it effectively.

RocksDB and its various components are highly customiz-
able, allowing the storage engine to be tailored to a wide
spectrum of requirements and workloads; customizations can
include the write-ahead log (WAL) treatment, the compres-
sion strategy, and the compaction strategy (a process that

removes dead data and optimizes LSM-trees as described in
§2). RocksDB may be tuned for high write throughput or high
read throughput, for space efficiency, or something in between.
Due to its configurability, RocksDB is used by many appli-
cations, representing a wide range of use cases. At Facebook
alone, RocksDB is used by over 30 different applications, in
aggregate storing many hundreds of petabytes of production
data. Besides being used as a storage engine for databases
(e.g., MySQL [37], Rocksandra [6], CockroachDB [64], Mon-
goDB [40], and TiDB [27]), RocksDB is also used for the
following types of services with highly disparate characteris-
tics (summarized in Table 1):
• Stream processing: RocksDB is used to store stag-

ing data in Apache Flink [12], Kafka Stream [31],
Samza [43], and Facebook’s Stylus [15].
• Logging/queuing services: RocksDB is used by Face-

book’s LogDevice [5] (that uses both SSDs and HDDs),
Uber’s Cherami [8], and Iron.io [29].
• Index services: RocksDB is used by Facebook’s

Dragon [59] and Rockset [58].
• Caching on SSD: In-memory caching services, such as

Netflix’s EVCache [7], Qihoo’s Pika [51] and Redis [46],
store data evicted from DRAM on SSDs using RocksDB.

A prior paper presented an analysis of several database ap-
plications using RocksDB [11]. Table 2 summarizes some of
the key system metrics obtained from production workloads.

Having a storage engine that can support many different
use cases offers the advantage that the same storage engine
can be used across different applications. Indeed, having each
application build its own storage subsystem is problematic,
as doing so is challenging. Even simple applications need
to protect against media corruption using checksums, guar-
antee data consistency after crashes, issue the right system
calls in the correct order to guarantee durability of writes, and
handle errors returned from the file system in a correct man-
ner. A well-established common storage engine can deliver
sophistication in all those domains.

Additional benefits are achieved from having a common
storage engine when the client applications run within a com-
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Read/Write Read Types Special
Characteristics

Databases Mixed Get + Iterator Transactions
and backups

Stream Processing Write-Heavy Get or Iterator Time window
and checkpoints

Logging / Queues Write-Heavy Iterator Support HDD too

Index Services Read-Heavy Iterator Bulk loading

Cache Write-Heavy Get Can drop data

Table 1: RocksDB use cases and their workload characteristics

CPU Space Util Flash
Endurance

Read
Bandwidth

Stream Processing 11% 48% 16% 1.6%

Logging / Queues 46% 45% 7% 1.0%

Index Services 47% 61% 5% 10.0%

Cache 3% 78% 74% 3.5%

Table 2: System metrics for a typical use case from each
application category.

mon infrastructure: the monitoring framework, performance
profiling facilities, and debugging tools can all be shared. For
example, different application owners within a company can
take advantage of the same internal framework that reports
statistics to the same dashboard, monitor the system using the
same tools, and manage RocksDB using the same embedded
admin service. This consolidation not only allows expertise to
be easily reused among different teams, but also allows infor-
mation to be aggregated to common portals and encourages
developing tools to manage them.

Given the diverse set of applications that have adopted
RocksDB, it is natural that priorities for its development have
evolved. This paper describes how our priorities evolved over
the last eight years as we learned practical lessons from real-
world applications (both within Facebook and other organiza-
tions) and observed changes in hardware trends, causing us to
revisit some of our early assumptions. We also describe our
RocksDB development priorities for the near future.

§2 provides background on SSDs and Log-Structured
Merge (LSM) trees [45]. From the beginning, RocksDB chose
the LSM tree as its primary data structure to address the
asymmetry in read/write performance and the limited en-
durance of flash-based SSDs. We believe LSM-trees have
served RocksDB well and argue they will remain a good fit
even with upcoming hardware trends (§3). The LSM-tree data
structure is one of the reasons RocksDB can accommodate
different types applications with disparate requirements.

§3 describes how our primary optimization target shifted
from minimizing write amplification to minimizing space
amplification, and from optimizing performance to optimizing
efficiency.

§4 describes lessons we learned serving large-scale dis-
tributed systems; for example: (i) resource allocation must

be managed across multiple RocksDB instances, since a sin-
gle server may host multiple instances; (ii) data format must
be backward and forward compatible, since RocksDB soft-
ware updates are deployed/rolled-back incrementally; and
(iii) proper support for database replication and backups are
important.

§5 describes our experiences on failure handling. Large-
scale distributed systems typically use replication for fault
tolerance and high availability. However, single node failures
must be properly handled to achieve that goal. We have found
that simply identifying and propagating file system and check-
sum errors is not sufficient. Rather, faults (such as bitflips) at
every layer must be identified as early as possible and appli-
cations should be able to specify policies for handling them
in an automated way when possible.

§6 presents our thoughts on improving the key-value inter-
face. While the core interface is simple and powerful given
its flexibility, it limits the performance for some critical use
cases. We describe our support for user-defined timestamps
separate from the key and value.

§8 lists several areas where RockDB would benefit from
future research.

2 Background

The characteristics of flash have profoundly impacted the de-
sign of RocksDB. The asymmetry in read/write performance
and limited endurance pose challenges and opportunities in
the design of data structures and system architectures. As
such, RocksDB employs flash-friendly data structures and
optimizes for modern hardware.

2.1 Embedded storage on flash based SSDs

Over the last decade, we have witnessed the proliferation of
flash-based SSD for serving online data. The low latency
and high throughput device not only challenged software to
take advantage of its full capabilities, but also transformed
how many stateful services are implemented. An SSD offers
hundreds of thousands of Input/Output Operations per Second
(IOPS) for both of read and write, which is thousands of times
faster than a spinning hard drive. It can also support hundreds
of MBs of bandwidth. Yet high write bandwidth cannot be
sustained due to a limited number of program/erase cycles.
These factors provide an opportunity to rethink the storage
engine’s data structures to optimize for this hardware.

The high performance of the SSD, in many cases, also
shifted the performance bottleneck from device I/O to the
network for both of latency and throughput. It became more
attractive for applications to design their architecture to store
data on local SSDs rather than use a remote data storage ser-
vice. This increased the demand for a key-value store engines
that are embedded in applications.
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Figure 1: RocksDB LSM-tree using leveled compaction. Each
white box is an SSTable.

RocksDB was created to address these requirements. We
wanted to create a flexible key-value store to serve a wide
range of applications using local SSD drives while optimizing
for the characteristics of SSDs. LSM trees played a key role
in achieving these goals.

2.2 RocksDB architecture

RocksDB uses Log-Structured Merge (LSM) trees [45] as its
primary data structure to store data.

Writes. Whenever data is written to RocksDB, it is added
to an in-memory write buffer called MemTable, as well as an
on-disk Write Ahead Log (WAL). Memtable is implemented
as a skiplist so keep the data ordered with O(log n) insert and
search overhead. The WAL is used for recovery after a failure,
but is not mandatory. Once the size of the MemTable reaches
a configured size, then (i) the MemTable and WAL become
immutable, (ii) a new MemTable and WAL are allocated for
subsequent writes, (iii) the contents of the MemTable are
flushed to a “Sorted String Table” (SSTable) data file on disk,
and (iv) the flushed MemTable and associated WAL are dis-
carded. Each SSTable stores data in sorted order, divided into
uniformly-sized blocks. Each SSTable also has an index block
with one index entry per SSTable block for binary search.

Compaction. The LSM tree has multiple levels of SSTa-
bles, as shown in Fig. 1. The newest SSTables are created
by MemTable flushes and placed in Level-0. Levels higher
than Level-0 are created by a process called compaction. The
size of SSTables on a given level are limited by configura-
tion parameters. When level-L’s size target is exceeded, some
SSTables in level-L are selected and merged with the over-
lapping SSTables in level-(L+1). In doing so, deleted and
overwritten data is removed, and the table is optimized for
read performance and space efficiency. This process grad-
ually migrates written data from Level-0 to the last level.
Compaction I/O is efficient as it can be parallelized and only
involves bulk reads and writes of entire files.

Level-0 SSTables have overlapping key ranges, as each
SSTable covers a full sorted run. Later levels each contain
only one sorted run so the SSTables in these levels contain a
partition of their level’s sorted run.

Reads. In the read path, a key lookup occurs at each suc-
cessive level until the key is found or it is determined that the
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Leveled 16.07 9.8% 9.5% 0.99 1.7 1.84
Tiered 4.8 94.4% 45.5% 1.03 3.39 4.80
FIFO 2.14 N/A N/A 1.16 528 967

Table 3: Write amplification, overhead and read I/O for three
major compaction types under RocksDB 5.9. Number of
sorted runs is set to 12 for Tiered Compaction, and 20 bloom
filter bits per key are used for FIFO Compaction. Direct I/O is
used and block cache size is set to be 10% of fully compacted
DB size. Write amplification is calculated as total SSTable file
writes vs number of Mem-Table bytes flushed. WAL writes
are not included.

key is not present in the last level. It begins by searching all
MemTables, followed by all Level-0 SSTables, and then the
SSTables in successively higher levels. At each of these levels,
binary search is used. Bloom filters are used to eliminate an
unnecessary search within an SSTable file. Scans require that
all levels be searched.

RocksDB supports multiple different types of compaction.
Leveled Compaction was adapted from LevelDB and then
improved [19]. In this compaction style, levels are assigned
exponentially increasing size targets as exemplified by the
dashed boxes in Fig. 1. Tiered Compaction (called Univer-
sal Compaction in RocksDB) is similar to what is used by
Apache Cassandra or HBase. Multiple sorted runs are lazily
compacted together, either when there are too many sorted
runs, or the ratio between total DB size over the size of the
largest sorted run exceeds a configurable threshold. Finally,
FIFO Compaction simply discards old files once the DB hits
a size limit and only performs lightweight compactions. It
targets in-memory caching applications.

Being able to configure the type of compaction allows
RocksDB to serve a wide range of use cases. By using differ-
ent compaction styles, RocksDB can be configured as read
friendly, write friendly, or very write friendly for special cache
workloads. However, application owners will need to consider
trade-offs among the different metrics for their specific use
case [2]. A lazier compaction algorithm improves write am-
plification and write throughput, but read performance suffers,
while a more aggressive compaction sacrifices write perfor-
mance but allows for faster reads. Services like logging or
stream processing can use a write heavy setup while database
services need a balanced approach. Table 3 depicts this flexi-
bility by way of micro-benchmark results.
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Figure 2: Survey of write amplification and write rate across
42 randomly sampled ZippyDB and MyRocks applications.

3 Evolution of resource optimization targets

Here we describe how our resource optimization target
evolved over time: from write amplification to space am-
plification to CPU utilization.

Write amplification
When we started developing RocksDB, we initially focused
on saving flash erase cycles and thus write amplification,
following the general view of the community at the time
(e.g., [34]). This was rightly an important target for many ap-
plications, in particular for those with write-heavy workloads
(Table 1) where it continues to be an issue.

Write amplification emerges at two levels. SSDs them-
selves introduce write amplification: by our observations be-
tween 1.1 and 3. Storage and database software also generate
write amplification; this can sometimes be as high as 100
(e.g., when an entire 4KB/8KB/16KB page is written out for
changes of less than 100 bytes).

Leveled Compaction in RocksDB usually exhibits write
amplification between 10 and 30, which is several times better
than when using B-trees in many cases. For example, when
running LinkBench on MySQL, RocksDB issues only 5% as
many writes per transaction as InnoDB, a B-tree based storage
engine [37]. Still, write amplification in the 10–30 range is too
high for write-heavy applications. For this reason we added
Tiered Compaction, which brings write amplification down
to the 4–10 range, although with lower read performance; see
Table 3. Figure 2 depicts RocksDB’s write amplification under
different data ingestion rates. RocksDB application owners
often pick a compaction method to reduce write amplification
when the write rate is high, and compact more aggressively
when the write rate is low to achieve space efficiency and read
performance goals.

Space amplification
After several years of development, we observed that for most
applications, space utilization was far more important than
write amplification, given that neither flash write cycles nor
write overhead were constraining. In fact the number of IOPS
utilized in practice was low compared to what the SSD could
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400 24.0 26.9 11.8 24.0 26.9 12.2
600 36.0 40.4 12.2 36.4 42.5 16.9
800 48.0 54.2 12.7 48.3 57.9 19.7

1,000 60.1 67.5 12.4 60.3 73.8 22.4

Table 4: RocksDB space efficiency measured in a micro-
benchmark: data is prepopulated and each write is to a key
chosen randomly from the pre-populated key space. RocksDB
5.9 with all default options. Constant 2MB/s write rate.

provide (yet still high enough to make HDDs unattractive,
even when ignoring maintenance overhead). As a result, we
shifted our resource optimization target to disk space.

Fortunately, LSM-trees also work well when optimizing for
disk space due to their non-fragmented data layout. However,
we saw an opportunity to improve Leveled Compaction by re-
ducing the amount of dead data (i.e., deleted and overwritten
data) in the LSM tree. We developed Dynamic Leveled Com-
paction, where the size of each level in the tree is automati-
cally adjusted based on the actual size of the last level (instead
of setting the size of each level statically) [19]. This method
achieves better and more stable space efficiency than Leveled
Compaction. Table 3 shows space efficiency measured in a
random write benchmark: Dynamic Leveled Compaction lim-
its space overhead to 13%, while Leveled Compaction can
add more than 25% . Moreover, space overhead in the worst
case under Leveled Compaction can be as high as 90%, while
it is stable for dynamic leveling. In fact, for UDB, one of
Facebooks main databases, the space footprint was reduced
to 50% when InnoDB was replaced by RocksDB [36].

CPU utilization
An issue of concern sometimes raised is that SSDs have be-
come so fast that software is no longer able to take advantage
of their full potential. That is, with SSDs, the bottleneck has
shifted from the storage device to the CPU, so fundamental
improvements to the software are necessary. We do not share
this concern based on our experience, and we do not expect
it to become an issue with future NAND flash based SSDs
for two reasons. First, only a few applications are limited by
the IOPS provided by the SSDs; as discussed in §4.2, most
applications are limited by space.

Second, we find that any server with a high-end CPU has
more than enough compute power to saturate one high-end
SSD. RocksDB has never had an issue making full use of
SSD performance in our environment. Of course, it is possi-
ble to configure a system that results in the CPU becoming a
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Figure 3: Resource utilization across four metrics. Each line
represents a different deployment with a different workload.
Measurements were taken over the course of one month. All
numbers are the average across all hosts in the deployment.
CPU and read bandwidth are for the highest hour during the
month. Flash endurance and space utilization are average
across the entire month.

bottleneck; e.g., a system with one CPU and multiple SSDs.
However, effective systems are typically those configured to
be well-balanced, which today’s technology allows. Inten-
sive write-dominated workloads may also cause the CPU to
become a bottleneck. For some, this can be mitigated by con-
figuring RocksDB to use a more lightweight compression
option. For the other cases, the workload may simply not
be suitable for SSDs since it would exceed the typical flash
endurance budget that allows the SSD to last 2-5 years.

To confirm our view, we surveyed 42 different deployments
of ZippyDB [65] and MyRocks in production, each serving
a different application. Fig. 3 shows the result. Most of the
workloads are space constrained. Some are indeed CPU heavy,
but hosts are generally not fully utilized to leave headroom
for growth and handling data center or region-level failures
(or because of misconfigurations). Most of these deployments
include hundreds of hosts, so averages give an idea of the
resource needs for these use cases, considering that workloads
can be freely (re-)balanced among those hosts (§4).

Nevertheless, reducing CPU overheads has become an im-
portant optimization target, given that the low hanging fruit
of reducing space amplification has been harvested. Reduc-
ing CPU overheads improves the performance of the few
applications where the CPU is indeed constraining. More
importantly, optimizations that reduce CPU overheads allow
for hardware configurations that are more cost-effective —

until several years ago, the price of CPUs and memory was
reasonably low relative to SSDs, but CPU and memory prices
have increased substantially, so decreasing CPU overhead
and memory usage has increased in importance. Early efforts
to lower CPU overhead included the introduction of prefix
bloom filters, applying the bloom filter before index lookups,
and other bloom filter improvements. There remains room for
further improvement.

Adapting to newer technologies
New architectural improvements related to SSDs could eas-
ily disrupt RocksDB’s relevancy. For example, open-channel
SSDs [50, 66], multi-stream SSD [68] and ZNS [4] promise
to improve query latency and save flash erase cycles. How-
ever, these new technologies would benefit only a minority of
the applications using RocksDB, given that most applications
are space constrained, not erase cycle or latency constrained.
Further, having RocksDB accommodate these technologies
directly would challenge the unified RocksDB experience.
One possible path worth exploring would be to delegate the
accommodation of these technologies to the underlying file
system, perhaps with RocksDB providing additional hints.

In-storage computing potentially might offer significant
gains, but it is unclear how many RocksDB applications would
actually benefit from this. We suspect it would be challenging
for RocksDB to adapt to in-storage computing, likely requir-
ing API changes to the entire software stack to fully exploit.
We look forward to future research on how best to do this.

Disaggregated (remote) storage appears to be a much more
interesting optimization target and is a current priority. So
far, our optimizations have assumed the flash was locally at-
tached, as our system infrastructure is primarily configured
this way.However, faster networks currently allow many more
I/Os to be served remotely, so the performance of running
RocksDB with remote storage has become viable for an in-
creasing number of applications. With remote storage, it is
easier to make full use of both CPU and SSD resources at
the same time, because they can be separately provisioned
on demand (something much more difficult to achieve with
locally attached SSDs). As a result, optimizing RocksDB for
remote flash storage has become a priority. We are currently
addressing the challenge of long I/O latency by trying to con-
solidate and parallelize I/Os. We have adapted RocksDB to
handle transient failures, pass QoS requirements to underly-
ing systems, and report profiling information. However, more
work is needed.

Storage Class Memory (SCM) is a promising technology.
We are investigating how best to take advantage of it. Several
possibilities are worth considering: 1. use SCM as an exten-
sion of DRAM — this raises the questions of how best to
implement key data structures (e.g., block cache or memtable)
with mixed DRAM and SCM, and what overheads are intro-
duced when trying to exploit the offered persistency; 2. use
SCM as the main storage of the database, but we note that
RocksDB tends to be bottlenecked by space or CPU, rather
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than I/O; and 3. use SCM for the WALs, but this raises the
question of whether this use case alone justifies the costs
of SCM, considering that we only need a small staging area
before it is moved to SSD.

Main Data Structure Revisited
We continuously revisit the question of whether LSM-trees
remain appropriate, but continue to come to the conclusion
that they do. The price of SSDs hasn’t dropped enough to
change the space and flash endurance bottlenecks for most
use cases and the alternative of trading SSD usage with CPU
or DRAM only makes sense for a few applications. While the
main conclusion remains the same, we frequently hear users’
demands for write amplification lower than what RocksDB
can provide. Nevertheless, we noted that when object sizes
are large, write amplification can be reduced by separating
key and value (e.g. WiscKey [35] and ForrestDB [1]), so we
are adding this to RocksDB (called BlobDB).

4 Lessons on serving large-scale systems

RocksDB is a building block for a wide variety of large-scale
distributed systems with disparate requirements. Over time,
we learned that improvements were needed with respect to
resource management, WAL treatment, batched file deletions,
data format compatibility, and configuration management.

Resource management
Large-scale distributed data services typically partition the
data into shards that are distributed across multiple server
nodes for storage. The size of shards is limited, because a
shard is the unit for load balancing and replication, and be-
cause shards are copied between nodes atomically for this
purpose. As a result, each server node will typically host tens
or hundreds of shards. In our context, a separate RocksDB
instance is used to service each shard, which means that a
storage host will have many RocksDB instances running on it.
These instances can either all run in one single address space,
or each in its own address space.

The fact that a host may run many RocksDB instances
has implications on resource management. Given that the
instances share the host’s resources, the resources need to be
managed both globally (per host) and locally (per instance)
to ensure they are used fairly and efficiently. When running
in single process mode, having global resource limits is im-
portant, including for (1) memory for write buffer and block
cache, (2) compaction I/O bandwidth, (3) compaction threads,
(4) total disk usage and (5) file deletion rate (described below),
and such limits are potentially needed on a per-I/O device
basis. Local resource limits are also needed, for example to en-
sure that a single instance cannot utilize an excessive amount
of any resource. RocksDB allows applications to create one
or more resource controllers (implemented as C++ objects
passed to different DB objects) for each type of resource and
also do so on a per instance basis. Finally, it is important to

support prioritization among RocksDB instances to make sure
a resource is prioritized for the instances that need it most.

Another lesson learned when running multiple instances
in one process: liberally spawning unpooled threads can be
problematic, especially if the threads are long-lived. Having
too many threads increases the probability of CPU, causes
excessive context switching overhead, and makes debugging
extremely difficult, and I/O spikes. If a RocksDB instance
needs to perform some work using a thread that may go to
sleep or wait on a condition, then it is better to use a thread
pool where size and resource usage can be easily capped.

Global (per host) resource management is more challenging
when the RocksDB instances run in separate processes, given
that each shard only has local information. Two strategies can
be applied. First, each instance is configured to use resources
conservatively, as opposed to greedily. With compaction, for
example, each instance can initiate fewer compactions than
“normal,” ramping up only when compactions are behind. The
downside of this strategy is that the global resources may
not be fully exploited, leading to sub-optimal resource usage.
The second, operationally more challenging strategy is for
the instances to share resource usage information amongst
themselves and to adapt accordingly in an attempt to optimize
resource usage more globally. More work will be needed to
improve host-wide resource management in RocksDB.

WAL treatment
Traditional databases tend to force a write-ahead-log (WAL)
write upon every write operation to ensure durability. In con-
trast, large-scale distributed storage systems typically repli-
cate data for performance and availability, and they do so with
various consistency guarantees. For example, if copies of the
same data exist in multiple replicas, and one replica becomes
corrupted or inaccessible, then the storage system uses valid
replica(s) from other unaffected hosts to rebuild the replica of
the failed host. For such systems, RocksDB WAL writes are
less critical. Further, distributed systems often have their own
replication logs (e.g., Paxos logs), in which case RocksDB
WAL are not needed at all.

We learned it is helpful to provide options for tuning WAL
sync behavior to meet the needs of different applications.
Specifically, we introduced differentiated WAL operating
modes: (i) synchronous WAL writes, (i) buffered WAL writes,
and (i) no WAL writes at all. For buffered WAL treatment,
WAL is periodically written out to disk in the background at
low priority so as not to impact RocksDB’s traffic latencies.

Rate-limited file deletions
RocksDB typically interacts with the underlying storage de-
vice via a file system. These file systems are flash-SSD-aware;
e.g., XFS, with realtime discard, may issue a TRIM com-
mand [28] to the SSD whenever a file is deleted. TRIM com-
mands are commonly believed to improve performance and
flash endurance [21], as validated by our production experi-
ence. However, it may also cause performance issues. TRIM
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is more disruptive than we originally thought: in addition
to updating the address mapping (most often in the SSD’s
internal memory), the SSD firmware also needs to write these
changes to FTL’s1 journal in flash, which in turn may trigger
SSD’s internal garbage collection, causing considerable data
movement with an attendant negative impact on foreground
IO latencies. To avoid TRIM activity spikes and associated
increases in I/O latency, we introduced rate limiting for file
deletion to prevent multiple files from being deleted simulta-
neously (which happens after compactions).

Data format compatibility
Large scale distributed applications run their services on many
hosts, and they expect zero downtime. As a result, software
upgrades are incrementally rolled out across the hosts; and
when issues arise, the updates are rolled back. In light of
continuous deployment [56], these software upgrades occur
frequently; RocksDB issues a new release once a month.For
this reason, it is important that the data on disk remain both
backward and forward compatible across the different soft-
ware versions. A newly upgraded (or rolled back) RocksDB
instance must be able to make sense of the data stored on disk
by the previous instance. Further, RocksDB data files may
need to be copied between distributed instances for replica
building or load balancing, and these instances may be run-
ning different versions. A lack of a forward compatibility
guarantee caused operational difficulties in some RocksDB
deployments, which led us to add the guarantee.

RocksDB goes to great lengths to ensure data remains both
forward and backward compatible (except for new features).
This is challenging both technically and process-wise, but we
have found the effort pays off. For backwards compatibility,
RocksDB must be able to understand all formats previously
written to disk; this adds software and maintenance complex-
ities. For forward compatibility, future data formats need to
be understood, and we aim to maintain forward compatibility
for at least one year. This can be achieved in part, by using
generic techniques, such as those used by Protocol Buffer [63]
or Thrift [62]. For configuration file entries, RocksDB needs
to be able to identify new fields and use best-effort guesses on
how to apply the configuration or when to discard. We con-
tinuously test different versions of RocksDB with different
versions of its data.

Managing configurations
RocksDB is highly configurable so that applications can op-
timize for their workload. However, we have found config-
uration management to be a challenge. Initially, RocksDB
inherited LevelDB’s method of configuring parameters where
the parameter options were directly embedded in the code.
This caused two problems. First, parameter options were often
tied to the data stored on disk, causing potential compatibility
issues when data files created using one option could not be
opened by a RocksDB instance newly configured with another

1FTL: Flash Translation Layer.

Compac- Compre- SSTable Plug-in
Config Area: tion I/O ssion file fcts

Configurations: 14 4 2 7 6

Table 5: The number of distinct configurations used across 39
ZippyDB deployments

option. Second, configuration options not explicitly specified
by the code were automatically set to RocksDB’s default val-
ues. When a RocksDB software update included changes to
the default configuration parameters (e.g., to increase memory
usage or compaction parallelism), applications would some-
times experience unexpected consequences.

To address these issues, RocksDB first introduced the abil-
ity for a RocksDB instance to open a database with a string
parameter that included configuration options. Later RocksDB
introduced support for optionally storing an options file along
with the database. We also introduced two tools: (i) a vali-
dation tool that validates whether the options for opening a
database was compatible with the target database; and (ii) a
migration tool rewrites a database to be compatible with the
desired options (although this tool is limited).

A more serious problem with RocksDB configuration man-
agement is the large number of configuration options. In the
early years of RocksDB, we made the design choice of sup-
porting a high degree of customization: we introduced many
new knobs, and introduced the support of pluggable compo-
nents, all to allow applications to realize their performance
potential. This proved to be a successful strategy for gaining
initial traction early on. However, a common complaint now
is that there are far too many options and that it is too difficult
to understand their effects; i.e., it has become very difficult to
specify an “optimal” configuration.

More daunting beyond having many configuration parame-
ters to tune is the fact that the optimal configuration depends
not just on the system that has RocksDB embedded, but also
on the workload generated by the applications above them.
Consider, for example, ZippyDB [65], an in-house developed,
large-scale distributed key-value store that uses RocksDB
on its nodes. ZippyDB serves numerous different applica-
tions, sometimes individually, sometimes in a multi-tenant
setup. Although significant efforts go into using uniform con-
figurations across all ZippyDB use cases wherever possible,
the workloads are so different for the different use cases, a
uniform configuration is not practically feasible when perfor-
mance is important. Table 5 shows that across the 39 ZippyDB
deployments we sampled, over 25 distinct configurations.

Tuning configuration parameters is also particularly chal-
lenging for systems with embedded RocksDB that are shipped
to third parties. Consider a third party using a database such
as MySQL or ZippyDB within one of their applications. The
third party will typically know very little about RocksDB
and how it is best tuned. And the database owners have little
appetite for tuning the systems of their clients.
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These real-world lessons triggered changes in our configu-
ration support strategy. We have spent considerable effort on
improving out-of-box performance and simplifying configura-
tions. Our current focus is on providing automatic adaptivity,
while continuing to support extensive explicit configuration,
given that RocksDB continues to server specialized applica-
tions. We note that pursuing adaptivity while retaining explicit
configurability creates significant code maintenance overhead,
we believe the benefits of having a consolidated storage en-
gine outweighs the code complexity.

Replication and backup support
RocksDB is a single node library. The applications that
use RocksDB are responsible for replication and backups
if needed. Each application implements these functions in
its own way (for legitimate reasons), so it is important that
RocksDB offer appropriate support these functions.

Bootstrapping a new replica by copying all the data from
an existing one can be done in two ways. First, all the keys
can be read from a source replica and then written to the desti-
nation replica (logical copying). On the source side, RocksDB
supports data scanning operations by offering the ability to
minimize the impact on concurrent online queries; e.g., by
providing the option to not cache the result of these operations
and thus prevent cache trashing. On the destination side, bulk
loading is supported and also optimized for this scenario.

Second, bootstrapping a new replica can be done by copy-
ing SSTables and other files directly (physical copying).
RocksDB assists physical copying by identifying existing
database files at a current point in time, and preventing them
from being deleted or mutated. Supporting physical copying
is an important reason RocksDB stores data on an underlying
file system, as it allows each application to use its own tools.
We believe the potential performance gains of RocksDB di-
rectly using a block device interface or heavily integrating
with FTL does not outweigh the aforementioned benefit.

Backup is an important feature for most databases and other
applications. For backups, applications have the same logi-
cal vs. physical choice as with replication. One difference
between backups and replication is that applications often
need to manage multiple backups. While most applications
implement their own backups (to accommodate their own
requirements), RocksDB provides a backup engine for appli-
cations to use if their backup requirements are simple.

We see two areas for further improvement in this area, but
both require changes to the key-value API; they are discussed
in §6. The first involves applying updates in a consistent
order on different replicas, which introduces performance
challenges. The second involves performance issues surround-
ing write requests that are issued one at a time and the fact
that replicas can fall behind and applications may wish these
replicas to catch up faster. Various solutions have been im-
plemented by different applications to address these issues,
but they all have limitations [20]. The challenge is that ap-
plications cannot issue writes out of order and do snapshot

reads with their own sequence numbers because RocksDB
does not currently support multi-versioning with user defined
timestamps.

5 Lessons on failure handling

Through production experience, we have learned three major
lessons about failure handling. First, data corruption needs to
be detected early to minimize the risk of data unavailability
or loss, and in doing so to pinpoint where the error originated.
Second, integrity protection must cover the entire system to
prevent silent corruptions from being exposed to RocksDB
clients or spreading to other replicas (see Fig. 4). Third, errors
need to be treated in a differentiated manner.

Frequency of silent corruptions
RocksDB users do not usually use data protection by SSD
(e.g. DIF/DIX) for performance reason, and storage media cor-
ruptions are detected by RocksDB block checksums, which
is a routine feature for all mature databases so we skip the
analysis here. CPU/memory corruption does happen rarely
and it is difficult to accurately quantify. Applications that use
RocksDB often run data consistency checks that compare
replicas for integrity. This catches errors, but those could have
been introduced either by RocksDB or by the client applica-
tion (e.g., when replicating, backing up, or restoring data).

We found that the frequency of corruptions introduced at
the RocksDB level can be estimated by comparing primary
and secondary indexes in MyRocks database tables that have
both; any inconsistencies whould have been introduced at
the RocksDB level, including CPU or memory corruptions.
Based on our measurements, corruptions are introduced at
the RocksDB level roughly once every three months for each
100PB of data. Worse, in 40% of those cases, the corruption
had already propagated to other replicas.

Data corruptions also occur when transferring data, often
because of software bugs. For example, a bug in the underly-
ing storage system when handling network failures, caused
us to see, over a period of time, roughly 17 checksum mis-
matches for every petabyte of physical data transferred.

Multi-layer protection
Data corruption needs to be detected as early as possible to
minimize downtime and data loss. Most RocksDB applica-
tions have their data replicated on multiple hosts; when a
checksum mismatch is detected, the corrupt replica is dis-
carded and replaced with a correct one. However, this is a
viable option only as long as a correct replica still exists.

Today, RocksDB checksums file data at multiple levels to
identify corruption in the layers beneath it. These, as well as
the planned application layer checksum, are shown in Fig. 4.
Multiple levels of checksums are important, primarily because
they help detect corruptions early and because they protect
against different types of threats. Block checksums, inherited
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from LevelDB, prevent data corrupted at or below the file sys-
tem from being exposed to the client. File checksums, added
in 2020, protect against corruption caused by the underlying
storage system from being propagated to other replicas and
against corruption caused when transferring SSTable files
over the wire. For WAL files, handoff checksums enable effi-
cient early detection of corruptions at write time.

Block integrity. Each SSTable block or WAL fragment has
a checksum attached to it, generated when the data is created.
Unlike the file checksum that is verified only when the file is
moved, this checksum is verified every time the data is read,
due to its smaller scope. Doing so prevents data corrupted by
the storage layer from being exposed to RocksDB clients.

File integrity. File contents are particularly at risk of be-
ing corrupted during transfer operations; e.g., for backups or
when distributing SSTable files. To address this, SSTables are
protected by their own checksum, generated when the table
is created. An SSTable’s checksum is recorded in the meta-
data’s SSTable file entry, and is validated with the SSTable
file wherever it is transferred. However, we note that other
files, such as WAL files, are still not protected this way.

Handoff integrity. An established technique for detecting
write corruptions early is to generate a handoff checksum
on the data to be written to the underlying file system, and
pass it down along with the data, where it is verified by the
lower layers [48, 70]. We wish to protect WAL writes using
such a write API, since unlike SSTables, WALs benefit from
incremental validation on each append. Unfortunately, local
file systems rarely support this — some, specialized stacks,
such as Oracle ASM [49] do, however.

On the other hand, when running on remote storage, the
write API can be changed to accept a checksum, hooking into
the storage service’s internal ECC. RocksDB can use check-
sum combining techniques on the existing WAL fragment
checksums to efficiently compute a write handoff checksum.
Since our storage service performs write-time verification, we
expect it to be extremely infrequent for corruption detection
to be delayed until read time.

End-to-end protection
While the layers of protection described above prevent clients
from being exposed to corrupt data in many cases, they are not
comprehensive. One deficiency of the protections mentioned
so far is that data is unprotected above the file I/O layer; e.g.,
data in MemTable and the block cache. Data corrupted at this
level will be undetectable and thus will eventually be exposed
to the user. Further, flush or compaction operations can persist
corrupted data, making the corruption permanent.

Key-value integrity. To address this problem, we are cur-
rently implementing per-key-value checksums to detect cor-
ruptions that occur above the file I/O layer. This checksum
will be transferred along with the key/value wherever it is
copied, although we will elide it from file data where alterna-
tive integrity protection already exists.
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SSTable

Block 
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SSTable

Block 
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Figure 4: Four Types of Checksums

Severity-based error handling
Most of the faults RocksDB encounters are errors returned by
the underlying storage system. These errors can stem from
a multitude of issues, from severe problems like a read-only
file system, to transient problems like a full disk or a network
error accessing remote storage. Early on, RocksDB reacted to
such issues either by simply returning error messages to the
client or by permanently halting all write operations.

Today, we aim to interrupt RocksDB operations only if the
error is not locally recoverable; e.g., transient network errors
should not require user intervention to restart the RocksDB
instance. To implement this, we improved RocksDB to peri-
odically retry resume operations after encountering an error
classified as transient. As a result, we obtain operational ben-
efits as clients do not need to manually mitigate RocksDB for
a significant portion of faults that occur.

6 Lessons on the key-value interface

The core key-value (KV) interface is surprisingly versatile.
Almost all storage workloads can be served by a datastore
with a KV API; we have rarely seen an application not able to
implement functionality using this interface. That is perhaps
why KV-stores are so popular. The KV interface is generic.
Both keys and values are variable-length byte arrays. Appli-
cations have great flexibility in determining what information
to pack into each key and value, and they can freely choose
from a rich set of encoding schemes. Consequently, it is the
application that is responsible for parsing and interpreting the
keys and values. Another benefit of the KV interface is its
portability. It is relatively easy to migrate from one key-value
system to another. However, while many use cases achieve op-
timal performance with this simple interface, we have noticed
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that it can limit performance for some applications.
For example, building concurrency control outside of

RocksDB is possible but hard to make efficient, especially if
two-phase-commit needs to be supported where some data
persistency is needed before committing the transaction. We
added transaction support for this reason, which is used by
MyRocks (MySQL+RocksDB). We continue to add features;
e.g., gap/next key locking and large transactions support.

In other cases, the limitation is caused by the key-value
interface itself. Accordingly, we have started to investigate
possible extensions to the basic key-value interface. One such
extension is support for user-defined timestamps.

Versions and timestamps
Over the last few years, we have come to understand the im-
portance of data versioning. We have concluded that version
information should become a first-class citizen in RocksDB,
in order to properly support features, such as multi-version
concurrency control (MVCC) and point-in-time reads. To
achieve this, RocksDB needs to be capable of accessing dif-
ferent versions efficiently.

So far, RocksDB has internally been using 56-bit sequence
numbers to identify different versions of KV-pairs. The se-
quence number is generated by RocksDB and incremented
on every client write (hence, all data is logically arranged
in sorted order). The client application cannot affect the se-
quence number. However RocksDB allows the application to
take a Snapshot of the DB, after which RocksDB guarantees
that all KV pairs that existed at the time of the snapshot will
persist until the snapshot is explicitly released by application.
As a result, multiple KV-pairs with the same key may co-exist,
differentiated by their sequence numbers.

This approach to versioning is inadequate as it does not
satisfy the requirements of many applications. To read from
a past state, a snapshot must have already been taken at the
previous point in time. RocksDB does not support taking
a snapshot of the past, since there is no API to specify a
time-point. Moreover, it is inefficient to support point-in-time
reads. Finally, each RocksDB instance assigns its own se-
quence numbers and snapshots can be obtained only on a per
instance basis. This complicates versioning for applications
with multiple, (possibly replicated) shards, each of which is a
RocksDB instance. In summary, it is essentially impossible to
create versions of data that offer cross-shard consistent reads.

Applications can work around these limitations by encod-
ing timestamps within the key or within the value. However,
they will experience performance degradations in either case.
Encoding within the key sacrifices performance for point-
lookups, while encoding within the value sacrifices perfor-
mance for out-of-order writes to the same key and complicates
the reading of old versions of keys. We believe application-
specified timestamps would better address these limitations,
where the application can tag its data with timestamps that
can be understood globally, and do so outside the key or value.

We have added basic support for application-specified

workload throughput gain

fill_seq + read_random 1.2
fill_seq + read_while_writing 1.9
fill_random + read_random 1.9
fill_random +read_while_writing 2.0

Table 6: DB_bench microbenchmark using the timestamp
API sees ≥ 1.2X throughput improvement.

timestamp and evaluated this approach with DB-Bench. The
results are shown in Table 6. Each workload has two steps:
the first step populates the database, and we measure perfor-
mance during the second step. For example, in “fill_seq +
read_random”, we populate the initial database by writing
a number of keys in ascending order, and in step 2 perform
random read operations. Relative to the baseline, where the
application encodes a timestamp as part of the key (transpar-
ent to RocksDB), the application-specified timestamp API can
lead to a 1.2X or better throughput gain. The improvements
arise from treating the timestamp as metadata separate from
the user key, because then point lookups can be used instead
of iterators to get the newest value for a key, and Bloom filters
may identify SSTables not containing that key. Additionally,
the timestamp range covered by an SSTable can be stored in
its properties, which can be leveraged to exclude SSTables
that could only contain stale values.

We hope this feature will make it easier for users to imple-
ment multi-versioning in their systems for single node MVCC,
distributed transactions, or resolving conflicts in multi-master
replication. The more complicated API, however, is less
straightforward to use and perhaps prone to misuse. Further,
the database would consume more disk space than storing no
timestamp, and would be less portable to other systems.

7 Related Work

Our work on RocksDB has benefited from a broad range of
research in a number of areas.

Storage Engine Libraries
Many storage engine have been built as a library to be embed-
ded in applications. RocksDB’s KV interface is more prim-
itive than, for example, BerkeleyDB [44], SQLite [47] and
Hekaton [18]. Further, RocksDB differs from these systems
by focusing on the performance of modern server workloads,
which require high throughput and low latency, and typically
run on high end SSDs and multicore CPUs. This differs from
systems with more general targets, or built for faster storage
media [18, 30].

Key-value stores for SSDs
Over the years, much effort has gone into optimizing key-
value stores, especially for SSDs. As early as 2011, SILT [34]
proposed a key-value store that balanced between memory
efficiency, CPU, and performance. ForestDB[45] uses HB+
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trees to index on top of logs. TokuDB [32] and other databases
use FractalTree/Bε trees. LOCS [67], NoFTL-KV [66] and
FlashKV [69] target Open-Channel SSDs for improved per-
formance. While RocksDB benefited from these efforts, our
position and strategy for improving performance is different
and we continue to depend on LSM trees. Several studies have
compared the performance of RocksDB with other databases
such as InnoDB [41], TokuDB [19] [37], and WiredTiger [10].

LSM-tree improvements
Several systems also use LSM trees and improved their perfor-
mance. Write amplifications is often the primary optimization
goal; e.g., WiscKey [35], PebblesDB [52], IAM-tree [25] and
TRIAD [3]. These systems go further in optimizing for write
amplification than RocksDB which focuses more on trade-
offs among different metrics. SlimDB [53] optimized LSM
trees for space efficiency; RocksDB also focuses on deleting
dead data. Monkey [17] attempts to balance between DRAM
and IOPs. bLSM [57], VT-tree [60] and cLSM [24] optimize
for the general performance of LSM trees.

Large-scale storage systems
There are numerous distributed storage systems [13, 14, 16,
26,38,64]. They usually have complex architectures spanning
multiple processes, hosts and data centers. They are not di-
rectly comparable to RocksDB, a storage engine library on
a single node. Other systems (e.g.,MongoDB, MySQL [42],
Microsoft SQL Server [38]) can use modular storage engines;
they have addressed similar challenges to what RocksDB
faces, including failure handling and using timestamps.

Failure handling. Checksums are frequently used to detect
data corruption [9, 23, 42]. Our argument that we need both
end-to-end and handoff checksums still mirrors the classic
end-to-end argument [55] and is similar to the strategy used
by others: [61], ZFS [71], Linux [48] and [70]. Our argument
for earlier corruption detection is similar to [33] which argues
that domain-specific checking is inadequate.

Timestamp support. Several storage systems provide times-
tamp support: HBase [26], WiredTiger [39] and BigTable [14];
Cassandra [13] supports a timestamp as an ordinary column.
In these systems, timestamps are a count of the number of mil-
liseconds since the UNIX epoch. Hekaton [18] uses a mono-
tonically increasing counter to assign timestamps, which is
similar to the RocksDB sequence number. RocksDB’s on-
going work on a user timestamp can be complementary to
the aforementioned efforts. We hope key-value APIs with a
user-defined timestamp extension can make it easier for upper-
level systems to support features related to data versioning
with low overhead in both performance and efficiency.

8 Future Work and Open Questions

Besides completing the improvements mentioned above, in-
cluding optimizing for dis-aggregated storage, key-value sepa-

ration, multi-level checksums and application-specified times-
tamps, we plan to unify leveled and tiered compaction and
improve adaptivity. However, a number of open questions
could benefit from further research.

1. How can we use SSD/HDD hybrid storage to improve
efficiency?

2. How can we mitigate the performance impact on readers
when there are many consecutive deletion markers?

3. How should we improve our write throttling algorithms?
4. Can we develop an efficient way of comparing two repli-

cas to ensure they contain the same data?
5. How can we best exploit SCM? Should we still use LSM

tree and how to organize storage hierarchy?
6. Can there be a generic integrity API to handle data hand-

off between RocksDB and the file system layer?

9 Conclusions

RocksDB has grown from a key-value store serving niche ap-
plications to its current position of widespread adoption across
numerous industrial large-scale distributed applications. The
LSM tree as the main data structure has served RocksDB
well, as it exhibits good write and space amplification. Our
view on performance has, however, evolved over time. While
write and space amplification remain the primary concern,
additional focus has shifted to CPU and DRAM efficiency, as
well as remote storage.

Lessons from running large-scale applications taught us
that resource allocation needs to be managed across different
RocksDB instances, that the data format needs to remain back-
ward and forward compatible to allow incremental software
deployments, that appropriate support for database replica-
tion and backups are needed, and that configuration manage-
ment needs to be straightforward and preferably automated.
Lessons from failure handling taught us that data corruption
errors need to be detected earlier and at every layer of the
system. The key-value interface enjoys great popularity for
its simplicity with some limitations in performance. Some
simple revisions to the interface might yield a better balance.
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A RocksDB Feature Timeline
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• Multi-threaded compactions    
• Compaction filters 
• Locking SSTables from 

deletion 
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 • Tiered compaction 
• Prefix Bloom filter 
• Bloom Filter for MemTables 
• Separate thread pool for 

MemTable flush 

 • Pluggable MemTable 
• Pluggable file format 

 • Merge Operator 
 

20
14

 • FIFO compaction 
• Compaction rate limiter 
• Cache-friendly Bloom filters 
 

 
• String-based config 

options 
• Dynamic config changes 

 

• Backup engine 
• Support for multiple key 

spaces ("column family") 
• Physical checkpoints 

20
15

 • Dynamic leveled compaction 
• File deletion rate limiting 
• Parallel Level 0 and 1 

compaction 

 

• Separate config file 
• Config compatibility 

checker 
 

 

• Bulk loading for SSTable 
file integration 

• Optimistic and 
pessimistic transactions 

20
16

 • Different compression for 
last level 

• Parallel MemTable inserts 
 

 

• MemTable total size caps 
across instances 

• Compaction migration 
tools 

 

 • DeleteRange() 
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 • Separate thread pool for 
bottom-most compactions 

• Two-level file indices 
• Level 0 to level 0 

compactions 

 

• Single memory limit for 
both block cache and 
MemTable 
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• Dictionary compression 
• Hash index into data blocks 

   

• Automatic recovery from 
out-of-space errors 

• Query trace and replay 
tools 

20
19

 

• Batched MultiGet() with 
parallel I/O  • Configure plug-in function 

using object registry  • Secondary instance 

20
20

 

• Multithreaded single file 
compression 

 
   

• Entire file checksum 
• Automatically recover 

from retriable errors 
• Partial support for user-

defined timestamps 
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B Recap of lessons learned

Some of the lessons we learned include:

1. It’s important that a storage engine can be tuned to fit different performance characteristics. (§1)

2. Space efficiency is the bottleneck for most applications using SSDs. (§3, Space amplification)

3. CPU overhead is becoming more important to allow systems to run more efficiently. (§3, CPU utilization)

4. Global, per host, resource management is necessary when many RocksDB instances run on the same host. (§4, Resource
management)

5. Having WAL treatment be configurable (synchronous WAL writes, buffered WAL writes or disabled WAL) offers applica-
tions performance advantages. (§4, WAL treatment)

6. The SSD TRIM operation is good for performance but file deletions need to be rate limited to prevent occasional performance
issues. (§4, Rate-limited file deletions)

7. RocksDB needs to provide both of backward and “forward” compatibility. (§4, Data format compatibility)

8. Automatic configuration adaptivity is helpful in simplifying configuration management. (§4, Managing configurations)

9. Data replication and backups need to be properly supported. (§4, Replication and backup support)

10. It is beneficial to detect data corruptions earlier, rather than eventually. (§5)

11. CPU/memory corruption does happen, though very rarely, and sometimes cannot be handled by data replication. (§5)

12. Integrity protection must cover the entire system in order to prevent corrupted data (e.g., caused by bitflips in CPU/memory)
from being exposed to clients or other replicas; detecting corruption only when the data is at rest or being sent over the wire
is insufficient. (§5)

13. Users often demand RocksDB to automatically recover from transient I/O errors, e.g. out-of-space or caused by network
problems. (§5)

14. Error handling needs to be treated in a differentiated manner, depending on their causes and consequences. (§5)

15. The key/value interface is versatile, but there are some performance limitation; adding a timestamp to key/value can offer a
good balance between performance and simplicity. (§6)

C Recap of design choices revisited

Some notable design choices revisited include:

1. Customizability is always good to users. (§4, Managing configurations)

2. RocksDB can be blind to CPU bit flips. (§5)

3. It’s OK to panic when seeing any I/O error. (§5)
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