
COMPUTATIONAL RAM is a processor-

in-memory architecture that makes highly

effective use of internal memory bandwidth

by pitch-matching simple processing ele-

ments to memory columns. Computational

RAM (also referred to as C•RAM) can func-

tion either as a conventional memory chip

or as a SIMD (single-instruction stream, mul-

tiple-data stream) computer. When used as

a memory, computational RAM is competi-

tive with conventional DRAM in terms of ac-

cess time, packaging, and cost. As a SIMD

computer, computational RAM can run suit-

able parallel applications thousands of times

faster than a CPU. Computational RAM ad-

dresses many issues that prevented previous

SIMD architectures from becoming com-

mercially successful. While the SIMD pro-

gramming model is somewhat restrictive,

computational RAM has applications in a

number of fields, including signal and im-

age processing, computer graphics, data-

bases, and CAD.

Motivation
One motivation behind today’s emerging

smart memories1-7 is to exploit the chips’ wide

internal data paths. Another is to exploit the

energy efficiencies that result from better uti-

lization of memory bandwidth and localiza-

tion of computations on a millimeter scale.

Signal pathways within memory chips pro-

vide memory bandwidth many orders of mag-

nitude higher than that available to an exter-

nal processor. For example, a 256-Mbyte

memory system has about 3,000 times as

much accessible memory bandwidth within

the chips than that available to an external

processor (optimistically assuming a 100%

cache hit rate). For applications with poor

cache behavior, the difference can increase

to 15,000 times as much. But to effectively uti-

lize this internal memory bandwidth, logic

and memory must be more tightly integrated

than merely being located on the same chip.

We can add processors to memory with

minimal overhead if we use methods com-

patible with the efforts that memory design-

ers have made to minimize the cost of

memory (DRAM in particular). A key goal is

to remain compatible with commodity

DRAM in cost, silicon area, speed, packag-

ing, and IC process, while accessing a signif-

icant fraction of the internal memory

bandwidth. To preserve the memory’s eco-

nomics, we must work within the existing

number of routing layers, preserve the num-

ber of memory cells per row address decoder

and sense amplifier, and use redundancy to

correct manufacturing defects.

To harvest as much memory bandwidth as

possible, we pitch-match the computational

RAM processing elements to a small number

(for example, 1, 2, 4, or 8) of memory

columns, as shown in Figure 1. The use of a

common memory row address shared by a

Computational RAM:
Implementing Processors
in Memory

COMPUTATIONAL RAM

32 0740-7475/99/$10.00 © 1999 IEEE IEEE DESIGN & TEST OF COMPUTERS

Adding logic to memory
is not a simple question
of bolting together two

existing designs.
Computational RAM
integrates processing

power with memory by
using an architecture that

preserves and exploits
the features of memory.

DUNCAN G. ELLIOTT
University of Alberta
MICHAEL STUMM

University of Toronto
W. MARTIN SNELGROVE

Carleton University
CHRISTIAN COJOCARU

Philsar Electronics
ROBERT MCKENZIE

MOSAID Technologies

.

JANUARY–MARCH 1999 33

row of processing elements

dictates that the processing

elements have a SIMD archi-

tecture. To design such a nar-

row processing element, we

followed a minimalist archi-

tectural philosophy. We

chose circuits with a narrow

VLSI implementation and

reused the same circuits at

different times to perform dif-

ferent functions. With this de-

sign, area overhead can

range from 3% to 20%, while

power overhead can be 10%

to 25%, compared to the

memory alone. Such chips

could add a massively paral-

lel processing capability to

machines and systems that currently use DRAM. Figure 2

shows how computational RAM chips could serve as both

computer main memory and graphics memory.

In the computational RAM architecture’s programming

model, a host CPU can read and write to any memory loca-

tion during an external memory cycle. During an operate

cycle, all processing elements execute the same common in-

struction and optionally access the same memory offset with-

in their private memory partitions. In other words,

computational RAM is a SIMD processor with distributed,

nonshared, uniformly addressed memory. A bus facilitates

interprocessor communication and is useful for combina-

tional operations. In addition, a linear interconnect that ex-

tends to two dimensions at the ends of rows is useful for 1D

and 2D nearest-neighbor operations.

Memory bandwidth and power consumption
Consider the internal structure of a DRAM, as shown in

Figure 3. DRAMs consist of large numbers of subblocks, each

with a row-column structure. Typical DRAMs have a simple

sense amplifier at the bottom of each 256-bit column and

use shared circuitry to select a single row of data.

Computational RAM gains its key advantages—access to

internal memory bandwidth and low energy usage—from

the fact that the processing elements are integrated into the

memory arrays. The row-column logical architecture is usu-

ally roughly square because similar numbers of address bits

are allocated to row and column. (Historically, the address

pins are multiplexed between row and column, and the

square architecture minimizes their number.)

Memory bandwidth. DRAM is organized with a very

wide internal data path at the sense amplifiers. A 4M × 1-bit

Memory cells

Row address

Row
decoders

Processing
elements

Sense amplifiers
and column decoders

SIMD instruction

Figure 1. Processing elements incorporated in memory.

I/O

C-RAM
controller

C-RAM

C-RAM
display

controller

C-RAMs

CPU

Cache

Processing
elements

Video display

Figure 2. Replacing DRAM with computational RAM and
redefining support logic.

Row decode

Sense amplifiers

Column decode
and data lines

Memory array

Figure 3. Basic DRAM structure.

.

COMPUTATIONAL RAM

34 IEEE DESIGN & TEST OF COMPUTERS

chip fetches (at least) 2 Kbits when the row address is given

and then selects one bit for output according to the column

address. Similarly, a 1M × 16-bit, 1K-cycle-refresh DRAM se-

lects 16 Kbits with the 10-bit row address, and then one of

1,024 sixteen-bit words for output when the column address

is available. In each case, the width of the internal data path

is 1K to 2K times the width of the external data path. In sys-

tems with large amounts of memory, multiplexing banks of

RAM onto a narrow bus limits bandwidth even further.

As an example, consider a 100-MHz workstation with a 64-

bit bus, equipped with a total of 256 Mbytes formed from 16-

Mbit, 50-ns page-mode DRAM. The data path at the sense

amplifiers is 2 Mbits wide, resulting in a memory bandwidth

more than four orders of magnitude higher than that available

at the system bus (see Figure 4). Even an ideal cache improves

the bandwidth by only a factor of four, leaving a gap of three

and a half orders of magnitude between the bandwidth avail-

able in the memory and at the CPU. Redoing the example with

a smaller or larger computer gives similar ratios, because mem-

ory size tends to scale with processing power.

Adding one processing element per DRAM sense ampli-

fier is not very practical, because sense amplifiers are placed

on a very narrow pitch. But it is practical enough for one

processing element to share four sense amplifiers over many

generations of DRAM processes.

A more mainstream architectural alternative to pitch-

matching processing elements to groups of sense amplifiers

is to put a single RISC or vector processor in a DRAM chip.8,9

This approach allows a wide

variety of conventional pro-

grams to be compiled and

run without modification or

attention to data placement

and communication pat-

terns. Such a processor has

access to a wider bus (128 to

256 bits) for cache or vector

register fills than it would

have if implemented on a

separate chip. Still, by con-

necting to the memory after

the column decoders, the

16-Kbit-wide data path at the

sense amplifiers multiplexes

down by a factor of 64 or

more. In contrast, computa-

tional RAM, with processing

elements pitch-matched to

four sense amplifiers, can

make effective use of 25% of

the internal memory band-

width.

Figure 5 illustrates these approaches to connecting

processors and memory. Figure 5a shows a wide bus com-

ing from the DRAM’s sense amplifiers, multiplexed by the

column decode circuitry onto a narrower on-chip data bus.

Figure 5b shows a wide bus running through the DRAM ar-

rays, connecting the sense amplifiers to the processing ele-

ments. (In several of our chips, this wide bus has negligible

length because the processing elements simply abut the

sense amplifiers, as shown in Figure 1.) The use of the wide

bus does not require an additional layer of wiring, since it al-

lows us to omit column decode signals, typically routed in

the same direction.10 A small decoder (not shown) selects

one of four (for example) sense amplifiers to connect to a

bus signal. If processing elements are designed with a pitch

of a different number of sense amplifiers, the bandwidth uti-

lization changes. Simply ignoring the sense amplifiers’ pitch

Bandwidth internal to memory chips at sense amps (2.9 Tbytes/s)

At the memory chip pins (6.2 Gbytes/s)

System bus (190 Mbytes/s)

Cache-CPU (800 Mbytes/s)

At column decode
(49 Gbytes/s)

100 Mbytes/s 1 Gbyte/s 10 Gbytes/s 100 Gbytes/s 1 Tbyte/s

Figure 4. Bandwidths at various points in a workstation.

DRAM array

DRAM array

 Bit line direction data bus

Pitch-matched
processing elements

DRAM array

Column decode

DRAM array

Column decode

RISC
microprocessor

DRAM array

 Bit line direction data bus

W
id

e
pr

oc
es

si
ng

 e
le

m
en

ts

Area consumed by wiring

(a) (b) (c)

Figure 5. Architectural alternatives for processing in memory: a RISC processor connected after
column decoders (a); pitch-matched processing elements connected to memory—the computational
RAM approach (b); non-pitch-matched processing elements connected by wiring (c).

.

JANUARY–MARCH 1999 35

and relying on wiring to compensate is potentially wasteful

of silicon area, as Figure 5c illustrates.

Power consumption. Power consumtion is rapidly be-

coming a key measure of merit of computer architecture be-

cause it has been increasing with processing speed and

because of the interest in portable computing. High-power

chips require expensive packaging at both chip and system

levels (to conduct and convect heat), and they are unreli-

able because of the rapid aging that accompanies high-

temperature operation.

An internal DRAM bus is much more energy efficient (as

well as faster) than an external bus because shorter wires

must be driven. The power required to drive a wire is

CVDDVswing f. Here, C is the wire’s capacitance (in the range of

0.2 pF/mm, depending on geometries), VDD is the power sup-

ply voltage, Vswing is the voltage swing used to represent data,

and f is the rate at which data are clocked. C favors short

buses directly, and Vswing favors them indirectly (and rela-

tively slightly) in that we need a smaller noise margin for re-

liable logic operation when currents remain small and

coupling is minimized. In a typical 16-Mbyte DRAM, C is 0.3

pF for a single bit line but would be about 100 times larger

for a single bit of an off-chip bus running to a CPU. In the

same memory, Vswing would normally be about 3.3 V, both

on and off chip. The pins of high-speed memories often use

reduced voltage swings with properly terminated transmis-

sion lines, reducing the ringing effects that would otherwise

call for a good noise margin, but such systems dissipate pow-

er at the terminations.

CVDDVswing measures switching energy, coming to about

330 pJ for a 30-pF bus wire at VDD = Vswing = 3.3 V. For the bit

line, Vswing is 1/2 VDD, so the switching energy is 1.6 pJ. We

can express these energies more mnemonically as 330

µW/MHz and 1.6 µW/MHz, respectively: 16K bit lines cycling

at 10 MHz require 270 mW; 16 bus lines clocked at 100 MHz

(cycling at 50 MHz) require 260 mW. We can save a sizable

portion of the power by not driving signals off chip.

Computational RAM architectures
The design space available for integrating processing with

memory is very large, and even the low-cost SIMD corner

that we have been exploring is large. Figures 6 and 7 show

two candidate computational RAM processing elements.

We have implemented both designs in silicon using static

RAM (SRAM) memories. We have demonstrated their com-

patibility with DRAM by creating physical designs in 4-Mbit

and 16-Mbit DRAM processes.

The simpler of the two processing elements, in Figure 6,

supports bit-serial computation and has left-right and wired-

AND bused communication. The ALU, consisting of an 8-to-

1 multiplexer, has a compact VLSI implementation. Thus,

we can implement an entire processing element (including

the off-chip read/write path) with as few as 88 transistors us-

ing dynamic logic. This number is small compared to the

number of transistors used to implement the processing el-

ement’s local memory in the columns above it. The control

signals (derived from a 13-bit SIMD instruction) are routed

straight through a row of processing elements.

In this architecture, the ALU can perform an arbitrary

Boolean function of three inputs: X and Y registers and mem-

ory. The ALU opcode, connected to the data inputs of the

ALU multiplexer, is the ALU’s truth table. The result can be

written back to either the memory or the X, Y, or write-enable

register. The write-enable register is useful for implement-

ing conditional operations.

This processing element was designed in the pitch of one

column of SRAM and four columns of DRAM. Since the pro-

cessing element requires a pitch of only seven wires, the de-

sign fits in the pitch of eight bit lines (four folded bit-line

pairs or columns) across many generations of DRAM. Each

processing element’s connection to at least four sense am-

plifiers means the processing elements can have fast page-

mode access to at least 4 bits; the sense amplifiers then form

Sense amps
and decode

Write
enable
register

X

Y

3

8

ALU (multiplexer)

Bus tie

Shift right

Shift left

Global instruction

Broadcast bus

Figure 6. A simple processing element that can be implemented
with fewer than 100 transistors, using a dynamic logic
multiplexer.

.

COMPUTATIONAL RAM

36 IEEE DESIGN & TEST OF COMPUTERS

a primitive cache. The processing elements and support cir-

cuitry add 18% to the area of an existing DRAM design. A

single processing element occupies an area of approxi-

mately 360 bits of memory (including sense amplifier and

decoder overhead).

To make the most effective use of silicon area, structures

in this processing element often serve multiple purposes.

We use the X and Y registers to store results of local com-

putations (such as sum and carry) as well as to act as the

destination for left and right shift operations between adja-

cent processing elements. The simultaneous bidirectional

bus transceiver can drive the broadcast bus, receive from

the bus, or do both at once (0 dominates). During commu-

nication operations, we use the ALU to route signals.

We originally developed the more complex, 147-transis-

tor implementation (Figure 7),5 to complement an SRAM on

an ASIC process, which has much larger memory cells and

in which memory costs

dominate. Its principal en-

hancements are more regis-

ters to reduce the number of

RAM cycles required and di-

rect support for grouping ad-

jacent processors to work on

multibit data. In particular,

the ripple-carry AND regis-

ters allow a reduction in

latency for bit-parallel multi-

plication. This is particularly

valuable when an applica-

tion doesn’t have sufficient

parallelism to use all pro-

cessing elements.

One reason why these

processing elements require

so few transistors is that a

SIMD controller performs all

instruction fetching and de-

coding operations centrally.

The native computational

RAM instruction consists of

a memory address (typical-

ly sent first), an ALU opera-

tion, a destination (register

or memory), and other con-

trol signals including those

controlling communication.

We have experimented

with two well-known ap-

proaches4,11 to issuing SIMD

instructions. The first is to

have the host microprocessor

issue native computational RAM instructions directly via a

memory-mapped IO register. The second approach uses a

microcoded SIMD controller that receives macroinstructions

(such as “ADD 32-bit”) from the host processor. The con-

troller translates the macroinstructions into multiple native

computational RAM instructions. The direct approach re-

quires less hardware, whereas the microcoded controller

can overlap SIMD execution with host execution.

The computational RAM processing elements, especially

in the first architecture, require that data be stored orthogo-

nally to the way the host would expect to access it. When the

processing elements perform bit-serial arithmetic, the bits of

each vector element are stored along a column during sep-

arate memory accesses. The host, however, would typically

access a processor word of memory with the bits belonging

to the same memory row. A corner-turning cache resolves

both views of memory by mapping processor words to vec-

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

AY

X

ALU
8-to-1 multiplexer

Y

AX

ALU

SR

BR

ALU shift

Select Bypass

Carry

BS

Carry-in

BR

SR

Bus tie segment

Carry-out

MQ

Left ALU shift

Right ALU shift

YS

T

TieW

M

AM

Bus tie

ALU

ALU

MDMWE

ALU

XS MS

Figure 7. A more complex processing element using 147 transistors supports bit-parallel
grouping. The additional registers (S, B, T, AX, AY, AM) make faster multiplication and new
modes of communication possible.

.

JANUARY–MARCH 1999 37

tor elements with the same

number of memory accesses

a conventional cache mem-

ory system would make.

Effects of DRAM pinout
DRAMs traditionally con-

serve pins by multiplexing

row and column addresses

and by having relatively nar-

row I/O buses. This has

helped to keep packaging

and board-level system costs

low. The large die sizes of

modern DRAMs—1 to 2

square centimeters—make

larger numbers of pins prac-

tical. But when processing

elements are added, inter-

processor communication,

I/O, and control are still con-

strained by the number of

pins available. On a plat-

form, for example, we can

implement computational RAM in the standard, 44-pin thin

small-outline package (TSOP) by multiplexing opcodes with

addresses (and data), since they aren’t required simultane-

ously. The standard, 16-Mbyte, 1K-cycle refresh DRAM uses

37 of the 44 package pins (16 data, 10 address, 6 power, and

5 control). Computational RAM requires one additional con-

trol pin, the opcode strobe (O P S), and four communica-

tions pins, which fit in the same package as a JEDEC DRAM.

(Conserving pins is also a power control issue, as discussed

earlier.)

The interprocessor communications constraint arises

when a large system is to be composed of many computa-

tional RAM chips. For example, a shuffle network extend-

able to a multiple-chip system may require that one line per

processor cross the chip boundary, resulting in a require-

ment of 4K pins for interprocessor communications alone.

This in turn would require nearly a thousand power supply

pins to handle the drive currents. This is clearly unrealistic

and would result in enormous power dissipation if the pins

ran at full speed. Any network efficient enough to move all

4 Kbits in or out of a chip in a cycle will have this problem,

so we are forced to limit interprocessor communications.

Even a 2D interconnect would be expensive if 4,096 pro-

cessing elements were arranged in a square, since the pe-

riphery would have 256 wires needing connection to

neighboring processing elements on other chips. For this rea-

son, we favor 1D structures such as buses and shift registers,

perhaps interconnected externally to facilitate 2D shifting,

as shown in Figure 8. For a 2D image-processing problem in

which each pixel depends on its immediate neighbors, we as-

sign the pixels to processing elements in vertical stripes, one

pixel wide. For east-west communication, we shift the pixel

values left or right by one. For north-south communication,

we shift out the top (bottom) elements of each stripe in an en-

tire row of processing elements into the chip above (below)

it. Concurrently, we shift in a row from the chip below

(above). These links can be single-bit for minimum cost (four

pins total) or widened for better performance.

Effects of DRAM technology
DRAM technology is quite different from the technologies

usually used for processors,10 presenting certain problems

for computational RAM. In particular, DRAMs may use one

to three layers of metal, because that is enough for a mem-

ory array. In contrast, high-performance processors use four

or five layers. The difficulty is not technical, but economic:

if the processor needs five layers of metal, the extra metal

layers are wasted over the DRAM array. In a competing ar-

chitecture that segregates processing and memory, the dom-

inant silicon area devoted to memory will cost less.

The characteristics and operating conditions of DRAM

transistors make them slower than transistors in an equiva-

lent ASIC or digital logic process. To maximize the DRAM

refresh interval, we must control transistor leakage currents

by increasing the transistor threshold voltage and applying

a negative bias to the substrate (back bias). To allow appli-

One C-RAM

Data held
by one
processing
element

Figure 8. Chip-to-chip communication as a square array of shift registers.

.

COMPUTATIONAL RAM

38 IEEE DESIGN & TEST OF COMPUTERS

cation of a boosted voltage to the word lines, the gate oxide

of the cell access transistors must be thicker. The increased

threshold voltage, negative back bias, and thicker oxide di-

minish the transistors’ drive, reducing their speed compared

to ASIC transistors.

Several IC manufacturers that offer merged logic-DRAM

processes have addressed these three problems through the

use of 1) a separate implant mask for the memory cell array,

2) a separately biased well for the memory cell array, and 3)

two thicknesses of gate oxide. Faster logic in DRAM is avail-

able at the expense of these extra process steps. Since it is

the DRAM cycle time that largely determines computation-

al RAM’s performance, computational RAM would see only

a small benefit from a faster merged logic-DRAM process.

Designed as it is in commodity DRAM processes, computa-

tional RAM can be manufactured at lower cost than in a

merged logic-DRAM process.

Cycle times in 16- to 256-Mbit DRAMS are typically in the

range of 150 to 68 ns, limited by the word-line and bit-line

lengths. They can be faster, but at a cost in memory cell ef-

ficiency as the proportion of chip area devoted to overhead

such as drivers and amplifiers rises. In any technology, a pro-

cessing element has shorter lines and hence can cycle faster

(and dissipate less power) than the DRAM array. This makes

it practical to interpose two processor cycles in each mem-

ory cycle.

DRAM also relies heavily on redundancy to improve yield,

which would otherwise be quite low due to high densities and

large dies. Processors, on the other hand, are usually designed

without redundancy. Building processing elements without

redundancy is acceptable since they occupy a small fraction

of die area and therefore have limited effects on yield. But us-

ing redundancy also enhances performance by permitting the

use of smaller-feature design rules.10 Row redundancy is trans-

parent to the processing elements, but column redundancy is

more difficult to deal with. Computational RAM processing el-

Table 1. A brief history of SIMD systems (PE: processing element).

On-chip Mem. PE Data Auton. Auton.
main redun- Mem. Local PEs/ redun- Max. path mem. net-

Machine Year mem. dancy bits/PE mem. chip dancy PEs width addressing work

Staran 1972 256 8 1K 1
ICL-DAP 1976 4,096 ✓ 16 1K 1
Vastor 1978 ✓ 1 1
MPP 1981 ✓ 8 16K 1
GAPP 1984 ✓ 128 ✓ 72 1
CM-1 1985 4,096 16 64K 1 * ✓

Pixel Planes 4 1987 ✓ 72 ✓ 64 256K 1
AIS 1988 32K ✓ 8 1K 1
Blitzen 1989 ✓ 1,024 ✓ 128 16K 1 ✓

MasPar MP-1 1989 ✓ 32 16K 4 ✓ ✓

C-RAM 1989 ✓ 128 ✓ 64 1
DAP 610C 1990 256K ✓ 64 4K 1 & 8
VIP 1990 ✓ 256 ✓ 256 256 1
TI-SVP 1990 ✓ 320 ✓ 1,024 1
CM-2 1990 1M 16 64K 1 & 64 * ✓

MasPar MP-2 1993 ✓ 32 16K 32 ✓ ✓

SRC-PIM 1994 ✓ ** 2,048 ✓ 64 256K 1
NEC-IMAP 1994 ✓ ** 32K ✓ 64 8 ✓ ✓

Execube 1994 ✓ ✓ 512K ✓ 8 16 ✓ ✓

C-RAM 1995 ✓ 480 ✓ 512 4,096 1+
NEC-PIPRAM 1996 ✓ ** 128K ✓ 128 ✓ 8
Sony Linear Array 1996 ✓ 256 ✓ 4,320 1
Gealow & Sodini 1997 ✓ 128 ✓ 4,096 1
Accelerix 1998 ✓ ✓ 3,264 ✓ 4,096 ✓

* emulated in software
** replacement of entire memory blocks

.

JANUARY–MARCH 1999 39

ements can certainly be replaced column by column togeth-

er with groups of bit lines, so most of the logic in computa-

tional RAM can benefit from column redundancy.

However, maintaining interprocessor communication is

a problem. If we swap out a bad column, we must also

rewire the connections to its neighbors. Thus, it is important

to use a simple interprocessor communication scheme that

allows wiring around a bad processor without too much

overhead. One solution is a simple switching network that

can rewire the connections between processing elements

and local memory past a bad column.3

Computational RAM as a SIMD system
The computational RAM processing elements share a com-

mon instruction and thus operate in a SIMD mode. SIMD

computing has a mathematical elegance that has tended to

draw interest, but the interest is often followed by disap-

pointment. As a result, SIMD has a long and rather checkered

history, as outlined in Table 1.2-7,11,12 Since the middle of this

decade, essentially all new massively parallel SIMD designs

have used embedded memory. Of these, Execube, PIPRAM,

and Accelerix use high-density, one-transistor-cell DRAM.

The following are some of the problems of SIMD

computers:

■ They tend to be large, expensive, low-volume or even

prototype machines rather than commodity computers.

■ Wide buses between processing elements and memo-

ry consume many pins and hence much board area and

often limit the number of processing elements that can

be integrated in one chip.

■ They tend to have a bottleneck at the point where data

transfers to and from the controlling host.

■ Some processing elements sit idle during execution of

conditional code because the shared instruction stream

forces the controller to execute all paths. (That is, it ex-

ecutes both the “then” and the “else” of an “if” statement,

the maximum number of iterations of a loop, and so on.)

■ SIMD computers get high performance only on appli-

cations that offer the appropriate parallelism.

■ There aren’t many programmers who have experience

with the model.

■ At present, SIMD application code typically is not

portable.

Many of these problems are tightly linked. For example,

the machines’ size and cost are driven largely by their gen-

erally low level of integration. This in turn is driven by the

need to minimize nonrecurring costs rather than unit costs

in designing for a specialized high-cost market. Although

the last four problems listed are fairly inherent to SIMD ar-

chitectures, computational RAM’s integration of processors

into memory is key to solving the other problems.

Pin count, size, and price. Until the late 1980s, many

SIMD designers used large numbers of IC pins because they

decided to cut development costs by using commodity

memory. As a result, they lost access to the wide, low-power,

internal data bus that is computational RAM’s raison d’être.

In this technology, we can obtain low unit costs only by in-

tegrating the processors tightly with memory; there is no

cheap route to the consumer market. Also, in computational

RAM designs, the memory itself dominated the chip area,

since a consumer facing a choice between 16 Mbits of

DRAM and 8 Mbits of computational RAM for the same price

will probably choose the DRAM.

Host-SIMD bottleneck. Computational RAM does not

attempt to handle the serial fraction of a computation well,

leaving that to the host CPU. The path of intermediate re-

sults between host and SIMD machines must not become a

bottleneck. It must allow sequential portions of applications

to run on the host without expensive transfers.

Since computational RAM is the host’s memory, there is

in principle no need for data to move. This argument needs

a qualifier, however: Because the data organizations best

suited to the host and to computational RAM are different,

we may need to transpose data.

Benchmarks
We developed a C++ compiler/simulator to generate and

simulate computational RAM instructions, counting the cy-

cles needed for applications. Table 2 (next page) shows rep-

resentative timings for 32 Mbytes of computational RAM

(128K processing elements) simulated with a conservative

150-ns cycle versus a 70-MHz microSparc (measured). For

the applications considered, computational RAM runs sev-

eral orders of magnitude faster than the conventional work-

station. The speedup is so large because the computational

RAM processor can directly access the DRAM’s internal

bandwidth. Since CPU speeds and typical memory sizes

grow over time, we anticipate that the computational RAM

approach will continue to offer speedup through many gen-

erations of systems. Elliott12 gives details of the applications.

However, we do not claim this type of performance for

all or even most applications. For example, the Dhrystone or

SPEC rating of computational RAM would be very poor. The

computational RAM philosophy is that largely sequential

applications belong on the host, and the massively parallel

component belongs in the memory.

Incidentally, testing is another application for which com-

putational RAM obtains a parallel speedup. The processing

elements can be tested and then, themselves, perform the

memory tests in less total time than it would take to test a

.

COMPUTATIONAL RAM

40 IEEE DESIGN & TEST OF COMPUTERS

similar-capacity memory.

Table 2 does not estimate power, but computational

RAM’s energy improvements are related to its speed im-

provements because processing element power is smaller

than sense amplifier power. As a result, a computer

equipped with computational RAM consumes little more

power than one without but finishes the task much sooner,

thereby consuming less energy per application. In addition,

the reduced need to pump data out and back over a bus

should save power. Computational RAM, however, uses

more sense amplifiers at once and typically has less effective

memory caching, reducing the power advantage. Also, the

memory access patterns of the parallel algorithms are not

necessarily the same as those of the sequential algorithm.

AS WE HAVE SHOWN, adding logic to memory is not a

simple question of bolting together two existing designs.

Memory and logic technologies have different characteris-

tics, and a memory looks very different inside the chip than

it does at the pins. Computational RAM successfully inte-

grates processing power with memory by using an archi-

tecture that preserves and exploits the features of memory.

Additional information about computational RAM is avail-

able at http://www.ee.ualberta.ca/~elliott/cram/.

Acknowledgments
This article is based on a paper presented at the SPIE Multimedia

Hardware Architectures Conference in San Jose, Calif., February 1997.

Figures and tables from that paper are reprinted here with the per-

mission of the Society of Photo-Optical Instrumentation Engineers.

MOSAID Technologies has hosted and supported our work on

this project for several years, and its staff has been generous in ex-

plaining the real-world con-

straints of DRAM to us. We thank

Peter Nyasulu, Dickson Cheung,

Sethuraman Panchanathan, Tet

Yeap, Wayne Loucks, Thinh Le,

Albert Kwong, Bruce Cockburn,

Roger Mah, Dick Foss, Peter

Gillingham, Graham Allan, Iain

Scott, Randy Torrance, David

Frank, David Somppi, Randy

Gibson, Howard Kalter, John

Barth, Richard White, and Tom

Little for technical exchange

and feedback. In addition to

MOSAID, our work has received

support from IBM, Nortel, Ac-

celerix, NSERC, CMC, and Mi-

cronet.

References
1. H.S. Stone, “A Logic-in-Memory Computer,” IEEE Trans. Com-

puters, Vol. C-19, No. 1, Jan. 1970, pp. 73-78.

2. D.G. Elliott, W.M. Snelgrove, and M. Stumm, “Computational

RAM: A Memory-SIMD Hybrid and Its Application to DSP,” Proc.

Custom Integrated Circuits Conf., IEEE, Piscataway, N.J., 1992,

pp. 30.6.1-30.6.4.

3. N. Yamashita et al., “A 3.84GIPS Integrated Memory Array

Processor with 64 Processing Elements and 2Mb SRAM,” IEEE

J. Solid-State Circuits, Vol. 29, No. 11, Nov. 1994, pp. 1336-1343.

4. M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory:

The Terasys Massively Parallel PIM Array,” Computer, Vol. 28,

Apr. 1995, pp. 23-31.

5. C. Cojocaru, Computational RAM: Implementation and Bit-Par-

allel Architecture, master’s thesis, Carleton Univ., Dept. of Elec-

tronics, Ottawa, Ont., Canada, 1995.

6. J.C. Gealow and C.G. Sodini, “A Pixel-Parallel Image Processor

Using Logic Pitch-Matched to Dynamic-Memory,” Proc. Symp.

VLSI Circuits, IEEE, Piscataway, N.J., 1997, pp. 57-58.

7. R. Torrance et al., “A 33GB/s 13.4Mb Integrated Graphics Ac-

celerator and Frame Buffer,” Proc. Int’l Solid-State Circuits Conf.,

IEEE, Piscataway, N.J., 1998, pp. 340-341.

8. T. Shimizu et al., “A Multimedia 32b RISC Microprocessor with

16Mb DRAM,” Proc. Int’l Solid-State Circuits Conf., IEEE, Pis-

cataway, N.J., 1996, pp. 216-217.

9. D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro,

Vol. 17, No. 2, Mar. 1997, pp. 34-44.

10. R.C. Foss, “Implementing Application Specific Memory,” Proc.

Int’l Solid-State Circuits Conf., IEEE, Piscataway, N.J., 1996, pp.

260-261.

11. W.D. Hillis, The Connection Machine, MIT Press, Cambridge,

Mass., 1985.

12. D. Elliott, Computational RAM: A Memory-SIMD Hybrid, doc-

Table 2. Benchmark speedups.

C-RAM
C-RAM Sun Sparc speedup

Program runtime runtime ratio Parallelism

Vector quantization 25.7 ms 33.8 s 1,312 Image space
Masked blt 18.2 µs 443 ms 24,310 Image space
3×3 convolution 16M 17.6 ms 113 s 6,404 Image space
FIR 128K tap, 40-bit 99 µs 312 ms 3,144 Coefficients
FIR 4M tap, 16-bit 1.04 ms 5.14 s 4,929 Coefficients
LMS matching 0.20 ms 251 ms 1,253 Records
Data mining 70.6 ms 192 s 2,724 Rule space
Fault simulation 89 µs 3.9 s 43,631 Fault space
Satisfiability 23 µs 959 ms 41,391 Solution space
Memory clear 1.6 µs 8.8 ms 5,493 Memory

.

JANUARY–MARCH 1999 41

toral thesis, Univ. of Toronto, Dept. of Electrical and Comput-

er Engineering, 1998.

Duncan G. Elliott is an assistant professor in

the Department of Electrical and Computer En-

gineering at the University of Alberta, Edmon-

ton, Canada. His research interests are

logic-enhanced memories, computer archi-

tecture, and parallel processing. His applica-

tion-specific memory inventions have been

adopted by industry. Previously, he has worked at Nortel in data

communications, at MOSAID Technologies as a DRAM designer,

and at IBM Microelectronics as a contractor in application-specific

memory design. Elliott received his BASc in engineering science and

his master’s and doctorate degrees in electrical and computer en-

gineering from the University of Toronto. He is a member of the IEEE,

the Computer Society, the Solid-State Circuits Society, and the ACM.

Michael Stumm is a professor in the Department of Electrical and

Computer Engineering and the Department of Computer Science at

the University of Toronto. His research interest is operating systems

for distributed and parallel computer systems. Stumm received a

diploma in mathematics and a PhD in computer science from the

University of Zurich. He is a member of the IEEE Computer Society

and the ACM.

W. Martin Snelgrove is the director of R&D

at Philsar Electronics of Ottawa and the chief

technology officer of Wireless System Tech-

nologies. His recent research work has been

in adaptive analog and digital filtering, data

converter architecture and circuits, and high-

ly parallel architectures for signal processing.

He contributed to this article while he was a professor at Carleton

University in Ottawa, where he held the OCRI/NSERC Industrial Re-

search Chair in High-Speed Integrated Circuits. He has published

about 100 papers, one of which won the 1986 CAS Society

Guillemin-Cauer Award. Snelgrove received a BASc in chemical

engineering, and an MASc and a PhD in electrical engineering from

the University of Toronto. He is a member of the IEEE.

Christian Cojocaru works at Philsar Electronics, Ottawa, on

mixed-signal ICs for integrated radio transceivers. He received the

DiplEng degree in electrical engineering from the Polytechnic In-

stitute of Bucharest, and the MEng degree in electronics from

Carleton University, Ottawa. He is a member of the IEEE.

Robert McKenzie works at MOSAID Tech-

nologies, Kanata, Ontario, Canada, on the de-

sign of application-specific memories for

graphics engines and networking compo-

nents. He received the BASc in computer en-

gineering from the University of Toronto and

the MEng from Carleton University.

Send comments and questions about this article to Duncan

Elliott, Dept. of Electrical and Computer Engineering, University of

Alberta, Edmonton, Alberta, Canada T6G 2G7; duncan.elliott@

ualberta.ca.

1999 Special Issues
D&T focuses on practical articles of near-term interest to

the professional engineering community. To further this goal,
the Editorial Board has set the following special issues:

April-June
Reengineering Digital Systems

Guest Editor: Vijay K. Madisetti, Georgia Institute of
Technology; vke@ee.gatech.edu

July-September
Test and Product Life Cycle

Guest Editors: Tony Ambler, Univ. of Texas at Austin;
ambler@ece.utexas.edu

Ben Bennetts, Bennetts Associates;
benb@burridge.demon.co.uk

October-December
Microelectromechanical System Design and Test

Guest Editors: Shawn Blanton, Carnegie Mellon Univ.;
blanton@ec e.cmu.edu

Bernard Courtois, TIMA-CMP;
bernard.courtois@imag.fr

IEEE Design & Test is a quarterly publication of the IEEE Computer Society.
Editor-in-Chief: Yervant Zorian, LogicVision Inc., 101 Metro Drive, Third Floor, San
Jose, CA 95110; zorian@lvision.com.

.

